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ABSTRACT

In the field of joint embedding methods, the complete collapse to a constant fea-
ture vector is a clear indication of an immediate deficiency in the approach. An-
other critical concern, known as dimensional collapse, describes the utilization of
a feature space only to a lower-dimensional subspace. Despite extensive efforts
to address complete collapse through various preventive strategies, dimensional
collapse remains largely unexplored. This paper aims to bridge this gap by ex-
tending the examination of dimensional collapse to video representation learning.
Our source code is publicly available.1

1 INTRODUCTION AND BACKGROUND

Recent approaches in self-supervised image representation learning, like SimCLR (Chen et al.,
2020), MoCo (He et al., 2020), and SwAV (Caron et al., 2021), aim to obtain expressive rep-
resentations through invariance of augmented views of data samples. Thus, the shared semantic
information content from different views of the same sample must be maximized. For joint em-
bedding approaches, like the ones mentioned before, the encoder is followed by a projection head
(see appendix A.1) to map the encoder’s representation space to the projection head’s embedding
space (Chen et al., 2020). The embedding feature vectors are then subject to the learning objective.
The trivial solution to this objective is constant output vectors—a complete collapse of the embed-
ding space. State-of-the-art approaches prevent such a complete collapse with different strategies;
for instance, SimCLR contrasts positive and negative views to obstruct constant vectors.

However, preventing a complete collapse of the embedding space is not synonymous with learning
an embedding space with high information density. Hua et al. (2021) were the first to describe the
phenomenon of dimensional collapse, where some embedding dimensions are highly correlated,
resulting in the utilization of a lower-dimensional subspace within the embedding space. Some
approaches, like Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2022), formulate
their learning objective such that the correlation of embedding dimensions is penalized.

Since the representation vectors are used for transfer tasks rather than the embedding vectors, the
utilization of the representation space is of high relevance. It can be hypothesized that a dimensional
collapse in the representation space of an approach restricts its potential. Jing et al. (2022) report that
using a projection head in contrastive learning enhances the performance and mitigates dimensional
collapse in the encoder’s representation space.

To illustrate the degree of dimensional collapse, Jing et al. (2022) apply singular value decompo-
sition on the sample covariance matrix of feature vectors. In doing so, they visualize the (sorted)
spectrum of the resulting singular values on a logarithmic scale. Li et al. (2022) apply a similar
procedure to inspect dimensional collapse in non-contrastive settings. Additionally to examining
the spectrum of singular values, they visualize their cumulative explained variance curve and also
report the area under curve (AUC) as another measure. Both methods estimate the rank of a given
feature space.

Our literature search only revealed work that addresses dimensional collapse in the context of image
representation learning. To our knowledge, we are the first to examine video representation learning
approaches for dimensional collapse.

∗Corresponding author of this work; patrik.reiske@tu-berlin.de
1https://github.com/paulkapust/dimcollapse-video
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Figure 1: Singular value spectra and cumulative explained variance curves of self-supervised video
representation learning approaches for both the encoders’ representation spaces and the projection
heads’ embedding spaces. A SlowOnly-50 model learned under supervision serves as a baseline.

2 EXPERIMENTS AND RESULTS

We have conducted follow-up experiments to the works of Jing et al. (2022) and Li et al. (2022) for
state-of-the-art video representation learning approaches. To that end, we used publicly available,
pretrained (fixed) models from the video domain,2 specifically the adaptations of SimCLR (Chen
et al., 2020), MoCo (He et al., 2020), and SwAV (Caron et al., 2021) as proposed by Feichtenhofer
et al. (2021). We apply the exact methodology proposed by Jing et al. (2022) and Li et al. (2022) on
the validation split of the Kinetics-400 (Kay et al., 2017) dataset, incorporating SlowOnly-50 (Fe-
ichtenhofer et al., 2019) as the designated spatiotemporal encoder architecture.

Figure 1 visualizes the (sorted) spectrum of singular values as well as the corresponding cumulative
curves and AUCs for the encoders’ representation spaces and projection heads’ embedding spaces.
There, a sudden, steep drop in the logarithm of the singular values, as well as a steep rise of the
cumulative curve or a high AUC, all indicate a dimensional collapse. Our results show no evidence
of (relevant) dimensional collapse in any of the representation spaces. Surprisingly, the supervised
baseline encoder does not seem to acquire a representation space with a higher information density
than the self-supervised approaches. We neither find indication of a (relevant) dimensional collapse
in the embedding spaces of SimCLR (Chen et al., 2020) nor MoCo (He et al., 2020). However, the
embedding space of SwAV (Caron et al., 2021) shows a strong indication of dimensional collapse.

In additional experiments, we discovered that this behavior does not vary in domain transfer settings
but does for different approaches.3

3 CONCLUSION

Our findings support the hypothesis by Jing et al. (2022) that projection heads mitigate a dimen-
sional collapse of the representation space. Our analysis further reveals that state-of-the-art self-
supervised video representation learning approaches are at least as resilient to dimensional collapse
as their supervised baseline. This strongly suggests that self-supervised methods can learn more
information-dense feature spaces than their supervised counterparts.

2We refer interested readers to appendix A.2 for an overview of the selected models; the pretrained models
and configuration details are available at https://github.com/facebookresearch/SlowFast

3Results of the experiments mentioned can be found in appendices A.3, A.4, and A.5 to this work.
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A APPENDIX

A.1 EMBEDDING ARCHITECTURE

Input

Encoder Projection Head

EmbeddingRepresentation

Figure 2: Sketch of an embedding architecture.

The sketch of an embedding architecture depicted in figure 2 above illustrates the relation between
the encoder’s representation space and the projection head’s embedding space. During pretraining a
multilayer perceptron, termed projection head, is used to project the representations to a embedding
space. Based on these projections the model is fit using some self-supervised learning objective.
This concept was first proposed by Chen et al. (2020). Once the encoder is pretrained it can be
transfer learned to solve some other task, termed downstream task. This is usually done using
human-generated labels for supervision.

A.2 OVERVIEW OF THE PRETRAINING SETUP

For our experiments we have used the publicly available,4 pretrained (fixed) models of the video do-
main adaptions (Feichtenhofer et al., 2021) of SimCLR (Chen et al., 2020), MoCo (He et al., 2020),
SwAV (Caron et al., 2021), and BYOL (Grill et al., 2020). All of these models use SlowOnly (Fe-
ichtenhofer et al., 2016; 2019) as spatiotemporal encoder architecture, employ 8x8 sampling and
ρ = 2 temporally separated clips, on the Kinetics-400 (Kay et al., 2017) dataset for pretraining over
200 epochs. SimCLR (Chen et al., 2020), MoCo (He et al., 2020), and SwAV (Caron et al., 2021)
were used in both the main part of this work as well as its appendix, while we used BYOL (Grill
et al., 2020) only in the additional experiments. In these additional experiments we also used a pub-
licly available,5 pretrained (fixed) DPC (Han et al., 2019) model. DPC uses a video-domain adaption
of ResNet-34 (He et al., 2015) as encoder architecture, different than the models mentioned before.

Further details on the pretraining setups can be found in the linked repositories.

A.3 DIMENSIONAL COLLAPSE IN DOMAIN TRANSFER SETTINGS

In additional experiments we tested the video domain adoptions (Feichtenhofer et al., 2021) of
SimCLR (Chen et al., 2020), MoCo (He et al., 2020), and SwAV (Caron et al., 2021) for dimen-
sional collapse (Hua et al., 2021) in a domain transfer setting: the publicly available, pretrained
(fixed) models were originally fit to the Kinetics-400 (Kay et al., 2017) dataset and have here been
separately tested on both the HMBD51 (Kuehne et al., 2011) and the UFC101 (Soomro et al., 2012)
dataset.

Figures 3, 4, and 5 visualize the (sorted) spectrum of singular values as well as the corresponding
cumulative curves and AUCs for the encoders’ representation spaces and projection heads’ embed-
ding spaces for the different approaches, as figure 1 did in the main part of this work. We find that
the methods tested again do not show any (relevant) dimensional collapse in this setting either. This
strongly indicates that the phenomenon of dimensional collapse (Hua et al., 2021) is not directly
linked to domain transfer, and is also another testament for the methods’ ability to generalize in
such a setting.

4https://github.com/facebookresearch/SlowFast
5https://github.com/TengdaHan/DPC
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Figure 3: Singular value spectra and cumulative explained variance curves of the video domain
adaption of SimCLR for both the encoder’s representation space and the projection head’s embed-
ding space in a domain transfer setting, Kinetics-400 to HMBD51 and UCF101 respectively.
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Figure 4: Singular value spectra and cumulative explained variance curves of the video domain
adaption of MoCo for both the encoder’s representation space and the projection head’s embedding
space in a domain transfer setting, Kinetics-400 to HMBD51 and UCF101 respectively.
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Figure 5: Singular value spectra and cumulative explained variance curves of the video domain
adaption of SwAV for both the encoder’s representation space and the projection head’s embedding
space in a domain transfer setting, Kinetics-400 to HMBD51 and UCF101 respectively.
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Figure 6: Singular value spectra and cumulative explained variance curves of the video domain
adaption of BYOL for both the encoder’s representation space and the projection head’s embedding
space in a domain transfer setting, Kinetics-400 to HMBD51 and UCF101 respectively.
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Figure 7: Singular value spectra and cumulative explained variance curves of DPC for the represen-
tation space in a domain transfer setting, Kinetics-400 to HMBD51 and UCF101 respectively.

A.4 VIDEO-BASED BYOL

The analysis of the video domain adaption (Feichtenhofer et al., 2021) of BYOL (Grill et al., 2020)
was not included in figure 1 for readability, because its embedding space is higher-dimensional.

Figure 6 shows that the sensibility of video-based BYOL (Grill et al., 2020; Feichtenhofer et al.,
2021) for dimensional collapse (Hua et al., 2021) is analogous to video-based SwAV (Caron et al.,
2021; Feichtenhofer et al., 2021) in figure 1. There we find strong indication of a dimensional
collapse (Hua et al., 2021) in the embedding space but not for the representation space in both the
training domain and domain transfer settings.

A.5 DPC

The analysis of the DPC (Han et al., 2019) was not included in figure 1 for readability, because its
representation space is lower-dimensional. Also, DPC does not make use of a projection head and
is (other than the others) a generative approach.

Figure 7 shows that the representation space of DPC (Han et al., 2019) suffers from dimensional
collapse (Hua et al., 2021) in both the training domain and domain transfer settings.
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