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A Scalable Solver for 2p0s Differential Games with One-Sided Payoff
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Abstract
Existing solvers for imperfect-information
extensive-form games (IIEFGs) often struggle
with scalability in terms of action and state space
sizes and the number of time steps. However,
many real-world games involve continuous
action and state spaces and occur in continuous
time, making them differential in nature. This
paper addresses the scalability challenges for
a representative class of two-player zero-sum
(2p0s) differential games where the informed
player knows the game type (payoff) while the
uninformed one only has a prior belief over the
set of possible types. Such games encompass a
wide range of attack-defense scenarios, where
the defender adapts based on their belief about
the attacker’s target. We make the following
contributions: (1) We show that under the Isaacs’
condition, the complexity of computing the Nash
equilibrium for these games is not related to the
action space size; and (2) we propose a multigrid
approach to effectively reduce the cost of these
games when many time steps are involved. Code
for this work is available at anonymous repo.

1. Introduction
The strength of game solvers has grown rapidly in the last
decade, beating elite-level human players in Chess (Silver
et al., 2017a), Go (Silver et al., 2017b), Poker (Brown &
Sandholm, 2019; Brown et al., 2020b), Diplomacy (FAIR†
et al., 2022), Stratego (Perolat et al., 2022), among others
with increasing complexity. Most of the existing solvers
with proved convergence, e.g., CFR+ variants (Tammelin,
2014; Burch et al., 2014; Moravčı́k et al., 2017; Brown
et al., 2020b; Lanctot et al., 2009), FTRL variants (McMa-
han, 2011; Perolat et al., 2021), and mirror descent vari-
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SOTA algorithms
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Figure 1. (a) We explain the atomic nature of equilibrium strategies
in the games of our interest. Exploiting this nature allows us to
tractably solve games with continuous action spaces. (b) Sample
equilibrium state trajectories of a 2p0s differential game where P2
guesses P1’s target (magenta circles). P1’s optimal strategy is to
reveal his target after a critical time tr . (c) Illustration of a 2-level
multigrid solver. Fine grid errors are restricted to the coarse grid,
where cheap corrections are computed and prolongated to the fine
grid. (d) Multigrid further accelerates value approximation for
games with various number of time steps.

ants (Sokota et al., 2022; Cen et al., 2021; Vieillard et al.,
2020), are designed for games with finite action and state
sets, and have computational complexities increasing along
the sizes of these sets. Real-world imperfect-information
games, however, can often have continuous action and state
spaces and happen in continuous time, making them dif-
ferential in nature. Directly applying the existing solvers
to these differential games would require either insightful
action-state-time abstraction or enormous compute. Neither
are readily available.

This paper addresses this scalability challenge for a represen-
tative subset of 2p0s differential games where the informed
player knows the game type (payoff) while the uniformed
player only has a prior belief p0 ∈ ∆(I) over a set of I pos-
sible types. We also assume that the Isaacs’ condition holds,
i.e., the complete-information version of the game has a
pure Nash equilibrium. This condition commonly holds
for differential games with control-affine dynamics. While
restricted, such games represent a wide range of attack-
defense scenarios that can be described as follows: At the
beginning of the game, nature draws a game type according
to p0 and informs the informed player (P1) about the type.
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As the game progresses, the belief about the true game type,
which is assumed to be public knowledge, is updated from
p0 based on the action sequence taken by P1 and his public
strategy profile via the Bayes’ rule. P1’s (resp. P2’s) goal is
to minimize (resp. maximize) the expected payoff over p0.
Due to the zero-sum nature, P1 may need to delay informa-
tion release or manipulate P2’s belief to take full advantage
of information asymmetry; and P2’s strategy is to minimize
a worst-case risk. Some real-world examples of the game
include football set-pieces where the attacker has private
information about which play is to be executed, and missile
defense where multiple potential targets are concerned. The
setting of one-sided information, i.e., P1 knows everything
about P2, is necessary for P2 to derive defense strategies in
risk-sensitive games.

We claim the following contributions:
• We explain that the computational complexity for ap-

proximating the Nash equilibrium for the games of
our interest is related to the number of game types (I)
rather than to the action space size.

• We explain that the equilibrium values for the informed
and uninformed players can be computed via two sep-
arate backward induction processes through a primal-
dual formulation of the game.

• We propose a multigrid approach to tractably solve
games with continuous state spaces and many time
steps. Empirical results show that our solver outper-
forms SOTA IIEFG solvers including CFR+ (Tam-
melin, 2014), MMD (Sokota et al., 2022), Deep-
CFR (Brown et al., 2019), and a SOTA continuous-
action solver JPSPG (Martin & Sandholm, 2024), on
games of our interest. Our solver also approximates
reasonable strategies for game settings that are in-
tractable for SOTA solvers.

2. Related Work
2p0s games with incomplete information. Games where
players have missing information only about the game
types are often called incomplete-information games. These
games are a subset of imperfect-information games where
nature plays a chance move at the beginning (Harsanyi,
1967). The seminal work of (Aumann et al., 1995) devel-
oped equilibrium strategies for a repeated and one-sided
setting of such games through the “Cav u” theorem, which
relates the value of the game with that of a non-revealing
version of the game where both players only know the dis-
tribution of the game type. Briefly, the “Cav u” theorem
reveals that belief-manipulating behavioral strategies are
necessary to achieve value convexification and thus the equi-
librium. As we will discuss, this theorem plays an important
role in enabling scalable solve of games with continuous
action spaces. Building on top of (Aumann et al., 1995),
(De Meyer, 1996) introduced a dual game in which the be-
havioral strategy of the uninformed player becomes Markov.

This technique helped (Cardaliaguet, 2007; Ghimire et al.,
2024) to establish the value existence proof for 2p0s differ-
ential games with incomplete information with and without
state constraints. Unlike repeated games where belief manip-
ulation occurs only in the first round of the game, differential
games may have multiple critical time-state-belief points
where belief manipulation is required to achieve equilib-
rium, depending on the specifications of system dynamics,
payoffs, and state constraints (Ghimire et al., 2024).

IIEFGs. IIEFGs represent the more general set of multi-
agent decision-making problems with finite horizons. Since
any 2p0s IIEFG with finite action sets has a normal-form
formulation, a unique Nash equilibrium always exists in
the space of mixed strategies. Significant efforts have been
taken to approximate equilibrium of large IIEFGs (Koller &
Megiddo, 1992; Billings et al., 2003; Gilpin & Sandholm,
2006; Gilpin et al., 2007; Sandholm, 2010; Brown & Sand-
holm, 2019) leading to algorithms that are no-regret and
with sublinear or linear convergence rates (Zinkevich et al.,
2007; Abernethy et al., 2011; McMahan, 2011; Tammelin,
2014; Johanson et al., 2012; Lanctot et al., 2009; Brown
et al., 2019; 2020a; Perolat et al., 2021; Sokota et al., 2022;
Perolat et al., 2022; Schmid et al., 2023) (see summary in
Tab. 1). Notably, these algorithms have computational com-
plexities increasing with the action space size U , provided
that the equilibrium behavioral strategy lies in the interior
of the simplex ∆(U) (see discussion in Appendix F). Criti-
cally, this assumption does not hold for differential games
equipped with the Isaacs’ condition, in which case the equi-
librium strategy is mostly pure along the game tree, and is
atomic on the action space U when mixed, as we explain
in Sec. 4. While studies on continuous action normal- and
extensive-form games exist (Martin & Sandholm, 2024;
2023), these methods are restricted to a class of games that
either admit a pseudoconcave potential or are monotone.

Table 1. Solver computational complexity (best case) with respect
to action space A and equilibrium error ε

Algorithm Complexity
CFR variants (Zinkevich et al., 2007;
Lanctot et al., 2009; Brown et al., 2019;
Tammelin, 2014; Johanson et al., 2012)

O(Uε−2) to
ε-Nash

FTRL variants & MMD (McMahan,
2011; Perolat et al., 2021; Sokota et al.,
2022)

O
(
U
ε ln

(
1
ε

))
to ε-QRE

Descent-ascent algorithms for nonconvex-nonconcave
minimax problems. Existing developments in IIEFGs
focused on convex-concave minimax problems due to the
bilinear form of the expected payoff through the conver-
sion of games to their normal forms. This paper, on the
other hand, investigates the nonconvex-nonconcave mini-
max problems to be solved at every infostate when actions
are considered continuous. To this end, we use the doubly
smoothed gradient descent ascent method (DS-GDA) which
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has a worst-case complexity ofO(ε−4) (Zheng et al., 2023).
Multigrid methods for accelerating value approximation.
Multigrid methods (Trottenberg et al., 2000) are widely used
to accelerate PDE solving on a mesh (e.g., fluid mechanics).
In a typical V-cycle (Braess & Hackbusch, 1983), a few iter-
ations of relaxation (e.g., Gauss-Seidel) are first performed
on a fine mesh, and the resulting residual is restricted to a
coarser mesh, where a PDE correction is solved and pro-
longated to the fine mesh. Essentially, the V-cycle uses a
coarse solve to reduce the low-frequency approximation
error in the PDE solution at a low cost, leaving only the
high-frequency errors to be resolved through the fine mesh
and resulting in faster solution convergence than conven-
tional PDE solvers. Multigrid has been successfully applied
to solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-
Jacobi-Isaacs (HJI) equations (Han & Wan, 2013) for opti-
mal control problems and differential games. Nonetheless,
extending multigrid to incomplete-information differential
games and value approximation based on neural nets has
rarely been discussed.

3. Problem Statement
Notations and preliminaries. We denote by ∆(I) the
simplex in RI , [T ] := {1, ..., T}, a[i] the ith element of
vector a, ∂pV the subgradient of function V with respect to
p. Consider a time-invariant dynamical system that defines
the evolution of the joint state x ∈ X ⊆ Rdx of P1 and P2
with control inputs u ∈ U and v ∈ V , respectively:

ẋ(t) = f(x(t), u, v). (1)

The game starts at t0 ∈ [0, T ] from some initial state
x(t0) = x0. The initial belief p0 ∈ ∆(I) is set to nature’s
distribution about the game type. P1 of type i accumulates
a running cost li(u, v) during the game and receives a ter-
minal cost gi(x(T )). The goal of P1 is to minimize the
expected sum of the running and terminal costs, which P2
maximizes.

Denote by {Hi
r(t)}I the joint sets of behavioral strategies

of P1, and Zr(t) the set of behavioral strategies of P2. P1
chooses his strategy ηi ∈ Hi

r(t) according to his type i,
while P2’s strategy ζ ∈ Zr(t) is independent of i. At any
game tree node (t, x, p) ∈ [0, T ]× X ×∆(I), ηi (resp. ζ)
is a probability measure over U (resp. V), and players move
simultaneously. With mild abuse of notation, let (η(t), ζ(t))
be the random open-loop controls (αω(t), δω(t)) induced by
(η, ζ) and determined by the random seed ω1. Xt0,x0,ηi,ζ

t1 is
then the random state arrived at t1 from (t0, x0) following
(ηi, ζ) and the system dynamics in Eq. 1. The loss of P1 in
a type-i game is:

Ji(t0, x0; ηi, ζ) := gi

(
Xt0,x0,ηi,ζ

T

)
+

∫ T

t0

li(ηi(s), ζ(s))ds,

1Lem. 2.2 of (Cardaliaguet, 2007) proved the existence of
(αω(t), δω(t)) given (η(t), ζ(t)).

and the payoff over all game types is J(t0, x0, p; {ηi}, ζ) =
Ei∼p[Ji]. We say the game has a value V if and only if the
upper value V +(t0, x0, p) = inf{ηi} supζ Eηi,ζ,i[Ji] and
the lower value V −(t0, x0, p) = supζ inf{ηi} Eηi,ζ,i[Ji] are
equal: V = V + = V −. ({ηi}, ζ) is a Nash equilibrium
(NE) if it attains V . We introduce the following assumptions
under which the game has a value (Cardaliaguet, 2007):

A1. U ⊆ Rdu and V ⊆ Rdv are compact and finite-
dimensional sets.

A2. f : X × U × V → X is bounded, continuous, and
uniformly Lipschitz continuous with respect to x.

A3. gi : X → R and li : U × V → R are Lipschitz
continuous and bounded.

A4. Isaacs’ condition holds for the Hamiltonian H : X ×
Rdx → R:

H(x, ξ) := min
u∈U

max
v∈V

f(x, u, v)⊤ξ − li(u, v)

= max
v∈V

min
u∈U

f(x, u, v)⊤ξ − li(u, v).
(2)

A5. Both players have full knowledge about f , {gi}Ii=1,
{li}Ii=1, p0, and the Nash equilibrium of the game.
Control inputs and states are fully observable and we
assume perfect recall.

Dynamic programming (DP) for P1. To approximate
P1’s equilibrium strategy, we introduce a discrete-time
value approximation Vτ , which satisfies the following
DP (Cardaliaguet, 2009):

Vτ (t0, x0, p) = min
{ηi}

Eu∼η̄

[
max
v∈V

Vτ (t0 + τ, x′(u, v), p′(u))

+ τEi∼p′(u)[li(u, v)]
]
,

(3)
with a terminal boundary Vτ (T, x0, p) =

∑
i p[i]gi(x0).

Here x′(u, v) solves Eq. 1 starting from x0 for a time span
of τ using constant control inputs (u, v) during [t0, t0 + τ),
and p′(u) is the Bayes update of the public belief after P1
takes and P2 observes u: p′(u)[i] = ηi(u)p[i]/η̄(u), where
η̄ is the marginal distribution over U across types: η̄(u) =∑

i∈[I] ηi(u)p0[i]. Note that P2’s equilibrium cannot be
derived from Eq. 3.

Dual DP for P2. To compute P2’s equilibrium strategy, we
need another DP that involves P2’s behavioral strategies and
P1’s best responses. This can be achieved by introducing
the convex conjugate V ∗ of V :
V ∗(t0, x0, p̂) := max

p
pT p̂− V (t0, x0, p)

= max
p

pT p̂− sup
ζ∈Zr(t0)

inf
{ηi}∈{Hr(t0)}I

Eηi,ζ,i

[
Ji(t0, x0; ηi, ζ)

]
= max

p
inf

ζ∈Zr(t0)
sup

{ηi}∈{Hr(t0)}I
pT p̂− Eηi,ζ,i

[
Ji(t0, x0; ηi, ζ)

]
= inf

ζ∈Zr(t0)
sup

η∈H(t0)

max
i∈{1,...,I}

{
p̂i − Eζ

[
Ji(t0, x0; ηi, ζ)

]}
.

(4)
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The last step of Eq. 4 uses the linearity of the payoff with
respect to p and again the fact that best responses are always
pure (thus η belongs to the pure strategy set H(t0) rather
than the random strategy set Hr(t0)). Eq. 4 describes a
dual game with complete information, where the strategy
space of P1 becomes H(t0) × [I], i.e., the game type is
now chosen by P1 rather than the nature. It is proved that
P2’s equilibrium in the dual game is also an equilibrium
for the primal game if p̂ ∈ ∂pV (t0, x0, p). We explain in
App. D that such p̂ represents the type-dependent gains of
P1 should he play the best responses to P2’s equilibrium
strategy. Therefore p̂i − Eζ [gi +

∫
li] measures P2’s risk

and his equilibrium strategy is to minimizes the worst-case
risk across all game types. The DP of P2 in this dual game
is (Cardaliaguet, 2009):

V ∗
τ (t0, x0, p̂) =

min
ζ,p̂′(v)

Ev∼ζ

[
max
u∈U

V ∗
τ (t0 + τ, x′(u, v), p̂′(v)− τ l(u, v))

]
,

(5)
with a terminal boundary V ∗(T, x0, p̂) = maxi∈[I]{p̂[i]−
gi(x0)}. Here p̂′(v) : V → RI is constrained by
Ev∼ζ [p̂

′(v)] = p̂, and l(u, v)[i] = li(u, v).

Let P1’s strategy set from Eq. 3 be {ηi,τ} and P2’s from
Eq. 5 be ζτ . Thm. 3.1 proves that ({ηi,τ}, ζτ ) approaches
the equilibrium of V when τ is sufficiently small (App. A
completes the proof sketch in Cardaliaguet (2009)):

Theorem 3.1. (Thm.4.1 of Cardaliaguet (2009)) If
A1-5 hold, then there exists some M1,M2 > 0, such
that V (t0, x0, p) ≤ maxζ∈Z(t0) J(t0, x0, p; {ηi,τ}, ζ) ≤
V (t0, x0, p) + M1(T − t0)τ for any (t0, x0, p) ∈
[0, T ] × X × ∆(I), and V ∗(t0, x0, p̂) ≤
max{ηi}∈{Hi}I J∗(t0, x0, p̂; {ηi}, ζτ ) ≤ V ∗(t0, x0, p̂) +

M2(T − t0)τ for any (t0, x0, p̂) ∈ [0, T ]×X × RI .

Remarks. Notice that the DPs consider conservative
approximations of the original game. E.g., the pri-
mal DP considers P2 play the best responses to the
actions to be played by P1, thus V (t0, x0, p) ≤
maxζ∈Z(t0) J(t0, x0, p; {ηi,τ}, ζ). Nonetheless, by using
continuity and boundedness assumptions (A1-3) and Isaacs’
condition (A4), Thm. 3.1 shows that the advantages taken
by best responses in the DPs are limited. Importantly, ap-
proximating the original game through the DPs enables the
“splitting” reformulation that critically addresses the scala-
bility issue with respect to continuous action spaces, which
we discuss in Sec. 4.

4. A Splitting Reformulation of the DPs
With Thm. 3.1, we can approximate P1’s strategy by solving
Eq. 3, and P2’s by solving both Eq. 3 and Eq. 5 because
his strategy depends on ∂pV (t0, x0, p). These minimax
problems need to be solved at sufficiently many collocation
points ((t, x, p) or (t, x, p̂)) and with a sufficiently refined

time discretization. In the context of IIEFGs, both DPs can
be considered as sequential games where the leader plays a
mixed strategy and the follower a best response. Existing al-
gorithms, e.g., CFR+, CFR-BR, and MMD, are not scalable
at solving the DPs when the games have continuous action
spaces and many time steps. To this end, our key insight is
the following theorem, which states that P1’s strategy that
solves the primal DP is I-atomic and P2’s is (I +1)-atomic
(proof in App. B):

Theorem 4.1. The RHS of Eq. 3 can be reformulated as

min
{uk},{αki}

max
{vk}

I∑
k=1

λk
(
V (t+ τ, xk, pk)

+ τEi∼pk [li(u
k, vk)]

)
s.t. uk ∈ U , xk = ODE(x, τ, uk, vk; f), vk ∈ V,

αki ∈ [0, 1],

I∑
k=1

αki = 1, λk =

I∑
i=1

αkip[i],

pk[i] =
αkip[i]

λk
, ∀i, k ∈ [I].

(P1)

And the RHS of Eq. 5 can be reformulated as

min
{vk},{λk},{p̂k}

max
{uk}

I+1∑
k=1

λk
(
V ∗(t+ τ, xk, p̂k − τ l(uk, vk))

)
s.t. uk ∈ U , vk ∈ V, xk = ODE(x, τ, uk, vk; f),

λk ∈ [0, 1],

I+1∑
k=1

λkp̂k = p̂,

I+1∑
k=1

λk = 1, k ∈ [I + 1].

(P2)

Sketch of the proof. By change of variable and introduc-
ing a pushforward measure, we can show that the RHS of
the primal (resp. dual) DP essentially seeks a mixed strategy
that convexifies the value (resp. dual value) at the next time
step over ∆(I) (resp. RI ). Since convexification requires
at most I vertices in ∆(I) (resp. I + 1 vertices in RI ), the
resultant strategy is at most I-atomic (resp. (I +1)-atomic).

A visual example. Fig. 2 provides an intuitive explana-
tion of the causality between value convexification and the
equilibrium strategy, where the public belief p ∈ ∆(2): Let
the solid red line be Uτ (t0, x0, p) := minu maxv V (t0 +
τ, x′(u, v), p) + τEi[li(u, v)]. We call Uτ (t0, x0, p) the
value of a non-revealing version of the game because p
does not change over the course of this game when P1 plays
pure. One notices that if Uτ is not convex in p, it is always
possible for P1 to achieve a lower value by convexifying
Uτ through the use of a mixed strategy, leading to P1. In
this particular case, P1 identifies [λa, λb]T ∈ ∆(2) and
{pa, pb} such that λapa + λbpb = p. Picking one action
uk ∈ argminu maxv V (t0+τ, x′(u, v), pk)+τEi[li(u, v)]
for each k ∈ {a, b}2, P1 of type i will then play action uk

with probability αki = pk[i]λk/p[i]. By announcing this

2Isaacs’ condition guarantees that minu maxv V (t0 +
τ, x′(u, v), pk) + τEi[li(u, v)] has a solution.
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strategy, the public belief shifts to pk via the Bayes’ rule
if P1 takes action uk, and as a result, P1 receives a value
V (t0, x0, p) = λaU(t0, x0, p

a) + λbU(t0, x0, p
b), which

is the convexification of U(t0, x0, p) over p ∈ ∆(2). The
same splitting happens for P2 in the dual game: instead of
the public belief p, P2’s strategy splits the dual variable p̂
to p̂k by playing action vk with probability λk. We note
that this convexification nature of the equilibrium strategies
has been discovered as the “Cav u” theorem as early as for
2p0s repeated games with one-sided information (Aumann
et al., 1995; De Meyer, 1996). Our new contribution is in
explaining its connection with IIEFGs (see below) and in
developing a scalable algorithm for value and strategy ap-
proximation that takes advantage of this property along with
multigrid (see Sec. 5).

pa pb

Non-revealing game value

Revealing game value

belief(p)

minmax (·)
Vexpminmax (·)

Figure 2. Revealing and non-revealing game values, and the mech-
anism of splitting.

Comparison with CFR-BR. For conciseness, we intro-
duce CFR-BR as a representative IIEFG algorithm to com-
pare with P1 and P2, since CFR-BR also decouples the
solving of P1 and P2’s strategies by letting one player al-
ways play the best response to the opponents’ behavioral
strategy. In the context of this paper, CFR-BR solves

Vτ (t0, x0, p) =

min
{ηi}

max
v∈V

Eu

[
Vτ (t0 + τ, x′(u, v), p′(u)) + τEi∼p′(u)[li]

]
= max

ζ
min
u∈U

Ev

[
Vτ (t0 + τ, x′(u, v), p) + τEi∼p[li]

]
.

(6)

We first note that the CFR-BR formulation does not enjoy
atomic mixed strategies as in the DPs. This is because the
best responses of P2 are upon the mixed strategies of P1
rather his actual actions. Therefore the non-revealing value
Uτ (t0, x0, p) is implicitly a function of P1’s mixed strate-
gies rather than of a single action. As a result, the RHSs
of Eq. 6 cannot be rewritten as convexification over the
public belief. This causes CFR-BR to suffer from slow con-
vergence when fine discretization of the continuous action
spaces is necessary. On the other hand, using a leader-
follower reformulation of the game, P1 and P2 reveals the
atomic nature of the equilibrium strategies via Thm. 3.1 and
Thm. 4.1. We note that the leader-follower formulation in
Thm. 4.1 is applicable to the following game settings with
one-sided payoff information:

1. differential games where A1-3 make up for the in-
correct leader-follower setting (this paper, and see
App. E.1 for an analytical example where P1 and P2

correctly solve a differential game),
2. turn-based extensive-form games where the assignment

of leader and follower is naturally correct (see App. E.2
for the derivation of the Nash equilibrium using P1 and
P2 for a turn-based game), and

3. infinitely repeated normal-form games where splitting
only happens in the first step of the game for which the
payoff does not affect the value (see De Meyer (1996)).

Algorithm 1 CAMS for P1
Input: time discretization τ , terminal value V (T, ·, ·), sam-

ple size N , minimax solver O
Initialize: value network {V̂t}T−τ

t=0 , training dataset S ← ∅
S ← sample N states (x, p) ∈ X ×∆(I)

for t in {T − τ, ..., 0} do
for (x, p) in S do

ϑ← O(t, x, p) ; /* Solution to P1 */
append {(t, x, p), ϑ} to S

Fit V̂t to S

The proposed algorithm. We discretize the time span
[0, T ] as {kτ}Kk=0 where τ = T/K, and denote by
S = {(x, p)i}i∈[|S|] and S∗ = {(x, p̂)i}i∈[|S∗|] the primal
and dual sample set, respectively. The backward induc-
tion solves P1 (resp. P2) starting from t = (K − 1)τ
at all collocation points in S (resp. S∗). The resul-
tant nonconvex-nonconcave minimax problems have size
(O(I(I + du)),O(Idv)) (resp. (O(I(I + dv),O(Idu))).
Importantly, the computational complexity of these prob-
lems are no longer related to the size of the action spaces.
To generalize value (and optionally policy) prediction across
the continuous joint space of state and belief, primal and
dual value networks are trained on the minimax solutions.
The value networks are used to formulate the next round of
minimax at t− τ . The backward induction continuous until
t = 0. Alg. 1, dubbed CAMS (Continuous Action Mixed
Strategy solver), summarizes the proposed algorithm for P1.
The remaining computational challenges. Our discus-
sion so far addresses the scalability issue due to large or
continuous action spaces. In particular, when the number of
possible game types is small, i.e., I2 ≪ |U|+ |V|, solving
P1 and P2 becomes more efficient than using IIEFG solvers.
The computational challenge, however, still remains for
two reasons: (1) Thm. 3.1 suggests a fine enough time dis-
cretization for the strategies derived from P1 and P2 to be
good approximations of the equilibrium. (2) Through the
baseline algorithm, suppressing the L∞ value prediction
error at t = 0 requires a computational complexity expo-
nential to the number of time steps K. Specifically, let
V̂0(x, p) : X ×∆(I)→ R be the trained value networks at
t = 0, we have the following result (see proof in App. G):
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Theorem 4.2. Given the number of time steps K, a minimax
approximation error ϵ > 0, a prediction error threshold
δ > 0, there exists some constant C ≥ 1, such that with a
computational complexity of at least O(K3C2KI2ϵ−4δ−2),
Alg. 1 achieves

max
(x,p)∈X×∆(I)

|V̂0(x, p)− V (0, x, p)| ≤ δ. (7)

A similar result applies to the dual game. Zanette et al.
(2019) discussed a linear value approximator that achieves
C = 1. However, their method requires solving a linear
program (LP) for every inference V̂t(x, p) if (x, p) does not
belong to the training set S. In our context, incorporating
their method would require auto-differentiating through the
LP solver during each descent and ascent steps in solving
the minimax problems, which turned out to be expensive
in PyTorch and JAX. While effective suppression of C for
neural nets remains to be investigated, this paper introduces
a multigrid approach to reduce the cost for games with a
large K, as we discuss in Sec. 5.

5. A Multigrid Approach
We introduce a multigrid approach that accelerates value
approximation through backward inductions on multiple
time grids. Since strategies at time t are implicitly nonlinear
functions of the value at t + τ , the primal and dual HJI
PDEs underlying P1 and P2 are nonlinear. Therefore, our
method will extend the Full Approximation Scheme (FAS)
commonly used for solving nonlinear PDEs, where PDEs
are solved on all grids and coarse-grid corrections are then
used to improve fine-grid solutions (Trottenberg et al., 2000;
Henson et al., 2003). In theory, FAS reduces the required
number of “fine sweeps” by shifting global error correction
onto the cheaper coarse pass. More concretely, a two-grid
FAS has four steps (see illustration in Fig. 1(b)): (1) Restrict
the fine-grid approximation and its residual; (2) solve the
coarse-grid problem using the fine-grid residual; (3) com-
pute the coarse-grid correction; (4) prolong the coarse-grid
correction to fine-grid and add the correction to fine-grid
approximation.

For conciseness, we will focus on the primal problem to
introduce the FAS extension. Let V̂ l

t be the value network
for time t on grid size (time interval) l. Let the restriction
operators beRl from a finer grid with grid size l to a coarser
one with size 2l: Rl(V̂ l

t ) = (V̂ l
t + V̂ l

t+l)/2 is the value
restriction from l to 2l. This restriction operator takes into
account the backward induction nature of value functions.
Similarly, we define the prolongation operators P2l as:

P2l(V̂ 2l
t ) =

{
V̂ 2l
t , if t ∈ T 2l

V̂ 2l
t+l, otherwise

, (8)

where T 2l := {n · 2l : n ∈ N0, n < T/2l}. Let
Ol(t, x, p; V̂ ) solves P1 at (t, x, p) using τ = l and V̂ as the
value at t+ τ , and outputs an approximation for V (t, x, p).
The dataset {(t, x(j), p(j),Ol(t, x(j), p(j); V̂ l

t+l))} is used

to train V̂ l
t (·, ·). Let rlt(x, p) = V̂ l

t (x, p)−Ol(t, x, p; V̂ l
t+l)

be the residual. On each grid, our goal is to find V̂ l
t such

that rlt(x, p) ≈ 0 for all (t, x, p) ∈ T l × X ×∆(I). This
is achieved by restricting the fine grid approximations and
residuals to the coarse grid and solving to determine the cor-
rections. Let elt(x, p) be the correction in grid l at (t, x, p).
Then, the coarse-grid problem is:

Rlrlt︸︷︷︸
residual

=

coarse-grid eq. w/ corrections︷ ︸︸ ︷
O2l(t, x, p;RlV̂ l

t+2l + e2lt+2l)−
(
RlV̂ l

t + e2lt (x, p)
)

−
(
O2l(RlV̂ l

t+2l)−RlV̂ l
t

)
︸ ︷︷ ︸

coarse-grid eq. w/o corrections

,

(9)
which is solved backward from T −2l, as the terminal value
is known, resulting in e2lT = 0. Knowing e2lt+2l(·, ·), the FAS
coarse-grid correction at (t, x, p) is:

e2lt (x, p) =O2l(t, x, p;RlV̂ l
t+2l + e2lt+2l)

−O2l(RlV̂ l
t+2l)−Rlrlt.

(10)

This correction ensures consistency: If V̂ l
t = V (t, ·, ·) for

all t ∈ T l, e2lt (·, ·) = 0 for all t ∈ T 2l. The coarse grid
corrections are prolonged to the fine grid to update the fine-
grid value approximation. Alg. 2 summarizes a 2-level
multigrid algorithm, and Alg. 3 for an n-level version (see
App. J). Note that from Eq. 10, computing the coarse cor-
rection in our case requires two separate minimax calls with
similar loss formulations. We further accelerate the multi-
grid solver by warm-starting these minimax problems using
the recorded minimax solution derived from the fine grid
(during the residual computation).

6. Empirical Validation
We introduce Hexner’s game (Hexner, 1979) that has an
analytical Nash equilibrium. We use variants of this game
to compare CAMS with existing baselines (MMD, CFR+,
JPSPG, and DeepCFR) on solution quality and computa-
tional cost. We also demonstrate the scalability of CAMS
using a high-dimensional version of the game in App. K.

6.1. Hexner’s game
In Hexner’s game, the dynamics is decomposed as ẋj =
Ajxj + Bjuj for j = [2], where xj ∈ Xj , uj ∈ Uj , and
Aj and Bj are known matrices. The target state of P1 is zθ
where θ is drawn with distribution p0 from Θ, |Θ| = I , and
z ∈ Rdx is fixed and common knowledge. Denote by ηi(t)
and ζ(t) the random actions at time t induced by strategy
pair (ηi, ζ). The expected payoff to P1 is:

J({ηi}, ζ) =Ei∼p0

[∫ T

0

(ηi(t)
⊤R1ηi(t)− ζ(t)⊤R2ζ(t))dt

+ [x1(T )− zθi]
⊤ K1(T ) [x1(T )− zθi]

− [x2(T )− zθi]
⊤ K2(T ) [x2(T )− zθi]

]
,

(11)

6
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where R1, R2 ≻ 0 are control-penalty matrices and
K1,K2 ⪰ 0 are state-penalty matrices. Essentially, the
goal of P1 is to get closer to the target zθ than P2. To
take full information advantage, P1 needs to decide when
to home-in to and thus reveal the target. See Fig. 1(c)
for an illustration. As explained in Hexner (1979) and
Ghimire et al. (2024), this game has an analytical so-
lution: There exists a problem-dependent critical time
tr := tr(T, {Aj}, {Bj}, {Rj}, {Kj}), if tr ∈ (0, T ), P1
homes towards the mean target E[θ] as if he does not know
the actual target until tr. If tr ≤ 0, P1 homes towards the
actual target at t = 0. P2’s strategy is to follow P1.
6.2. Comparisons on 1- and 4-stage Hexner’s games
Settings. We first use a normal-form Hexner’s game with
τ = T and a fixed initial state x0 ∈ X to demonstrate
that baseline algorithms suffer from increasing costs along
the size of the discrete action space while CAMS does not.
The baselines we consider include CFR+ (Tammelin, 2014),
MMD (Sokota et al., 2022), Joint-Perturbation Simultane-
ous Pseudo-Gradient (JPSPG) (Martin & Sandholm, 2024),
and a modified CFR-BR (Johanson et al., 2012) (dubbed
CFR-BR-Primal), where we only compute P2’s best re-
sponse to P1’s current strategy and only focus on converg-
ing P1’s strategy, which matches with CAMS for solving
P1. Among these, only JPSPG can handle continuous ac-
tion spaces. All baselines (except JPSPG) are implemented
in OpenSpiel (Lanctot et al., 2019). The normal-form pri-
mal game has a trivial ground-truth strategy where P1 goes
directly to his target. For visualization, we use dx = 4
(position and velocity in 2D). For baselines (except JPSPG),
we use discrete action sets defined by 4 lattice sizes so that
U = |Uj | ∈ {16, 36, 64, 144}. All algorithms terminate
when a threshold of NashConv3 is met. For conciseness,
we only consider solving P1’s strategy and thus use P1’s δ
in NashConv. We set the threshold to 10−3 for baselines
and 10−5 for CAMS. We will show that even with a more
stringent threshold, CAMS still converges significant faster
than the baselines. We then use DeepCFR and JPSPG as
baselines for a Hexner’s game with 4 time steps, where
T = 1 and τ = 0.25. DeepCFRs were run for 1000 CFR
iterations (resp. 100) with 10 (resp. 5) traversals for U = 9
(resp. 16). More details on experiment settings can be found
in App. H.3. Similarly, JPSPG was run for 2 · 108 iterations,
where each iteration consisted of solving a game with a ran-
dom initial state and type, and performing a strategy update.
More details in App. H.4.
Comparison metrics. For the normal-form game, we
compare both computational cost and the expected action
error ε from the ground-truth action of P1: ε(x0) :=

Ei∼p0

[∑|U|
k=1 αki∥uk − u∗

i (x0)∥2
]
, where u∗

i (x0) is the
ground truth for type i at x0. For the 4-stage game,
we compare the expected action errors at each time step:

3See Lanctot et al. (2017) for a definition of NashConv.
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Figure 3. (a-c) Comparisons b/w CAMS (ours), JPSPG, CFR+,
MMD, CFR-BR-Primal on 1-step Hexner’s game. (d) Comparison
b/w CAMS, JPSPG, and DeepCFR on 4-stage Hexner’s w/ similar
compute.

ε̄t := Ext∼π[ε(xt)], where π is the strategy learned by
DeepCFR, JPSPG, or CAMS. For each strategy, we esti-
mate {ε̄t}4t=1 by generating 100 trajectories with initial
states uniformly sampled from X . The wall-time costs for
game solving are 17 hours using CAMS (baseline), 24 hours
for JPSPG, 29 hours (U = 9) and 34 hours (U = 16) using
DeepCFR, all on an A100 GPU.

Results. Fig. 3 summarizes the comparisons. For the
normal-form game, all baselines (except JPSPG) have com-
plexity and wall-time costs increasing with U , while CAMS
is invariant to U . With the similar or less compute, CAMS
achieves significantly better strategies than DeepCFR and
JPSPG in the 4-stage game. Sample trajectories for the
4-stage game are shown in App. H.
6.3. Scalability of CAMS
10-stage game. Here we solve Hexner’s games with T = 1
and τ = 0.1, and consider both state-constrained and uncon-
strained cases. These games have a game-tree complexity
of 1080 if we use an action discretization of U = 10k (100
discrete values along each of the two action dimensions).
In the state-constrained version of the game, P1 receives
+∞ if he collides with P2. Collision occurs when the Eu-
clidean distance between the players is less than 0.05. As a
result, the Nash equilibrium of this game variant is no longer
analytical. Following (Ghimire et al., 2024), we approxi-
mate a time-dependent safe zone Ωt ⊆ X for P1 so that
for any initial state outside of Ωt, P1 surrenders because P2
can always find a strategy to collide. Within Ωt, the Nash
equilibrium can be derived from CAMS where for each
minimax problem, P1’s admissible actions are restricted
by Ωt. In (Ghimire et al., 2024), the resultant constrained

7
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Figure 4. Sample trajectories for the primal game (a-d) where P1 plays Nash and P2 plays best response, and primal-dual game (e-h)
where both players play Nash. Cols 1 & 2 are unconstrained, cols 3 & 4 are w/ collision constraint. Dotted lines are ground-truth Nash.
Color shades indicate evolution of public belief (1 means Goal-1). Initial position pairs are marked with same markers.

minimax problems are solved as follows: First, at each t,
non-revealing games (without splitting) are approximately
solved acrossX×∆(I) using an enumeration over U = 100.
This requires finding the minimax point from a 100× 100
matrix for each (x, p). Then with the resultant values for
the non-revealing games, the convex hull of the value over
the public belief is approximated for each sampled x, before
fitting a neural network V̂t to these approximated convex
hulls. Due to the use of enumeration, this method has expo-
nential space and computational complexities with respect
to the dimensionalities of the action spaces. In this paper,
we solve P1 and P2 which directly approximates the convex-
ified values. In addition, since DS-GDA is gradient-based,
the resultant space and computational complexities are only
linear to the dimensionality of the action spaces.
Results: Results are summarized in Fig. 4. For the uncon-
strained game where analytical strategies are known, we
compare the approximated and the ground-truth strategies
starting from various initial states. While approximation er-
rors exist, CAMS successfully learns the target-concealing
behavior of P1 as P1 always moves towards Ep0 [zθ] before
revealing his target. Averaging over 50 trajectories derived
from CAMS, P1 conceals the target until tr = 0.60s±0.06s
(compared to the ground-truth tr = 0.5s). CAMS also ap-
proximates P2’s robust strategy well, as P2 only starts to
home towards a target after P1 reveals. We note that the
complexity of the dual game is higher than that of the primal
game because its value is one dimension higher and P2 is
larger than P1. This resulted in higher error in approximat-
ing P2’s strategies.

6.4. Accelerating value approximation with multigrid
Here we demonstrate the efficacy of multigrid methods (see
Alg. 2 and Alg. 3 in App. J) in accelerating value function
approximation. We report the runtime4 of all algorithms
(Algs. 1, 2, 3) on 4-, 10-, and 16-stage games in Tab. 2.
We run the 2-level multigrid (Alg. 2) on the 4- and 10-stage
games, and 4-level multigrid (Alg. 3) on the 16-stage game.
We also report the resulting trajectories in App. J.

Table 2. Runtime Comparison: CAMS w/ and w/o Multigrid
# time steps w/o multigrid w/ multigrid ↓
4 9.3 hrs 2.32 hrs
10 27.6 hrs 10.9 hrs
16 46.21 hrs 17.83 hrs

7. Conclusion
Unlike IIEFGs where mixed strategies have to be approx-
imated over the entire action space across the game tree,
we showed that differential games with one-sided payoff
information enjoy a much simpler strategy structure when
the Isaacs’ condition holds: The strategy of the informed
(resp. uninformed) player has at most I (resp. I + 1) pure
action branches at each infostate. We demonstrated the clear
advantage of using this structural property in solving games
with continuous action spaces, against SOTA IIEFG solvers,
in terms of computational cost and solution quality. We also
showed that multigrid further accelerates value and strategy
approximation. To the authors’ best knowledge, this is the
first method to provide tractable solution for incomplete-
information games with continuous action spaces without
problem-specific abstraction and discretization.

4Experiments done on one H100 GPU
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Impact Statement
This work is concerned with bridging the gap between com-
putational game theory and differential game theory. With
its possible applications to robotics and AI, there is a need
for studies on mitigating risks arising from deceptive strate-
gies by robots and machines against human beings.
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A. Proof of Theorem 3.1
Theorem 3.1 For any (t0, x0, p) ∈ [0, T ]×X ×∆(I), if A1-5 hold, then there exist M1,M2 > 0, such that V (t0, x0, p) ≤
maxζ∈Z(t0) J(t0, x0, p; {ηi,τ}, ζ) ≤ V (t0, x0, p) + M1(T − t0)τ . Similarly, for any (t0, x0, p̂) ∈ [0, T ] × X × RI ,
V ∗(t0, x0, p̂) ≤ max{ηi}∈{Hi(t0)}I J∗(t0, x0, p̂; {ηi}, ζτ ) ≤ V ∗(t0, x0, p̂) +M2(T − t0)τ .

Proof. Our proof completes the sketch for Theorem 4.1 in Cardaliaguet (2009). For the primal game, by definition we have
V (t0, x0, p) ≤ maxζ∈Z(t0) J(t0, x0, p; {ηi,τ}, ζ). So we just need to prove

max
ζ∈Z(t0)

J(t0, x0, p; {ηi,τ}, ζ) ≤ V (t0, x0, p) +M1(T − t0)τ. (12)

For some (t0, x0, p), let t1 = t0 + τ , and v† be the ground truth equilibrium action at (t0, x0, p). Given some u ∈ U , let
x†(u) := Xt0,x0,u,v

†

t1 . Denote by v0 the solution to maxv∈V V (t1, x
′(u, v), p) + L(u, v, p) and x1 = Xt0,x0,u,v0

t1 . And let
L(u, v, p) := Ei∼p[

∫ t1
t0

li(u, v)ds] be the expected running cost in [t0, t1]. We first show that with some L1, L2 > 0

|V (t1, x1, p) + L(u, v0, p)− V (t1, x
†(u), p)− L(u, v†, p)| ≤ L1L2τ

2. (13)

To do this, we note that for a small enough τ ,

V (t1, x
†(u), p) = V (t1, x1, p) +∇xV |x1(x

†(u)− x1) + (x†(u)− x1)
⊤∇2

xV |x1(x
†(u)− x1)

= V (t1, x1, p) +∇xV |x1∇vx1|v0(v† − v0) + (x†(u)− x1)
⊤∇2

xV |x1(x
†(u)− x1)

(14)

and
L(u, v†, p) = L(u, v0, p) +∇vL|v0(v† − v0). (15)

From the definition of v0, we have

∇v(V + L)|v0 = ∇xV |x1
∇vx1|v0 +∇vL|v0 = 0. (16)

Together with the assumptions that V is L1-smooth and the dynamics f is L2-Lipschitz continuous (A2-3), we get Eq. 13.
Equivalently, we have

V (t1, x1, p) + L(u, v0, p) ≤ V (t1, x
†(u), p) + L(u, v†, p) + L1L2τ

2. (17)

Since Eq. 17 holds for any u ∈ U , we have

V (t1, x1, p) + L(u, v0, p) ≤ V (t0, x0, p) + L1L2τ
2. (18)

Let xu = X
t0,x0,η,ζ(u)
t1 , η̄τ (u) =

∑
i∈[I] ηi,τ (u)p[i] be the marginal of taking action u, and pu[i] = ηi,τ (u)p[i]/η̄τ (u) be

the updated belief after observing action u.

Now we prove Eq. 12 by backward induction. At t = T , Eq. 12 holds due to the terminal boundary. Let us assume that it
holds true for some t1 = t0 + τ ∈ (0, T ]. Let (x0, p) be fixed. For any ζ ∈ Z(t0), we have

J(t0, x0, p; {ηi,τ}, ζ) =
∑
i∈[I]

p[i]E{ηi,τ}[Ji(t0, x0; ηi,τ , ζ)]

=
∑
i∈[I]

p[i]

∫
U
ηi,τ (u)

(
E{ηu

i,τ}[Ji(t1, x
u; ηui,τ , ζ

u)] +

∫ t1

t=t0

li(u, ζ(u))
)
du

≤
∫
U
η̄τ (u) max

ζ′∈Z(t1)

∑
i∈[I]

pu[i]
(
E{ηu

i,τ}[Ji(t1, x
u; ηui,τ , ζ

′)] +

∫ t1

t=t0

li(u, ζ(u))
)
du.

(19)

Here (ηui,τ , ζ
u) is the strategy pair taken at (t1, xu, pu).

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

A Scalable Solver for 2p0s Differential Games with One-Sided Payoff Information and Continuous Actions, States, and Time

From the induction assumption we have:

max
ζ′∈Z(t1)

∑
i∈[I]

pu[i]E{ηu
i,τ}[Ji(t1, x

u; ηui,τ , ζ
′)] ≤ V (t1, x

u, pu) +M1(T − t1)τ.

Incorporating this and Eq. 18 into Eq. 19 to have

J(t0, x0, p; {ηi,τ}, ζ) ≤
∫
U
η̄τ (u)

(
V (t1, x

u, pu) +
∑
i∈[I]

pu[i]

∫ t0+τ

t=t0

li(u, ζ(u))
)
du+M1(T − t1)τ

≤
∫
U
η̄τ (u)

(
V (t0, x0, p) + L1L2τ

2
)
du+M1(T − t1)τ

(20)

Setting M1 = L1L2 to have
J(t0, x0, p; {ηi,τ}, ζ) ≤ V (t0, x0, p) +M1(T − t0)τ. (21)

Since Eq. 21 holds for all ζ ∈ Z(t0), we get Eq. 12. The same technique applies to the dual value.

B. Proof of Theorem 4.1
Theorem 4.1 (A splitting reformulation of the primal and dual DPs) The RHS of Eq. 3 can be reformulated as

min
{uk},{αki}

max
{vk}

I∑
k=1

λk
(
V (t+ τ, xk, pk) + τEi∼pk [li(u

k, vk)]
)

s.t. uk ∈ U , xk = ODE(x, τ, uk, vk; f), vk ∈ V,

αki ∈ [0, 1],

I∑
k=1

αki = 1, λk =

I∑
i=1

αkip[i],

pk[i] =
αkip[i]

λk
, ∀i, k ∈ [I].

(P1)

And the RHS of Eq. 5 can be reformulated as

min
{vk},{λk},{p̂k}

max
{uk}

I+1∑
k=1

λk
(
V ∗(t+ τ, xk, p̂k − τ l(uk, vk))

)
s.t. uk ∈ U , vk ∈ V, xk = ODE(x, τ, uk, vk; f),

λk ∈ [0, 1],

I+1∑
k=1

λkp̂k = p̂,

I+1∑
k=1

λk = 1, k ∈ [I + 1].

(P2)

Proof. Recall that the primal DP is:

Vτ (t0, x0, p) = min
{ηi}

Eu∼η̄

[
max
v∈V

Vτ (t0 + τ, x′(u, v), p′(u)) + τEi∼p′(u)[li(u, v)]

]
= min

{ηi}

∫
U
η̄(u)max

v∈V
Vτ (t0 + τ, x′(u, v), p′(u)) + τEi∼p′(u)[li(u, v)]du

= min
{ηi}

∫
U
η̄(u)a(u, p′(u))du,

(
a(u, p′(u)) = max

v∈V
Vτ (t0 + τ, x′(u, v), p′(u)) + τEi∼p′(u)[li(u, v)]

)
(22)

Now we introduce a pushforward measure ν on ∆(I) for any E ⊂ ∆(I): ν(E) =
∫
{u:p′(u)∈E} η̄(u) du. Let ηp′ be the

conditional measure on U for each p′. Then we have

min
{ηi}

∫
U
η̄(u)a(u, p′(u))du = min

ν

∫
∆(I)

min
ηp′

[∫
p′(u)=p′

a(u, p′) ηp′(du)
]
ν(dp′)

= min
ν

∫
∆(I)

min
u∈U

a(u, p′)ν(dp′)

= min
ν

∫
∆(I)

ã(p′)ν(dp′).

13
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This leads to the following reformulation of Vτ :

Vτ (t0, x0, p) =min
ν

∫
∆(I)

ã(p′)ν(dp′)

s.t. Eν [p
′] = p.

(23)

One easily notice that the RHS of Eq. 23 computes the convexificiation of ã(p′) at p′ = p. Since convexification in ∆(I)
requires at most I vertices, ν∗ that solves Eq. 23 is I-atomic. We will denote by {pk}k∈[I] the set of “splitting” points that
has non-zero probability mass according to ν∗, and let λk := ν∗(pk). Using Isaacs’ condition (A4), argminu∈U a(u, p) is
non-empty for any p ∈ ∆(I), and therefore each pk is associated with (at least) one action in argminu∈U a(u, pk). As a
result, {ηi} is also concentrated on a common set of I actions in U . Specifically, denote this set by {uk}k∈[I], we should
have αki := ηi(u

k) = λkpk[i]/p[i]. Thus we reach P1. The same proof technique can be applied to the dual DP to derive
P2.

C. Connection between Value Convexification and Nash Equilibrium in Incomplete-Information
Games

Here we explain the construction of Nash equilibrium as a consequence of value convexification. For ease of exposition, we
will use examples from a simplistic setting: repeated normal-form games with one-sided information. We also walk through
the computation of strategies for the informed and uninformed players for the given examples. We refer readers to (Aumann
et al., 1995; De Meyer, 1996; Sorin, 2002) for more details on the theoretical development.

Consider two normal-form zero-sum payoff tables given by matrices G1 and G2 as shown in Eq. 24. P1 is the row player
with actions {U,D} and P2 the column player with actions {L,R}. At the beginning of the game, nature picks game G1

with probability p and communicates that only to P1. P2 only knows the probability p. Both players pick their actions
and announce them simultaneously for that round without knowing the resultant payoff. This process is repeated until the
end of the game, at which point the average payoff is revealed. The game can be repeated either finitely or infinitely. For
conciseness, we only discuss the latter case. To align the discussion with literature on repeated games, we will consider P1
maximize, rather than minimize, the payoff. We call this game G(p).

G1 =

[L R
U 1 0
D 0 0

]
G2 =

[L R
U 0 0
D 0 1

]
(24)

Let us assume, for simplicity, p = 0.5, and that the game being played is G1. Since P1 knows that G1 is the game, he could
play U every time, as D would otherwise lead to a payoff of zero. However, as the game progresses, P2 will be able to
deduce that G1 is the game being played, forcing her to always play R, which guarantees a payoff of zero. Similarly, if
G2 is selected, and P1 always plays D, P2 will eventually figure out the true game, and guarantee a payoff of zero in the
remainder of the game. In this particular game, P1 can improve his expected payoff by ignoring the actual game type. Then

players play a complete-information game given by the expected payoff matrix Ḡ(p) =

[
1
2 0
0 1

2

]
, for which the optimal

strategy for P1 (resp. P2) is to play {U,D} (resp. {L,R}) with probability 0.5, leading to an expected payoff of 1
4 to P1

in each round. Notice that by playing this way, P1 conceals the information about which game is being played, i.e., the
public belief p is always 0.5. Thus 1

4 is the value of the non-revealing game and the corresponding strategy is known as
the non-revealing strategy. In the above game, the non-revealing strategy is Nash. One can easily see that in the game
(−G1,−G2), a revealing strategy of P1 will instead be Nash.

It is important to note that for some games P1 will partially reveal the type information by splitting the belief in the first
round. This can be seen from the following game with two possible payoff tables in Eq. 25:

G1 =


P2

0 1 1 3
P1

0 1 0 3

 G2 =


P2

3 0 1 0
P1

3 1 1 0

 (25)
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Let p be the probability that the chosen game is G1. Then the non-revealing game is defined by:

Ḡ(p) =


P2

3(1− p) p 1 3p
P1

3(1− p) 1 (1− p) 3p

. (26)

Let U(p) be the value of the non-revealing game, and let V (p) be the value of the original game. Theorem 3.2 in (Aumann
et al., 1995) says that V (p) is the concave hull of U(p), i.e., for any p ∈ ∆(I) (I = 2 in this case)

V (p) = Cav U(p). (27)

This is because for any p ∈ ∆(I) where U(p) < Cav U(p), P1 can play a mixed strategy to achieve an expected payoff
of Cav U(p), by splitting the public belief to some I vertices in ∆(I). Once this splitting is done, P1 can keep on playing
non-revealing strategy to maintain Cav U(p) as his expected payoff. We elaborate using the example: The value of the
non-revealing game U(p) is

U(p) =


3p, 0 ≤ p ≤ 2−

√
3

1− p(1− p), 2−
√
3 ≤ p ≤

√
3− 1

3(1− p),
√
3− 1 ≤ p ≤ 1.

(28)

The concavification of the value is given by:

Cav U(p) =


3p, 0 ≤ p ≤ 2−

√
3

6− 3
√
3, 2−

√
3 ≤ p ≤

√
3− 1

3(1− p),
√
3− 1 ≤ p ≤ 1.

(29)

Both U(p) and V (p) are visualized in Fig 5. From the figure, P1 attains maximum value 6 − 3
√
3 at p = 2 −

√
3 and

p =
√
3− 1. Therefore, P1 can play a mixed strategy to attain the maximum value by announcing a mixed strategy in such

a way that the public belief p is updated to either (2−
√
3) or (

√
3− 1) depending on the action P1 actually takes. This

makes P1’s strategy partially revealing as P2 will not be able to deduce P1’s true type. Specifically, for p = 0.5, and if
the actual game is G1, P1 plays the mixed strategy for Ḡ(2−

√
3) with the probability 2−

√
3 and for Ḡ(

√
3− 1) with

probability
√
3− 1; if the actual game is G2, he plays the mixed strategy for Ḡ(2−

√
3) with probability

√
3− 1 and for

Ḡ(
√
3− 1) with probability 2−

√
3. More generally, for any nature’s distribution p, P1’s strategy is to compute λ ∈ ∆(I)

and pi ∈ ∆(I) such that
∑I

i=1 λ[i]u(p
i) = Cav(U(p)) and

∑2
i=1 λip

i = p. Then, given his true type k, he plays the
maximin strategy for Ḡ(pi) with probability λip

i
k/pk. (Gilpin & Sandholm, 2008) first discussed the nonconvex problem

for solving Cav u.

Next, we need to derive strategy for P2. Unlike P1, P2 has to guess the true game that is being played and hedge against
potential manipulation from P1. A good strategy is to play in such a way that she pays the same amount to P1 no matter the
type of the game. To do so, P2 plays a game with a vector payoff that contains the amount she pays to P1 for each game
types.

Consider the game in Eq. 25. By observing P1’s action, P2 can keep track of the vector payoffs (x, y) for each stage. If at
the beginning of the game P1 chose the last row and P2 chose the last column, then the vector payoff is (3, 0). All possible
vector payoffs define vertices in Fig. 6. The running average of the vector payoffs (the shaded region in Fig. 6) is defined by:

(ξn, ηn) =

(
1

n
(x1 + x2 + · · ·+ xn),

1

n
(y1 + y2 + · · ·+ yn)

)
.

P2 knows that if G1 (resp. G2) is the game, P1 will move the average to the right (resp. top). (Blackwell, 1956) first
discussed P2’s strategy to minimize the average payoff by introducing the concept of approachability: A set S in the payoff
vector space is approachable for P2 if P2 can adopt a strategy ensuring that the distance of the running vector payoff from S
converges to zero with probability one, regardless of P1’s strategy.

From the primal game, we know that P1 can guarantee payoff of 6 − 3
√
3 (the dashed lines in Fig. 7). To construct the

approachable set of P2, consider P1’s mixed strategy as (π, 1 − π) and P2’s mixed strategy as (σ1, σ2, σ3, σ4). We can
determine the expected payoffs to P1: When P2 plays first column, the payoff to P1 is (0, 3), when she plays the second, it
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u(p)
Cav u(p)

Figure 5. Non-revealing game value u1 and its concavification

is (1, 1− π), and so on. Thus, for all possible (σ1, σ2, σ3, σ4), the expected payoffs to P1 is the convex hull of the points
(0, 3), (1, 1− π), (π, 1− π), (3, 0). Denote the shaded region in Fig. 7 as S = {ξn, ηn : (ξn, ηn) ≤ 6−

√
3}.

The optimal strategy for P2 is as follows. P2 keeps track of average vector payoff (say gn = (ξn, ηn)). If gn ∈ S, then P2
plays arbitrarily. However, if gn /∈ S, P2 must project the vector gn onto the closest point c = argminm∈C ||gn −m||. P2
then adopts the mixed strategy corresponding to the projection q = (gn − c)/||gn − c|| ∈ ∆(K) (here, K = 2), and plays
optimally in the game G(q).

D. Connection between Primal and Dual Games
Here we continue to use the infinitely-repeated game setting to explain the connection between the primal and the dual
games and the interpretation of the dual variable p̂. Please see Theorem 2.2 in (De Meyer, 1996) and the extension to
differential games in (Cardaliaguet, 2007).

Let the primal game be G(p) for p ∈ ∆(I), the dual game be G∗(p̂) for p̂ ∈ RI , and let {ηi}Ii=1 be the set of strategies
for P1 and ζ the strategy for P2. ηi ∈ ∆(du) and ζ ∈ ∆(dv). We note that P1’s strategy {ηi}Ii=1 can also be together
represented in terms of π := {πij}I,du such that

∑du

j πij = p[i] and ηi[j] = πij/p[i], i.e., nature’s distribution is the
marginal of π and P1’s strategy the conditional of π. Let Gi

ηζ be the payoff to P1 of type i for strategy profile (η, ζ). We
have the following results connecting G(p) and G∗(p̂):

1. If π is Nash for P1 in G(p) and p̂ ∈ ∂V (p), then {ηi}Ii=1 is also Nash for P1 in G∗(p̂).

2. If π is Nash for P1 in G∗(p̂) and p is induced by π, then p ∈ ∂V ∗(p̂) and π is Nash for P1 in G(p).

3. If ζ is Nash for P2 in G∗(p̂) and p ∈ ∂V ∗(p̂), then ζ is also Nash for P2 in G(p).

16
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Figure 6. Game from P2’s perspective.

4. If ζ is Nash for G(p), and let p̂i := maxη∈∆(du) G
i
ηζ and p̂ := [p̂1, ..., p̂I ]T , then p ∈ ∂V ∗(p̂) and ζ is also Nash for

P2 in G∗(p̂).

From the last two properties we have: If ζ is Nash for G(p) and G∗(p̂), then p̂ = maxη∈∆(du) G
i
ηζ , i.e., p̂[i] is the payoff of

type i if P1 plays a best response for that type to P2’s Nash.

E. Analytical Examples
The following examples are reproduced from Ghimire et al. (2024) with permission.

E.1. Hexner’s Game: Analytical Solution

Here we discuss the solution to Hexner’s game using primal and dual formulations (i.e., Eq. P1 and Eq. P2) on a differential
game as proposed in Hexner (1979). Consider two players with linear dynamics

ẋi = Aixi +Biui,

for i = 1, 2, where xi(t) ∈ Rdx are system states, ui(t) ∈ U are control inputs belonging to the admissible set U ,
Ai, Bi ∈ Rdx×dx . Let θ ∈ {−1, 1} be Player 1’s type unknown to Player 2. Let pθ be Nature’s probability distribution of θ.
Consider that the game is to be played infinite many times, the payoff is an expectation over θ:

J(u1, u2) = Eθ

[∫ T

0

(
∥u1∥2R1

− ∥u2∥2R2

)
dt +

∥x1(T )− zθ∥2K1(T ) − ∥x2(T )− zθ∥2K2(T )

]
,

(30)
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Figure 7. Approachable set (shaded in magenta) of P2

where, z ∈ Rdx . R1 and R2 are continuous, positive-definite matrix-valued functions, and K1(T ) and K2(T ) are positive
semi-definite matrices. All parameters are publicly known except for θ, which remains private. Player 1’s objective is
to get closer to the target zθ than Player 2. However, since Player 2 can deduce θ indirectly through Player 1’s control
actions, Player 1 may initially employ a non-revealing strategy. This involves acting as though he only knows about the
prior distribution pθ (rather than the true θ) to hide the information, before eventually revealing θ.

First, it can be shown that players’ control has a 1D representation, denoted by θ̃i ∈ R, through:

ui = −R−1
i BT

i Kixi +R−1
i BT

i KiΦizθ̃i,

for i = 1, 2, where Φ̇i = AiΦi with boundary condition Φi(T ) = I , and

K̇i = −AT
i Ki −KiAi +KT

i BiR
−1
i BT

i Ki.

Then define a quantity di as:
di = zTΦT

i KiBiR
−1
i BT

i K
T
i Φiz. (31)

With these, the game can be reformulated with the following payoff function:

J(t, θ̃1, θ̃2) = Eθ

[∫ T

τ=t

(θ̃1(τ)− θ)2d1(τ)− (θ̃2(τ)− θ)2d2(τ)dτ

]
, (32)

where d1, d2, pθ are common knowledge; θ is only known to Player 1; the scalar θ̃1 (resp. θ̃2) is Player 1’s (resp. Player 2’s)
strategy. We consider two player types θ ∈ {−1, 1} and therefore pθ ∈ ∆(2).

Then by defining critical time:

tr = argmin
t

∫ t

0

(d1(s)− d2(s))ds,

18
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we have the following equilibrium:

θ̃1(s) = θ̃2(s) = 0 ∀s ∈ [0, tr] (33)

θ̃1(s) = θ̃2(s) = θ ∀s ∈ (tr, T ], (34)

To solve the game via primal-dual formulation, we introduce a few quantities. First, introduce time stamps [Tk]
2r
k=1 as roots

of the time-dependent function d1 − d2, with T0 = 0, T2q+1 = tr, and T2r+1 = T . Without loss of generality, assume:

d1 − d2 < 0 ∀t ∈ (T2k, T2k+1) ∀k = 0, ..., r, (35)
d1 − d2 ≥ 0 ∀t ∈ [T2k−1, T2k] ∀k = 1, ..., r. (36)

Also introduce Dk :=
∫ Tk+1

Tk
(d1 − d2)ds and

D̃k =

{
D̃k+1 +Dk, if D̃k+1 +Dk < 0
0, otherwise

, (37)

with D̃2r+1 = 0.

The following properties are necessary (see (Hexner, 1979) for details):

1.
∫ 2q+1

k
(d1 − d2)ds =

∑2q
k Dk < 0, ∀k = 0, ..., 2q;

2.
∫ k

2q+1
(d1 − d2)ds =

∑k−1
2q+1 Dk > 0, ∀k = 2q + 2, ..., 2r + 1;

3. D̃2q+2 +D2q+1 > 0;

4. D̃k < 0, ∀k < 2q + 1.

Primal game. We start with V (T, p) = 0 where p := pθ[1] = Pr(θ = −1). The Hamiltonian is as follows:

H(p) = min
θ̃1

max
θ̃2

Eθ

[
(θ̃1 − θ)2d1 − (θ̃2 − θ)2d2

]
= 4p(1− p)(d1 − d2).

The optimal actions for the Hamiltonian are θ̃1 = θ̃2 = 1− 2p. From Bellman backup, we can get

V (Tk, p) = 4p(1− p)D̃k.

Therefore, at T2q+1, we have

V (T2q+1, p) = V exp (V (T2q+2, p) + 4p(1− p)D2q+1)

= V exp

(
4p(1− p)(D̃2q+2 +D2q+1)

)
.

Notice that D̃2q+2 +D2q+1 > 0 (property 3) and D̃k < 0 for all k < 2q + 1 (property 4), T2q+1 is the first time such that
the right-hand side term inside the convexification operator, i.e., 4p(1− p)(D̃2q+2 +D2q+1), becomes concave. Therefore,
splitting of belief happens at T2q+1 with p1 = 0 and p2 = 1. Player 1 plays θ̃1 = −1 (resp. θ̃1 = 1) with probability 1 if
θ = −1 (resp. θ = 1), i.e., Player 1 reveals its type. This result is consistent with Hexner’s.

Dual game. To find Player 2’s strategy, we need to derive the conjugate value which follows

V ∗(t, p̂) =


maxi∈{1,2} p̂[i] ∀t ≥ T2q+1

p̂[2]− D̃t

(
1− p̂[1]−p̂[2]

4D̃t

)2

∀t < T2q+1, 4D̃t ≤ p̂[1]− p̂[2] ≤ −4D̃t

p̂[1] ∀t < T2q+1, p̂[1]− p̂[2] ≥ 4D̃t

p̂[2] ∀t < T2q+1, p̂[1]− p̂[2] < 4D̃t
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Here p̂ ∈ ∇pθ
V (0, pθ) and V (0, pθ) = 4p[1]p[2]D̃0. For any particular p∗ ∈ ∆(2), from the definition of subgra-

dient, we have p̂[1]p∗[1] + p̂[2]p∗[2] = 4p∗[1]p∗[2]D̃0 and p̂[1] − p̂[2] = 4(p∗[2] − p∗[1])D̃0. Solving these to get
p̂ = [4p∗[2]

2D̃0, 4p∗[1]
2D̃0]

T . Therefore p̂[1]− p̂[2] = 4D̃0(1− 2p∗[1]) ∈ [4D̃0,−4D̃0], and

V ∗(0, p̂) = p̂[2]− D̃0

(
1− p̂[1]− p̂[2]

4D̃0

)2

.

Notice that V ∗(t, p̂) is convex to p̂ since D̃0 < 0 (property 4) for all t ∈ [0, T ]. Therefore, there is no splitting of p̂ during
the dual game, i.e., θ̃2 = 1− 2p. This result is also consistent with results in Hexner (1979).

E.2. Example of a Turn-Based Game

We present a zero-sum variant of the classic beer-quiche game, which is a turn-based incomplete-information game with a
perfect Bayesian equilibrium. Unlike in Hexner’s game, Player 1 in beer-quiche game wants to maximize his payoff, and
Player 2 wants to minimize it; hence, Vex becomes a Cav. We solve the game through backward induction (from t = 2, 1, 0)

Q q

B b

1
3

2
3

IQ

IB

Tough Weak

(1, -1) (0, 0)

x 1− x

(-1, 1) (2, -2)

x 1− x

(2, -2) (1, -1)

y 1− y

(-2, 2) (0, 0)

y 1− y

Figure 8. Zero-Sum Beer-Quiche Game

of its primal and dual values (denoted by V and V ∗ respectively). Players 1 and 2 make their respective decisions at t = 0
and t = 1, and the game ends at t = 2. The state x at a time t encodes the history of actions taken until t.

Primal game: First, we compute the equilibrium strategy of Player 1 using the primal value. At the terminal time step
(t = 2), based on Fig. 8, the value for Player 1 is the following:

V (2, x, p) =


4pT − 2 if x = (B, b)
pT if x = (B, d)
2pT − 1 if x = (Q, b)
2− 2pT if x = (Q, d)

. (38)

At the intermediate time step (t = 1), it is Player 2’s turn to take an action. Therefore, the value is a function of Player 1’s
action at t = 0 and Player 2’s current action. And for the same reason, the value is not a concavification (Cav) over the RHS
term.

V (1, x, p) = min
v∈{b,d}

V (2, (x, v), p). (39)

We can find the best responses of Player 2 for both actions of Player 1. This leads to

V (1, x, p) =


pT if x = B, 3pT − 2 ≥ 0 (v∗ = d)
4pT − 2 if x = B, 3pT − 2 < 0 (v∗ = b)
2− 2pT if x = Q, 4pT − 3 ≥ 0 (v∗ = d)
2pT − 1 if x = Q, 4pT − 3 < 0 (v∗ = b)

. (40)
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Finally, at the beginning of the game (t = 0), we have

V (0, ∅, p) = Cav
(

max
u∈{B,Q}

V (1, u, p)

)
. (41)

Cav is achieved by taking the concave hull with respect to pT :

V (0, ∅, p) =
{

5pT /2− 1 if pT < 2/3
pT if pT ≥ 2/3

. (42)

When pT ∈ [0, 2/3),
V (0, ∅, p) = λmax

u
V (1, u, p1) + (1− λ)max

u
V (1, u, p2),

where p1 = [0, 1]T , p2 = [2/3, 1/3]T , and λp1 + (1− λ)p2 = p.

Therefore, when pT = 1/3, λ = 1/2, Player 1’s strategy is:

Pr(u = Q|T ) = λp1[1]

p[1]
= 0, Pr(u = Q|W ) =

λp1[2]

p[2]
= 3/4,

Pr(u = B|T ) = (1− λ)p2[1]

p[1]
= 1, Pr(u = B|W ) =

(1− λ)p2[2]

p[2]
= 1/4.

(43)

Dual game: To solve the equilibrium of Player 2, we first derive the dual variable p̂ ∈ ∂pV (0, ∅, p) for p = [1/3, 2/3]T . By
definition, p̂T p defines the concave hull of V (0, ∅, p), and therefore we have

[1/3, 2/3]p̂ = V (0, ∅, p) = −1/6
[0, 1]p̂ = V (0, ∅, [0, 1]) = −1. (44)

This leads to p̂ = [3/2,−1]T .

At the terminal time, we have

V ∗(2, x, p̂) = min{p̂[1]− gT (x), p̂[2]− gW (x)}

=


min{p̂[1]− 2, p̂[2] + 2} if x = (B, b)
min{p̂[1]− 1, p̂[2]} if x = (B, d)
min{p̂[1]− 1, p̂[2] + 1} if x = (Q, b)
min{p̂[1], p̂[2]− 2} if x = (Q, d)

(45)

At t = 1, we have

V ∗(1, u, p̂) = Cavp̂
(
max

v
V ∗(2, (u, v), p̂)

)
. (46)

When u = B, the conjugate value is a concave hull of a piece-wise linear function:

V ∗(1, B, p̂) = Cavp̂




p̂[1]− 1 if p̂[2] ≥ p̂[1]− 1 (v∗ = d)
p̂[2] if p̂[2] ∈ [p̂[1]− 2, p̂[1]− 1) (v∗ = b)
p̂[1]− 2 if p̂[2] ∈ [p̂[1]− 4, p̂[1]− 2) (v∗ = d)
p̂[2] + 2 if p̂[2] < p̂[1]− 4 (v∗ = b)


=

 p̂[1]− 1 if p̂[2] ≥ p̂[1]− 1 (v∗ = d)
2/3p̂[1] + 1/3p̂[2]− 2/3 if p̂[2] ∈ [p̂[1]− 4, p̂[1]− 1) (mixed strategy)
p̂[2] + 2 if p̂[2] < p̂[1]− 4 (v∗ = b)

(47)

For p̂ = [3/2,−1]T which satisfies p̂[2] ∈ [p̂[1] − 4, p̂[1] − 1), Player 2 follows a mixed strategy determined based on
{λ1, λ2, λ3} ∈ ∆(3) and p̂j ∈ R2 for j = 1, 2, 3 such that:

21



1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

A Scalable Solver for 2p0s Differential Games with One-Sided Payoff Information and Continuous Actions, States, and Time

(i) At least one of p̂j for j = 1, 2, 3 should satisfy p̂[2] = p̂[1] − 1 and another p̂[2] = p̂[1] − 4. These conditions are
necessary for V ∗(1, B, p̂) to be a concave hull:

V ∗(1, B, p̂) =

3∑
j=1

λj max
v

V ∗(2, (B, v), p̂j). (48)

(ii)
∑3

j=1 λj p̂
j = p̂.

These conditions lead to λ1 = 1/2 and λ2 + λ3 = 1/2. Therefore, when Player 1 picks beer, Player 2 chooses to defer and
bully with equal probability.

When u = Q, we similarly have

V ∗(1, Q, p̂) =

 p̂[1] if p̂[2] ≥ p̂[1] + 2 (v∗ = d)
... if p̂[2] ∈ [p̂[1]− 2, p̂[1] + 2) (mixed strategy)
p̂[2] + 1 if p̂[2] < p̂[1]− 2 (v∗ = b)

(49)

The derivation of the concave hull when p̂[2] ∈ [p̂[1]− 2, p̂[1] + 2) is omitted, because, for p̂ = [3/2,−1]T , V ∗(1, Q, p̂) =
p̂[2] + 1 = 0 while v∗ = b, i.e. if Player 1 picks quiche, Player 2 chooses to bully with a probability of 1.

F. Computational Complexity of Existing Algorithms for Solving 2p0s Normal Form Games
Here we reveal the computational complexity (in terms of the number of iterations) of some important existing algorithms
for solving 2p0s normal form games. The purpose is to show that these algorithms all scale with the action space size, which
limits them from solving games with continuous action spaces with discretization leads to undesirable solutions. We omit
discussions about IIEFGs since they can be reformulated as NFGs.

Consider the following minimax formulation for NFGs:

min
x∈∆(I)

max
y∈∆(J)

xTAy + αg1(x)− αg2(y), (50)

where I and J are positive integers, A ∈ RI×J is a payoff matrix, and g1, g2 are strictly convex functions (e.g., L2 norm,
negative entropy for NFGs, and dilated entropy for EFGs). Since Eq. 50 is convex to x and concave to y, there exists a
unique solution. When α = 0, the solution (x∗, y∗) is a Nash equilibrium, otherwise if α > 0, the solution is an quantal
response equilibrium (QRE).

Counterfactual regret minimization. CFR variants are average-time convergent algorithms for solving NFGs and EFGs,
leveraging the fact that minimizing counterfactual regrets at all infostates achieves Nash for 2p0s games (Zinkevich et al.,
2007). Algorithm: Here we introduce the standard CFR and CFR+. For simplicity, we will focus on solving the NFG
in Eq. 50 with α = 0 (which reduces CFR to regret matching and CFR+ to regret matching+). Given strategy profile
(xt, yt) at iteration t ∈ [T ], the instantaneous regret vector for Player 1 (resp. Player 2) is rt1 = Ayt − xT

t Ayt (resp.
rt2 = ATxt − xT

t Ayt). The non-negative regret vector is Rt
i = max{∑t

τ=1 r
τ
i , 0} for i ∈ [2]. CFR updates the strategies as

xt+1 =
Rt

1

< 1, Rt
1 >

, yt+1 =
Rt

2

< 1, Rt
2 >

(51)

if the sums < 1, Rt
i > is positive. Otherwise the strategy is updated as xt+1 = 1/I for Player 1 and yt+1 = 1/J for

Player 2. CFR+ is different from CFR only in the definition of the instantaneous regret: r̂ti = max{rti , 0} and then
Rt

i = max{∑t
τ=1 r̂

τ
i , 0}. Complexity: To reach ε-Nash, the best-known upper bound on the complexity of CFR and CFR+

is O((I + J)/ε2) (Cesa-Bianchi & Lugosi, 2006). While this sublinear convergence rate seems to be worse than regularized
descent-ascent algorithms with guaranteed linear convergence (e.g., MMD and regularized FTRLs), CFR+ still enjoys the
state-of-the-art empirical performance for a variety of large IIEFGs (Tammelin, 2014). Nonetheless, it should be noted that
the complexity of CFR variants scales linearly with respect to the size of the action space.
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Magnetic mirror descent. MMD is an extension of projected gradient descent ascent that has linear last-iterate conver-
gence to α-QRE for α > 0. For ease of exposition, we set g1(x) = 1

2∥x∥22 and g2 is similarly defined 5 Algorithm: Let
η > 0 be a learning rate, (x′, y′) ∈ int ∆(I) ×∆(J) be a “magnet”. Then starting from (x1, y1) ∈ int ∆(I) ×∆(J), at
each iteration t ∈ [T ] do

xt+1 = argmin
x∈∆(I)

xTAyt +
α

2
∥x− x′∥22 +

1

2η
∥x− xt∥22,

yt+1 = argmin
y∈∆(J)

−xT
t Ay +

α

2
∥y − y′∥22 +

1

2η
∥y − yt∥22.

(52)

Complexity: (Theorem 3.4 and Corollary 3.5 of (Sokota et al., 2022)) Let the squared error be ε := 1
2 (∥x−x∗∥22+∥y−y∗∥22).

If (xt, yt) ∈ int ∆(I)×∆(J) for all t ∈ [T ], and if η is sufficiently small 6, then for an error threshold ε0 > 0, ε ≤ ε0 if
T ≥ ln((I+J)/ε0)

ln(1+ηα) . Thus MMD has complexityO(ln((I + J)/ϵ0)) with respect to the action space. Remarks: When α = 0,
MMD reduces to projected gradient descent ascent which is known to diverge or cycle for any positive learning rate. (Sokota
et al., 2022) showed empirically that MMD can be used to solve Nash by either annealing the amount of regularization
over time or by having the magnet trail behind the current iterate. However, it is important to note that MMD assumes the
solution to be interior, which is not the case in the games we consider when value is convex (no splitting) due to Isaacs’
condition.

FTRL variants. FTRL is a classic online learning algorithm known to converge in potential games but cycle in Hamiltonian
games (Heliou et al., 2017; Mertikopoulos et al., 2018; Liu et al., 2024). To this end, variants of FTRL have been proposed
to achieve last-iterate convergence to ϵ-Nash or ϵ-QRE (Perolat et al., 2021). Below we introduce a few of them to show
that their complexities all increase with the size of the action space. Algorithm: RegFTRL (Liu et al., 2024) introduces
regularization terms (ϕ1, ϕ2) that are strictly convex and continuously differentiable on their respective simplex. For each
iteration, do

xt+1 = argmin
x∈∆(I)

< x, ȳt > +ϕ1(x), ȳt =

t∑
τ=1

Ayτ + α∇g1(xτ ),

yt+1 = argmin
y∈∆(J)

− < x̄t, y > +ϕ2(y), x̄t =

t∑
τ=1

ATxτ + α∇g2(yτ ).
(53)

Complexity: RegFTRL is guaranteed to find an ε-QRE inO
(

ln((I+J)/ε)
ln(1+ηα)

)
iterations (Theorem 2 in (Liu et al., 2024)). FTRL-

SP (Abe et al., 2024) and OMWU (Rakhlin & Sridharan, 2013; Syrgkanis et al., 2015) finds ε-QRE in O
(

ln((I+J)/ε)
− ln(1−ηα/2)

)
.

G. Prediction Error of Value Approximation
Here we show that the baseline algorithm (Alg. 1) shares the same exponential error propagation as in standard approximate
value iteration (AVI). The only difference is that the measurement error in Alg. 1 comes from numerical approximation of the
minimax problems rather than randomness in state transition and rewards as in AVI. To start, let the true value be V (t, x, p).
Following (Zanette et al., 2019), the prediction error ϵbiast := maxx,p |V̂t(x, p)− V (t, x, p)| is affected by (1) the prediction
error ϵbiast+τ propagated back from t+ τ , (2) the minimax error ϵminmax

t caused by limited iterations in solving the minimax
problem at each collocation point: ϵminmax

t = max(x,p)∈St
|Ṽ (t, x, p)− V (t, x, p)|, and (3) the approximation error due to

the fact that V (t, ·, ·) may not lie in the model hypothesis space Vt of V̂t: ϵ
app
t = maxx,p minV̂t∈Vt

|V̂t(x, p)− V (t, x, p)|.
Approximation error. For simplicity, we will abuse the notation by using x in place of (x, p) and omit time dependence
of variables when possible. In practice we consider V̂t as neural networks that share the architecture and the hypothesis
space. Note that V̂T (·) = V (T, ·) is analytically defined by the boundary condition and thus ϵappT = ϵbiasT = 0. To
enable the analysis on neural networks, we adopt the assumption that V̂ is infinitely wide and that the resultant neural
tangent kernel (NTK) is positive definite. Therefore from NTK analysis (Jacot et al., 2018), V̂ can be considered a kernel
machine equipped with a kernel function r(x(i), x(j)) :=< ϕ(x(i)), ϕ(x(j)) > defined by a feature vector ϕ : X → Rdϕ .
Given training data S = {(x(i), V (i))}, let r(x)[i] := r(x(i), x(j)), Rij := r(x(i), x(j)), VS := [V (1), ..., V (N)]⊤,

5In (Sokota et al., 2022), the authors used a more general regularization definition by introducing the Bregman divergence.
6See Corollary D.6 in (Sokota et al., 2022) for details on the bound of η.
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ΦS := [ϕ(x(1)), ..., ϕ(x(N))], and wS := ΦS(Φ
⊤
SΦS)

−1VS be model parameters learned from S, then

V̂ (x) = r(x)⊤R−1VS =< ϕ(x), wS > (54)

is a linear model in the feature space. Let θϕ(x) := r(x)⊤R−1 and C := maxx ∥θϕ(x)∥1. Further, let S† := argminS | <
ϕ(x), wS > −V (x)| and w† := wS† , i.e., w† represents the best hypothetical model given sample size N . Since N is finite,
the data-dependent hypothesis space induces an approximation error ϵappt := maxx | < ϕ(x), w† > −V (x)|. From standard
RKHS analysis, we have ϵappt ∝ N−1/2.

Error propagation. Recall that we approximately solve P1 at each collocation point. Let z := {λ, p, u, v} be the
collection of variables and z̃ be the approximated saddle point resulting from DS-GDA. Let Ṽ (t, x, z̃) be the approximate
value at (t, x) and let V (t, x, z∗) be the value at the true saddle point z∗. Lemma G.1 bounds the error of Ṽ (t, x, z̃):

Lemma G.1. maxx |Ṽ (t, x, z̃)− V (t, x, z∗)| ≤ ϵbiast+τ + ϵminmax
t .

Proof. Note that
∑I

k=1 λ
k = 1. Then

max
x
|Ṽ (t, x, z̃)− V (t, x, z∗)| ≤ max

x
|Ṽ (t, x, z̃)− Ṽ (t, x, z∗)|+max

x
|Ṽ (t, x, z∗)− V (t, x, z∗)|

≤ ϵminmax
t +max

x
|

I∑
k=1

λk(Ṽ (t+ τ, x′, pk)− V (t+ τ, x′, pk)|

≤ ϵminmax
t + ϵbiast+τ .

(55)

Now we can combine this measurement error with the inherent approximation error ϵappt to reach the following bound on
the prediction error ϵbiast :

Lemma G.2. maxx |V̂t(x)− V (t, x)| ≤ Ct(ϵ
minmax
t + ϵbiast+τ + ϵappt ) + ϵappt .

Proof.

max
x
|V̂t(x)− V (t, x)| ≤ max

x
|V̂t(x)− < ϕ(x), w† > |+max

x
| < ϕ(x), w† > −V (t, x)|

≤ max
x
| < θϕ(x), Ṽ (t, x)− V (t, x) > |+max

x
| < θϕ(x), V (t, x)− ϕ(x)⊤w† > |+ ϵappt

≤ C(ϵminmax
t + ϵbiast+τ + ϵappt ) + ϵappt .

(56)

Lem. G.3 characterizes the propagation of error:

Lemma G.3. Let ϵappt ≤ ϵapp, ϵminmax
t ≤ ϵminmax, and Ct ≤ C for all t ∈ [T ]. If ϵappT = 0, then ϵbias0 ≤ TCT (ϵapp +

C(ϵminmax + ϵapp)).

Proof. Using Lem. G.2 and by induction, we have

ϵbias0 ≤ (ϵapp + C(ϵminmax + ϵapp))
1− CT

1− C
≤ TCT (ϵapp + C(ϵminmax + ϵapp)). (57)

We can now characterize the computational complexity of the baseline algorithm through Thm. G.4, by taking into account
the number of DS-GDA iterations and the per-iteration complexity:

Theorem G.4. For a fixed T and some error threshold δ > 0, with a computational complexity of at least
O(T 3C2T I2ϵ−4δ−2), Alg. 1 achieves

max
(x,p)∈X×∆(I)

|V̂0(x, p)− V (0, x, p)| ≤ δ. (58)
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Proof. From Lem. G.3 and using the fact that ϵapp ∝ N−1/2, achieving a prediction error of δ at t = 0 requires
N = O(C2TT 2δ−2). Alg. 1 solves TN minimax problems, each requires a worst-caseO(ϵ−4) iterations, and each iteration
requires computing gradients of dimension O(I2), considering the dimensionalities of action spaces as constants. This leads
to a total complexity of O(T 3C2T I2ϵ−4δ−2).

H. Game Settings, Baselines and Ground Truth
H.1. Game Settings

The players move in an arena bounded between [−1, 1] in all directions. All games in the paper follow 2D/3D point
dynamics as follows: ẋj = Axj + Buj , where xj is a vector of position and velocity and uj is the action for player j.
Note that we use u and v in the optimization problems P1 and P2 to represent player 1 and player 2’s actions respectively.
The type independent effort loss for each player j is defined as lj(uj) = u⊤

j Rjuj , where R1 = diag(0.05, 0.025) and
R2 = diag(0.05, 0.1). For the higher dimensional case, R1 = diag(0.05, 0.05, 0.025) and R2 = diag(0.05, 0.05, 0.1).

H.2. Ground Truth for Hexner’s Game

For the 4-stage and 10-stage Hexner’s game, there exists analytical solution to the equilibrium policies via solving the HJB
for respective players.

uj = −R−1
j B⊤

j Kjxj +R−1
j B⊤

j KjΦjzθ̃j ,

based on the reformulation outlined below in which players’ action θ̃j ∈ R become 1D and are decoupled from the state:
where Φj is a state-transition matrix that solves Φ̇j = AjΦj , with Φj(T ) being an identity matrix, and Kj is a solution to a
continuous-time differential Ricatti equation:

K̇j = −A⊤
j Kj −KjAj +K⊤

j BjR
−1
j B⊤

j Kj , (59)

Finally, by defining
dj = z⊤Φ⊤

j KjBjR
−1
j B⊤

j K⊤
j Φiz

and the critical time

tr = argmin
t

∫ t

0

(d1(s)− d2(s))ds

and

θ̃j(t) =

{
0, t ∈ [0, tr]

θ, t ∈ (tr, T ]
.

As explained in Sec.6, P1 chooses θ1 = 0 until the critical time tr and P2 follows.

Note that in order to compute the ground truth when time is discretized with some τ , we need the discrete counterpart of
equation 59, namely the discrete-time Ricatti difference equation and compute the matrices K recursively.

H.3. OpenSpiel Implementations and Hyperparameters

We use OpenSpiel (Lanctot et al., 2019), a collection of various environments and algorithms for solving single and
multi-agent games. We select OpenSpiel due to its ease of access and availability of wide range of algorithms. The first step
is to write the game environment with simultaneous moves for the stage-game and the multi-stage games (with 4 decision
nodes). Note that to learn the policy, the algorithms in OpenSpiel require conversion from simultaneous to sequential game,
which can be done with a built-in method.

In the single-stage game, P1 has two information states representing his type, and P2 has only one information state (i.e., the
starting position of the game which is fixed). In the case of the 4-stage game, the information state (or infostate) is a vector
consisting of the P1’s type (2-D: [0, 1] for type-1, [1, 0] for type-2), states of the players (8-D) and actions of the players
at each time step (4 × 2 × U). The 2-D “type” vector for P2 is populated with 0 as she has no access to P1’s type. For

25



1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

A Scalable Solver for 2p0s Differential Games with One-Sided Payoff Information and Continuous Actions, States, and Time

example, the infostate at the final decision node for a type-1 P1 could be [0, 1, x(8),1
(U)
u0 ,1

(U)
d0

, · · · ,1(U)
d2

,0(U),0(U)], and

[0, 0, x(8),1
(U)
u0 ,1

(U)
d0

, · · · ,1(U)
d2

,0(U),0(U)] for P2, where uk, dk represent the index of the actions at kth decision node,
k = 0, 1, 2, 3

The hyperparameters for DeepCFR is listed in table 3

Table 3. Hyperparameters for DeepCFR Training

Policy Network Layers (256, 256)

Advantage Network Layers (256, 256)

Number of Iterations 1000 (100, for U = 16)

Number of Traversals 5 (10, for U = 16)

Learning Rate 1e-3

Advantage Network Batch Size 1024

Policy Network Batch Size 10000 (5000 for U = 16)

Memory Capacity 1e7 (1e5 for U = 16)

Advantage Network Train Steps 1000

Policy Network Train Steps 5000

Re-initialize Advantage Networks True

H.4. Joint-Perturbation Simultaneous Pseudo-Gradient (JPSPG)

The core idea in the JPSPG algorithm is the use of pseudo-gradient instead of computing the actual gradient of the utility to
update players’ strategies. By perturbing the parameters of a utility function (which consists of the strategy), an unbiased
estimator of the gradient of a smoothed version of the original utility function is obtained. Computing pseudo-gradient can
often be cheaper as faster than computing exact gradient, and at the same time suitable in scenarios where the utility (or
objective) functions are ”black-box” or unknown. Building on top of pseudo-gradient, Martin & Sandholm (2024) proposed
a method that estimates the pseudo-gradient with respect to all players’ strategies simultaneously. The implication of this is
that instead of multiple calls to estimate the pseudo-gradient, we can estimate the pseudo-gradient in a single evaluation.
More formally, let f : Rd → Rn be a vector-valued function. Then, its smoothed version is defined as:

fσ(x) = Ez∼µf(x + σz), (60)

where µ is a d-dimensional standard normal distribution, σ ̸= 0 ∈ R is a scalar. Then, extending the pseudo-gradient of a
scalar-valued function to a vector-valued function, we have the following pseudo-Jacobian:

∇fσ(x) = Ez∼µ
1

σ
f(x + σz)⊗ z, (61)

where ⊗ is the tensor product.

Typically, in a game, the utility function returns utility for each player given their strategy. Let u : Rn×d → Rn be the utility
function in a game with n players, where each player has a d-dimensional strategy. Then, the simultaneous gradient of u
would be a function v : Rn×d → Rn×d. That is, row i of v(u) is the gradient of the utility of the player i with respect to its
strategy, vi = ∇iui. As a result, we can rewrite v concisely as: v = diag(∇u), where∇ is the Jacobian. With these we
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have the following:
vσ(x) = diag(∇uσ(x))

= diag

(
Ez∼µ

1

σ
uσ(x + σz)⊗ z

)
= Ez∼µ

1

σ
diag

(
uσ(x + σz)⊗ z

)
= Ez∼µ

1

σ
uσ(x + σz)⊙ z,

(62)

where ⊙ is element-wise product and a result of the fact that diag(a ⊗ b) = a ⊙ b. Hence, by evaluating Eq. 62 once,
we get the pseudo-gradient associated with all players, making the evaluation constant as opposed to linear in number of
players.

Once the pseudo-gradients are evaluated, the players update their strategy in the direction of the pseudo-gradient, assuming
each player is interested in maximing their respective utility.

JPSPG Implementation. In games with discrete-action spaces, where strategy is the probability distribution over
the actions, JPSPG can be directly applied to get mixed strategy. However, for continuous-action games, a standard
implementation would result in pure strategy solution than mixed. In order to compute a mixed strategy, we can turn into
neural network as a strategy with an added randomness that can be learned as described in Martin & Sandholm (2023; 2024).
We similarly define two strategy networks for each player, the outputs of which are scaled based on the respective action
bounds with the help of hyperbolic tangent (tanh) activation on the final layer. The input to the strategy networks (a single
hidden layered neural network with 64 neurons and output neuron of action-space dimension) are the state of the player and
a random variable whose mean and variance are trainable parameters. We follow the architecture as outlined by Martin &
Sandholm (2024) in their implementation of continuous-action Goofspiel. We would like to thank the authors for providing
an example implementation of JPSPG on a normal-form game.

In the normal-form Hexner’s game, P1’s state x1 = {x1, y1,type}, and P2’s state x2 = {x2, y2}. xi, and yi denote the x-y
coordinates of the player i. In 4-stage case, we also include x-y velocities in the state and append the history of actions
chosen by both P1 and P2 into the input to the strategy network. As an example, P1’s input at the very last decision step
a vector [x1, y1, vx1

, vy1
, x2, y2, vx2

, vy2
,type, u1x , u1y , d1x , d1y , u2x , u2y , d2x , d2y , u3x , u3y , d3x , d3y ] ∈ R21, where uj

and dj represent actions of P1 and P2, respectively, at jth decision point. P2’s input, on the other hand, is the same without
the type information making it a vector in R20.

H.5. Sample Trajectories

H.5.1. CAMS VS DEEPCFR VS JPSPG

Here we present sample trajectories for three different initial states for each P1 type. The policies learned by CAMS results
in trajectories that are significantly close to the ground truth than the other two algorithms.

27



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

A Scalable Solver for 2p0s Differential Games with One-Sided Payoff Information and Continuous Actions, States, and Time

−0.5 0 0.5
−1

0

1

X

Y

CAMS

P1(Goal-1) P2 (Goal-1)
P1(Goal-2) P2 (Goal-2)
GT

−1 −0.5 0 0.5 1
−1

0

1

X

Y

Deep CFR (|A| = 9)

−1 −0.5 0 0.5 1
−1

0

1

X

Y

Deep CFR (|A| = 16)

−1 −0.5 0 0.5 1
−1

0

1

X

Y

JPSPG

Figure 9. Trajectories generated using CAMS (primal game), DeepCFR, and JPSPG. The initial position pairs are marked with same
marker and the final with star. The trajectories from CAMS are close to the ground-truth while those from DeepCFR and JPSPG are not.
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H.6. Value Network Training Details

Data Sampling: At each time-step, we first collect training data by solving the optimization problem (P1 or P2). Positions
are sampled uniformly from [-1, 1] and velocities from [−v̄t, v̄t] computed as v̄t = t× umax, where umax is the maximum
acceleration. For the unconstrained game, umax = 12 for both P1 and P2. For the constrained case, uxmax

= 6, uymax
= 12

for P1 and uxmax
= 6, uymax

= 4 for P2. During training, the velocities are normalized between [-1, 1]. The belief p is
then sampled uniformly from [0, 1]. For the dual value, we first determine the upper and lower bounds of p̂ by computing
the sub-gradient ∂pV (t0, ·, ·) and then sample uniformly from [p̂−, p̂+].

Training: We briefly discuss the training procedure of the value networks. As mentioned in the main paper, both the
primal and the dual value functions are convex with respect to p and p̂ respectively. As a result, we use Input Convex Neural
Networks (ICNN) (Amos et al., 2017) as the neural network architecture. Starting from T − τ , solutions of the optimization
problem P1 for sampled (X, p) is saved and the convex value network is fit to the saved training data. The model parameters
are saved and are then used in the optimization step at T − 2τ . This is repeated until the value function at t = 0 is fit. The
inputs to the primal value network are the joint states containing position and velocities of the players X and the belief p.

The process for training the dual value is similar to that of the primal value training. The inputs to the dual value network
are the joint states containing position and velocities of the players X and the dual variable p̂.

I. Details on Constrained Game
Here, we briefly explain the optimization problem for the constrained game. Formally, given the states x1, x2 of the players
P1 and P2, the constraint is given by the function c(x1, x2) = r − ||(px1

, py1
)− (px2

, py2
)||2. P1 must always maintain a

radial distance of r from P2, else P1 receives a +∞ penalty and P2 receives a reward of −∞ (both want to minimize their
costs).

We follow the method outlined in (Ghimire et al., 2024), and train a separate value function model F : t× X → R, that
classifies the state-space into safe (Ωt) and unsafe states. Safe states are those initial states from which P1 can avoid collision
with P2, whereas unsafe states are those initial states from which it is impossible for P1 to avoid collision. The sub-zero
level set of F correspond to the unsafe states.

With F available, we can query it to check if the resulting states xk = ODE(x, τ, uk, vk; f) in Eq. P1 are unsafe. If so, a
high penalty is added (subtracted in the case of dual game), otherwise 0. Formally, at some time-step t, initial state x ∈ Ωt,
p (resp. p̂), we solve the following optimization problem for the constrained primal (V ) (resp. dual (V ∗)) value:

min
{uk},{αki}

max
{vk}

I∑
k=1

λk
(
V (t+ τ, xk, pk) + τEi∼pk [li(u

k, vk)]
)
+ γ · relu(−F(t+ τ, xk)

s.t. uk ∈ U , xk = ODE(x, τ, uk, vk; f), vk ∈ V, αki ∈ [0, 1],

I∑
k=1

αki = 1, λk =

I∑
i=1

αkip[i], pk[i] =
αkip[i]

λk
, ∀i, k ∈ [I].

(63)

min
{vk},{λk},{p̂k}

max
{uk}

I+1∑
k=1

λk
(
V ∗(t+ τ, xk, p̂k − τ l(uk, vk))

)
− γ · relu(−F(t+ τ, xk)

s.t. uk ∈ U , vk ∈ V, xk = ODE(x, τ, uk, vk; f), λk ∈ [0, 1],

I+1∑
k=1

λkp̂k = p̂,

I+1∑
k=1

λk = 1, k ∈ [I + 1].

(64)

where γ is a scaling factor.
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J. Multigrid Algorithms and Trajectories
Here we present the two multigrid algorithms: 2-level and n-level. n-level multigrid algorithm can be used to approximate
value functions for larger time-steps (or finer discretizations). n-level multigrid algorithm is similar to 2-level, with the
difference being that the fine grid is coarsened n times, such that the coarsest grid is of at least size 2. We solve the 16-stage
game using 4-level multigrid.

Algorithm 2 Two-grid Value Approximation (Multigrid)
Input: Coarse time-steps T 2l, fine time-steps T l, coarse minimax solver O2l, fine minimax solver Ol, number of data

points N to sample, restriction operatorR, prolongation Operator P
Initialize: Initialize fine grid value networks V̂ l

t ∀t ∈ Tl, policy set Π = ∅
while resource not exhausted or until convergence do

Initialize: Rl = ∅, E2l = ∅, S = ∅,
Coarse grid correction networks ε2lt ∀t ∈ T 2l

S[t]← sample N data points (t, x, p), ∀t ∈ T l

// Smoothing Step: Few iterations

target, πt ← Ol(t+ l, ·, ·, V̂ l
t+l) (init. w/ πt if Π ̸= ∅) Store residuals: rlt = (V̂ l

t − target) in Rl and policies πt

in Π
// Restriction and coarse-solve
for t← T − 2l to 0 do

e2lt = O2l(RV̂ l
t+2l + ε2lt+2l)−O2l(RV l

t+2l)−Rrlt ; // e2lT = 0, ε2lT = ∅
Store e2lt in E2l

Fit the correction network ε2lt to e2lt
// Prolongation
foreach t ∈ T l do

elt = Pe2lt
Fit V̂ l

t to V̂ l
t + elt

target, πt ← Ol(t+ h, ·, ·, V̂ l
t+l) (init. with πt)

Fit V̂ l
t to target and replace πt in Π ; // Post Smoothing

Multigrid Trajectories Comparison (Primal Game). In Fig.10 we compare the trajectories using learned value function
via the multigrid approach with the ground truth. The trajectories closely resemble the ground truth with Player 1 successfully
able to conceal his true type. Unlike in Fig. 10, where P2’s trajectories are due to best response action to P1’s action, in
Fig. 11, we plot the resulting trajectories when P2 plays the dual game.
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Figure 10. Comparison of trajectories generated using value learned via multigrid method vs the ground truth.
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Figure 11. Trajectories when P1 and P2 play their respective primal and dual game. P1’s actions are a result of the primal value function
whereas P2’s actions are a result of the dual value function. Both primal and dual values are learned using multigrid approach.

Algorithm 3 n-Level Multigrid for Value Approximation
Input: kmax, kmin,O (minimax solver), T (time horizon), N (number of data points),R (restriction operator), P (prolonga-

tion operator)

Initialize: T l ← [0, l, 2l, . . . , T − l], ∀ l ∈ {2−kmax , . . . , 2−kmin}, L← 2−kmin

Initialize: Value networks V̂ l
t , ∀ t ∈ T l, ∀ l ∈ {2−kmax , . . . , 2−kmin}, policy set Π← ∅

while resources not exhausted or until convergence do
R← ∅, EL ← ∅, S ← ∅
Initialize coarsest-grid correction networks εLt ,∀ t ∈ T L

S[t]← sample N (t, x, p), ∀ t ∈ T kmax

// down-cycle
for k ← kmax down to kmin + 1 do

Compute target via Ok (init. with πt if Π[k] ̸= ∅), and store updated policies πt in Π[k], ∀ t ∈ T k

Compute residuals rk[t], ∀ t ∈ T k

if k ̸= kmax then
rkt ← rkt +Rrk+1

t , ∀ t ∈ T k

Store rkt in R[k]

for t← T − L to 0 do
// coarse-solve backwards in time

eLt ← OL(RV̂ l
t+L + εLt+L)−OL(RV̂ l

t+L)−R rkmin+1
t ; // eLT = 0, εLT = ∅

Store eLt in EL

Fit εtL to etL

// up-cycle
for k ← kmin + 1 to kmax do

ekt ← P(ek−1
t ), ∀ t ∈ T k

Update V̂ k
t ← V̂ k

t + ekt
// post smoothing (for all t’s and l’s)

target, πt ← Ol(V̂ l
t+l) (initialized with πt)

Fit V̂ l
t to target and replace πt in Π[l]
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K. High Dimensional Hexner’s Game
3D Hexner’s game. To demonstrate the scalability of CAMS, we solve a 3D Hexner’s game where the joint action space
is now 6D. Accordingly, the state space becomes 12D and the value becomes 13D. Resultant trajectories are visualized in
Fig. 12. Similar to the 2D case, P1 learns to correctly conceal his target until some critical time.
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Figure 12. 3D Hexner’s Game. Color shades indicate the current public belief.
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