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ABSTRACT

Sheaf Neural Networks (SNNs) are a powerful algebraic-topology generalization
of Graph Neural Networks (GNNs), and have been shown to significantly improve
our ability to model complex relational data. While the GNN literature proved that
incorporating directionality can substantially boost performance in many real-world
applications, no SNN approaches are known with such a capability. To address this
limitation, we introduce the Directed Cellular Sheaf, a generalized cellular sheaf
designed to explicitly account for edge orientations. Building on it, we define a

corresponding sheaf Laplacian, the Directed Sheaf Laplacian L , which exploits

the sheaf’s structure to capture both the graph’s topology and its directions. L”
serves as the backbone of the Directed Sheaf Neural Network (DSNN), the first
SNN model to embed a directional bias into its architecture. Extensive experiments
show that DSNN consistently outperforms many baseline methods.

1 INTRODUCTION

The rapid advances in neural networks and deep learning have provided powerful tools for capturing
complex relationships in structured data. Rooted in algebraic topology, Sheaf Neural Networks
(SNN5s) (Hansen & Ghrist, 20195 Bodnar et al.| 2022) have recently emerged as a principled extension
of traditional Graph Neural Networks (GNNs). They leverage the notion of a cellular sheaf, which
equips a graph with vector spaces associated to its nodes and edges, together with restriction maps
that relate the two when they are incident. This framework enables learning in higher-dimensional
feature spaces, naturally mitigates oversmoothing, and improves performance in heterophilic graphs
(where neighboring nodes may carry dissimilar features) (Bodnar et al., [2022).

Despite their strength, the SNNs proposed so far are limited to undirected graphs and overlook
edge orientations, therefore failing to fully capture the graph topology of many real-world (naturally
directed) applications. Indeed, directionality plays a central role in complex networks (Bianconi
et al.} 2008), underpinning topological and dynamical phenomena that can strongly influence system
behavior (Harush & Barzel, |2017; |Asllani et al.,|2018). To amend this, we introduce a principled
extension of SNNs which explicitly incorporates edge directionality. We do so by designing complex-
valued direction-aware restriction maps and a corresponding directed sheaf Laplacian. With this,
our method brings the expressive power of SNNs to the domain of directed graphs, enabling a
richer message passing which respects any asymmetries in the graph relationships. By explicitly
modeling edge orientation, our framework combines the benefits of SNNs’ higher-dimension learning
and robustness to heterophily with the advantages offered by directed GNNs (Zhang et al.,|2021b)).
This makes our approach both theoretically principled and practically impactful for a wide range of
applications, from social and biological networks to causal and flow-based systems.

We enhance the representational power of SNNs in settings where edge directionality is crucial by
introducing the notion of Directed Cellular Sheaves. Unlike traditional cellular sheaves employed in
state-of-the-art SNNs, which assign vector spaces (or more general algebraic structures) to the cells
of a complex without retaining a notion of direction, our framework incorporates direction explicitly
into the sheaf’s restriction maps. In it, we define the Directed Coboundary Operator ¢ associated
with the Directed Cellular Sheaf, which we use to construct the Directed Sheaf Laplacian (DSL)

operator L7, capturing both the graph’s topological structure and the orientation of its edges.

Our main contributions are the following ones:
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¢ We introduce the Directed Cellular Sheaf, a mathematical construct that enriches directed
graphs by enabling a principled representation of directional interactions between its nodes.
This structure assigns linear maps between the vector spaces associated with the graph’s
edges and vertices in such a way that the edge directions are explicitly represented.

* We propose the Directed Sheaf Neural Network (DSNN)—an SNN architecture explicitly
designed to include an inductive bias that reflects the directional structure of the graph.

* We conduct extensive experiments on real-world and synthetic datasets, demonstrating the
advantages of our proposal to incorporate directionality in an SNNs via the Directed Cellular

Sheaf and its Laplacian operator L7 .

2 BACKGROUND & RELATED WORK

2.1 CELLULAR SHEAVES

In the classical setting, a sheaf assigns data (such as sets, groups, or vector spaces) to open sets of a
topological space (such as points, open segments, and open disks), together with restriction maps
that propagate this data to open subsets within them. A cellular sheaf (Shepard,|1985}; |Curry} 2014)
modifies this perspective by replacing open sets with cells of a cell complex (where 0-cells are points,
1-cells edges, 2-cells faces, etc.). It assigns a vector space to each cell and a linear restriction map
from each higher-dimensional cell to each of its faces, reflecting the hierarchical structure of the
complex. In line with recent works on SNNs (Hansen & Ghrist, 2019; |Bodnar et al., |2022), we focus
on cell complexes consisting only of O-cells and 1-cells, which coincide with the nodes and edges
of a graph, and on lower-to-higher dimensional mappings from nodes to edges. In such models, the
sheaf structure enables a principled generalization of message-passing architectures by allowing node
features to propagate through edge-level transformations governed by linear restriction maps.

Following Hansen & Ghrist|(2019), we define the cellular sheaf of an undirected graph G = (V, E)
with n = |V] and m = |E| as the triple ({F(v)}uev, {F(€)}ecE, {Fude}eer(v)). containing a
vector space F (u) associated with each vertex u € V, a vector space F (e) associated with each edge
e € E, and a linear map F, <. : F(u) — F(e) for each edge e € I'(u), where I'(u) is the subset of
edges incident on w. In line with the SNN literature, all vector spaces are assumed to be real. In the
cellular sheaf, the vector spaces are referred to as stalks, while the linear maps are called restriction
maps. In this framework, the vertex stalks F(u) represent the node feature vectors (traditionally
denoted as x, in the graph-learning literature). The space formed by all the spaces associated with
the nodes (resp., edges) of the graph is called the space of O-cochains CO(G; F) = @ucvF(u)
(resp., the space of 1-cochains C1(G; F) = @®.cpF(e)). The inter-vertex constraints are captured
by the coboundary operator § : C°(G; F) — C'(G; F), which, given an arbitrary orientation on
the edges (where, for each e = {u, v} € E, either F,,<. or F, <. is multiplied by —1), is defined as
0(z)e = Fu<e Ty, — Fy<e Ty From the coboundary operator, one can define the sheaf Laplacian as
L7 = 67§ which, for a given » € C°(G; F), reads:

L]:(x)u = Z -7'—551@ (-Fuﬂexu - fvﬂexv) Yu e V.

e={u,v}

Both L7 and its normalized version L]f\, are positive semidefinite operators on the space of 0-cochains
C°(G; F), and are independent of the chosen edge orientation, mirroring a similar property that
holds for the standard graph Laplacian L (Chung, [1997).

Several approaches have explored the use of sheaves in the context of graph-based learning. The first
SNN was introduced by |Hansen & Ghrist| (2019), and later extended by |Bodnar et al.| (2022), who
proposed the Neural Sheaf Diffusion (NSD) model. More recent SNN models build upon the NSD
framework, incorporating attention mechanisms (Barbero et al., [2022)), extending the architecture to
hypergraph data (Duta et al., [2023)), and introducing nonlinearities (Zaghen et al., 2024)).

The SNN literature assumes that all node and edge stalks are finite-dimensional vector spaces of
dimension d, all of which are isomorphic to R%. In this way, every restriction map coincides with
a d X d matrix. As a result, the sheaf Laplacian is a block-matrix of size nd x nd with blocks
of size d x d which operates on an nd-dimensional vector-valued signal obtained by stacking the
d-dimensional node signals x,, € F(u) for all w € V associated with the graph’s vertices (the
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0-cochain). When considering multi-feature vertex signals with f > 1 features (or channels), a SNN
operates on a matrix-valued graph signal of size nd x f. For any u,v € V, the block of indices u, v
of L* is equal to the d x d matrix —F1__F,<.. The sheaf Laplacian generalizes the classical graph
Laplacian on an undirected and unweighted graph G. This is because, in the special case of a trivial
sheaf—a sheaf where each stalk is isomorphic to R and each restriction map is the identity map
over R—we recover the standard n X n graph Laplacian L = D — A, where A € {0, 1}"*™ is the

adjacency matrix, and D := diag(1,] A) where 1,, is the all-one vector.

To the best of our knowledge, no SNNs, including those introduced in the above-mentioned papers,
have been proposed to incorporate the edge directions directly. We set out to do so in this paper.

2.2 DISCRETE LAPLACIAN MATRICES FOR UNDIRECTED AND DIRECTED GRAPHS

In the literature, GNNs are typically classified into two categories: spectral-based and
spatial-based (Wu et al.l [2020). Spatial-based GNNs define the convolution as a localized-
aggregation/message-passing operator (Wang et al., [2019). For example, GatedGCN (L1 et al.,
2016) handles directed graphs by aggregating information from out-neighbors (ignoring, though,
potentially valuable signals from in-neighbors) and, more recently, Dir-GNN (Rossi et al., [2024])
employs separate aggregation schemes with distinct weights for in-neighbors and out-neighbors.
In contrast, spectral-based GNNs define the convolution operator rigorously as a function of the
eigenvalue decomposition of the graph Laplacian (Kipf & Welling, [2017). Over the past few years,
several approaches have been proposed to generalize spectral convolutions to directed graphs. In
particular, DGCN (Tong et al., [2020b) introduces a first-order proximity matrix along with two
second-order proximity matrices to describe both the neighborhood of each vertex and the vertices
that are reachable from a given vertex in one hop. DiGCN (Tong et al., 2020a) adopts the Personalized
PageRank matrix and incorporates k-hop diffusion matrices. Finally, several methods generalized
the classical Laplacian matrix L to suitably defined complex-valued, Hermitian matrices such as the
Magnetic Laplacian (Lieb & Loss,|{1993) and the Sign-Magnetic Laplacian (Fiorini et al.| [2023).

The Magnetic Laplacian L', originally introduced by [Lieb & Loss (1993) in the study of electro-
magnetic fields and later employed in spectral GNNs by Zhang et al.| (2021bga)), is a complex-valued
Hermitian matrix that captures directional information in graphs while admitting an eigenvalue
decomposition with a real, nonnegative spectrum. Letting Ay := % (A + AT) be the symmetrized
version of A and letting D, := diag(1, A,), the Magnetic Laplacian and its normalized version are
defined as follows:

L@ =D, — H® and L := T — D; > HOD; ? with H® := A, ® exp (i2mq (A — AT))

where i is the imaginary unit and ¢ € [0, 1].

The Sign-Magnetic Laplacian L°, introduced by [Fiorini et al.| (2023), is a Hermitian matrix that is
well-defined even for graphs with negative edge weights and possesses several additional desirable
properties. When ¢ = %, L7 and L9 coincide if the latter is first computed on the unweighted
version of the graph and then element-wise multiplied by As. Thus, L? is invariant to a positive
weight scaling which could otherwise alter the sign pattern of L(?) and, thus, the edge direction.
Letting D, := diag(1,) |4,]) and sign : R"*" — {—1,0,1}"*" be the component-wise signum
function, L? and its normalized version are defined as follows:

1

— __1 —
L% = Dy—H" and L := [-D; 2 H° D, ?, with H := As@(eT—sgn(\A—AT\)—i—isgn (\A|—|AT|)).

3 DIRECTED CELLULAR SHEAVES AND THE DIRECTED SHEAF LAPLACIAN

In this paper, we introduce the notion of a Directed Cellular Sheaf, a special type of cellular sheaf
where the node and edge stalks are vector spaces defined over the complex field and in which,
assuming finite-dimensional vector spaces, the restriction maps are either real-valued or complex-
valued matrices where the latter encode the graph’s direction. For clarity, we also include a notation
table in Appendix [A]to help readers navigate the symbols we use throughout the paper.
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3.1 DIRECTED CELLULAR SHEAF

For the ease of notation, we now introduce the Directed Cellular Sheaf for the case of finite-
dimensional stalks (the definition can be easily extended to the infinite-dimensional case).

Definition 1. The Directed Cellular Sheaf of a directed graph G = (V, E) with adjacency matrix
A € {0,137 is the tuple (TD, {F (u)}uev, {F(€)}ecr, {Fuge}eer()) consisting of:

1. A Hermitian matrix T'? := exp(i2mq (A — AT)), parametric in q € R.
2. A vector space F (u) € C¢ associated with each vertex u € V;
3. A vector space F (e) € C? associated with each edge e € E;

4. Two linear maps fuge, fvﬂe that map f(u), ]T'(U) to .7?(6) for each edge e € E with

u ~c v where Fuqe € R™? and F,q. = fgqué?,) € C™4, with FO, € R4 js
a real-valued restriction map, and u ~. v indicates that e is incident to both u and v
regardless of whether it is directed or not.

An illustration is provided in Figurel[l]

(b)

Figure 1: An illustration of the complex-valued restriction maps of the Directed Cellular Sheaf
showing how they encode the graph’s directionality for (a) a directed edge and (b) an undirected edge.

The rationale of our definition is to encode the direction of each edge in the imaginary part of the
restriction map of the tail node.

The core idea behind our Directed Sheaf Laplacian is that it is complex Hermitian operator whose
magnitude captures undirected geometry while its phase encodes edge directions, with the parameter
¢ modulating the strength of this directional component. Maintaining a PSD/Hermitian structure
is crucial for spectral GNNSs: it guarantees real, non-negative eigenvalues, enabling stable Fourier
bases and well-defined spectral filters. Classical spectral GNNs (e.g., GCN (Kipf & Welling, [2017)))
also rely on PSD operators with bounded real spectra, but they cannot represent directionality. Our
complex Hermitian formulation preserves the necessary PSD spectral properties while introducing
direction-aware phase information, yielding a stable and expressive spectral operator for directed
graphs. If we do not preserve the PSD/Hermitian structure, the spectral interpretation of graph
convolutions breaks down. Specifically, a non-PSD matrix can have negative or complex eigenvalues,
which makes the graph Fourier transform ill-defined for filtering purposes: the “frequencies” may no
longer correspond to real oscillations on the graph, and spectral multipliers can produce unstable or
non-convergent outputs. For instance, using a purely real skew-symmetric matrix (antisymmetric)
yields purely imaginary eigenvalues, so applying a spectral filter results in oscillatory or diverging
behavior rather than meaningful smoothing or directional propagation. For example, in the undirected
case where e = {u,v}, we have 4,, = A,, = 1, Tﬁ?,) = cos(0) + isin(0) = 1 and, thus,

Foae = Foq, are purely real. In the directed case where e = (u, v) and assuming ¢ = 1, we have

Ays = 1and Ay, = 0and 9 = cos(—mi) +isin(—7r3) = —i; thus Fode = f]?gqei and the

sign of the imaginary part indicates the edge’s direction.  Our proposed Directed Cellular Sheaf
generalizes the classical Cellular Sheaf since, if G is undirected, T = 1 forall {u,v} € E for any
choice of ¢ and, thus, the two sheaves coincide. If G is directed, but we set ¢ = 0, we obtain the
classical Cellular Sheaf associated with the undirected version of G (see Appendix [J]for an additional
example).
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Let E° U E! = E be a partition of the edge set E into undirected edges (E°) and directed edges
(El) We deﬁne the Directed Coboundary Operator § associated with the Directed Cellular Sheaf as
) (Jr)e = Fude Ty — ]:v<]6 Ty, € € E, where z is a cochain of the Directed Cellular Sheaf. Thanks
to our definition of ]‘—u<]e, fvg]e, we have:

g { fuﬂexu_]:uﬂel'u ifee E9

1
‘Fufle Ty — ngeTév) Ty ife e EL. @)

We define the Directed Sheaf Laplacian (DSL) L7 associated to a Directed Cellular Sheaf as
L7 := 6*6, where * is the conjugate transpose operator. Each d x d block of L” reads:

_‘}A:;ﬂej_zvﬂe = ]:u<19]:1)<1€TL(LZ) ife= (uﬂ))

L7 = —‘Ejﬂe]j“ﬂe = (‘F3<le @)) ]?vﬂe ife = (v,u) 2)
~FraeFvae = —Fla.Foae ife = {u,v}
0o - otherwise
qu = Z ﬁ:geﬁuﬂea 3)
eel(u)

where I'(u) is the set of edges incident to u regardless of their direction. Notice that, since with
q=1 (TQSZ))* = —T9, for a directed edge e = (u,v) ore = (v, e), LJT and L}- only differ by the
sign of their imaginary part.

As one can see (the full derivation is reported in the appendix), when applied to a O-cochain z, the
Directed Sheaf Laplacian operator reads as follows for each u € V:

L}-(x)u = Z (]:OQe vg, )*<j}uﬂexu - ]?vﬂexv) 4)
e=(v,u)€E
inflow
+ Z -FL<1e(]?uﬂexu ]:v<16 T\Ww,)+ Z fuqe(ﬁtﬂexu - fvﬁezv)-
e=(u,v)eFE e={u,v}€F
outflow undirected

We define the normalized Directed Sheaf Laplacian as:
L% =D :L7D 3, )

where D := diag(ﬁl, EQ, e, ﬁn) and, forallu € V, D,, := Zeef(u) ]?Zgle]?uﬂe-

3.2 SPECTRAL PROPERTIES OF THE DIRECTED SHEAF LAPLACIAN

The Directed Sheaf Laplacian enjoys several key spectral properties, which we now illustrate. The
proofs of the theorems of this section and the next can be found in Appendix [D] First, we show that

both L7 and Lﬁ are diagonalizable with a real spectrum and that their spectra are nonnegative:

Theorem 1. Lf:' is Hermitian and Lf > 0, and the same holds for Lﬁ.

Next, we show that the spectrum of the Normalized Sheaf Laplacian is upper-bounded by 2:
Theorem 2. Lf N < 2],

These theorems show that L7 and Lf, enjoy the same spectral properties as the classical Laplacian
matrix L defined for undirected graphs. These are essential to define a principled convolutional
operator by approximating the graph-Fourier transform of a graph signal with Chebyshev polynomials
of the first kind of degree 1, as proposed by Kipf & Welling| (2017) for the undirected case.
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3.3 GENERALIZATION PROPERTIES OF THE DIRECTED SHEAF LAPLACIAN

First, we show that the Directed Sheaf Laplacian generalizes both the Sheaf Laplacian and the
classical graph Laplacian:

Theorem 3. If G is undirected, L7 coincides with the classical sheaf Laplacian L7 for any choice
of q € R. Also, if the sheaf is trivial and G is undirected and unweighted, L7 coincides with the

classical graph Laplacian L. If G is directed and we set ¢ = 0, L coincides with the classical sheaf
Laplacian associated with the undirected version of G.

Let a Trivial Directed Cellular Sheaf be any Directed Cellular Sheaf with d = 1 where, for all
directed edges e = (u, v), Fy<e = 1 and Fyq. = Tffé). With the next theorem, we show that, for a

given directed graph without weights, L generalized the Magnetic Laplacian and, when choosing
q= i, also the Sign-Magnetic Laplacian. The following holds:

Theorem 4. Letting G be a directed graph with unit weights, the Directed Sheaf Laplacian L
associated with a Trivial Directed Cellular Sheaf coincides with the Magnetic Laplacian L9 In the

special case where ¢ = i, L7 also coincides with the Sign-Magnetic Laplacian L°.

It is well-known that the classical Laplacian matrix L defined for an undirected graph can be
equivalently defined as L = D — A or L = BB, where B € {—1,0,1}"*™ is the node-to-edge
incidence matrix of the graph in which either of the two entries of each column has been arbitrarily
multiplied by —1. While, to the best of our knowledge, no similar construction is known for the
Magnetic Laplacian and the Sign-Magnetic Laplacian, with the following theorem we show that one
such decomposition exists and that it can be obtained via the lens of our Directed Sheaf Laplacian
(which generalizes both). Indeed, we have the following:

Theorem 5. Let G be a directed graph with unit weights. Assuming a Trivial Directed Cellular Sheaf,

the conjugate transpose 5 of the Directed Coboundary Operator S boils down to the complex-valued
node-to-edge incidence matrix B € C"*™ defined for an edge e € E incident to a vertex u.:

1 ife = (u,v) ore = {u,v} withu <v
By ={ -1 ife ={u,v} withu > v
—Tég) ife=(v,u).
It follows that L9 = BB*. Also, when setting q = %, we have L(}) = L7 = BB*.
Incidentally, this result leads to substantially simpler proofs of the positive semidefiniteness of both
Laplacian matrices than those reported in their original papers.

4 THE DIRECTED SHEAF NEURAL NETWORK (DSNN)

The sheaf diffusion process on a graph G, introduced in[Hansen & Gebhart| (2020) as a generalization
of the classical heat diffusion process that governs classical spectral-based GNNs Kipf & Welling
(2017), follows the differential equation

where X (t) is a time-dependent graph signal X . More precisely, X, is the stalk of each node u € V,
and it coincides with a matrix in R%*f where d denotes the dimensionality of the vertex stalk and f
is the number of feature channels. X is typically obtained starting from a matrix of node features
of size n x f to which one applies a linear projection to obtain an n x (df) matrix, which is then
reshaped to (nd) x f.

By relying on our proposed Directed Sheaf Laplacian L7 , we introduce the Directed Neural Sheaf
Diffusion process as the following generalization of the Neural Sheaf Diffusion process proposed
by |Bodnar et al.|(2022):

X(t) = -0 (Lﬁ (t) (In ® Wl(t))X(t)Wg(t)) , 6)
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where W, € R4 W, € RFf*f are two time-dependent weight matrices and o is a nonlinear
activation function.

We then define the Directed Sheaf Neural Network (DSNN) as the convolutional neural network
whose convolution operator is obtained from the discretized version of Equation [6

xE+) _ x®) _ o (Lij\:f(t) <In ® Wl(t)> X(t)Wz(t)) ’ (7
where X () X (t+1) ¢ crdxf,

The expressiveness of Eq.[7|is further enhanced by a learned parameter ¢ € [—1,1]¢ by which we
adjust the relative magnitude of the features in each component of a stalk. The update rule is thus:

XD = diag(1+e)X® — o (Lﬁm (1o wi") xOwi"), ®)

where ¢ € [—1,1]"? is obtained by concatenating ¢ n times. As activation function o, we adopt a
complex extension of the ReLU function, defined for a given z € C, as

[z ifR(z) >0,
o(2) = {0 otherwise.

This choice is consistent with previous work on complex-valued GNNs and HNNSs, such as (Zhang
et al., 2021b; [Fiorini et al., [2024).

Finally, since our model operates in the complex domain, we project the output of the final layer to
the real domain using an unwind operation. Given X (7) € C"*¢, the projection is defined as:

unwind(X (7)) = (R(X (7)) | 3(X(7))) € R,
where 7 is the last convolutional layer of the network, || denotes concatenation along the feature
dimension, and c is the output dimension.

Learnable Sheaf Laplacian. A key strength of SSNis is their ability to operate over richer structures,
sheaves, rather than just the underlying graph. Since multiple sheaf structures can be associated with
the same graph, effectively modeling the most suitable one is critical for a meaningful representation
learning. In our proposed models, the restriction maps are learned end-to-end as a function of the
input vertex features. Specifically, for each edge e € E with endpoints u,v € V, each d x d matrix
Fu<e is parameterized as F, <. = ®(xy, || ), Where z,, and z,, denote the feature vectors of the
nodes incident to e and ® is an MLP. The resulting vector is reshaped into a d x d matrix, thus
obtaining the linear restriction map F,<e.

Connection with Neural Sheaf Diffusion. The Neural Sheaf Diffusion process proposed by Bodnar
et al.[(2022) relies on the Normalized Sheaf Laplacian L7, instead of on our proposed Directed Sheaf

Laplacian Lﬁ in Eq.[7| Since, as shown in Theorem , Ly = Lﬁ when the graph in undirected,
NSD is a special case of SNN when the graph is undirected.

Computational Complexity. Letting f be the number of channels, assumed constant throughout
the layers, we focus on a single convolutional layer. In the case of an undirected graph, where all
restriction maps are real-valued, the complexity of DSNN is identical to the complexity of NSD,
and reads O (n(c? + d®) + m(cd® 4 d*)), which, with d = 1, coincides with the complexity of a
classical spectral-based GNNs (Kipf & Welling} [2017), which is O(nc? + mc). In the experiments,
we use d € {2, 5}, which only introduces a small, constant overhead with no asymptotic impact. For
a directed graph, the restriction maps are complex-valued, and thus, the stalks are complex-valued
from layer 2 onward. This, though, only leads to an extra multiplicative cost of about 4, which is
independent of the graph and size of the network and plays no role in the complexity of DSNN.

For the proof of the theorems in this section, and for additional details on DSNN’s inference
complexity, please refer to Appendix [D]and Appendix [E] respectively. Computing times are reported
in Table {]in the appendix.

5 EXPERIMENTS

We compare DSNN against different state-of-the-art baselines on two complementary tasks, node
classification and direction prediction, using both real-world and synthetic datasets. Following (Bod;

nar et al.,[2022), we experiment with three types of d x d blocks in the Directed Sheaf Laplacian L7,
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diagonal, orthogonal, and general, which lead to three variants of DSNN: Qiag-DSNN, O(d)-DSNN,
Gen-DSNN. From Definition 1, the normalized directed sheaf Laplacian Lﬁ(t) depends on a parame-

ter q. As Lﬁ(t) is used in the convolutional layer (see Equation , we treat ¢ as a hyperparameter in
this work. In the tables, the best results are reported in boldface and the second-best are underlined.
The datasets and code we used are available on GitHub (see Appendix [B). Further details on our
experiments are reported in Appendix [F [G]

Baselines. We compare DSNN against a large set of GNN and SNN baselines from five categories:
i) classical GNN models: GCN (Kipf & Welling, 2017), GAT (Velickovi€ et al.| [2018)); ii) GNN
models designed for heterophilic graphs: Geom-GCN [Pei et al.|(2020), H2GCN (Zhu et al.| [2020),
GPRGNN (Chien et al.| 2021)), FAGCN (Bo et al., [2021), GGCN (Yan et al., 2022)); HSGNN |Lu et al.
(2024) iii) GNN models that address the oversmoothing problem: GCNII (Chen et al., [2020); iv)
GNN models that incorporate edge directionality: DiIGCL (Tong et al.,[2021)), MagNet (Zhang et al.|
2021b)), SigMaNet (Fiorini et al.,[2023)), DirGNN (Rossi et al.,[2024)), HaarNet (Badea & Dumitrescu,
2025), CAGN [Xu et al.| (2025); v) SNN models: NSD (Bodnar et al., [2022).

Real-world datasets.The Texas, Wisconsin, Cornell, and Film datasets are provided by
Pei et al.|(2020); Citeseer, PubMed, and Cora by|Yan et al.|(2022); Squirrel, Chameleon,
Roman-Empire, and Questions by Platonov et al|(2023); and Te legram by Bovet & Grindrod
(2020). Since GNNs are known to struggle on heterophilic graphs (where neighbors often have
different labels), we evaluate DSNN across datasets with a wide range of edge homophily coefficients.

Node classification on real-world datasets.We follow the evaluation protocol of Bodnar et al.| (2022)
using 10 splits. For Texas, Wisconsin, Film, Cornell, Citeseer, Pubmed, and Cora, we rely on the
fixed splits provided by|Yan et al.| (2022) and report results on all 10 predefined splits. For Chameleon,
Squirrel, Roman-Empire, and Questions, we adopt the splitting strategy from |Platonov et al.| (2023)).
For Telegram, we use the split introduced in|Zhang et al.| (2021b). We report mean=-std accuracy for
all datasets, and ROC AUC for Questions, which, as noted by |Platonov et al.| (2023)), is highly
imbalanced with 97% of the users belonging to the majority class. Table|l| shows that DSNN attains
the best results on 10/12 benchmarks, spanning both heterophilic and homophilic graphs. In partic-
ular, Texas, Wisconsin, Film, Chameleon, Cornell, Citeseer, PubMed, Telegram,
Roman-Empire, and Questions are won by a DSNN variant, while the strongest baselines nar-
rowly lead only on Squirrel and Cora and only by a small margin (0.22 and 0.79, respectively).
Compared to the SNN baseline (NSD), adding directionality within the sheaf systematically helps, as
DSNN surpasses NSD on the majority of datasets, with notable margins on Questions, Texas,
Telegram, and Roman-Empire. Relative to direction-aware GNNs (DirGNN, SigMaNet, Mag-
Net), DSNN delivers consistently stronger performance on 10/12 datasets, suggesting that combining
cellular-sheaf expressivity with an explicit oriented Laplacian yields a more effective message-passing
bias. Overall, these results indicate that learning direction-aware restriction maps within a sheaf
framework provides robust gains across many graph regimes, especially in challenging heterophilic
settings. See Appendix [H]for the ¢ values of DSNN compared to the ones of MagNet, Appendix
for an analysis of d values in DSNN, and Appendix [[]for a preliminary analysis of ¢ when set as a
learnable parameter.

Node classification on synthetic datasets. We further investigate the role of directionality by
comparing DSNN against NSD on a set of synthetic graphs generated using the Direct Stochastic
Block Model (DSBM) (He et al., 2022). For this experiment, the DBSM datasets are generated with
n = 2500 nodes, C' = 5 classes, intra-cluster density o;; = 0.1, probability of an edge taking a certain
direction j3;; = 0.2, and with an increasing inter-cluster density «;; € {0.05,0.08,0.1}. Features are
intentionally minimal (scalar in/out—degree sums). We run the experiments 10 times per dataset with
a 80%/5%/15% training/validation/testing split, and report the mean accuracy and standard deviation.
Across all settings in Table [2] the three DSNN variants achieve near-perfect accuracy (typically
96-99%; best: 99.14% at «;; = 0.10), substantially outperforming NSD (~ 20%, i.e., % chance for
C = 5). Direction-aware GNNs trend upward with density, but still trail DSNN: MagNet rises from
78.64% to 91.58%, and SigMaNet narrows the gap at higher density (up to 98.60%) yet remains
below DSNN on average. DirGNN shows instability with a large standard error, suggesting sensitivity
to directed community structure under our minimal features. Together, these results indicate that
explicitly encoding orientation in the sheaf Laplacian yields a decisive advantage when communities
are directionally biased, even when node features carry little information. Consistent with Table[TT]
(in the appendix), setting ¢ = 0—i.e., discarding edge orientation inside the sheaf—leads to a drop in
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Table 1: Node classification: mean and standard deviation accuracy (ROC AUC curve on
Questions)

Model Roman-Empire Texas Wisconsin Film Squirrel ~ Chameleon  Cornell Telegram Citeseer Pubmed Cora Questions
Homoph. Ivl 0.05 0.11 0.21 0.22 0.22 0.23 0.30 0.32 0.74 0.80 0.81 0.84

# Nodes 22,662 183 251 7,600 2,223 890 183 245 3,327 18,717 2,708 48,921
# Edges 32,927 295 466 26,752 46,998 8,854 280 8,912 4,676 44,327 5.278 153,540
# Classes 18 S 5 5 S 5 5 4 6 3 7 2

Diag-DSNN ~ 90.40+0.31  88.65+4.95 X
O(d)-DSNN  92.08+0.24  87.57+4.04 .
Gen-DSNN 92.08+£0.36  87.57+5.43

46.84+4.03 87.84+£5.70 94.42+3.03 79.80+1.49 90.23+0.44 87.36x1.41 79.08+0.72
45. .29 87.3047.26 94.62+£2.24 77.28+1.63 87.30+1.62  79.24+0.68
47. .54 87.84+6.86 94.81+2.28 79.88+1.21 87.58+0.72 79.55+0.67

Diag-NSD 83.20+0.47  85.67+6.95 88.63+2.75 37.79+1.01 45.5242.22 46.55+3.03 86.49+7.35 92.11+3.38 77.14+1.85 89.4240.43 87.14£1.06 75.82£1.05
O(d)-NSD 83.67+0.34  85.954£5.51 89.41+4.74 37.81x1.15 45.59+2.23 46.26+3.11 84.86x4.71 91.53+2.46 76.70+1.57 89.49+0.40 86.90£1.13 77.19£1.37

Gen-NSD 83.80£0.50  82.975.13 89.21+3.84 37.80£1.22 4531205 45.60£336 8568651 91.73%2.44 76.32£1.65 89.33035 87.30+1.15 77.36+1.32
HaarNet 85.42:043  77.5744.18 71561669 3638+1.01 40.523.14 42.433.98 73.91%7.57 91.1243.69 76.51x1.64 88.39:0.61 82.68+1.54 75.010.94
CAGN OOM  7567+7.15 84.11x451 34.861.06 3538099 39.79+389 73.79+7.25 86.73:3.69 73.64:2.81 OOM  8623+1.05  OOM

DIiGCL 52712032 57.56£5.15 65504423 2938:0.73 38.90£1.78 41.71¥2.20 62.1625.12 80.57+225 77.42:0.14 80.97£0.7 76.12£1.04 OOM

DirGnn 91.23+032  74.2243.97 71374657 2930+1.22 44.48+1.94 4556336 61.4623.63 92.8142.07 76.09+1.53 85.14:0.44 86.20+1.18 76.57+0.86
SigMaNet ~ 85.60:0.20  78.92+449 8021507 36.59£0.55 40.89£1.97 40.98+3.88 73.53%5.91 86.124349 7435:0.96 88.35:0.64 8551%l.14 76.95%0.95
MagNet 88.07:0.27  79.46:8.13 81.18+2.80 3651:0.96 41.04£1.84 43.82+4.56 75.99+5.59 87.6242.92 77.21x1.69 88.47:0.54 86.321.39 75.66+0.63
H2SGNN 69.59+0.45  72.70+8.83 78.23%522 36.75:1.33 37.00£1.21 41.14£3.60 74.05:5.94 62.69+395 77.17+1.36 86942042 82.411.42 74.200.65
GGCN 76.25:048  84.864.55 86.86:3.29 37.54x1.56 40.75:2.44 39.71+3.25 85.68+6.63 75.58%5.16 77.14x145 89.15:0.37 87.95:1.05 74.19:1.01
H2GCN 60.1120.52  84.86+7.23 87.654.98 35.70+1.00 37.77£1.92 42.07%4.13 8270528 88.27+3.89 77.11+1.57 89.49:0.38 87.87£1.20 75.30%1.35
GPRGNN  68.85:027  78.38+4.36 82.94x421 34.63:122 36.62:2.28 40.67:2.80 80.27+8.11 74.23£6.45 77.131.67 87.54x038 87.95:l.18 75.42+1.29
FAGCN 74758072 82.43:6.89 82.94£7.95 3487125 41.08£227 41.90£2.72 79.19%9.79 80.77+7.79 77.10:+1.81 90.21:0.36 88.17+1.24 76.40+2.01
GCNII 83.70:0.51  77.57+3.83 80.39%340 37.44x1.30 42.222.13 43.76+2.49 77.863.79 89.03%395 77.33:148 90.15:0.43 88.37x1.25 78.030.84
GCN 73.69+0.74  55.14%5.16 51.76x3.06 27.32+1.10 39.47+1.47 40.89+4.12 60.54%530 73.43%5.81 76.50+1.36 88.42:0.50 86.98+1.27 74.61:0.82
GAT 69.07:0.83  52.16+6.63 49.4134.00 27.44:0.89 35.62£2.06 39.21x3.08 61.895.05 72.6147.50 76.55+1.23 87.30:1.10 86.33£0.48 76.56%0.93
MLP 64.94:0.62  80.81+475 85.29+331 3653:0.70 40.45t1.41 42.79+3.80 81.896.40 46.34x5.47 74.02:1.90 87.16:0.37 75.69+2.00 71.230.94

Table 2: Node classification: performance comparison with different c;; values.

Model / o 0.05 0.08 0.10

Diag-DSNN  98.34x0.72  97.22+0.58  99.140.36
O(d)-DSNN  97.28+0.68 98.42+0.61 ~ 98.80+0.27
Gen-DSNN  96.64x0.86  98.10£0.65  98.68+0.45 H2SGNN  20.32+0.88 21.08+2.16 20.28+0.53
GGCN  20.14£0.31 20.02+0.06 20.012.78
H2GCN  20.34£1.49 20.68+1.23 20.28+0.54
GPRGNN  40.02£0.06 40.140.29 38.96:0.73
FAGCN  20.46:0.92 20.48+1.02 20.24x0.51

Model / o 0.05 0.08 0.10

Diag-NSD  20.64+1.84 21.42+1.05  20.58+1.20
O(d)-NSD 20.15+1.45  20.57£1.25  20.41+0.85
Gen-NSD 20.20£1.08  20.42£1.49  20.51+0.89

HaarNet 98.180.53 98.25:0.33  98.82:0.54 GCNIl  20.84+1.31 20.71+0.83 20.73+1.41
CAGN 92.71+7.65 9331775 96.96+5.86 GAT 23.34+3.13  21.984£2.09 21.58+1.84
DiGCL 30.1345.12  31.54+6.87 24.73+9.12 GCN 20.06+0.18 20.46+0.22 20.01x1.01
MagNet 78.64+1.29  87.52+1.30  91.58+1.04 MLP 20.28+0.69  20.31x0.93  20.28+0.45

SigMaNet 87.44£0.99  96.14+0.64  98.60+0.31
DirGNN 83.96+7.91 83.32412.92 83.16x17.31

performance, whereas g > 0 restores the gains. This confirms that DSNN’s improvements stem from
using directionality inside the restriction maps rather than from the increased capacity of the network.

Direction prediction on the real-world datasets. We further test the performance of DSNN on the
direction prediction task: a binary classification task where the model is asked to predict whether
(u,v) € E or (v,u) € E. Following [Zhang et al. (2021b), we split edges into 15% test, 5%
validation, and the rest for training, and perform 10-fold cross-validation while preserving graph
connectivity. As Table|3| shows, DSNN attains state-of-the-art performance on 6/10 datasets (Texas,
Wisconsin, Cornell, Citeseer, Squirrel, Pubmed, Questions). On the remaining
ones, DSNN is a close runner-up: on Cora it is within 0.01 accuracy of the best method, and
on Film it trails the strongest direction-aware GNN by 0.18. We observe that using a nonzero g
is beneficial on most benchmarks. In the appendix (Table [TI0), the best settings adopt ¢ > 0 in
most model—dataset combinations, corroborating that explicitly encoding edge orientation inside the

directed sheaf Laplacian L7 improves disambiguation of (u, v) versus (v, u). Overall, these results
mirror our node-classification findings: injecting direction into the sheaf (via complex restriction

maps and L”) yields a robust advantage on tasks where edge orientation is key.

Training and inference time. Wall-clock time (training+testing, averaged over 10 folds, 1k epochs)
and peak GPU memory are reported in Tables 4 and [5] (see Appendix [E]for more details). DSNN
comes out as consistently faster than generic direction-aware GNNs with high-order diffusion, but
(as expected) incurs a moderate constant-factor overhead vs. NSD due to complex-valued arithmetic.
On small-to-medium graphs, DSNN runs in ~=8-10 s per experiment (vs. 6.5-7.8 s for NSD), while
on denser or larger graphs times are 19-33 s for DSNN (vs. 10-16 s for NSD) and 107 s for DSNN
vs 47.5 s for NSD on the largest benchmark (Questions). Memory usage shows a similar pattern:
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Table 3: Direction prediction: mean and standard deviation accuracy

Model Texas ‘Wisconsin Cornell Cora Citeseer Film Squirrel ~ Chameleon ~ Pubmed Questions

Diag-DSNN 93.36+2.64 87.18+4.02 89.56+4.41 82.54+1.02 85.10£0.79 81.20+0.62 95.17+0.24 92.04£0.73 95.41+0.20 90.48+0.11
O(d)-DSNN  94.55+4.61 88.31+£3.38 91.06+3.96 82.98+1.08 85.44+0.82 81.18+0.52 95.53x0.31 92.52+0.43 95.23+0.23 90.16+0.13
Gen-DSNN  93.62+3.56 87.84+4.04 90.83+3.73 82.71%1.35 85.01%£1.01 81.20+0.61 95.27+0.26 92.41£0.49 95.56+0.19 90.23+0.15

Diag-NSD  88.42+4.64 85.66+3.76 85.78+3.39 82.76x1.19 85.05+1.43 80.96+0.52 91.56+0.66 90.12+1.44 95.25+0.18 90.29+0.15
O(d)-NSD  88.53+4.44 85.64+4.13 85.38+4.97 82.71x1.14 85.19+0.97 81.37+0.68 92.19+1.23 88.22+0.74 95.36+0.22 90.12+0.11
Gen-NSD 89.59+4.14 85.89+4.33 85.58+4.86 82.58+0.73 85.06+0.85 80.09+0.59 88.96+0.45 90.98+0.92 94.99+0.23 90.21+0.12

HaarNet 86.15+5.44 86.79+2.31 85.55+6.23 82.53+0.79 85.13+0.89 80.86+0.68 95.04+0.37 92.11+0.58 95.13+0.27 90.10+0.18
CAGN 87.34+3.89 85.79+3.02 84.81+4.31 81.94+0.95 84.73+0.67 80.97+0.77 95.08+0.19 94.84+0.50 95.18+0.32 OOM

Dir-GNN 88.35+4.66 86.13+3.91 85.59+4.95 82.99+0.82 84.31+1.51 80.56+0.42 96.23+0.24 93.54+0.63 95.22+0.21 90.03+0.17
SigMaNet 89.37+3.65 86.53%£3.79 85.37+4.51 81.98+£0.78 84.29+0.98 80.84+0.65 94.98+0.44 92.01+0.59 95.05+0.22 90.05+0.14
MagNet 88.94+3.96 86.65+3.34 85.77+£3.52 82.25+0.84 84.64+1.01 81.01+0.51 94.99+0.41 92.09+0.58 95.28+0.31 90.03x0.21

H2SGNN 90.19+4.07 86.62+3.24 86.36+3.41 81.21+1.06 84.69+0.88 80.32+0.75 94.16+0.42 91.14+0.53 94.80+0.22 88.98+0.25
GGCN 89.59+4.08 85.67£2.82 86.16+£3.26 82.73+0.73 84.93+0.63 81.29+0.68 93.93+0.55 91.55+0.72 94.98+0.20 90.17+0.18
H2GCN 87.64+6.17 84.46+4.13 84.59+7.18 81.4240.91 84.22+0.98 80.82+0.56 92.18+0.26 89.96+0.68 94.69+0.26 88.98+0.25
GPRGNN 87.58+4.67 84.94+3.67 84.41£5.29 81.87£1.03 84.56x1.45 80.49+0.65 93.12+0.46 89.55+0.66 94.82+0.55 89.85x0.41

FAGCN 88.15+5.74 86.26+4.78 83.06+7.29 82.15£0.94 84.68+1.42 80.61+0.41 94.08+0.44 91.28+1.17 95.05+0.47 89.15+0.31
GCNII 89.39+4.81 85.66+2.87 84.43+4.57 82.59+0.95 84.98+0.87 81.02+0.74 95.38+0.40 92.06+0.67 95.09+0.21 90.17+0.18
GAT 89.15+5.52 85.7743.62 85.01+5.74 82.14+1.27 84.54x1.11 78.59+1.01 95.07£0.26 92.25+0.90 95.04+0.21 87.73+0.99
GCN 86.90+3.68 86.90+3.68 76.20+6.33 81.78+1.04 83.63x1.05 77.61+0.47 94.10+0.25 90.70+0.56 86.95+0.56 77.86+0.35
MLP 90.21+4.35 86.61+4.30 87.12+4.06 82.54+1.09 84.98+0.82 81.38+£0.66 93.42+0.32 90.08+0.69 95.03+0.18 90.01+0.12

DSNN peaks at 404—4462 MiB versus 384-3360 MiB for NSD (i.e., typically a 5-35% increase).
Importantly, both methods share the same asymptotic complexity, as shown in Appendix [E]

Table 4: Training and testing time (s), averaged over 10 folds and 1,000 epochs.

Model Texas ~ Wisconsin Film Squirrel  Chameleon Cornell ~ Citeseer ~ Pubmed Cora  Roman-Empire Questions  Telegram

DSNN (¢=0.25) 8.23+0.11 8.30£0.13 19.20£0.08 25.79£0.12 9.75+0.18 8.27£0.15 9.76£0.10 33.15£0.05 9.10£0.21 28.43£0.076 106.99+0.09 9.58 +0.32
DSNN (¢=0.15) 8.23+0.24 8.24+0.10 19.2540.08 25.66+0.22 9.77+0.12 8.33+0.19 9.81+0.17 33.14+0.05 9.10£0.18 28.87+0.045 106.50£0.06 9.61+0.24
DSNN (¢=0) 8.20+0.15 8.42+0.17 19.20+0.09 25.79+0.11 9.91+0.26 8.30+0.17 9.72+0.10 33.22+0.07 9.01+0.19 28.22+0.086 107.10+0.13 9.46 +0.22
NSD 6.59+0.15 6.64£0.10 10.73£0.14 14.43+0.12 7.79£0.24 6.59+0.10 7.50£0.17 16.32+0.08 7.39+0.13 14.15£0.084  47.51x0.12 7.69 +0.33

Table 5: Peak GPU memory (MiB).

Model Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora Roman-Empire Questions Telegram

DSNN 404 408 1078 1362 598 404 830 1744 606 1100 4462 414
NSD 384 400 920 1180 554 384 588 1338 522 730 3360 390

6 CONCLUSIONS

We introduced the Directed Cellular Sheaf, from which we derived the Directed Sheaf Laplacian L}: .

By encoding the edge direction in its imaginary components, L7 carries a directional inductive bias
thanks to which we obtain a convolution operator implementing a message-passing scheme capable
of handling asymmetric interactions. We embedded such an operator in the Directed Sheaf Neural
Network (DSNN). Our theoretical results showed that DSNN generalizes several well-established
graph-learning models, including NSD, MagNet, and SigMaNet. Empirically, DSNN exhibits strong
performance across both real-world and synthetic datasets, consistently outperforming both traditional
GNNs and SNNs. This demonstrates that DSNN'’s explicit treatment of directionality leads to superior
generalization, particularly in heterophilic graph settings.

Future Work. Extending our approach to temporal graphs constitutes a compelling direction for
future research, with the potential to broaden its applicability to dynamic settings.
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A NOTATION SUMMARY

Table 6] lists the notation used in the main paper.

Table 6: Notation

Symbol

Meaning

G=(V,E)

n=[V], m=|E|

A c {0, 1}n><n

As = %(A + AT)

i

T = exp(i2mq(A — AT))
qeR

F(u) € C?

Fle) € C4

]:ugle

fgﬂe

C%G; F) = Dey F(u)
CYG F) = Deep Fle)
5:C0 = !
0(2)e = Fu<e®y
LF =55

Lﬁ — D2 [ F D-1/2
Qu = Zeez(u) ::ﬁsfuﬁe
D = diag(Ds,...,D,)
I'(u)

EO,El

X(t) c (Cndxf

Wl(t) W2(t)

g€ [-1,1]¢

o()

unwind(2)

B

L@

LO’

- ]:vﬂexv

Directed graph with vertex set V', edge set Ef
Number of vertices and edges
Adjacency matrix of G

Symmetrized adjacency matrix
Imaginary unit (i2 = —1)
Phase—direction matrix (Magnetic term)
Directionality parameter

Stalk (vector space) at vertex u

Stalk at edge e

Restriction map from node u to edge e
Real base map (before applying 7(9))
Space of 0-cochains

Space of 1-cochains

Directed coboundary operator
Action on cochain z

Directed Sheaf Laplacian (DSL)

Normalized DSL

Degree block for node u

Block degree matrix

Set of edges incident to u (ignoring direction)
Sets of undirected and directed edges

Node feature cochain at layer ¢

Learnable weight matrices at layer ¢

Learned scaling of stalk components
Complex ReL.U activation

Concatenation of real and imaginary parts of Z

Complex incidence matrix (for trivial sheaf)
Magnetic Laplacian
Sign-Magnetic Laplacian
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B CODE REPOSITORY AND LICENSING

The code written for this research work is available at https://anonymous.4open!
science/r/Directional-Sheaf-47AD/ and freely distributed under the Apache 2.0 li-

CCHSCE]

The Cora, Citeseer, and PubMed datasets are available at https://lings.org/
datasets//Citeseer, PubMed, and Cora are sourced from (Yan et al.,[2022). The Squirrel,
Chameleon, Roman-Empire and Questions datasets come from [Platonov et al.| (2023).
Telegram is provided by |Bovet & Grindrod| (2020).

Regarding the models used in this paper, we rely on publicly available implementations from the
following sources:

MLP, GCN, GAT, GGCN, GCNII, Geom-GCN, GPRGNN: https://github.com/
Yujun—-Yan/Heterophily_and_oversmoothing with MIT license.

GraphSAGE: https://pytorch—-geometric.readthedocs.io/en/
latest/generated/torch_geometric.nn.conv.SAGEConv.html with
MIT license.

H2GCN: https://github.com/Godofnothing/
HeterophilySpecificModels/tree/main/H2GCN.

FAGCN: https://github.com/Godofnothing/
HeterophilySpecificModels/tree/main/FAGCN.

MixHop: https://github.com/benedekrozemberczki/

MixHop—and—-N-GCN with GNU General Public License v3.0 (GPL-3.0) license.

MagNet: https://github.com/matthew-hirn/magnet with Apache License
2.0.

SigMaNet: https://github.com/Stefal994/SigMaNet with Apache License
2.0.

DirGNN: https://github.com/emalgorithm/
directed-graph—-neural-network with Apache License 2.0.
NSD: https://github.com/twitter-research/

neural-sheaf-diffusion with Apache License 2.0.

C DERIVATION OF THE EQUATION OF L”

Since, by construction, LF = g*g, the following equation holds:

Z ﬁ:gefuﬂexu - Z (]:O<1@ 153))*]:@36351)

eel(u) e=(v,u)€E
self-loop inflow
0 T
— Y Pl a0z, - Y Fla Fegers.
e=(u,v)€EE e={u,v}€E
outflow undirected

For a directed graph G, the uu component of L7 can be rewritten as follows:

Z u<16‘7:1t§16 = Z ‘quﬂe}:uﬂe

eel(u) e=(u, U)EE
+ Z T(q)) ‘FS eTISg) + Z Fuﬂe‘%uﬂe'
e= (v,u)EE e={u,v}€F

Equation[z_f]is obtained by combining this equation with the previous one and factoring each summation
by (]: u<le ) T .

'"https://www.apache.org/licenses/LICENSE-2.0
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D PROOFS OF OUR THEOREMS

Theorem 1. Lf is Hermitian and L]? > 0, and the same holds for L]}\:,.

Proof. By definition, we have L7 = 6*6 Therefore, for any pair of indices u,v € V, L7 = (5* S

uv

and La = 5",5ou Since this implies Luv = (L}— )* for all of its entries u, v, we conclude that the
matrix is Hermitian. It follows that the spectrum of L7 is real. By following essentially the same

arguments using &' := 6D~ %, one can show that the spectrum of L% is real as well.

Since, again by definition, L7 = 5*6, its associated quadratic form 2*6*0x (with 2 € C) can be
rewritten as x*6*dz = (x)*(dz) = ||0||3. Since ||(5£BH2 is a norm, ||0||2 > 0 holds for all z € C,
thus 1mply1ng L7 = 0for all * € C. Thus, L7 > 0. By following the same arguments using
&' := 0D~ 2, one can show that L}- > 0 as well. O

Theorem 2. L7~ < 2I.

Proof. Let Q% := D~%6*5D~% for the case where § has not been given an arbitrary orientation
(this is in line with the classical construction of the Signless Laplacian () for undirected unweighted

graphs) Since Q7 is the product of a matrix and its conjugate, we have Q}- > 0. It is easy to show
that ﬁ =2I — L}— . From this, we deduce:

F=ol—LL »0e —L% = —2I & L], < 2I.

This shows that not only Lﬁ has a nonnegative spectrum, but also that its spectrum is upper-bounded
by 2. O

Theorem 3. If G is undirected, L7 coincides with the classical sheaf Laplacian L7 for any choice
of q € R. Also, if the sheaf is trivial and G is undirected and unweighted, L7 coincides with the

classical graph Laplacian L. If G is directed and we set ¢ = 0, L” coincides with the classical sheaf
Laplacian associated with the undirected version of G.

Proof. Part 1. If GG is undirected, all restriction maps of the Directed Cellular Sheaf are real for every
choice of ¢ € R-this is because, for all u,v € V, A = AT implies §R( wo ) = 1and (T 7Ev)) =0 for
any choice of g. This implies \s(]-'uge) = 0 for all e € E where u is one of its endpoints; therefore,

L7 is real valued and L” = L%
Part 2. Under the same assumptions on G, if the Directed Cellular Sheaf is trivial, d = 1 and

Fuge =1 for all edges e € E with u being one if its endpoints. Thus, L}- = —1if {u,v} € E and

0 otherwise, while Lf:ru = |{e € E : e = {u,v}}]; by definition, it follows that L” coincides with
the classical Laplacian matrix L = D — A with A € {0,1}"*™.

Part 3. Setting ¢ = 0 leads to, forall u,v € V, T, T = cos(0) +isin(0) = 1. Thus, L% coincides
with the Directed Sheaf Laplacian L7 assoc1ated with the undirected version of G which is obtained
from it by preserving each of its edges and making all of them undirected—this coincides with

discarding $(Fy,«e) = 0 for all e € E where v is one of its endpoints. O

Theorem 4. Letting G be a directed graph with unit weights, the Directed Sheaf Laplacian L
associated with a Trivial Directed Cellular Sheaf coincides with the Magnetic Laplacian L9 In the

special case where ¢ = i, L7 also coincides with the Sign-Magnetic Laplacian L°.

Proof. Part 1. First, we show that, when adopting a Trivial Directed Cellular Sheaf for a directed
graph G with unit weights, we have:

Lfv:—Tég) u,v €V iu#v
F = [T(w) wueV
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Eq.[2)and | read:

~FrgoFoqe = —FLLFOLTY  ife=(uv)

v

L}t = 7‘/;:.;3@‘/—:”5]6 = 7(‘%3361_'52'))* ~U§1€ 1f€ = (v,u)
Y SFiaFese = ~FlaFose if e = {u,0)
0o - otherwise
qu = Z '}’::gefuﬂe-
eel(u)

When considering a Trivial Directed Cellular Sheaf, we have

o Fu<e = Fu<e = life = {u,v} € E and, thus, L7 = 1= —TTSZ) (th latter is because

uv

Ay = Ay, implies T2 = cos(0) + isin(0) = 1).

. ~u§,e =1and fvge —T'D if e — (u,v) € E and, thus, Lfv — 7o,

« Fuge =T and Fyaq. = 1if e = (v,u) € E and, thus, L7, = —(T\)* = -9,

Each diagonal term qu of L7 reads

Li:u = Z f;ﬁeﬁiﬂe = Z ‘Fgﬂe‘ruﬁe
e€l'(u) e:(u,’u)GET

Y (FL)T R T+ Y FlaFuse
e=(v,u)EE

=(T5)" (1) =1
= [T (w)l,

where (T50)*(T{?) = 1 holds since T2 = i. With this, Part 1 is shown.
Part 2.
The Magnetic Laplacian reads
L9 =D, — H9 with H? := A, ® exp (i 2mq (A — AT)) ,
with A, := A4AL and D, = diag(1,4,).
By definition we gave of Tﬁg), for a component u, v with u, v € V', we have:

L@W:.=D, —HY=D, —A, T

Suv T UV

Part 2a. Let’s assume G undirected. In such a case, we have we have A, = 1 whenever {u,v} € E
and As, = 0 otherwise. This implies D, = |T'(u)|. Thus, we have:

Suv Suu
L@ =— A, T® = -TW = L, wu eV iuto
quu) =Ds,, — AsuuT’lE’qu,) =Ds,, = |T(u)| = qu uelV,

where the last equation holds since Tls'f) = 0 for any q. Thus, Lf = L@,

Part 2b. Let’s assume G directed without digons. In such a case, we have A, = % whenever either
(u,v) € Eor (v,u) € E and A;,, = 0 otherwise. This implies D,,, = %|I'(u)|. Thus, we have:
1 1z
R woeViuv
1 1 =
L7(1qu) =Dy, — Aszéi) =Ds,, = 5\F(u)| = iqu uweV,
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where the last equation holds since T,,SZ) = 0 for any ¢. Thus, Lf = 2L Notice that the scaling
factor is immaterial when the Laplacian matrix is embedded in a GCN/SNN, as it is directly subsumed
by either W; or W5 in equation 8] (only by the latter in a GCN, where W7 is not present).

Part 3. Since, as shown in|Fiorini et al. (2023)), L 9) and L° coincide with q= %, the last part of the
claim follows directly from Parts 2a and 2b. O
Theorem 5. Let G be a directed graph with unit weights. Assuming a Trivial Directed Cellular Sheaf,
the conjugate transpose 0* of the Directed Coboundary Operator § boils down to the complex-valued
node-to-edge incidence matrix B € C"*™ defined for an edge e € E incident to a vertex u:

1 ife = (u,v) ore={u,v} withu <v

By ={ -1 ife={u,v} withu > v
—TIS%) ife=(v,u).

It follows that L9 = BB*. With q= i, L) = L7 = BB*,

Proof. (First, notice the arbitrary orientation that was given to the undirected edges).

From the proof of the previous theorem, we know that, if G’ has unit weights and the Directed Cellular
Sheaf is trivial, we have:

Lfv:ng‘g) u,v €V :iu#v
F = |P(w)| weV.

Let’s consider (BB*)y, = =D ecE Bue (éve )*. Since we are considering a graph, u, v can only

share a single edge. Calling it e, we have (BB Vuw = gue(ﬁve)* if e € E or 0 if they share no edge
at all. Let’s assume they do, and considering three cases:

o Ife = {u v} with u < v, Bye = 1 and (B,.)* = —1 with an arbitrary orientation and,

thus, Bue (Bve)* =-1= —Té?,) (this is correct since, as shown before, T(g) is always
equal to 1if A, = Ay).

o Ife= {u v} withu > v, Bye = —1and (By.)* = 1 with an arbitrary orientation and, thus,
Bue(Bve)* —1= —T,S?, (as shown before, the latter is always equal to 1 if A, = Ayy).

e Ife = (u,0), Bue = 1 and (Bye)* = (=T39)* and, thus, Byue(Bye)* = (-T{)* =
les‘f,) since 7@ is Hermitian by construction.

e Ife = (v,u), Bye = —T¥ and (Bye)* = 1 and, thus, Bye(Bye)* = —T\9.

This shows that, if G has unit weights and assuming a Trivial Directed Cellular Sheaf, we have

L7 = BB*. The fact that (with a scaling factor of 2, when needed) L9 = BB* and L = BB*
when ¢ = 1 follow from the previous theorem. O

E COMPLEXITY OF DSNN

As mentioned in the paper, the complexity of DSNN coincides, asymptotically, with that of NSD.
This i i i
not present in NSD—does not affect the asymptotic inference complexity of DSNN. This is because
complex-valued synaptic weights, pre-activations, and activations only incur a constant multiplicative
overhead (approximately a factor of 4) in the forward pass and, thus, do not alter the asymptotic
complexity from the real-valued case analysis. To better see this, consider three complex-valued
matrices:

A=Ar+id;, X =Xp+iX;, Y =Yr+iYy,
with
Ap, A e R™*",  Xp X; ¢ R"™P, Yg,Y; € R™*P,
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satisfying the complex linear equation Y = AX. This equation can be rewritten purely in the real
domain using the lifting transformation:
Ar —Ar

o R

2m x 2
:| E R mX ’I’L7
so thatYg = Ar X holds. Hence, complex-valued operations can be reduced to real-valued opera-
tions with a constant factor overhead, which is immaterial in the asymptotic complexity.

Experimental Scalability We evaluate the scalability of DSNN relative to NSD by reporting
computation time and memory usage in the node classification task. For DSNN, we report results
using the most resource-demanding configuration (General), with d = 4, 16 hidden channels, and
2 layers. We obtained the results included in the Tables[d) and [5|using a single Nvidia RTX A6000
GPU.

F FURTHER DETAILS ON THE DATASETS

Real-world dataset. The Texas, Wisconsin, and Cornell datasets are part of the WebKB
collection, modeling links between websites from different universities. In these datasets, nodes are
labeled as student, project, course, staff, or faculty.

The Film dataset is derived from a film—director—actor—writer network. Each node represents an
actor, and edges indicate co-occurrence on the same Wikipedia page. Node features correspond to
keywords extracted from these Wikipedia pages. The nodes are classified into five categories based
on the content of the actors’ Wikipedia entries.

The Citeseer dataset contains 3,312 scientific publications classified into six categories. The
citation network includes 4,732 links. Each publication is represented by a binary word vector
indicating the presence or absence of words from a dictionary of 3,703 unique terms.

The PubMed dataset consists of 19,717 scientific publications related to diabetes, categorized into
three classes. The citation network contains 44,338 links. Each publication is described by a TF-IDF
weighted word vector derived from a dictionary of 500 unique words.

The Cora dataset includes 2,708 scientific publications classified into seven classes, with a citation
network comprising 5,429 links. Each publication is represented by a binary word vector indicating
the presence or absence of words from a dictionary of 1,433 unique terms.

The Squirrel and Chameleon datasets consist of articles from the English Wikipedia (December
2018). Nodes represent articles, and edges represent mutual links between them. Node features
indicate the presence of specific nouns in the articles. Nodes are grouped into five categories based
on the original regression targets.

Telegram is an influence network that analyses the interactions and influences between distinct
groups and actors who associate and propagate political ideologies. This is a pairwise-influence
network between 245 Telegram channels with 8912 links. The labels are generated following the
method discussed in (Bovet & Grindrod, 2020), with a total of four classes.

The Quest ions dataset is derived from the question-answering platform Yandex Q. Nodes represent
users, and an edge connects two nodes if one user answered the other’s question within a one-year
interval (September 2021-August 2022). To limit dataset size, |Platonov et al.[(2023)) focus on users
interested in the topic “medicine.” The task is to predict which users remained active (i.e., were not
deleted or blocked) by the end of the period. Node features are computed as the mean of fastText
embeddings (Grave et al.,[2018)) of words in the user description, with an additional binary feature
indicating the 15% of users lacking a description. The final dataset contains 48.9K nodes with an
average degree of 6.28.

Table[7]reports the statistics of the datasets used in this paper.

Synthetic dataset. Following Zhang et al|(2021b), we generate synthetic graphs using the directed
stochastic block model (DSBM) as follows. Let n be the number of nodes and C' the number of
equal-sized communities {C', ..., C¢}. First, we sample an undirected graph by connecting each
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Table 7: Summary of datasets: number of nodes, edges, density (%), and percentage of directed
edges.

Dataset # Nodes # Edges Density (%) % Directed Edges
Roman-Empire 22,662 32,927 0.006 65.24
Texas 183 295 0.009 89.25
Wisconsin 251 466 0.007 89.11
Film 7,600 26,752 0.046 87.74
Squirrel 2,223 46,998 0.009 90.60
Chameleon 890 8,854 1.120 85.01
Cornell 183 280 0.008 93.50
Telegram 245 8,912 14.900 90.33
Citeseer 3,327 4,676 0.042 98.78
PubMed 18,717 44,327 0.013 99.97
Cora 2,708 5,278 0.072 97.14
Questions 48,921 153,540 0.064 98.97

pair of nodes u € C; and v € C; independently with probability «;; € [0,1], «;; = a;;, where
ay; controls intra-community edge density and «;; for ¢ # j controls inter-community connectivity.
To obtain a directed graph, we introduce a rule to transform the graph from undirected to directed:
we define a collection of probabilities {3, }1<i,;<c, where §;; € [0,1], such that 3;; + 5;; = 1. If
u € C; and v € Cj, we orient the edge u — v with probability 3;;, and v — v with probability 3;;.

The synthetic datasets we used do not exhibit strong homophily. On the contrary, they lack significant
homophilic structure, as shown by the following table, where their homophily is measured according
to both (Pei et al.,|2020) and (Lim et al.| 2021):

Dataset Homophily (Pei et al., 2020) Homophily (Lim et al., 2021)
Synthetic with a;; = 0.05 0.33 0.36
Synthetic with o;; = 0.08 0.23 0.25
Synthetic with o;; = 0.10 0.20 0.20

Table 8: Homophily values for synthetic datasets under different c;; settings.

G FURTHER DETAILS ON THE EXPERIMENTS

Hardware. The experiments were conducted on 2 different machines:

1. An Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz with 380 GB RAM, equipped with an
NVIDIA Ampere A100 40GB.

2. A 12th Gen Intel(R) Core(TM) i9-12900KF CPU @ 3.20GHz CPU with 64 GB RAM,
equipped with an NVIDIA RTX 4090 GPU.

Model Settings. We trained every learning model considered in this paper for up to 1000 epochs
with early stops of 200. We adopted a learning rate of {1-1072,2-107%,5- 1073} and employed
the optimization algorithm Adam.

We adopted a hyperparameter optimization procedure to identify the best set of parameters for each
model. For every model, we searched for the optimal combination of the following hyperparameters
for the link prediction:

* Dropout: {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
¢ Number of layers: {2, 3,4, 5, 6}
¢ Hidden channels: {8, 16, 32, 64}.

For some specific models, we also included additional hyperparameters in the search space:
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* NSD-comp and NSD: sheaf_act € {elu, tanh, relu};d € {2,3,4,5}; add_1p €
{True,False}; add_hp € {True, False}

« DirGNN: apigay € {0.0,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}; 7k € {cat, max}
« MagNet: ¢ € {0.0,0.05, 0.1, 0.15, 0.2, 0.25}

GCNII: agenn € {0.0, 0.1, 0.2}; A € {0.0, 1.0, 1.5}

FAGCN: ¢ € {0.0,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

« GGCN: decay_rate € {0.0,0.1,0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}

GPRGNN: agereny € {00, 0.1, 02, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0};
dprate_GPRGNN € {0.0,0.1,0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

DSNN: ¢ € {0.0, 0.05, 0.1, 0.15, 0.2, 0.25}, sheaf_act € {elu, tanh, relu},d €
{2,3,4,5}; add_1p € {True, False}; add_hp € {True, False}

H SENSITIVITY ANALYSIS ON ¢

The values of ¢ for DSNN, alongside those reported by MagNet (Zhang et al.,2021b)), are summarized
in Table[9] The results indicate that both approaches tend to favor either small (close to 0) or large
(close to 0.25) values for ¢q. This analysis suggests that there is no clear correlation between
heterophily/homophily and the use of directionality in either DSNN or MagNet. Instead, both models
exploit edge directionality adaptively, using it when it enhances information propagation for the
learning task at hand. In particular, the table shows that, in 30 out of 36 computations involving
DSNN, setting a strictly positive ¢ leads to a better performance.

Table 9: Best ¢ values used for DSNN variants compared to MagNet (Zhang et al.,[2021b) across
different datasets

Roman-Empire Texas Wisconsin Film Squirrel Chameleon Cornell Telegram Citeseer Pubmed Cora Questions

Diag-DSNN 0.1 0 0.1 0.1 025 0.1 0.25 0.1 0.25 02 025 0.2
O(d)-DSNN 0.1 0 0.2 02 025 0 0 0.1 0 02 025 0.15
Gen-DSNN 0.15 0.1 0.2 02 0.15 0.1 0 0.2 0.25 025 0.1 0.05
MagNet 0.20 0.15 0 0.1 0.5 0.05 0.15 0.15 0.15 0.2 0 0.25

Table[I0]reports the best ¢ values for the direction prediction task. In 27 out of 30 cases, incorporating
directionality (i.e., setting ¢ # 0) improves performance, further confirming the benefits of explicitly
modeling edge orientation.

Table 10: Best ¢ values for the direction prediction task. Incorporating directionality improves
performance in most cases

q Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora Questions
Diag-DSNN 0.25 025 0.05 0.25 0.05 0 0.05 025 015 0.15
O(d)-DSNN  0.25 0 0.1 0.1 0.2 0.10 0.20 025 0.05 0.05

Gen-DSNN 0 0.25 0.15 0.1 0.2 0.10 0.10 02  0.05 0.25
MagNet 0.20 0.10 0.10 0.15 0.10 0.25 0.15 0.10 0.10 0

Table [[T]reports the results of a sensitivity analysis on ¢ carried out on the synthetic datasets. The
table confirms that the best performance is obtained with g # 0 also on this dataset.

I SENSITIVITY ANALYSIS ON d

Table[I2]reports the best d values selected for each dataset and model variant. While the optimal d
varies across datasets and models, some clear patterns emerge. The Diag model tends to favor smaller
values on smaller datasets (e.g., Wisconsin, Cora), whereas Bundle and General models often require
slightly higher d on larger or more complex graphs (e.g., Squirrel, Chameleon). Overall, the most
common best d value across all datasets and models is 4, the minimum value of 2 never occurs, and
the selected d generally ranges from 3 to 5. This demonstrates that moderate to slightly higher d
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Table 11: Sensitivity analysis on ¢ for synthetic datasets. Each entry reports mean and standard
deviation accuracy

alq 0.00 0.10 0.20 0.25

0.05 20.40+1.05 98.00+0.93 98.16+0.77 97.28+0.78
0.08 19.64+1.03 97.10+£0.70 96.74+0.77 88.78+1.21
0.10 20.18+0.76  98.60+0.46 99.14+0.36  98.66+0.35

Avg  20.07+£0.95 97.90+0.70 98.01+£0.64 94.91+0.78

Table 12: Best d values for each dataset.

Model Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora Telegram Questions Roman-Empire

Diag 4 3 4 5 5 3 5 3 2 4 5 4
Bundle 4 5 4 5 5 3 5 5 4 3 3 3
General 3 5 4 5 4 4 3 3 3 4 3 3

values are consistently preferred, and that d should be adapted based on both the model variant and
dataset characteristics to achieve optimal performance.

We also perform the scalability of the method by selecting different d and calculate the peak GPU
memory (MiB). We adopt the same setup as reported in Appendix E, corresponding to the most
resource-demanding configuration (General) with 16 hidden channels, and 2 layers.

Table 13: Peak GPU usage (MiB) for different values of d.

d Texas Cornell Wisconsin Cora Citeseer Pubmed Film Squirrel Chameleon Questions Roman-Empire
2 402 402 406 598 823 1453 926 1103 548 3514 1414
3 403 403 407 600 826 1573 981 1207 565 3904 1516
4 404 404 408 606 830 1744 1078 1362 598 4462 1646
5 404 404 409 630 834 1954 1204 1567 636 5173 1812
10 417 417 428 842 952 3667 2203 3253 960 10966 3135
15 437 437 458 1183 1253 6469 3850 6058 1497 20500 5295

Table 13| reports GPU memory usage (in MiB) across all datasets for different values of d. Even
for the largest configuration considered (d = 15), our method runs on a 24GB GPU for small and
medium datasets (e.g., Texas, Cornell, Wisconsin), demonstrating its efficiency and scalability. For
larger datasets such as Pubmed, Questions, and Squirrel, memory usage increases with d as expected,
yet remains fully manageable, showing that our approach can handle both small and large-scale
graphs without exceeding typical hardware limits.

J EXPLICIT CONSTRUCTION AND NUMERIC EXAMPLE OF L7 FOR q=0.25

J.1 SETUP AND DEFINITIONS

Consider the graph G = (V, E) with node set V' = {A, B, C'}. We equip G with a directed cellular
sheaf F of stalk dimension d = 2. The directionality parameter is ¢ € R\ {0} and we define
0 == 2mq.

Edges and Adjacency.

* ep: adirected arc A — B. Adjacency: Aap =1, Aga = 0.

* €9, e3: an undirected connection B — C', modeled as two antiparallel directed arcs es : B —
C and e3 : C' — B. Adjacency: Agpc = Agp = 1.

Magnetic Restriction Maps. For an edge e = (u, v), the restriction map at the target node v is
modulated by a magnetic phase:

fvﬂe = ‘Fgﬂe T(q) with TL(L%) = eXp(iH(Au'u - Avu)) Ida

uv
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Figure 2: Visualization of the graph G = (V, E) with nodes V' = A, B, C. Edge e; represents the
directed arc A — B, while edges e and e3 form two antiparallel arcs between B and C', modeling
an undirected connection.

and we assume the source restriction maps F, <. are the identity /.

Phase Factor Calculation.

* Edge A — B: Aap — Apa = 1, phase 7 = exp(if) = cos(0) + isin(6).
* Edge B— C: Agc — Acp = 0, phase 1.

Matrix Assignments. We define the base maps F, 0 using I, and two matrices My, Mo € R2%2:

vle

* Edge e1: ‘FAﬂel = 129 ]:Bﬂel = 7']2.
. Edge €9 ‘735152 = M, ‘7:05“32 = Is.
* Edge e3: Fode, = Ma, Fp<e, = Ia.

J.2  MATRIX CONSTRUCTION

Directed Coboundary Operator 6. The operator § € C/Z19%IV a¢ts on a cochain z as (6z), =
]:uﬂexu - fvglexy. EXpllClﬂy

A B C
. €1 12 —7'12 02 12 —TIQ 02
0= €9 (02 M1 IQ) = <02 M1 Ig) .
es \O2 —I» M> 00 —I, M
Directed Sheaf Laplacian L”. The Laplacian is defined as L¥ = 6*8, with 6* the conjugate
transpose:
~ -[2 02 02 12 *T[Q 02
LF = —715 Ml—r -1 <02 M, —Ig) .
02 —IQ MQT 02 _IQ M2

Block Computation. The block matrices are:
i LiA = IQ, L:XB = —TIQ, LgA = —f]g.
o Ly = 2D+ MY My, L = —(M] + Ma), L, = —(My + My ).
o L‘gc = IQ +M2TM2

Explicit Matrix Decomposition. With 7 = cos(#) + isin() and My = (§ 1), My = (19), we
have

1 0 —cos(0) 0 0 0 0 0 —sin(6) 0 00
0 1 0 —cos(d) 0 O 0 0 0 —sin(d) 0 0
Lf — cos() 0 3 1 =2 0 | sin(@) 0 0 0 00
- 0 —cos(8) 1 4 -2 =2 0 sin(6) 0 0 0 0
0 0 -2 -2 3 1 0 0 0 0 0 0
0 0 0 -2 1 2 0 0 0 0 0 0
Real Imaginary
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This decomposition clearly shows that the imaginary part encodes edge directionality, while the real
part encodes the undirected topology.

Setting ¢ = 0.25, the magnetic phase factor becomes T = cos(2mq) + isin(2mq) = i. Substituting
this value into the Laplacian yields the explicit numeric form of the Directed Sheaf Laplacian:

10 0 0 0 0 00 -1 0 0 0
01 0 0 0 0 00 0 -1 0 0
- oo 3 1 -2 o 10 0 0 0 0
F_
=1op 0o 1 4 —2 —2|™™|lo1 0 0 0 0
00 —2 —2 3 1 00 0 0 00
00 0 -2 1 2 00 0 0 00
Real Imagirnary

The real component encodes the undirected topology, wile the imaginary component captures all
directional information introduced by the magnetic phase. This numeric example provides an explicit

demonstration of how the Directed Sheaf Laplacian L7 separates directional and undirectional
contributions in a simple 3-node graph.

K SPECTRAL COMPARISON

Figure [3] depicts the spectra of the DSNN’s Directed Sheaf Laplacian (with d = 1) and of the
Magnetic Laplacian on Cornell, Texas, and Cora, for different values of the charge parameter g. The
figure shows that there are no substantial differences between the two spectra when the stalk has
dimension 1.
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Figure 3: Spectra of the DSNN’s Directed Sheaf Laplacian and of the Magnetic Laplacian on Cornell,
Texas, and Cora, for different values of the charge parameter g and d = 1.

L LEARNABLE Q

While the parameter ¢ was treated as a fixed hyperparameter in the main paper, our architecture is
compatible with learning ¢ jointly with the model. We trained Gen-DSNN with ¢ as a learnable scalar
using three different initialization values (0.25, 0.125, 0). Table 1 reports the mean and standard
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deviation of the learned ¢ over 10 folds for five datasets, together with the fixed ¢ value that produced
the best performance in the paper.

Table 14: Learned ¢ values (mean =+ std)

Dataset initg =0.25 initg=0.125 initg=0 ¢ for best results

Cora 04+ 0.008 0+ 0.005 0+ 0.004 0.10
Wisconsin ~ 0.15 4+ 0.06 0.11 +0.03 0.05 4+ 0.06 0.20
Cornell 0.18 £ 0.08 0.10£0.09  0.01 +£0.02 0.00
Texas 0.15+0.04 0.14+0.06  0.09 + 0.08 0.10
Telegram 0.19 £0.07 0.10£0.09  0.04 £0.05 0.20

We observe that the learned q converges stably across different initializations: for some datasets (e.g.,
Cora) it consistently converges close to zero, suggesting that directional information is less relevant,
while for others (e.g., Wisconsin, Texas, Telegram) it converges to moderate values that are close to
the best fixed choice used in the paper. This indicates that learning g is both feasible and meaningful.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. This work studies sheaf-based learning on graphs and
does not involve human subjects, personally identifiable information, or sensitive attributes. The
real-world benchmarks we use are standard public datasets (with licenses referenced in Appendix B);
our synthetic graphs are generated procedurally as described in Section[5|and Appendix [F} We release
an anonymized code repository under a permissive license to facilitate verification and reuse.

As with any graph-learning technique, downstream applications to human-centered data could raise
concerns around privacy, fairness, or surveillance. Our contribution is methodological and evaluated
on public or synthetic data; nevertheless, we encourage practitioners to assess domain-specific risks,
follow applicable regulations, and adopt appropriate safeguards (e.g., data minimization, bias checks)
when deploying such models.

REPRODUCIBILITY STATEMENT

We took several steps to support reproducibility. All model components, including the Directed

Sheaf Laplacian L7, training objectives, and update rules, are fully specified in the main text, with
additional implementation details in Appendices [E| and [G} Dataset sources, preprocessing, and
synthetic graph generation (parameter grids for «;;, 3;;, and ¢) are documented in Appendix[ﬂ We
report splits, evaluation protocols, and hyperparameter search spaces in Section [5|and Appendix
and we include hardware information and training schedules.

An anonymized repository with code and scripts to reproduce all tables (including random seeds and
configuration files) accompanies this submission (Appendix [B)). After publication, we will release
the non-anonymized repository under the same license. Note that exact bitwise determinism can
depend on backend/library settings (e.g., CUDA), but we fix seeds and document any sources of
nondeterminism.

LLM USAGE STATEMENT

We did nor use large language models (LLMs) for deriving, checking, or producing any proofs or
theoretical results in this paper. All theorems and proofs were conceived, implemented, and validated
by the authors.

LLMs were used only as general-purpose assistants for: (i) light prose edits (clarity/grammar) and
(i1) minor IKTEX refactoring (e.g., formatting environments). All such edits were manually reviewed.
No human-subject data, personally identifiable information, or proprietary datasets were provided to
any LLM, and all experimental code runs independently of LLM services.
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