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ABSTRACT

A well-designed reward is critical for effective reinforcement learning-based pol-
icy improvement. In real-world robotic domains, obtaining such rewards typically
requires either labor-intensive human labeling or relying on brittle hand-crafted
objectives. Vision-language models (VLMs) have shown promise as automatic
reward models, yet their effectiveness on real robot tasks is poorly understood. In
this work, we aim to close this gap by introducing (1) RoboReward, a robotics
reward dataset and benchmark built on large-scale real-robot corpora from Open
X-Embodiment (OXE) and RoboArena, and (2) vision-language reward models
trained on this dataset. Because OXE lacks failure examples, we propose counter-
factual relabeling that turns successful episodes into calibrated negative and near-
miss examples for the same video. Using this framework, we produce an extensive
training and evaluation dataset, which spans diverse tasks and embodiments and
enables systematic evaluation of whether state-of-the-art VLMs can provide reli-
able rewards for robotics. Our evaluation of the leading open-weight and propri-
etary VLMs reveals that no model excels in all tasks, highlighting substantial room
for improvement. We then train 3B- and 7B-parameter models that outperform
much larger VLMs in assigning rewards for short-horizon robotic tasks. Finally,
we deploy the 3B-parameter reward VLM in real-robot reinforcement learning and
find that it improves policy learning over the base 3B model by a large margin.
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RoboReward 7B

RoboReward
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T: Place pot on yellow cloth
A: Score 5/5

T: Put carrot in drawer
A: Score 2/5

T: Move apple near 7-up
A: Score 5/5

T: Bowl on plate upside down
A: Score 3/5

T: Put the food on the plate
A: Score 1/5

Figure 1: We introduce RoboReward, a dataset for training and evaluating general-purpose robot re-
ward models. RoboReward consists of 3,000 real-robot episodes spanning diverse tasks and robots,
with human-verified progress scores. In evaluations across 20 proprietary and open-source VLMs
we demonstrate that today’s models are severely lacking in their ability to provide accurate reward
feedback for robots. We then curate a dataset of 65,000 scored robot episodes across diverse em-
bodiments and train RoboReward-3B/7B, two general-purpose robot reward models that outperform
all off-the-shelf models. We open-source all models, training data, and our evaluation benchmark to
advance the development of general-purpose reward models for robotics.
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1 INTRODUCTION

Despite recent algorithmic advances enabling efficient reinforcement learning (RL) training of robot
control policies in the real-world (Smith et al., 2022b; Luo et al., 2024; Mark et al., 2024; Ankile
et al., 2025; Chen et al., 2025b; Wagenmaker et al., 2025), the broad application of RL to real-world
robotics has been severely limited by the absence of accurate and informative reward models. RL-
based methods critically require a precise reward signal to direct learning, yet existing methods for
obtaining such rewards typically rely on either humans to label episodes by hand (Myers et al., 2023;
Wagenmaker et al., 2025), or complex and brittle hand-crafted reward functions tuned by humans
through extensive trial-and-error (Lee et al., 2020; Smith et al., 2022b; Luo et al., 2024; Chen et al.,
2025b). While RL as an algorithmic paradigm holds the promise of enabling automated improve-
ment of robot policies, the need for a human in the reward design process makes modern robotic RL
labor-intensive, greatly limiting its application to general, real-world robotic policy improvement.

Motivated by these challenges, recent works have explored utilizing vision-language models
(VLMs) trained on internet-scale data as automated reward models for robotics (Rocamonde et al.,
2023; Venuto et al., 2024; Sontakke et al., 2024; Wang et al., 2024). In principle, a highly capable
VLM that can reason about the physical world could replace hand-coded heuristics and expensive
human supervision. However, existing methods often fall short of achieving this, due to apparent
shortcomings in current state-of-the-art VLMs and limited ability to provide sufficiently accurate
rewards in real-world robot deployments. While VLMs are pretrained on large datasets drawn from
a diverse set of sources—endowing them with general vision-language abilities—it is not clear that
these general abilities enable them, at present, to robustly provide rewards at the level of precision
and reliability required by RL training.

In this work, we seek to develop a dataset and benchmark for evaluating and improving VLM-based
rewards for robotics. In simple simulation experiments, we first identify that coarse progress scores
are an effective reward type for reinforcement learning, and find that reward accuracy correlates
with RL performance, motivating our benchmarking design choices at a small scale before scal-
ing up to a diverse, real robot dataset. Unfortunately, existing large-scale robotics datasets (Open
X-Embodiment Collaboration et al., 2023; Khazatsky et al., 2024) are heavily skewed towards suc-
cessful demonstration episodes, which are poorly suited for training and evaluating reward func-
tions for estimating both success and failure. We therefore develop a relabeling framework for
synthetically augmenting demonstration data. Our framework counterfactually relabels successful
episodes with failed instructions and near-miss instructions for the same video, holding the video
of the episode fixed while varying the commanded task. We use this technique to construct the Ro-
boReward dataset, which augments the Open X-Embodiment (OXE) dataset (Open X-Embodiment
Collaboration, 2023) and RoboArena evaluation benchmark dataset (Atreya et al., 2025), leading
to an extensive training corpus and human-validated evaluation dataset for reward modeling across
diverse tasks and embodiments (see fig. 1). Notably, our 3B and 7B vision-language reward models
trained on this dataset outperform much larger VLMs, including state-of-the-art proprietary VLMs,
and show promising results when used as a reward for real robot reinforcement learning.

Our contributions are as follows:

1. Counterfactual relabeling framework. A framework that turns success-heavy robot demon-
stration datasets into calibrated negatives and near-misses for the same videos, augmented with
semantically invariant paraphrases.

2. Robot reward benchmarking and analysis. We first analyze supervision schemes for robotic
rewards, comparing binary success signals to discrete progress labels. We also run experiments
to show that higher-quality robot reward models lead to stronger downstream RL policies. We
then introduce RoboRewardBench, a comprehensive and standardized evaluation of VLMs as
reward models on full robot rollouts, where we assess 20 prominent VLMs across 3105 robot
episodes spanning diverse tasks and 14 different types of embodiments.

3. Resources. We release the RoboReward training dataset and RoboRewardBench (evaluation
dataset), trained reward-model checkpoints (RoboReward VLM 3B and 7B) that outperform
larger VLMs on assigning rewards for short-horizon tasks, and an evaluation suite (including a
leaderboard, prompts, raw generations, and results) to advance general-purpose reward modeling
in robotics.
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Our evaluation results indicate that current general-purpose VLMs are not yet reliable reward models
in all settings and that the RoboReward dataset can significantly improve accuracy, taking us one
step closer to fully autonomous improvement of real-world robot policies.

2 RELATED WORK

Non-robot reward models. With the recent success of RL approaches for post-training large lan-
guage models (Shao et al., 2024; DeepSeek-AI et al., 2025), there has been a large number of works
on training effective reward models for LLM-RL (Lightman et al., 2023; Luo et al., 2025a). Ad-
ditionally, a number of benchmarks has been proposed to evaluate these language reward models.
For example, RewardBench (Lambert et al., 2024) and RewardBench 2 (Malik et al., 2025) test
reward model accuracy, bias, and correlation with downstream LLM-RL performance. For multi-
modal settings, VLRewardBench (Li et al., 2024) and Multimodal RewardBench (Yasunaga et al.,
2025) probe VLM reward models across perception, hallucination, reasoning, safety, and preference
judgments. In contrast to these works, our focus is on reward functions for robotic tasks. As our
evaluations show, the capabilities of current VLMs to adequately reward robot task performance lag
far behind image or text domains, motivating our RoboReward benchmark.

Real-robot reinforcement learning. Autonomously learning and improving robotic control poli-
cies through reinforcement learning is a longstanding goal in the robotics community. Despite lim-
ited early success applying RL directly in the real world (Riedmiller et al., 2009; Levine et al., 2016;
2018), the majority of early work in this direction focused on learning in simulation and transferring
the learned policy to the real world in deployment (Cutler et al., 2014; Rajeswaran et al., 2016; Tobin
et al., 2017; Peng et al., 2018; Chebotar et al., 2019; Lee et al., 2020; Kumar et al., 2021). More
recently, significant progress has been made applying RL to real-world locomotion (Smith et al.,
2022b;a) and manipulation (Zhu et al., 2020; Luo et al., 2024; Mendonca et al., 2024; Luo et al.,
2025b) settings. These works have primarily focused on learning from scratch or with a limited
number of human demonstrations, yet with the advent of “generalist” robot policies (Octo Model
Team et al., 2024; Kim et al., 2024; Black et al., 2024), significant attention has been devoted to
developing RL algorithms that utilize such generalist policies as a starting point for learning, im-
proving their behavior through RL in real-world deployment (Zhang et al., 2024; Mark et al., 2024;
Nakamoto et al., 2024; Chen et al., 2025b; Hu et al., 2025; Ankile et al., 2025; Wagenmaker et al.,
2025; Dong et al., 2025). All of these works, however, rely on either human reward supervision or
hand-crafted reward functions in order to provide a signal for learning. This has greatly limited the
application of RL to general robot learning settings, a challenge we aim to resolve in this work.

Learned reward models for robotics. To overcome the limitations of manually specified robot
rewards, there is a long line of work for learning robot reward functions. Early works learned robot
rewards from human videos (Sermanet et al., 2016; Shao et al., 2020; Chen et al., 2021) or robot
trajectories (Ma et al., 2022; 2023; Yang et al., 2023; Sontakke et al., 2024). More recent works
leverage the expressivity and common-sense of VLMs to derive rewards for control. Preference-
based approaches query VLMs over image and trajectory comparisons or ratings to learn reward
functions and train policies in simulation or the real world (Wang et al., 2024; Venkataraman et al.,
2024; Luu et al., 2025; Singh et al., 2025). A complementary direction directly derives sparse or
shaped rewards from individual robot videos (Du et al., 2023; Rocamonde et al., 2023; Baumli
et al., 2023; Yang et al., 2024a; Alakuijala et al., 2024; Yang et al., 2024b; Venuto et al., 2024).
Ma et al. (2024) uses a VLM to perform in-context value learning. Other works target specific
settings such as legged locomotion from videos (Zeng et al., 2024), text-to-video diffusion-based
dense rewards (Chen et al., 2025a), autonomous driving with language-goal rewards (Huang et al.,
2024), and real-to-sim iterative keypoint rewards (Patel et al., 2025). While these works demonstrate
the promise of learned reward models for robotics, they typically focus on a single reward model
architecture, trained for an individual robot setup. In contrast, our work presents, to our knowledge,
the first comprehensive evaluation of 20 modern VLMs as generalist reward functions across a wide
range of robot tasks and embodiments. Additionally, we provide an approach for counterfactual data
relabeling that allows us to create large-scale training datasets for generalist reward functions and
significantly improve over off-the-shelf models. Notably, Zhang et al. (2025) propose an alternative
reward relabeling scheme based on “rewinding” robot demonstrations, but their approach disregards
the content of the demonstration and is not evaluated using modern VLM models or diverse real
robots.
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Figure 2: RL performance on three Robomimic tasks using learned reward functions with different
reward formulations. Progress-based reward metrics lead to quicker convergence than a binary suc-
cess metric. Both continuous and discrete progress rewards achieve comparably fast convergence.
Thus, we choose discrete progress as reward type for our benchmark, since it leads to quick conver-
gence and is easier for humans to annotate consistently than continuous progress.

Closest to our evaluation setting is the OpenGVL leaderboard (OpenGVL Team, 2025), which eval-
uates VLMs as temporal value estimators on expert videos via a Value–Order Correlation metric. As
of September 22, 2025, OpenGVL defines two hidden tasks and reports results for ten VLMs using
only successful demonstration examples. In contrast, our work evaluates 20 VLMs, measuring their
ability to predict rewards (rather than values) on a range of successful and unsuccessful trajectories,
across diverse tasks and embodiments. We also release the prompts with videos and raw model
predictions alongside our leaderboard for full transparency.

3 THE ROLE OF REWARD IN REINFORCEMENT LEARNING

Reinforcement learning aims to find a policy π—a mapping from states to actions—that maximizes
some reward r, typically a function of state and action. Formally, we want to find a policy π with
maximum expected reward: V π := Eπ[

∑
t≥0 γ

trt], where γ ∈ [0, 1) denotes a discount factor, and
rt is the reward at step t. In practice, reward functions must be specified such that the policy learned
by RL—the policy maximizing V π—correctly achieves the desired objective.

Our goal is to design a dataset for training and evaluating learned generalist reward functions in
robotics. The first step is to choose a reward function type for our evaluation. For the purpose
of this work, we restrict our investigation to episodic rewards, which assign a reward value to a
full episode rather than each individual step, and have become the standard choice of reward in
many applications of RL to robotics (Luo et al., 2024; Mark et al., 2024; Ankile et al., 2025; Chen
et al., 2025b; Wagenmaker et al., 2025). Still, many design choices remain: episodic rewards can be
binary or multi-valued, discrete or continuous. To guide the design of our RoboReward benchmark,
we first investigate how the choice of the reward formulation affects downstream RL performance
in simulated RL tasks. Concretely, we use the Robomimic benchmark (Mandlekar et al., 2021),
a simulation suite that includes several robotic manipulation tasks simulating common real-world
robotic tasks. We seek to understand (a) what type of reward leads to RL training that quickly learns
new tasks and (b) what is the correlation between the accuracy of a learned reward model and the
online RL performance. In all experiments, we utilize DSRL (Wagenmaker et al., 2025)—a state-
of-the-art RL fine-tuning algorithm—as our RL algorithm and apply it to finetune a diffusion policy
pretrained on a dataset of task demonstrations included in Robomimic and ground truth rewards
given by the simulation environment.

Which reward type leads to fast RL convergence? We first explore what type of reward leads
to the most effective RL performance. In particular, as we are primarily interested in automated,
learned reward models in this work, we seek to understand what type of learned reward leads to the
most effective RL performance. We consider three different reward types:

1. Binary success: Reward is 1 if the robot episode succeeds, and 0 otherwise.

4
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2. Continuous progress: Reward is a continuous value in [0,1] corresponding to task progress
given by the simulation environment.

3. Discrete progress: Similar to the continuous progress reward, but we discretize progress scores
into 5 bins, and provide a reward in {1, . . . , 5}.

For each reward type, we annotate the simulated Robomimic datasets with ground truth re-
ward labels assigned by the simulation environment programmatically and finetune a Qwen2.5-VL
model (Bai et al., 2025b) to predict the reward given the video of an entire episode 1.

The RL finetuning results are given in fig. 2, where we plot the true success rate against the number of
samples taken. We also plot the success rate of a policy finetuned with ground-truth (binary) rewards.
We see that the type of reward has significant impact on RL performance. In particular, while both
learned progress rewards perform nearly as well as the ground truth rewards, the learned binary
reward performs significantly worse. This suggests that learning a progress reward for effective
downstream RL performance is easier than learning a success reward and, furthermore, that whether
this progress reward is discrete or continuous has minimal effect on RL performance. Thus, we
choose discrete progress as the reward formulation for RoboReward—we aim to learn a reward
model that provides a progress score for a given task in {1, . . . , 5}—since it is easier for humans to
annotate consistently than fully continuous rewards.

Figure 3: There is a strong positive cor-
relation between the accuracy of learned
reward models and downstream RL per-
formance using these rewards. This val-
idates our offline reward benchmark.

Do more accurate reward models lead to higher down-
stream RL performance? Next, we consider how the
accuracy of the learned reward model affects RL perfor-
mance. We quantify accuracy with mean absolute error
(MAE), the average L1 distance between predicted and
ground truth rewards. Focusing on the discrete progress
score reward from above, we measure reward accuracy
on a held-out set of Robomimic validation episodes
for multiple reward model checkpoints at different stages
of convergence, as well as the off-the-shelf base model
checkpoint. We then run RL to convergence with these
reward models across all three Robomimic tasks. We
show policy performance as a function of reward accu-
racy in fig. 3, where the x-axis plots the maximum pos-
sible MAE minus the model’s MAE (larger values mean
higher accuracy). There is a clear correlation (r = 0.83):
more accurate rewards lead to better RL performance
across the board. These results suggest that evaluating
the accuracy of a reward model on a held-out offline dataset is an effective signal for deter-
mining the performance of a downstream RL application that utilizes this reward model.

4 THE ROBOREWARD DATASET AND BENCHMARK

In order to train and evaluate highly capable general reward models for robotics, we need a di-
verse dataset of real-world robot episodes that span successful and failed rollouts and cover a wide
range of tasks and embodiments. In recent years, multiple diverse real-robot datasets have been
open-sourced (Open X-Embodiment Collaboration et al., 2023; Khazatsky et al., 2024; Walke et al.,
2023; Fang et al., 2024; Mandlekar et al., 2018; Jiang et al., 2024; Bharadhwaj et al., 2024; Bu et al.,
2025). However, most of these datasets are dominated by successful demonstrations collected with
expert policies or humans. Although this is useful for training policies with behavioral cloning, it is
suboptimal for training reward models that must discriminate fine-grained partial progress and fail-
ure. To address this imbalance, we introduce a counterfactual relabeling framework that can convert
robot demonstration episodes into synthetic episodes with partial success or failure, thereby broad-
ening the coverage of our reward model training corpus. Our approach is loosely inspired by the
popular hindsight experience relabeling technique (HER, Andrychowicz et al. (2017)), but instead
of relabeling failed episodes as successes to increase the number of successful trials, we perform
“inverse-HER” and relabel successes as failures to increase the number of unsuccessful trials and

1Robomimic environments are Markovian, so the final state is sufficient to determine the reward.
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Task: Place pot on yellow cloth
Score: 5/5

1. Successful Robot Episode

1 2

3 4

VLM

2. Detailed description:

A black robot arm picks 
up a silver pot … 
 
It carefully lifts the pot… 
 
It places the pot on a  
yellow cloth at the top… 
 
There is also a spoon 
and a fork in the scene…

LLM 3. Potential Failure Modes:
Picks wrong object 
 
Places pot in wrong location 
…

4. Counterfactual Proposals:
Put pot below spoon.  
Score 3/5.

Put fork on yellow cloth.  
Score 1/5.

Put spoon in pot.  
Score 4/5. (incorrect score)

VLM

5. Verify

Figure 4: Overview of our counterfactual relabeling approach for generating partial success and
failure task-video pairs for reward model training and evaluation. Given a successful robot episode,
we use a VLM to describe it in detail, and then a sequence of LLM calls to propose alternative
instructions for which the same video would result in only partial success or failure scores. A final
VLM call verifies the quality of generated labels and rejects invalid labels (e.g., because the score
doesn’t reflect what happened in the video).

balance our training dataset. In this section we describe the data sources we use to curate our Ro-
boReward dataset, then detail our relabeling procedure, and finally discuss the reward benchmark
and models we train based on the RoboReward dataset.

4.1 DATA SOURCES

We aggregate real-robot videos from two primary data sources: the Open X-Embodiment dataset
(OXE, Open X-Embodiment Collaboration et al. (2023)) and RoboArena (Atreya et al., 2025) evalu-
ation data. Open X-Embodiment consists of approximately 1M real robot demonstrations, spanning
22 robot embodiments and numerous tasks, aggregated from a large number of individual academic
and industry robot datasets. Since many of the datasets in OXE are highly repetitive (most demon-
strations for an individual dataset may be collected in a single scene and task setup), we subsample
a total maximum of 1350 episodes from each the dataset uniformly to reduce overfitting. Since all
OXE episodes in our dataset are demonstrations, we assign them with the maximum reward score
of 5.

RoboArena on the other hand, is a diverse dataset of real-world robot policy evaluations across a
broad range of scenes and tasks, using the DROID robot platform (Khazatsky et al., 2024). Since
there is comparably less repetition in RoboArena, and the dataset consists of a healthy mix of suc-
cessful and failed policy rollouts, we opt to use the full dataset without subsampling. For each
episode, we leverage the provided human progress score (originally in range [0, 100]) and map it to
discrete 1 . . . 5 rewards. For a complete list of all RoboReward data sources and their quantities, see
table 2.

4.2 DATA CLEANING AND COUNTERFACTUAL RELABELING

We now describe the different components of our data cleaning and counterfactual relabeling frame-
work.

Prompt Rewriting. First, we normalize spelling and grammar without altering semantics, e.g.,
fixing spelling mistakes such as “palce dishes in the dish rack”. We apply a text-only rewrite
transform that enforces semantic invariance: it preserves the meaning while improving the surface
form. We use Qwen3 Instruct (4B) (Team, 2025) for this transform (for the exact prompt, see
section B).

Negative Example Generation. Next, we address the imbalance of success vs failure episodes in
the data. Concretely, we propose a relabeling approach that, given a successful robot rollout video,
generates counterfactual task commands for which the same video only achieves partial success,
or no success at all (see fig. 4). For example, given a video of a robot placing a pepper in a pot
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on the stove top, our pipeline may generate alternatives commands place pepper in the
shelf (partial success, since pepper was picked up), or clean the pot on the stove (no
success). This way, we can obtain a much richer reward training dataset with a balanced distribution
of successful and failed instruction-video pairs, and encourage reward models to pay close attention
to the task instruction.

More formally, given an episode e = (v, t, r) consisting of robot video v, task text t, and reward
r = 5 (expert success), our pipeline constructs a calibrated set of additional training triples with
modified task strings t̃ and labels r̃ ∈ {1, 2, 3, 4} for each example. Specifically, we synthesize four
task commands {t̃(k)}4k=1 that are grounded in visible objects and relations and calibrated so that
the same video would plausibly score k under the following end-state rubric:

• No success (1): The final state shows no goal-relevant change for the task command.
• Minimal progress (2): The final state shows a small but insufficient change toward the goal.
• Partial completion (3): The final state is in the general goal region but violates requirements

that make it not a success.
• Near completion (4): The final state is correct in region and intent but misses a precise

tolerance or requirement.
• Perfect completion (5): The final state satisfies all the requirements.

The procedure to generate the counterfactual instructions is multi-stage:

1. Video analysis: We use a video language model (Qwen2.5-VL Instruct 7B, Bai et al.
(2025b)) to summarize the scene, the set of objects seen throughout the video and their
final states.

2. Planning: With the video analysis, an LLM (Qwen3 Instruct 4B) proposes distinct, con-
crete failure modes that produce a strict ordering 1 < 2 < 3 < 4 < 5.

3. Command generation: Next, the LLM proposes one imperative command per score.

4. Verification: The VLM checks the proposed set {t̃(1...4), t} against the video of the episode
and end-state rubric, returning a single yes or no verdict. Failure triggers regeneration of a
set of tasks.

This relabeling procedure converts success videos into a balanced ladder of outcomes without fab-
ricating videos. It allows us to expand our training corpus 5-fold, and our experiments demonstrate
that it leads to significantly improved reward accuracy on held-out videos (section 5).

Invariant Text Perturbation. We further expand semantic-invariant coverage by generating mul-
tiple paraphrases {t̂j} of each task description that preserve semantics but vary diction and syntax
(e.g., synonyms) using Qwen3.

4.3 TRAINING AND EVALUATION OF GENERAL-PURPOSE ROBOT REWARD MODELS

We split the above corpus in a training and a test set. For OXE datasets, we use the provided test set
whenever defined, and otherwise split the test set off the training set. For RoboArena, we similarly
split the dataset into train and test. This results in a total training set of 64850 episode-reward pairs,
a validation set of 2442 and test set of 3105 samples.

We use the training set to finetune Qwen2.5 VL at two scales (3 billion and 7 billion parameters) to
predict the 5-level end-of-episode progress labels when given a task description and rollout video.
For both models, we freeze the vision backbone and fine-tune the fusion and LLM layers with
a learning rate of 3 × 10−6 and weight decay of 0.05, and train with an effective batch size of
64 via gradient accumulation. For each scale, we select the best checkpoint that minimizes the
mean absolute error (MAE) between the predicted and ground-truth 1-5 reward labels on a held-
out validation set, producing trained vision-language reward models: RoboReward VLM 3B and
RoboReward VLM 7B.

We designate the test split as our evaluation suite. We further refine this split by human-verifying
every example — the human annotator is asked to confirm that the end-state reward label is justified

7
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given the video of the rollout and task description. When a mismatch is found, the annotator edits
the task description to reflect the reward label given the video. We refer to this verified test split as
RoboRewardBench.

5 EXPERIMENTS

5.1 BENCHMARKING FRONTIER VLMS WITH ROBOREWARDBENCH

We evaluate 20 VLMs varying in size, model developers and access on RoboRewardBench, in-
cluding our trained RoboReward VLMs. Our primary metric in MAE (lower is better), which is
computed as the average L1 distance between the predicted reward and ground-truth label. For
the overall leaderboard ranking, we order models by mean win rate, which is the probability that a
model’s score beats that of another model drawn uniformly at random in a head-to-head (see table 3).

Through this comprehensive benchmarking, we observe the following key findings:

1. Supervision with RoboReward yields capable, compact reward models. RoboReward
VLM 7B and RoboReward VLM 3B are the top two models by mean win rate (0.881 and
0.758), followed by Gemini 2.5 Flash (0.735), Qwen 2.5 VL-Instruct 72B (0.720), and
Gemini 2.5 Pro (0.719). Despite their small size, the RoboReward models beat the latest
Gemini models and the largest Qwen 2.5 VL model.

2. Generalization to unseen sources. This pattern persists on held-out sources not in the
training set. For Austin BUDS, the top models are RoboReward VLM 7B (MAE 0.35),
Gemini 2.5 Flash (0.84), and RoboReward VLM 3B (0.99). For NYU ROT, RoboRe-
ward 7B and 3B are the top two (0.686 and 0.786). For LSMO, the top models are
Gemini 2.5 Pro (0.50), RoboReward VLM 7B (0.69), and Gemini 2.0 Flash (0.78), while
RoboReward VLM 3B ranks 9/20 (1.11). The only held-out dataset where RoboReward
VLMs are not on top is DLR Wheelchair Shared Control, where GPT-5 mini leads (0.43),
though RoboReward 7B/3B are close (0.60/0.63). These results indicate generalization to
unseen scene–task pairs.

3. Clear separation across model generations within model providers. Gemini 2.5
Flash/Pro outperforms the previous generation of Gemini models (Gemini 2.0 Flash and
Flash-Lite) with average win rates of 0.735 and 0.719 versus 0.577 and 0.491. We observe
the same trend with OpenAI models: GPT-5 and GPT-5 mini outperform GPT-4.1 and
GPT-4.1 mini (0.624/0.674 vs. 0.468/0.446 win rates). Within Qwen, the vision-specific
VL Instruct models are stronger judges than the multimodal Omni model. This stratifi-
cation demonstrates that RoboRewardBench can effectively track model progress across
multiple model generations.

4. No model is uniformly the best across all subsets of RoboReward. The per-dataset
swings in performance show that even top vision-language models underperform for certain
embodiments and scenes. This echos broader findings that real-world reasoning remains
challenging even for frontier VLMs (Lee et al., 2024), as reward assignment for real-world
robotics is another instance of real-world reasoning.

5.2 TRAINING REAL-ROBOT POLICIES WITH VLM REWARD MODELS

Finally, we aim to demonstrate that RoboReward provides a sufficiently accurate reward signal to
enable real-world robotic RL. For our RL algorithm, we utilize DSRL, and for our base diffusion
policy which DSRL aims to improve, we train a multi-task diffusion policy on BridgeData V2 dataset
(Walke et al., 2023). For a reward signal, we use a sparse end-of-episode reward, comparing the
following three settings: (1) oracle human reward: a human labeler gives a positive reward of +1 on
success and the reward is otherwise 0, (2) RoboReward VLM 3B: outputs a 1-5 progress score at the
end of each episode, and (3) Qwen 2.5-VL Instruct 3B (base): outputs a progress score 1-5, similar
to RoboReward. Both VLM rewards are prompted zero-shot.

We consider two real-world tasks on the WidowX robot. The first task is to pick up a stuffed toy
mushroom and place it on a piece of cloth. The second task is to open a drawer by pulling the handle
(see fig. 5). The results, obtained from 20 trials per task across the four settings, are summarized
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Figure 5: Real robot tasks: Pick up the mushroom and place it on the cloth (left) and Grasp the black
handle and pull the drawer open (right). We use these task descriptions when prompting the VLMs
to assign rewards.

Table 1: Performance of running RL with various reward models compared to the base policy (20
trials per task). Values in parentheses show the change vs. the base policy.

Method Pick-and-place mushroom Open drawer

Base diffusion policy before RL 20% 60%

DSRL + Oracle human rewards 75% (+55) 80% (+20)
DSRL + RoboReward VLM 3B (zero-shot) 45% (+25) 70% (+10)
DSRL + Qwen 2.5-VL Instruct 3B (zero-shot) 5% (-15) 10% (-50)

in table 1. The base VLM reward, which acheives a lower mean win rate on RoboRewardBench
(0.436), actually hurts RL performance relative to the base policy, showing that a poor reward model
is worse than no RL.

On the other hand, the oracle human rewards improve performance over the base policy. In the
middle is RoboReward VLM 3B (mean win rate on RoboRewardBench of 0.758), which is not
human-level in assigning accurate rewards but still improves over the base policy on both tasks: pick-
and-place mushroom (from 20% to 45% success rate over the base policy) and open drawer (from
60% to 70% success rate). These findings align with our results from the simulation experiments:
better reward quality leads to improved downstream RL performance. This further stresses the
importance of training high-quality reward models for robotics reinforcement learning. Furthermore,
these results demonstrate that RoboReward is an effective reward model for enabling real-world
policy improvement with RL.

6 DISCUSSION

In this work, we have introduced a dataset and evaluation suite, RoboRewardBench, for benchmark-
ing generalist robot reward models, a curated dataset for training reward models, and two VLM-
based reward models finetuned on this dataset which we show improve upon off-the-shelf VLMs at
providing accurate rewards for robotic control settings.

While taking a first step towards providing accurate rewards for robotic tasks, this work opens the
door for several interesting future directions:

• Here we have only considered short-horizon tasks, similar to those found in OXE. As robot
learning continues to progress, providing rewards for longer-horizon, more complex tasks
will be critical. Can we extend RoboReward to such settings?

• We have only investigated episodic rewards in this work—rewards provided at the end of
an episode—but dense, step-level reward hold great promise in enabling more efficient RL,
but providing a more informative learning signal through execution. What choice of dense
reward is optimal, and can we utilize VLMs to obtain such dense rewards?
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs for (i) coding assistance, (ii) copy-editing and clarity passes on text and (iii) sur-
facing related-work candidates that we manually vetted. LLMs were not used for research ideation,
experimental design and analysis. All substantive research decisions and interpretations were made
by the authors.

B DATA CLEANING AND AUGMENTATION DETAILS

B.1 PROMPT REWRITE (INVARIANT CLEAN-UP)

Model. Qwen/Qwen3-4B-Instruct-2507 (text-only).

Purpose. Correct grammar/spelling while preserving semantics (e.g., fix “palce dishes in the dish
rack” to “place the dishes in the dish rack”).

Prompt.

Rewrite the following task description to correct grammar and spelling
only.↪→

Do not change meaning.
Task description: {TASK}
Return only the corrected text.

B.2 NEGATIVE EXAMPLE GENERATION

Models. Qwen/Qwen2.5-VL-7B-Instruct (video analysis + verification) and
Qwen/Qwen3-4B-Instruct-2507 (planning + generation).

Rubric (end-of-episode).

1 - No Success: Final state shows no goal-relevant change for the
command.↪→

2 - Minimal Progress: Small but insufficient change; clearly not in a
goal-appropriate region.↪→
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3 - Partial Completion: In general goal region, but a requirement makes
success false↪→
(e.g., wrong container or orientation that breaks the goal).

4 - Near Completion: Correct region/intent but misses a precise tolerance
or stability requirement↪→
(off-center beyond tolerance, rotated too much, not fully seated,

unstable).↪→
5 - Perfect Completion: All requirements within tolerances; stable after

release.↪→

Video Analysis (VL).

You are analyzing a video of a robot performing a short-horizon
manipulation task.↪→

Describe the scene and objects visible. Be sure to describe the objects
in the task description.↪→

Describe object positions and their relations to each other and to the
robot.↪→

Then describe, step by step, what the robot does from start to end,
focusing on the final state.↪→

Be concrete and factual. Do not invent objects that are not visible.
Task description: {ORIGINAL_TASK}
Output sections:
1) Scene and objects
2) Robot actions step by step
3) Final state summary

Planning (Text).

Plan carefully and step by step.
Goal: design distinct failure modes and concrete ideas for new task

commands for scores 1,2,3,4↪→
so that 1 < 2 < 3 < 4 < 5, where 5 is the original task fully satisfied

by the video.↪→
Judge only the final state and ignore time limits. Use only visible

objects/relations.↪→
Ban vague words (almost, partially, slightly, nearly, close to, near).
Each score must be strictly closer to success than the previous one.
Assign a distinct failure mode to 2, 3, and 4 (e.g., wrong region vs

wrong orientation vs precision).↪→
Original task (score 5): {ORIGINAL_TASK}
Video analysis:
{VIDEO_ANALYSIS}
Rubric:
{RUBRIC}
Produce:
1) Reasoning (what defines success for 5)
2) Separation plan (how to construct 1..4)
3) Ideas for new task commands (2-3 candidates per score)
4) Monotonicity check (why 1<2<3<4)

Command Generation (Text, one score at a time).

Generate a single imperative task command (one line) for the SAME video
such that:↪→

- Under the rubric it evaluates to score {K} for the final state shown.
- Stricter or different from the original; if K<5 the same video must not

fully satisfy it.↪→
- Not entailed by and not an easier subset of the original.
- Use only visible objects/relations from the analysis.
- No vague words (almost, partially, slightly, nearly, close to, near).
- Use concrete constraints (inside/on/behind, touching/not touching,

left/right,↪→
fully inserted/contained, centered within X cm, rotation within Y

degrees, handle orientation).↪→
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- Plain ASCII; < 25 words; start with a verb; no quotes or meta text.
Original (5): {ORIGINAL_TASK}
Video analysis:
{VIDEO_ANALYSIS}
Rubric:
{RUBRIC}
Reasoning plan:
{PLAN_TEXT}
Output only the command for score {K}, one line.

Verification (VL; single decision with clear separation).

Rubric:
{RUBRIC}

Set of task commands to judge for the SAME video:
Score 1: {CMD_1}
Score 2: {CMD_2}
Score 3: {CMD_3}
Score 4: {CMD_4}
Score 5 (original): {ORIGINAL_TASK}

Question:
Given the video and the rubric, do these five commands make sense and

form a coherent,↪→
strictly ordered set where the video would be graded 1,2,3,4,5

respectively?↪→

Response:
Give one brief reason.
Then write exactly one final line: ANSWER: YES or ANSWER: NO

B.3 INVARIANT TEXT PERTURBATION (SEMANTICS-PRESERVING)

Model. Qwen/Qwen3-4B-Instruct-2507.

Prompt.

Rewrite the following task description in a different way without
changing meaning.↪→

Keep it clear. Return only the rewritten text.
Task description: {TASK}

C ROBOREWARDBENCH
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Table 2: Datasets used in the RoboReward dataset and benchmark.

Name Embodiment Description Train Val Test Citation

Berkeley Bridge WidowX The robot interacts with household environments including kitchens,
sinks, and tabletops. Skills include object rearrangement, sweeping,
stacking, folding, and opening/closing doors and drawers.

4723 130 100 Walke et al. (2023)

Freiburg Franka Play Franka The robot interacts with toy blocks, it pick and places them, stacks
them, unstacks them, opens drawers, sliding doors and turns on LED
lights by pushing buttons.

4656 130 100 Rosete-Beas et al. (2022);
Mees et al. (2023)

USC Jaco Play Jaco 2 The robot performs pick-place tasks in a tabletop toy kitchen envi-
ronment.

3898 130 260 Dass et al. (2023)

Berkeley Cable Routing Franka The robot routes cable through a number of tight-fitting clips
mounted on the table.

4285 130 100 Luo et al. (2023)

Roboturk Sawyer Sawyer robots flattens laundry, builds towers from bowls and
searches objects.

4940 130 100 Mandlekar et al. (2019)

NYU VINN Hello Stretch The robot opens cabinet doors for a variety of cabinets. 2741 130 100 Pari et al. (2021)
Austin VIOLA Franka The robot performs various household-like tasks, such as setting up

the table, or making coffee using a coffee machine.
994 130 75 Zhu et al. (2022a)

Berkeley Autolab UR5 UR5 The data consists of 4 robot manipulation tasks: simple pick-and-
place of a stuffed animal between containers, sweeping a cloth, stack-
ing cups, and a more difficult pick-and-place of a bottle that requires
precise grasp and 6 DOF rotation.

3587 130 100 Chen et al.

TOTO Benchmark Franka The TOTO Benchmark Dataset contains trajectories of two tasks:
scooping and pouring. For scooping, the objective is to scoop ma-
terial from a bowl into the spoon. For pouring, the goal is to pour
some material into a target cup on the table.

4489 130 100 Zhou et al. (2023)

NYU ROT xArm The robot arm performs diverse manipulation tasks on a tabletop such
an box opening, cup stacking, and pouring, among others.

0 0 70 Haldar et al. (2023)

Stanford HYDRA Franka The robot performs the following tasks in corresponding environ-
ment: making a cup of coffee using the keurig machine; making a
toast using the oven; sorting dishes onto the dish rack.

2884 0 100 Belkhale et al. (2023)

Austin BUDS Franka The robot is trying to solve a long-horizon kitchen task by picking up
pot, placing the pot in a plate, and push them together using a picked-
up tool.

0 0 100 Zhu et al. (2022b)

UCSD Kitchen xArm The dataset offers a comprehensive set of real-world robotic interac-
tions, involving natural language instructions and complex manipula-
tions with kitchen objects.

585 0 100 Yan et al. (2023)

UCSD Pick Place xArm The robot performs pick and place tasks in table top and kitchen
scenes. The dataset contains a variety of visual variations.

3507 0 100 Feng et al.

Austin Sirius Franka The dataset comprises two tasks, kcup and gear. The kcup task re-
quires opening the kcup holder, inserting the kcup into the holder,
and closing the holder. The gear task requires inserting the blue gear
onto the right peg, followed by inserting the smaller red gear.

2855 0 100 Liu et al. (2023)

Tokyo PR2 Fridge Opening PR2 PR2 opening/closing fridge and related appliance interactions. 157 130 80 Oh et al. (2023)
Tokyo PR2 Tabletop Manipula-
tion

PR2 Reaching, grasping, placing on PR2 across varied objects and scenes. 1655 130 100 Oh et al. (2023)

UTokyo xArm PickPlace xArm The robot picks up a white plate, and then places it on the red plate. 477 130 50 Matsushima et al. (2023)
UTokyo xArm Bimanual Dual xArms The robots reach a towel on the table. They also unfold a wrinkled

towel.
168 130 30 Matsushima et al. (2023)

Berkeley MVP Data xArm Basic motor control tasks (reach, push, pick) on table top and toy
environments (toy kitchen, toy fridge).

2757 0 100 Radosavovic et al. (2022)

Berkeley RPT Data Franka Picking, stacking, destacking, and bin picking with variations in ob-
jects.

4003 0 100 Radosavovic et al. (2023)

KAIST Nonprehensile Objects Franka The robot performs various non-prehensile manipulation tasks in a
tabletop environment. It translates and reorients diverse real-world
and 3d-printed objects to a target 6 dof pose.

1258 0 100 Salhotra et al. (2022)

LSMO Dataset Cobotta The robot avoids obstacle on the table and reaches the target object. 0 0 210
Imperial Wrist Cam Sawyer CThe robot interacts with different everyday objects performing tasks

such as grasping, inserting, opening, stacking, etc.
871 0 100 Lee et al. (2019)

CMU Franka Pick-Insert Data Franka The robot tries to pick up different shaped objects placed in front of
it. It also tries to insert particular objects into a cylindrical peg.

2980 0 100 Saxena et al. (2023)

Austin Mutex Franka The Mutex dataset involves a diverse range of tasks in a home envi-
ronment, encompassing pick and place tasks and contact-rich tasks.

5108 0 100 Shah et al. (2023)

Berkeley Fanuc Manipulation Fanuc A Fanuc robot performs various manipulation tasks. For example, it
opens drawers, picks up objects, closes doors, closes computers, and
pushes objects to desired locations.

2549 0 100 Radosavovic et al. (2023)

CMU Play Fusion Franka The robot plays with 3 complex scenes: a grill with many cooking
objects like toaster, pan, etc. It has to pick, open, place, close. It has
to set a table, move plates, cups, utensils. And it has to place dishes
in the sink, dishwasher, hand cups etc.

2921 0 100 Lynch et al. (2023)

DROID Franka Various household manipulation tasks 9256 752 100 Khazatsky et al. (2024)
RT-1 Robot Action Google Robot Robot picks, places and moves 17 objects from the google micro

kitchens.
4359 0 100 Brohan et al. (2022)

RoboArena DROID (Franka-based) Distributed real-world evaluation episodes with per-episode progress
scores and pairwise preferences.

9256 752 100 Atreya et al. (2025)

DLR Wheelchair Shared Control DLR EDAN The robot grasps a set of different objects in a table top and a shelf. 0 0 100 Vogel et al. (2020)
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Table 3: Vision–language models evaluated on RoboRewardBench and their results. The rows are
ordered by mean win rate (higher is better). Limited indicates restricted API-only access at the time
of evaluation.

Rank Model Creator Parameters Access Mean win rate Ref.

1 Qwen2.5-VL Instruct Robo Reward (7B) This work 7B Open 0.881 –
2 Qwen2.5-VL Instruct Robo Reward (3B) This work 3B Open 0.758 –
3 Gemini 2.5 Flash Google – Limited 0.735 Google Cloud (2025c)
4 Qwen2.5-VL Instruct (72B) Alibaba Group 72B Open 0.720 Bai et al. (2025a)
5 Gemini 2.5 Pro Google – Limited 0.719 Google Cloud (2025e)
6 GPT-5 mini (2025-08-07) OpenAI – Limited 0.674 OpenAI (2025c)
7 GPT-5 (2025-08-07) OpenAI – Limited 0.624 OpenAI (2025b)
8 o1 (2024-12-17) OpenAI – Limited 0.590 OpenAI (2024b)
9 Gemini 2.0 Flash Google – Limited 0.577 Google Cloud (2025a)

10 Gemini 2.0 Flash Lite Google – Limited 0.491 Google Cloud (2025b)
11 GPT-4.1 (2025-04-14) OpenAI – Limited 0.468 OpenAI (2025a)
12 GPT-4.1 mini (2025-04-14) OpenAI – Limited 0.446 OpenAI (2025a)
13 Qwen2.5-VL Instruct (3B) Alibaba Group 3B Open 0.436 Bai et al. (2025a)
14 Qwen2.5-VL Instruct (7B) Alibaba Group 7B Open 0.378 Bai et al. (2025a)
15 GPT-4o (2024-11-20) OpenAI – Limited 0.367 OpenAI (2024a)
16 Qwen2.5-VL Instruct (32B) Alibaba Group 32B Open 0.321 Bai et al. (2025a)
17 GPT-5 nano (2025-08-07) OpenAI – Limited 0.291 OpenAI (2025c)
18 Gemini 2.5 Flash-Lite Google – Limited 0.268 Google Cloud (2025d)
19 Qwen2.5-Omni (3B) Alibaba Cloud 3B Open 0.230 Jin Xu (2025)
20 Qwen2.5-Omni (7B) Alibaba Cloud 7B Open 0.026 Jin Xu (2025)
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