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Abstract001

Effective communication of health information002
requires adapting complexity to match the tar-003
get audience’s literacy level. However, manu-004
ally simplifying medical content is both time-005
consuming and difficult to scale. To address006
this challenge, we developed a new framework007
for automatically generating health answers at008
multiple complexity levels.009

We began by collecting 166 linguistic fea-010
tures to quantify text complexity, including011
traditional readability metrics (e.g., Flesch-012
Kincaid, SMOG), medical terminology usage013
(e.g., UMLS coverage, medical entity recog-014
nition), syntactic complexity, semantic coher-015
ence, and LLM-based measures (e.g., masked016
language modeling, LLM-as-a-judge). Apply-017
ing these features to a custom dataset of parallel018
health texts and external medical benchmarks,019
we used feature selection to identify 13 key020
metrics that reliably distinguish between sim-021
ple and complex text pairs. From these, we022
derived a complexity scoring formula by com-023
bining the metrics with weights learned from a024
logistic regression model.025

Using this formula, we created a large multi-026
level dataset of health question-answer pairs,027
ranging from elementary patient-friendly ex-028
planations to advanced technical summaries.029
The initial QA pairs came from established030
datasets including LiveQA, MedicationQA,031
and MEDIQA-AnS. We then used LLaMA-032
based language models with carefully engi-033
neered prompts to transform the original an-034
swers into five different versions ordered by035
complexity. Finally, we fine-tuned a large lan-036
guage model on this dataset, incorporating spe-037
cial tokens to control the complexity of the038
generated text. The resulting model can gener-039
ate health answers at fine-grained complexity040
levels, allowing users to select the desired level041
of detail and technicality.042

1 Introduction 043

Health literacy, which is the ability to obtain, pro- 044

cess, and understand basic health information, re- 045

mains a significant challenge worldwide. A sur- 046

vey conducted by the World Health Organization 047

(WHO) between 2019 and 2021 across 17 Euro- 048

pean countries found that between 25% and 75% of 049

people struggle with understanding health-related 050

information, with variation depending on country- 051

specific factors like education and healthcare access 052

(Pelikan et al., 2021). 053

In the United States, approximately 80 million 054

adults had limited health literacy as of 2018, with 055

disproportionately higher rates among older adults, 056

minority groups, and individuals of lower socioeco- 057

nomic status (Woods et al., 2023). These statistics 058

matter because people with lower health literacy 059

often struggle to understand medical terms, leading 060

to poorer health outcomes and increased healthcare 061

costs (Shahid et al., 2022). This issue becomes 062

even more important as more people turn to online 063

sources for health information. In 2022, 58.5% of 064

U.S. adults searched for health information online 065

(Wang and Cohen, 2022), yet studies show that 066

most health-related content online exceeds recom- 067

mended readability levels (Szmuda et al., 2020; 068

Mohile et al., 2023). 069

Large language models (LLMs) like GPT-4 070

(OpenAI, 2023), Med-PaLM (Singhal et al., 2023), 071

and Claude (Anthropic, 2024) now generate health 072

information and are increasingly used in health- 073

care contexts. However, these models typically 074

produce text at a fixed complexity level, often too 075

advanced for many readers (Amin et al., 2024). 076

Current approaches to medical text simplification 077

focus on converting complex text into simpler ver- 078

sions (Gondy et al., 2018; Flores et al., 2023; Li 079

et al., 2024) rather than dynamically adjusting com- 080

plexity based on individual needs. 081

This gap presents an opportunity to develop lan- 082
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guage models that can generate health answers083

with adjustable complexity levels, a capability that084

would make information more accessible to every-085

one, regardless of their health literacy level.086

2 Related Work087

2.1 Text Complexity and Readability088

Assessment089

The earliest attempts to measure text complexity090

used simple formulas based on surface-level fea-091

tures. Smith and Senter (1967) developed the Au-092

tomated Readability Index (ARI), which counts093

characters per word and sentence length to esti-094

mate reading difficulty. Shortly after, Kincaid et al.095

(1975) created the Flesch-Kincaid Grade Level for-096

mula, which also considers syllable counts and097

remains widely used today for its simplicity and098

reliability.099

Zheng and Yu (2018) noted that standard formu-100

las failed to capture medical complexity because101

they ignored specialized terminology and semantic102

relationships. They developed a ranking system103

that compared documents relative to each other104

rather than assigning absolute scores, using both105

surface-level features and word embeddings to bet-106

ter match human judgments of readability.107

Jiang and Xu (2024) created MedReadMe, man-108

ually annotating 4,520 medical sentences with read-109

ability labels and identifying complex spans within110

each sentence. They introduced “Google-Easy”111

and “Google-Hard” categories based on how com-112

monly terms appear in web searches. Their analy-113

sis of 650 linguistic features revealed that medical114

jargon density and syntactic complexity were the115

strongest predictors of reading difficulty.116

Devaraj et al. (2021) proposed using a masked117

language model (MLM) to differentiate techni-118

cal and lay medical text. Their method evaluates119

how accurately a model trained on scientific litera-120

ture predicts masked tokens, based on the observa-121

tion that technical terminology is more predictable122

within domain-specific contexts. Luo et al. (2022)123

improved this method by focusing on noun phrases,124

allowing multi-word medical terms like “heart at-125

tack” to be treated as single semantic units.126

While methods based on masked language mod-127

eling have shown promise, they mainly focus on128

single-word complexity. Lyu and Pergola (2024)129

addressed this limitation with SciGisPy, a metric130

rooted in Fuzzy-Trace Theory (FTT) (Reyna, 2012)131

that evaluates how well simplified texts preserve132

the core meaning (gist), emphasizing semantic co- 133

herence and the ability to form clear mental models. 134

2.2 Medical Text Simplification 135

Medical text simplification started with straightfor- 136

ward rule-based systems. For instance, Damay et al. 137

(2006) used techniques like lexical substitution and 138

sentence restructuring to make medical texts easier 139

to understand. Later, Kandula et al. (2010) took 140

this further by combining both semantic and syntac- 141

tic methods to simplify electronic medical records 142

and patient education materials. 143

The field progressed significantly with the de- 144

velopment of large-scale datasets for training lan- 145

guage models. Devaraj et al. (2021) created the 146

Cochrane dataset, which pairs technical abstracts 147

with lay summaries from the Cochrane Database of 148

Systematic Reviews. Using this parallel data, they 149

trained BART models with unlikelihood training, 150

explicitly penalizing the generation of tokens iden- 151

tified as technical language through a bag-of-words 152

classifier. Flores et al. (2023) replaced the bag-of- 153

words classifier with the Flesch-Kincaid readability 154

formula to identify and penalize complex words. 155

To prevent hallucinations that can occur when opti- 156

mizing solely for simplicity, they also incorporated 157

factual consistency into their loss function and de- 158

signed a beam search method that weighs both 159

readability and accuracy during decoding. 160

Basu et al. (2023) created Med-EASi, a finely 161

annotated dataset for simplifying medical texts 162

that identifies four types of textual transformations: 163

elaboration, replacement, deletion, and insertion. 164

With this dataset, they built T5-based models that 165

allow users to select specific medical terms and 166

control exactly how they should be simplified. 167

Lu et al. (2023) developed NapSS, a two-stage 168

“summarize-then-simplify” method for medical text 169

simplification that first identifies important sen- 170

tences using a summarizer trained on paired techni- 171

cal abstracts and their human-simplified versions, 172

and then extracts key phrases to create “narrative 173

prompts” that guide the language model during the 174

simplification process, helping preserve the logical 175

flow and medical accuracy of the original text. 176

Phatak et al. (2022) applied reinforcement learn- 177

ing to medical text simplification by designing re- 178

ward functions that balance content preservation, 179

Flesch-Kincaid readability scores, and lexical sim- 180

plicity. Rahman et al. (2024) later created Sim- 181

pleDC, a dataset of original and simplified texts re- 182

lated to digestive cancers. They fine-tuned LLaMA 183
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models on this dataset and further improved them184

using reinforcement learning, guided by a binary185

classifier trained to detect simple language.186

2.3 Controllable Text Generation187

Recent research has explored ways to control text188

readability during generation. Ribeiro et al. (2023)189

developed methods for controllable summarization190

using instruction-based prompting, reinforcement191

learning with a Gaussian reward function that pe-192

nalizes deviations from desired readability scores,193

and lookahead decoding to anticipate how word194

choices impact readability.195

Luo et al. (2022) focused on readability con-196

trol specifically for biomedical text summariza-197

tion. They first tried prepending special tokens as198

prompts to the input and then tested a multi-head199

architecture with separate decoders for different200

readability levels. While the multi-head approach201

helped create some distinction between technical202

and plain language outputs, they found that the203

level of readability control was still very limited.204

Tran et al. (2024) introduced ReadCtrl, which205

instruction-tunes language models to generate text206

at specific readability scores on an almost continu-207

ous scale rather than predefined categories. Mean-208

while, Hsu et al. (2024) found that even with clear209

instructions, language models often produce out-210

puts that do not align with traditional readability211

metrics. They also showed that readers generally212

preferred explanations written at high school level,213

suggesting that there may be a sweet spot of com-214

plexity balancing clarity and informative content.215

While prior work has focused primarily on bi-216

nary simplification or relied on traditional readabil-217

ity metrics that fail to capture the unique challenges218

of medical terminology, we developed a more com-219

prehensive framework that integrates multiple lin-220

guistic features to accurately measure the complex-221

ity of medical text and generate content at precisely222

targeted readability levels.223

3 Methods224

3.1 Data Collection225

We used two established datasets containing paired226

original and simplified medical texts. Though these227

datasets provide parallel texts at different complex-228

ity levels, the “simplified” versions, while less com-229

plex than the originals, are not always simple in ab-230

solute terms. This relative simplification creates a231

sliding scale rather than distinct complexity levels,232

making it difficult to develop a reliable readability 233

formula. To overcome this limitation, we created a 234

synthetic dataset containing pairs of clearly differ- 235

entiated simple and complex medical texts. 236

3.1.1 Medical Text Simplification Datasets 237

We evaluated our metrics using two parallel corpora 238

of medical texts: PLABA (Attal et al., 2023) and 239

Cochrane (Devaraj et al., 2021). Both datasets in- 240

clude original medical texts paired with simplified 241

versions. PLABA contains sentence and paragraph- 242

level simplifications of biomedical abstracts, while 243

Cochrane focuses on paragraph-level simplifica- 244

tions of systematic reviews. More detailed descrip- 245

tions are available in Appendix A.1. 246

3.1.2 Claude Dataset 247

We created a new dataset using Claude 3.5 Sonnet 248

to generate answers to questions from the Health- 249

SearchQA dataset (Singhal et al., 2023), which con- 250

tains 3,173 commonly searched consumer medical 251

queries. We manually identified and filtered out 252

questions that were not genuinely health-related to 253

ensure the quality and relevance of our dataset. For 254

each valid question, we prompted the model to pro- 255

duce one answer using technical medical language 256

suitable for healthcare professionals, and another 257

using simple language appropriate for patients with 258

limited health literacy. This approach provided 259

clearly differentiated examples of simple and com- 260

plex medical text covering the same information 261

content. 262

Table 1 summarizes the key characteristics of 263

the three datasets used in this stage of the project. 264

Dataset Source Size

PLABA-sent PubMed abstracts 7,643 pairs

PLABA-para PubMed abstracts 750 pairs

Cochrane Systematic Reviews Database 4,459 pairs

Claude HealthSearchQA questions 3,150 pairs

Table 1: Parallel datasets used for text complexity anal-
ysis.

3.2 Metrics 265

We implemented 166 metrics to measure text read- 266

ability and complexity, covering various linguistic 267

dimensions. The following sections describe each 268

category of metric we used in our analysis. 269
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Figure 1: Framework for complexity-controlled health answer generation.

3.2.1 Traditional Metrics270

We calculated 20 traditional readability formu-271

las, including Flesch-Kincaid Grade Level (Kin-272

caid et al., 1975), SMOG Index (McLaughlin,273

1969), and Coleman-Liau Index (Coleman and274

Liau, 1975). These metrics estimate text difficulty275

based on surface-level features like word length,276

syllable count, and sentence length, working on the277

general assumption that longer lexical units require278

more cognitive effort, thereby making the text more279

complex (Yu et al., 2020). Although not designed280

for biomedical literature, they can serve as a useful281

starting point to judge how easy or difficult a text282

is to read and understand. We supplemented these283

with 8 statistical measures capturing additional as-284

pects of readability, including the proportion of285

difficult words from the Dale-Chall list (Dale and286

Chall, 1948) and lexical diversity metrics such as287

TTR and MTLD (McCarthy and Jarvis, 2010).288

3.2.2 Syntactic Structure289

We implemented 16 syntax-based metrics using290

spaCy (Honnibal et al., 2020) for dependency pars-291

ing and part-of-speech tagging, organized into two292

categories. For lexical distribution, we calculated293

content-to-function word ratio, which compares294

meaning-carrying words to grammatical words295

(Just and Carpenter, 1992), and part-of-speech dis-296

tributions to identify texts with higher noun density297

typical of scientific writing (Biber et al., 1999). For298

structural complexity, we measured dependency299

distance (Gibson, 2000), passive voice proportion300

(Ferreira, 2003), noun phrase length (Biber et al.,301

1999), embedding depth (Gibson, 1998), negation302

density, and left-right asymmetry (Hawkins, 2004).303

These metrics capture aspects of syntactic com-304

plexity that increase cognitive load, such as deeply305

embedded clauses and words separated from their 306

grammatical dependents. 307

3.2.3 Medical Terminology and Jargon 308

We implemented 19 term-level metrics using 309

the Unified Medical Language System (UMLS) 310

Metathesaurus (National Library of Medicine, 311

2024) and Consumer Health Vocabulary (CHV) 312

(Zeng and Tse, 2006). For concept identifica- 313

tion, we used QuickUMLS (Soldaini, 2016), which 314

performs faster approximate dictionary matching 315

compared to MetaMap (Aronson and Lang, 2010). 316

These metrics include term density, expert-to-lay 317

ratio, semantic type diversity, and CHV familiarity 318

scores that measure how frequently terms appear in 319

consumer health materials (Keselman et al., 2007). 320

We also built a RoBERTa-large (Liu et al., 2019) 321

sequence tagger with Conditional Random Fields 322

(CRF), trained on the MedReadMe dataset to iden- 323

tify seven distinct categories of medical jargon as 324

defined by Jiang and Xu (2024). These categories 325

include easy and hard medical terms, medical en- 326

tities, complex terms, multisense words, and med- 327

ical and general abbreviations. This method en- 328

ables more fine-grained analysis than dictionary 329

lookups, capturing context-dependent terminology 330

and terms absent from UMLS. From this, we de- 331

rived 29 other metrics capturing jargon density, dis- 332

tribution across categories, and clustering patterns. 333

3.2.4 Gist Formation 334

We adapted GisPy (Hosseini et al., 2022), an open- 335

source tool based on Fuzzy-Trace Theory (Reyna, 336

2012), which measures how easily readers can un- 337

derstand the essential meaning of a text. GisPy 338

calculates scores for several components that con- 339

tribute to gist formation, including referential cohe- 340

sion (connecting ideas between sentences), corefer- 341
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ence resolution (tracking entities throughout text),342

deep cohesion (presence of causal connectives),343

and semantic verb overlap (relatedness of actions).344

We modified the original implementation to use345

BioSimCSE-BioLinkBERT-BASE (raj Kanakara-346

jan et al., 2022), trained on biomedical literature,347

making it more suitable for our task. We also348

implemented SciGisPy (Lyu and Pergola, 2024),349

which tailors GisPy for biomedical text simplifi-350

cation. SciGisPy introduces domain-specific im-351

provements, such as information content measures352

derived from biomedical corpora and semantic353

chunking to measure topic cohesion.354

3.2.5 Masked Language Model355

We implemented three MLM-based metrics using356

Bio+ClinicalBERT (Alsentzer et al., 2019), which357

outperformed other BERT variants in our tests.358

These metrics measure complexity by calculating359

how predictable medical terminology is within con-360

text. The first metric randomly masks 15% of to-361

kens, the second specifically targets noun phrases,362

and the third applies a ranking method (RNPTC),363

which weighs phrases based on their prediction364

probability (Luo et al., 2022). We found that in-365

creasing the number of random masking iterations366

from 10 to 30 significantly improved reliability by367

reducing variance. As a result, the simpler random368

masking approach became more effective than the369

other two methods in distinguishing between tech-370

nical and simplified texts.371

3.2.6 Semantic Clustering372

We built on the method introduced by Cha et al.373

(2017), which uses word embeddings to measure374

text complexity. In our implementation, each word375

is mapped to a BioWordVec embedding (Zhang376

et al., 2019), and these vectors are grouped using377

K-means clustering. While the original implemen-378

tation used 100 clusters, we increased this to 300 to379

better reflect the distinctions in medical vocabulary.380

We then create a count vector for how often words381

fall into each cluster, which serves as a feature382

vector for predicting readability. We trained two383

separate Support Vector Regression (SVM) mod-384

els, one using the CLEAR corpus (Crossley et al.,385

2023), and another using the MedReadMe dataset386

(Jiang and Xu, 2024) for medical texts.387

3.2.7 ALBERT Transformer388

We used the ALBERT-xxlarge model (Lan et al.,389

2019) from the winning entry in the CommonLit390

Readability Prize Kaggle competition (Malatinszky 391

et al., 2021). This model processes text through 392

attention layers to capture relationships between 393

words before predicting a readability score. Al- 394

though the original solution used an ensemble 395

of models, ALBERT-xxlarge was singled out by 396

the winner as especially important, thanks to its 397

parameter-sharing structure, which helps prevent 398

overfitting while still capturing complex language 399

features. The same model was later reused in the 400

REFeREE framework for evaluating text simplifi- 401

cation (Huang and Kochmar, 2024). 402

3.2.8 LLM Expert Evaluation 403

We created a hybrid method for evaluating text read- 404

ability using large language models as expert eval- 405

uators. Specifically, we prompted three 70 billion- 406

parameter models (Nvidia-Llama-3.1-Nemotron- 407

70B (Wang et al., 2024), Llama3-OpenBioLLM- 408

70B (Pal, 2024), and DeepSeek-R1-Distill-Llama- 409

70B (DeepSeek-AI, 2025)) to evaluate texts on 410

five dimensions: vocabulary complexity, syntac- 411

tic complexity, conceptual density, required back- 412

ground knowledge, and overall cognitive load. 413

Each model rated texts on a 1–5 scale using few- 414

shot prompting with three calibration examples that 415

we personally annotated. Because running multi- 416

ple large models is computationally expensive, we 417

trained a smaller and more efficient BioSimCSE- 418

BioLinkBERT-BASE model (raj Kanakarajan et al., 419

2022) on the averaged LLM scores. This distilled 420

model not only processes texts much faster, but 421

also improves the results by smoothing out incon- 422

sistencies in the original LLM judgements. 423

3.3 Formula Development 424

After collecting and implementing the linguistic 425

features, we followed a systematic approach to se- 426

lect the most reliable features for our complexity 427

formula. Since we lacked human-annotated read- 428

ability scores, we developed a data-driven method- 429

ology to identify stable features that consistently 430

distinguished simple from expert-level medical 431

texts, using the datasets described in Section 3.1. 432

The feature selection process began by removing 433

features with absolute pairwise correlations above 434

0.7 to reduce collinearity and lower the risk of un- 435

intentionally excluding important features from the 436

final model. We then applied Lasso logistic regres- 437

sion with bootstrapping, adapting the methodology 438

described by Laurin et al. (2016), which involved 439

the following steps: 440
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1. Creating 1,000 bootstrap samples from our441

training data using random sampling with re-442

placement.443

2. Fitting a Lasso logistic regression model to444

each bootstrap sample to classify if a text was445

written for experts or general audience.446

3. Calculating the coefficient of variation (CV)447

for each feature, defined as the standard devi-448

ation divided by the mean absolute value of449

the coefficient, across bootstrap samples.450

4. Using the interquartile range (IQR) method to451

exclude features with unstable coefficients by452

calculating the upper fence (Q3 + 1.5 × IQR).453

Features with CV exceeding this threshold454

were considered outliers and removed.455

5. Further filtering features if the 95% confi-456

dence interval for the value of the coefficient457

included zero.458

We then trained our final logistic regression459

model using only the Claude dataset, which con-460

tains controlled comparisons of text complexity461

with a cleaner signal-to-noise ratio. For this pur-462

pose, we used ElasticNet regularization to estimate463

feature weights, as it balances the benefits of both464

Lasso and Ridge regression and better handles any465

remaining collinearity among features. This pro-466

cess resulted in a final set of 13 metrics (listed467

in Appendix A.2) after excluding those that per-468

formed exceptionally well in one dataset but poorly469

or inconsistently in others. These features were470

likely overfitting to specific data characteristics and471

were removed to improve generalizability.472

3.4 Multi-Level Dataset473

After developing and validating our complexity474

formula, we created a medical dataset containing475

answers rewritten at multiple levels of complexity476

to train our controlled text generation model.477

3.4.1 Source Datasets478

We built our dataset using question-answer pairs479

from five established medical datasets: LiveQA480

(Abacha et al., 2017), MedicationQA (Abacha481

et al., 2019), MEDIQA-AnS (Savery et al., 2020),482

MedQuAD (Abacha and Demner-Fushman, 2019),483

and BioASQ Task 13B. After cleaning and filtering484

for quality, we retained 31,917 question-answer485

pairs. Table 2 provides a brief overview of these486

datasets, with detailed descriptions available in Ap-487

pendix A.3.488

Dataset Source Size

LiveQA U.S. NLM 800 pairs

MedicationQA NIH websites 690 pairs

MEDIQA-AnS CHiQA-retrieved passages 312 pairs

MedQuAD NIH websites 16,423 pairs

BioASQ PubMed/MEDLINE arti-
cles

13,692 pairs

Table 2: Source datasets used to create our multi-level
medical QA dataset

3.4.2 Dataset Creation 489

For each question-answer pair in our source 490

datasets, we created five versions of the answer, 491

each written for a different audience, namely young 492

children, middle school students, high school stu- 493

dents, college graduates, and biomedical experts. 494

We generated these answers using the models de- 495

scribed in Section 3.2.8, with DeepSeek handling 496

70% of the generation, Nemotron 20%, and Open- 497

BioLLM 10%. This allocation was based on pre- 498

liminary experiments, which showed that using 499

multiple models helped capture a broader range of 500

writing styles for each education level. 501

We designed a prompt that generated all five 502

variants simultaneously, with answers becoming 503

progressively more complex (see Appendix A.5). 504

The prompt included three examples to guide the 505

models, descriptions of each target audience, and 506

instructions to keep the answers factually accurate. 507

It also instructed the models to flag any cases where 508

the original answer did not fully address the ques- 509

tion, allowing us to filter out problematic samples 510

from the dataset early on. 511

After generating the variants, we checked the 512

quality of all answers through a two-stage process. 513

First, we used regex patterns to identify and re- 514

move samples containing placeholder text instead 515

of proper content. Then we evaluated each vari- 516

ant against its original answer using metrics for 517

content preservation and factual accuracy, includ- 518

ing ROUGE (Lin, 2004), BLEURT (Sellam et al., 519

2020), BERTScore (Zhang et al., 2019), UniEval 520

(Zhong et al., 2022), and SummaC (Laban et al., 521

2022). The filtering identified relatively few prob- 522

lems and only 2,926 samples (1.56%) were re- 523

moved from the initial 187,769. This low rejection 524

rate was not surprising, since the variants were cre- 525

ated directly from the original answers. Most of the 526

issues found actually stemmed from contradictions 527

or inaccuracies present in the source material. 528
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Each variant was annotated using the complex-529

ity formula described in Section 3.3. This gave us530

raw scores between -34.56 and 31.99, which we531

converted to a more practical 0-100 scale and then532

binned into 21 categories labeled 0, 5, 10, and so on533

up to 100, with each bin containing roughly 8,800534

samples. These bins aligned reasonably well with535

our original five levels, though with some natural536

overlap between categories. For example, the ma-537

jority of high school-level variants fell within bins538

labeled 50-70, while college-level variants typically539

ranged from 60-80.540

The final dataset includes 184,843 answers for541

36,969 questions. Each entry has the original ques-542

tion, the reference answer, the variants at different543

complexity levels, as well as the corresponding544

evaluation metrics and complexity scores.545

3.5 Model Fine-Tuning546

After creating our multi-level dataset, we fine-tuned547

a language model to generate medical text with con-548

trolled complexity levels. We experimented with549

two different methods: natural language instruc-550

tions and control codes.551

For natural language instructions, we used552

prompts like “Answer the following question with553

a complexity score of 75 out of 100.” For con-554

trol codes, we added special tokens to the model’s555

vocabulary (e.g., “<COMPLEXITY_75>”) and556

placed them at the beginning of each prompt. These557

new tokens were initialized by positioning them558

along a “complexity direction” in the embedding559

space. We identified simple and complex anchor560

words in the model’s vocabulary, created a vector561

between them, and placed our tokens along this562

vector. This gave the tokens semantic meaning563

before training even began.564

We selected Llama-3.1-8B-Instruct (Grattafiori565

et al., 2024) as our base model and applied LoRA566

fine-tuning (Hu et al., 2021) with rank 8, alpha567

16, and a learning rate of 5e-5, and targeted all568

projection matrices in the transformer architecture.569

During training, we implemented context-aware570

batching, grouping all answers for the same med-571

ical question into a single batch. This helped the572

model focus on the patterns that actually matter573

and avoid spurious correlations. For example, if a574

batch includes both simple and technical answers575

about asthma, gradient updates adjust the model’s576

weights to preserve important details, such as in-577

flammation and breathing issues, while tailoring578

the language to match the desired complexity level.579

We found that using control codes worked better 580

than using natural language instructions. The train- 581

ing converged faster, and the model generated more 582

consistent responses at each complexity level. 583

4 Experiments and Results 584

4.1 Validation of Complexity Scoring Formula 585

We evaluated our complexity scoring formula us- 586

ing data from the four datasets introduced in Sec- 587

tion 3.1. We trained the formula on 80% of the 588

Claude dataset and tested it on the remaining 20%, 589

as well as the complete Cochrane and PLABA 590

datasets. This setup helped us determine how well 591

our formula works for different kinds of text. 592

For comparison, we used two baselines. The 593

first was the Flesch-Kincaid Grade Level (FKGL), 594

which is the most commonly used method to mea- 595

sure text readability. The second baseline (marked 596

with † in Table 3) represents the top-performing 597

metric for each specific dataset, which naturally 598

varied from one dataset to another. To evaluate 599

performance, we used three statistical measures: 600

Cohen’s d gives the standardized difference be- 601

tween the means of the two distributions, Jensen- 602

Shannon Divergence measures the dissimilarity be- 603

tween the distributions, and Area Under the Curve 604

(AUC) measures how well the scoring method dis- 605

tinguishes the two classes, estimating the proba- 606

bility that a randomly chosen complex text gets a 607

higher score than a randomly chosen simple one. 608

Figure 2 shows the score distributions of simple 609

(green) and complex (red) texts using our formula. 610

The Claude dataset shows the strongest separation, 611

with almost no overlap. Cochrane and PLABA- 612

paragraph are also well separated, although many 613

of the simplified texts still include technical terms, 614

which leads to some overlap. PLABA-sentence has 615

the most overlap, which may be due to the limited 616

context in short texts. 617

Table 3 compares our formula against the base- 618

line methods. While certain metrics occasionally 619

show slightly better results on specific datasets, 620

their performance fluctuates more from case to case. 621

In contrast, our formula consistently delivers strong 622

results regardless of text length, domain, or sim- 623

plification strategy. Moreover, perfect numerical 624

separation is not always ideal, as some degree of 625

overlap between distributions may actually reflect 626

genuine ambiguities or edge cases in the data, not 627

necessarily a flaw in the scoring method. In prac- 628

tice, what matters is how well a score captures the 629

7



Figure 2: Distribution of complexity scores in the four
parallel text datasets.

perceived reading difficulty experienced by indi-630

viduals with different levels of health literacy, not631

just how cleanly it separates two labeled groups in632

a curated dataset.633

4.2 Evaluation of Fine-Tuned Model634

We evaluated the ability of our fine-tuned model to635

generate text at specific complexity levels by com-636

paring it to the original base model and a version us-637

ing few-shot prompting. Using 100 questions sam-638

pled from HealthSearchQA (Singhal et al., 2023),639

we generated responses at each target complexity640

level and calculated the difference between the re-641

quested complexity and the actual complexity of642

the generated text.643

Figure 3 shows the relationship between the tar-644

get and the generated complexity levels for each645

model. The fine-tuned model closely follows the646

ideal diagonal line, particularly at lower and mid-647

range levels, with some compression at the highest648

levels (80-100). The few-shot approach shows a649

step-like pattern, indicating that it captures gen-650

eral complexity trends but lacks fine-grained con-651

trol. Meanwhile, the baseline outputs are clustered652

around a fixed level (∼ 60), showing little response653

to different targets.654

Dataset Method Cohen’s d AUC JS Div.

PLABA-sent
Our formula 1.21 0.80 0.16
FKGL 0.58 0.67 0.05
† 0.99 0.76 0.11

PLABA-para
Our formula 1.86 0.91 0.34
FKGL 0.95 0.76 0.12
† 1.89 0.91 0.32

Cochrane
Our formula 2.23 0.95 0.42
FKGL 0.61 0.68 0.06
† 2.36 0.95 0.42

Claude
Our formula 6.40 1.00 0.69
FKGL 1.58 0.90 0.31
† 6.11 1.00 0.67

† Represents the best-performing metric for each dataset.

Table 3: Comparison of readability scoring methods.

Figure 3: The ability of each model to generate text at
the desired complexity level.

5 Conclusions 655

We introduce a framework for creating medical 656

answers tailored to different health literacy levels. 657

We analyzed 166 linguistic features and defined a 658

scoring formula based on a smaller set of 13, incor- 659

porating domain terminology, syntactic complexity, 660

and signals from large language models, to reli- 661

ably distinguish simple from complex medical text. 662

Using this formula and public resources including 663

LiveQA, MedQuAD, and BioASQ, we created a 664

large dataset of 184,843 medical question-answer 665

pairs rewritten at 21 complexity levels, filling a gap 666

in training materials. We then fine-tuned a language 667

model to generate text at distinct complexity levels, 668

from very simple explanations to highly technical 669

content for medical professionals. This versatility 670

makes it useful in many healthcare settings. It can 671

help create personalized patient education materi- 672

als, support medical students as they learn more 673

advanced topics, and generate documentation for 674

healthcare providers, such as doctors and nurses. 675
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A Appendix1015

A.1 Medical Text Simplification Datasets1016

PLABA. The Plain Language Adaptation of1017

Biomedical Abstracts dataset (Attal et al., 2023)1018

contains 750 biomedical abstracts paired with their1019

plain language versions, totaling 7,643 sentence1020

pairs. It was created by scraping 75 common medi-1021

cal questions from forums and retrieving relevant1022

paper abstracts from PubMed. Human annotators1023

then adapted these abstracts by replacing techni-1024

cal terminology with common synonyms, splitting1025

complex sentences, and removing content irrele-1026

vant to general readers. We used PLABA at both1027

sentence and paragraph levels to evaluate our com-1028

plexity metrics.1029

Cochrane Dataset. The Cochrane Simplification1030

dataset (Devaraj et al., 2021) contains 4,459 pairs1031

of technical medical texts and their corresponding1032

simplified versions, sourced from the Cochrane1033

Database of Systematic Reviews. This dataset pro-1034

vides paragraph-level simplifications designed to1035

make medical content more accessible to readers1036

without medical expertise.1037

A.2 Selected Metrics for Complexity Formula1038

The following 13 metrics were selected for our final1039

complexity scoring formula, listed here along with1040

their coefficients:1041

A.2.1 LLM Vocabulary Complexity (3.217)1042

We use this score to estimate how difficult a piece1043

of text is to understand, based on evaluations from1044

the three 70-billion parameter models we described1045

earlier. Each model rated texts on a scale from 11046

to 5, with higher scores indicating more complex1047

language. This feature has the largest positive coef-1048

ficient in our formula, confirming that vocabulary1049

choice drives most of the perceived difficulty in 1050

medical texts. 1051

A.2.2 Dale-Chall Score (1.839) 1052

The Dale-Chall readability formula (Dale and 1053

Chall, 1948) estimates how difficult a text is to 1054

read based on the average sentence length and the 1055

percentage of “difficult” words not found on a pre- 1056

defined list of familiar words. In our implementa- 1057

tion, we expanded the original list of 3,000 words 1058

by including those from the Spache list. The posi- 1059

tive coefficient in the formula shows that texts with 1060

longer sentences and more unfamiliar words tend 1061

to be significantly more complex. 1062

A.2.3 Type-Token Ratio (0.173) 1063

Type-token ratio (TTR) measures lexical diversity 1064

by dividing the number of unique words (types) by 1065

the total number of words (tokens) in a text. The 1066

positive coefficient confirms that texts with more 1067

diverse vocabulary contribute to higher complexity 1068

scores, though with less impact than the vocabulary 1069

complexity or the Dale-Chall readability formula. 1070

A.2.4 ALBERT Transformer Score (-2.471) 1071

We used the ALBERT-xxlarge model (Lan et al., 1072

2019) from the winning entry in the CommonLit 1073

Readability Prize Kaggle competition (Malatinszky 1074

et al., 2021). This model processes text through 1075

attention layers to capture relationships between 1076

words before predicting a readability score. The 1077

negative coefficient appears because ALBERT as- 1078

signs higher scores to texts that are easier to read, 1079

which runs in the opposite direction of our scoring 1080

system, where higher values indicate lower read- 1081

ability. 1082

A.2.5 Referential Cohesion (0.068) 1083

This feature captures how well a paragraph main- 1084

tains topical consistency by measuring the semantic 1085

similarity between consecutive sentences (Lyu and 1086

Pergola, 2024). To compute it, we embed each 1087

sentence using BioSimCSE-BioLinkBERT-BASE 1088

(raj Kanakarajan et al., 2022) and calculate the co- 1089

sine similarity between adjacent sentence pairs. A 1090

sharp drop in similarity, falling in the bottom 25% 1091

of the distribution, marks a potential topic shift, 1092

or “breakpoint.” We count the number of chunks 1093

in each paragraph based on these breakpoints and 1094

take the average over the entire text. The small pos- 1095

itive coefficient may seem counterintuitive, since 1096

texts that are more cohesive are usually easier to 1097

read. However, this result suggests that even highly 1098
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technical medical texts in our datasets tend to main-1099

tain strong internal cohesion despite their complex1100

vocabulary.1101

A.2.6 Information Content (0.691)1102

This feature measures how specialized the vocabu-1103

lary is in a given text, based on how often each1104

word appears in a biomedical corpus (Lyu and1105

Pergola, 2024). The basic idea is that technical1106

terms tend to be rarer and harder to understand. To1107

build our reference corpus, we combined data from1108

biomedical and consumer health sources, includ-1109

ing MedQuAD (Abacha and Demner-Fushman,1110

2019), LiveQA (Abacha et al., 2017), Medica-1111

tionQA (Abacha et al., 2019), and other medical1112

datasets. We lemmatize each word in the corpus,1113

count how often each lemma appears, and calculate1114

its information content as the negative logarithm1115

of its probability. For any given text, we extract all1116

nouns and verbs, look up their information content1117

values, and calculate the average. The positive co-1118

efficient in our model supports the idea that texts1119

with a more technical and less common vocabulary1120

tend to be more complex.1121

A.2.7 Verb Ratio (-0.330)1122

Part-of-speech distributions measure the frequency1123

of different grammatical categories relative to the1124

total word count. We calculate separate ratios for1125

nouns, verbs, adjectives, adverbs, conjunctions,1126

and auxiliary verbs. A negative coefficient for verb1127

ratio indicates that texts with fewer verbs relative1128

to other parts of speech are rated as more com-1129

plex. This is consistent with research showing that1130

academic and scientific writing tends to use more1131

nouns and fewer verbs (Biber et al., 1999).1132

A.2.8 Function Word Ratio (-0.596)1133

The content-to-function word ratio calculates the1134

proportion of content words (nouns, verbs, adjec-1135

tives, adverbs) to function words (auxiliaries, de-1136

terminers, prepositions, conjunctions) in a text. A1137

negative coefficient means that texts with more con-1138

tent words and fewer function words are seen as1139

more complex. This is because function words1140

help organize sentence structure, so when they are1141

used less frequently, the resulting text can be more1142

syntactically dense and cognitively demanding for1143

readers (Just and Carpenter, 1992).1144

A.2.9 Masked Probability Score (-0.049)1145

This metric evaluates how predictable words are in1146

biomedical text using a masked language model De-1147

varaj et al. (2021).. Specifically, we randomly mask 1148

15% of the tokens and run this process 30 times, 1149

then measure how accurately Bio+ClinicalBERT 1150

can guess the original words. In general, techni- 1151

cal or scientific writing tends to have more pre- 1152

dictable language patterns, especially due to con- 1153

sistent use of domain-specific terms. The negative 1154

weight in the scoring formula helps balance out 1155

other vocabulary-based metrics. It prevents pe- 1156

nalizing texts that are technically dense but still 1157

internally consistent and readable. 1158

A.2.10 MedReadMe Cluster Score (0.295) 1159

This score comes from a clustering-based word em- 1160

bedding model trained on the MedReadMe dataset 1161

(Jiang and Xu, 2024). Each word in the text is 1162

converted into its BioWordVec embedding, then 1163

assigned to one of 300 semantic clusters using K- 1164

means clustering. The pattern of these assignments 1165

forms a feature vector that represents how the vo- 1166

cabulary is distributed across different semantic 1167

categories. A positive coefficient means that texts 1168

using vocabulary patterns similar to those found 1169

in more complex medical content tend to receive 1170

higher complexity scores. 1171

A.2.11 Embedding Depth (-0.161) 1172

Embedding depth measures how deep the hierar- 1173

chical structure of a sentence goes in its depen- 1174

dency tree. To calculate this, we identify the word 1175

with the longest chain of grammatical dependen- 1176

cies leading to the root of the sentence. A sentence 1177

with greater embedding depth usually contains 1178

more subordinate clauses (introduced by words like 1179

“which,” “that,” “when”) and complex phrases em- 1180

bedded within one another. This typically makes 1181

text harder to process, as readers must track mul- 1182

tiple incomplete grammatical relationships while 1183

reading, increasing cognitive effort (Gibson, 1998). 1184

However, in our corpus, the expert texts often used 1185

more concise, noun-heavy sentences with fewer 1186

nested clauses. In contrast, the simpler texts used 1187

more explanatory language with embedded clauses 1188

to break down complex concepts. This pattern ex- 1189

plains the negative coefficient in our formula. 1190

A.2.12 Average Dependency Distance (-0.826) 1191

Dependency distance measures how many words 1192

separate a dependent word (object or modifier) 1193

from its head word (main verb or noun) in a sen- 1194

tence. Longer distances increase cognitive load, 1195

since the reader must keep track of the dependent 1196

13



word while processing the words in between (Gib-1197

son, 2000). We calculate the average dependency1198

distance for each sentence and then find the overall1199

average for the entire text. Although this metric1200

correlates with higher difficulty when used alone,1201

the negative coefficient in our multivariate model1202

suggests an inverse relationship when considered1203

alongside other features.1204

A.2.13 Coreference Chains (-0.390)1205

Coreference resolution tracks how entities are refer-1206

enced throughout a text. When a document refers to1207

the same person, object, or concept using different1208

terms (e.g., pronouns, synonyms, or descriptions),1209

it creates coreference chains that help readers fol-1210

low who or what is being discussed. For instance, if1211

a text mentions “Dr. Smith” and later refers to her1212

as “she” or “the physician,” these references form1213

a continuous link to the same entity. To calculate1214

CoREF, we use FastCoref (Otmazgin et al., 2022)1215

instead of the Stanford CoreNLP implementation1216

previously used in GisPy (Manning et al., 2014;1217

Qi et al., 2020). We decided to make this switch1218

because CoreNLP was causing significant delays1219

in the processing pipeline, especially when work-1220

ing with longer documents. FastCoref, on the other1221

hand, not only performs on par with state-of-the-art1222

models but also runs much faster, completing tasks1223

in seconds that used to take minutes. Following the1224

same methodology as GisPy, we identify all coref-1225

erence chains in a document, calculate the ratio of1226

chains to sentences for each paragraph, and then1227

compute the final CoREF score as the average of1228

these paragraph-level scores. The negative coef-1229

ficient indicates that complex medical texts often1230

contain fewer or shorter coreference chains, intro-1231

ducing new entities without established reference1232

patterns, which increases reading difficulty.1233

A.3 Source Medical QA Datasets1234

This section provides detailed descriptions of the1235

five source datasets used to create our multi-level1236

medical QA dataset:1237

LiveQA. The LiveQA dataset (Abacha et al.,1238

2017) includes real-world consumer health ques-1239

tions submitted to the U.S. National Library of1240

Medicine (NLM) during the TREC 2017 LiveQA1241

challenge. The original release had 634 training1242

pairs and 104 test questions, each with multiple1243

reference answers. After cleaning the data, we1244

retained 800 question-answer pairs covering top-1245

ics such as diseases, treatments, medications, and 1246

medical exams. 1247

MedicationQA. The MedicationQA dataset 1248

(Abacha et al., 2019) contains 690 consumer ques- 1249

tions about medications, each paired with an an- 1250

swer from a trusted medical website, such as Med- 1251

linePlus and DailyMed, addressing topics like drug 1252

usage, dosage, side effects, and drug interactions. 1253

MediQA-AnS. The MediQA-AnS dataset (Sav- 1254

ery et al., 2020), created for the MEDIQA 2021 1255

challenge, includes 156 consumer health questions, 1256

each paired with two reference summaries (abstrac- 1257

tive and extractive) both written by medical experts 1258

based on passages retrieved using the CHiQA sys- 1259

tem (Demner-Fushman et al., 2020). 1260

MedQuAD. The Medical Question Answering 1261

Dataset (Abacha and Demner-Fushman, 2019) con- 1262

sists of 47,457 question-answer pairs sourced from 1263

12 websites managed by the U.S. National Insti- 1264

tutes of Health (NIH), including MedlinePlus, can- 1265

cer.gov, and niddk.nih.gov. Due to copyright re- 1266

strictions, we had to exclude over 31,000 entries, 1267

leaving us with a total of 16,423 samples. 1268

BioASQ. The BioASQ Task 13B dataset, part 1269

of the 2025 BioASQ challenge, includes 5,389 1270

biomedical questions. Each question is paired with 1271

one or more ideal answers, resulting in a total of 1272

13,692 question-answer pairs. These answers are 1273

concise, expert-written summaries that draw from 1274

scientific literature, primarily PubMed, and use pre- 1275

cise biomedical terminology. 1276

A.4 Content Filtering Rules 1277

To ensure quality in our multilevel dataset, we im- 1278

plemented a two-phase filtering process: 1279

A.4.1 Pattern-Based Filtering 1280

We used regular expressions to identify and remove 1281

samples containing: 1282

• Placeholder text (e.g., “[CON- 1283

TENT_MISMATCH]”) 1284

• Empty or extremely short answers (fewer than 1285

15 tokens) 1286

• Formatting issues or broken XML structure 1287

• Repetitive text patterns suggesting generation 1288

failures 1289

This phase removed approximately 0.3% of the 1290

initially generated samples. 1291
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A.4.2 Quality-Based Filtering1292

We evaluated each variant against its original an-1293

swer using five metrics:1294

ROUGE-L (Lin, 2004) measures the longest com-1295

mon subsequence between the generated vari-1296

ant and the original answer, capturing struc-1297

tural similarity and content preservation.1298

BLEURT (Sellam et al., 2020) evaluates semantic1299

similarity between texts using contextualized1300

embeddings, trained to correlate with human1301

judgments.1302

BERTScore (Zhang et al., 2019) computes token1303

similarity using contextual embeddings from1304

BERT, providing a more semantically-aware1305

measure of content preservation than n-gram1306

overlap metrics.1307

UniEval (Zhong et al., 2022) assesses multiple di-1308

mensions, including relevance to the original1309

content, factual consistency, and coherence.1310

SummaC (Laban et al., 2022) evaluates contra-1311

diction and factual consistency using natural1312

language inference models to detect potential1313

misrepresentations or logical inconsistencies.1314

We filtered out variants that failed any of these1315

criteria:1316

• Low relevance and factual consistency1317

(UniEval-relevance < 0.5 AND UniEval-fact-1318

consistency < 0.5)1319

• Strong logical inconsistency (SummaC < -0.5)1320

• Poor semantic similarity and text quality1321

(BERTScore-F1 < 0.8 AND BLEURT < 0.2)1322

This filtering process identified relatively few1323

problems, removing only 2,926 samples (1.56%)1324

from the initially generated 187,769 variants.1325

A.5 Prompt for Variant Generation1326

The prompt used to generate variants at different1327

complexity levels was:1328

You a r e an e x p e r t i n c r e a t i n g1329

e d u c a t i o n a l c o n t e n t f o r1330

d i f f e r e n t r e a d i n g a b i l i t i e s .1331

Your t a s k i s t o g e n e r a t e1332

m u l t i p l e answer v a r i a n t s f o r1333

t h e g i v e n q u e s t i o n and1334

o r i g i n a l answer , each a t a1335

s p e c i f i e d c o m p l e x i t y l e v e l , 1336

w h i l e p r e s e r v i n g a l l f a c t u a l 1337

i n f o r m a t i o n . 1338

1339

When g e n e r a t i n g each v a r i a n t , you 1340

must : 1341

1 . P r e s e r v e ALL f a c t u a l 1342

i n f o r m a t i o n from t h e o r i g i n a l 1343

answer and keep i t r e l e v a n t t o 1344

t h e q u e s t i o n . 1345

2 . A d j u s t v o c a b u l a r y , s e n t e n c e 1346

s t r u c t u r e , and e x p l a n a t i o n 1347

d e t a i l t o match t h e c o m p l e x i t y 1348

l e v e l . 1349

3 . Do n o t i n t r o d u c e s u b s t a n t i v e l y 1350

new c l a i m s t h a t a ren ' t 1351

r e a s o n a b l y i m p l i e d by t h e 1352

o r i g i n a l answer . 1353

4 . Ensure t h e answer i s c o h e r e n t 1354

and wel l − s t r u c t u r e d . 1355

5 . I f t h e o r i g i n a l answer does 1356

n o t d i r e c t l y a d d r e s s t h e 1357

q u e s t i o n asked , r e s p o n d wi th : 1358

' [CONTENT_MISMATCH] ' a s t h e 1359

answer . 1360

1361

Complex i ty l e v e l s (1 t o 5 ) a r e 1362

d e f i n e d as f o l l o w s : 1363

− Leve l 1 : For a young c h i l d ; use 1364

ve ry s i m p l e v o c a b u l a r y , s h o r t 1365

s e n t e n c e s , and b a s i c c o n c e p t s 1366

. 1367

− Leve l 2 : For a midd le s c h o o l 1368

s t u d e n t ; use b a s i c s c i e n t i f i c 1369

t e rms , c l e a r e x p l a n a t i o n s , and 1370

modera t e d e t a i l . 1371

− Leve l 3 : For a h igh s c h o o l 1372

s t u d e n t ; use t e c h n i c a l 1373

t e r m i n o l o g y , l o n g e r s e n t e n c e s , 1374

and d e t a i l e d e x p l a n a t i o n s . 1375

− Leve l 4 : For a c o l l e g e g r a d u a t e 1376

; u se in − d e p t h t e c h n i c a l 1377

d e t a i l s , complex s e n t e n c e 1378

s t r u c t u r e s , and s c i e n t i f i c 1379

l a n g u a g e . 1380

− Leve l 5 : For a b i o m e d i c a l 1381

e x p e r t ; use advanced 1382

s c i e n t i f i c t e r m i n o l o g y , assume 1383

p r i o r knowledge , and p r o v i d e 1384

p r e c i s e d e t a i l s . 1385

The prompt also included three examples with 1386
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answers at each complexity level and instructions1387

to format responses in structured XML.1388

A.6 Model Performance Metrics1389

The quantitative results in Table 4 confirm what1390

we see in Figure 3. The fine-tuned model out-1391

performs both alternatives in every metric, with1392

a mean absolute error (MAE) 23% lower than the1393

few-shot method and nearly 50% lower than the1394

baseline. The strong correlation coefficient (0.84)1395

and high R² value (0.66) together validate its ability1396

to consistently generate responses at the intended1397

complexity level.1398

Model MAE RMSE Correlation R²

Baseline 26.07 31.28 0.21 -0.07

Few-shot 17.33 22.03 0.69 0.47

Fine-tuned 13.30 17.63 0.84 0.66

Table 4: Comparison of how accurately each model
generates text at the desired complexity levels.

B Limitations1399

While our work has made meaningful progress in1400

simplifying medical texts, it also has some impor-1401

tant limitations.1402

First, we focused only on English. The features1403

we used to measure complexity, especially those1404

tied to medical terms, may not translate well to1405

other languages that have different grammar rules1406

or naming conventions in medicine.1407

Second, we developed our complexity formula1408

without using human feedback. Instead, we as-1409

sumed that the best formula is the one that maxi-1410

mizes the gap between simple and complex texts,1411

following a set of heuristics we defined based on1412

our understanding of the data. However, perceived1413

complexity is subjective and can vary depending1414

on a person’s background, reading ability, and fa-1415

miliarity with medical concepts. Therefore, testing1416

with real users would be necessary to confirm if1417

the formula aligns with human judgments. Fur-1418

thermore, because the formula is a simple linear1419

equation, it can be “gamed.” For example, shorten-1420

ing sentences or swapping in simpler words could1421

reduce the complexity score without making the1422

text any easier to understand. A possible solution1423

would be to follow the same approach we used in1424

Section 3.2.8, distilling the scores into a language1425

model to smooth errors and reduce the impact of1426

outliers. We chose a simple, interpretable formula1427

here, but future work should explore more flexible, 1428

non-linear models. 1429

Another concern is the use of synthetic data for 1430

training. Even with filters in place, the dataset 1431

might still include outdated or inaccurate medical 1432

information carried over from the original sources. 1433

We also did not evaluate our model against external 1434

benchmarks or state-of-the-art systems like GPT-4 1435

or Claude, and lacked specialized datasets to mea- 1436

sure factual accuracy and relevance when control- 1437

ling the complexity of the answers. More impor- 1438

tantly, the model was not tested longitudinally with 1439

actual users. 1440

Finally, we did not explore alternative methods 1441

for measuring text complexity. For example, train- 1442

ing models to predict which of two texts is more 1443

complex (as in learning-to-rank frameworks) rather 1444

than assigning absolute scores could be an alterna- 1445

tive approach to evaluate text readability. 1446
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