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Abstract

Offline goal-conditioned reinforcement learning (GCRL) is a promising approach for
pretraining generalist policies on large datasets of reward-free trajectories, akin to the
self-supervised objectives used to train foundation models for computer vision and natu-
ral language processing. However, scaling GCRL to longer horizons remains challenging
due to the combination of sparse rewards and discounting, which obscures the compara-
tive advantages of primitive actions with respect to distant goals. Hierarchical GCRL
methods achieve strong empirical results on long-horizon goal-reaching tasks, but their
reliance on modular, timescale-specific policies and subgoal generation introduces signif-
icant additional complexity and hinders scaling to high-dimensional goal spaces. In this
work, we introduce an algorithm to train a flat (non-hierarchical) goal-conditioned policy
by bootstrapping on subgoal-conditioned policies with advantage-weighted importance
sampling. Our approach eliminates the need for a generative model over the (sub)goal
space, which we find is key for scaling to high-dimensional control in large state spaces.
We further show that existing hierarchical and bootstrapping-based approaches corre-
spond to specific design choices within our derivation. Across a comprehensive suite of
state- and pixel-based locomotion and manipulation benchmarks, our method matches or
surpasses state-of-the-art offline GCRL algorithms and scales to complex, long-horizon
tasks where prior approaches fail.

1 Introduction

Goal-conditioned reinforcement learning (GCRL) specifies tasks by desired outcomes, alleviating the
burden of defining reward functions over the state-space and enabling the training of general policies
capable of achieving a wide range of goals. Offline GCRL extends this paradigm to leverage existing
datasets of reward-free trajectories and has been likened to the simple self-supervised objectives that
have been successful in training foundation models for other areas of machine learning (Yang et al.,
2023; Park et al., 2024a). However, the conceptual simplicity of GCRL belies practical challenges in
learning accurate value functions and, consequently, effective policies for goals requiring complex,
long-horizon behaviors. These limitations call into question its applicability as a general and scalable
objective for learning foundation policies (Black et al., 2024; Park et al., 2024c; Physical Intelligence
et al., 2025) that can be efficiently adapted to a diverse array of control tasks.

Hierarchical reinforcement learning (HRL) is commonly used to address these challenges and is
particularly well-suited to the recursive subgoal structure of goal-reaching tasks, where reaching
distant goals entails first passing through intermediate subgoal states. Goal-conditioned HRL exploits
this structure by learning a hierarchy composed of multiple levels: one or more high-level policies,
tasked with generating intermediate subgoals between the current state and the goal; and a low-
level actor, which operates over the primitive action space to achieve the assigned subgoals. These
approaches have achieved state-of-the-art results in both online (Nachum et al., 2018; Levy et al.,
2018) and offline GCRL (Park et al., 2023), and are especially effective in long-horizon tasks.
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However, despite the strong empirical performance of HRL, it suffers from major limitations as a
scalable pretraining strategy. In particular, the modularity of hierarchical policy architectures, fixed
to specific levels of temporal abstraction, precludes unified task representations and necessitates
learning a generative model over the subgoal space to interface between policy levels.

Learning to predict intermediate goals in a space that may be as high-dimensional as the raw
observations poses a difficult generative modeling problem. To ensure that subgoals are physically
realistic and reachable in the allotted time, previous work often implements additional processing
and verification of proposed subgoals (Zhang et al., 2020; Czechowski et al., 2021; Zawalski et al.,
2022; Hatch et al., 2024). An alternative is to instead predict in a compact learned latent subgoal
space, but simultaneously optimizing subgoal representations and policies results in a nonstationary
input distribution to the low-level actor, which can slow and destabilize training (Vezhnevets et al.,
2017; Levy et al., 2018). The choice of objective for learning such representations, ranging from
autoregressive prediction (Seo et al., 2022; Zeng et al., 2023) to metric learning (Tian et al., 2020;
Nair et al., 2023; Ma et al., 2023), remains an open question and adds significant complexity to the
design and tuning of hierarchical methods.

Following the tantalizing promise that flat, one-step policies can be optimal in fully observable,
Markovian settings (Puterman, 2005), this work aims to isolate the core advantages of hierarchies
for offline GCRL and distill them into a simpler training recipe for a single, unified policy. We
begin our empirical analysis by revisiting a state-of-the-art hierarchical method for offline GCRL
that significantly outperforms previous approaches on a range of long-horizon goal-reaching tasks.
Beyond the original explanation based on improved value function signal-to-noise ratio, we find that
separately training a low-level policy on nearby subgoals improves sampling efficiency. We reframe
this hierarchical approach as a form of implicit test-time bootstrapping on subgoal-conditioned
policies, revealing a conceptual connection to earlier methods that learn subgoal generators and
bootstrap directly from subgoal-conditioned policies to train a flat, unified goal-conditioned policy.

Building on these insights, we present an inference-based theoretical framework that unifies these
ideas and yields Subgoal Advantage-Weighted Policy Bootstrapping (SAW), a novel policy
extraction objective for offline GCRL. SAW uses advantage-weighted importance sampling to
bootstrap on subgoals sampled directly from data, capturing the long-horizon strengths of hierarchies
in a single, flat policy without requiring a generative subgoal model. In evaluations across 20
state- and pixel-based offline GCRL datasets, our method matches or surpasses all baselines in
diverse locomotion and manipulation tasks and scales especially well to complex, long-horizon tasks,
being the only existing approach to achieve nontrivial success in the humanoidmaze-giant
environment.

2 Related Work

Our work builds on a rich body of literature encompassing goal-conditioned RL (Kaelbling, 1993),
offline RL (Lange et al., 2012; Levine et al., 2020), and hierarchical RL (Dayan & Hinton, 1992;
Sutton et al., 1999; Jong et al., 2008; Bacon et al., 2017; Vezhnevets et al., 2017). The generality
of the GCRL formulation enables powerful self-supervised training strategies such as hindsight
relabeling (Andrychowicz et al., 2017; Ghosh et al., 2020) and state occupancy matching (Ma et al.,
2022). These are often combined with approaches that exploit the recursive subgoal structure of
GCRL: either implicitly via quasimetric learning (Wang et al., 2023), probabilistic interpretations
(Hoang et al., 2021; Zhang et al., 2021b), and contrastive learning (Eysenbach et al., 2022; Zheng
et al., 2023); or explicitly through hierarchical decomposition into subtasks (Nachum et al., 2018;
Levy et al., 2018; Gupta et al., 2020; Park et al., 2023). Despite these advances, learning remains
difficult for distant goals due to sparse rewards and discounting over time. Many methods use the key
insight that actions which are effective for reaching an intermediate subgoal between the current state
and the goal are also effective for reaching the final goal. Such subgoals are typically selected via
planning (Huang et al., 2019; Zhang et al., 2021a; Hafner et al., 2022), searching within the replay
buffer (Eysenbach et al., 2019), or, most commonly, sampling from generative models. Hierarchical
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(a) HIQL (b) RIS (c) SAW

Figure 1: Learning with subgoals. Both HIQL and RIS “imagine” subgoals (thought bubbles) en
route to the goal (red star) with generative models. However, HIQL samples actions directly from the
subgoal-conditioned policy, while RIS regresses (black arrow) a flat goal-conditioned policy towards
the subgoal-conditioned action distribution during training. SAW also performs regression but only
uses “real” subgoals from the dataset D, weighting the regression more heavily towards distributions
conditioned on good subgoals and less (gray arrow) towards bad ones.

methods in particular generate subgoals during inference and use them to query “subpolicies” trained
on shorter horizon goals, which are generally easier to learn (Strehl et al., 2009; Azar et al., 2017).
Our method also leverages the ease of training subpolicies to effectively learn long-horizon behaviors,
but aims to learn a flat, unified policy while avoiding the complexity of training generative models to
synthesize new subgoals.

Policy bootstrapping. Our work is most closely related to Reinforcement learning with Imagined
Subgoals (Chane-Sane et al., 2021, RIS), which, to our knowledge, is the only prior work that performs
bootstrapping on policies, albeit in the online setting. Similar to goal-conditioned hierarchies, RIS
learns a generative model to synthesize “imagined” subgoals that lie between the current state and
the goal. Unlike HRL approaches, however, it regresses the full-goal-conditioned policy towards the
subgoal-conditioned target, treating the latter as a prior to guide learning and exploration [Figure 1].
While RIS yields a flat policy for inference, it still requires the full complexity of a hierarchical policy,
including a generative model over the goal space. In contrast, our work extends the core benefits
of subgoal-based bootstrapping to offline GCRL with an advantage-based importance weight on
subgoals sampled from dataset trajectories, eliminating the need for a subgoal generator altogether.

3 Preliminaries

Problem setting: We consider the problem of offline goal-conditioned RL, described by a Markov
decision process (MDP) M = (S,A,R,P) where S is the state space, A the action space, R :
S × S → R the goal-conditioned reward function (where we assume that the goal space G is
equivalent to the state space S), and P : S × A → S the transition function. In the offline setting,
we are given a dataset D of trajectories τ = (s0, a0, s1, a1, . . . , sT ) previously collected by some
arbitrary policy (or multiple policies), and must learn a policy that can reach a specified goal state g
from an initial state s0 ∈ S without further interaction in the environment, maximizing the objective

J(π) = Eg∼p(g),τ∼pπ(τ)

[ ∞∑
t=0

γtr (st, g)

]
, (1)

where p(g) is the goal distribution and pπ(τ) is the distribution of trajectories generated by the policy
π and the transition function P during (online) evaluation.

Offline value learning: We use a goal-conditioned, action-free variant of implicit Q-learning
(Kostrikov et al., 2021, IQL) referred to as goal-conditioned implicit value learning (Park et al.,
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2023, GCIVL). The original IQL formulation modifies standard value iteration for offline RL by
replacing the max operator with an expectile regression, in order to avoid value overestimation
for out-of-distribution actions. GCIVL replaces the state-action value function with a value-only
estimator

min
ψ
LGCIVL(ψ) = Es,a,g∼pD

[
ℓ2τ
(
r(s, g) + γV̄ (s′, g)− V (s, g)

)]
, (2)

where ℓ2τ (x) = |τ − 1(x < 0)|x2 is the expectile loss parameterized by τ ∈ [0.5, 1) and V̄ (·)
denotes a target value function. Note that GCIVL is optimistically biased in stochastic environments,
since it directly regresses towards high-value transitions without using Q-values to marginalize over
action-independent stochasticity.

Offline policy extraction: To learn a target subpolicy, we use Advantage-Weighted Regression (Peng
et al., 2019, AWR) to extract a policy from a learned value function. AWR reweights state-action
pairs according to their exponentiated advantage with an inverse temperature hyperparameter α, via
the objective

max
π
JAWR(π) = Es,a,g∼D

[
eα(Q(s,a,g)−V (s,g)) log π(a | s, g)

]
, (3)

thus remaining within the support of the data without requiring an additional behavior cloning penalty.

4 Understanding Hierarchies in Offline GCRL

In this section, we seek to identify the core reasons behind the empirical success of hierarchies in
offline GCRL that can be used to guide the design of a simpler training objective for a flat policy.
We first review previous explanations for the benefits of HRL and propose an initial algorithm that
seeks to capture these benefits in a flat policy, but find that it still fails to close the performance gap
to Hierarchical Implicit Q-Learning (Park et al., 2023, HIQL), a state-of-the art method. We then
identify an additional practical benefit of hierarchical training schemes and show how HIQL exploits
this from a policy bootstrapping perspective.

4.1 Hierarchies in online and offline GCRL

Previous investigations into the benefits of hierarchical RL in the online setting attribute their success
to improved exploration (Jong et al., 2008) and training value functions with multi-step rewards
(Nachum et al., 2019). They demonstrate that augmenting non-hierarchical agents in this manner
can largely close the performance gap to hierarchical policies. However, the superior performance of
hierarchical methods in the offline GCRL setting, where there is no exploration, calls this conventional
wisdom into question.

HIQL is a state-of-the-art hierarchical offline GCRL method that extracts a high-level policy over
subgoals and a low-level policy over primitive actions from a single goal-conditioned value function
trained using standard one-step temporal difference learning. HIQL achieves significant performance
gains across a number of complex, long-horizon navigation tasks purely through improvement on
the policy extraction side, without needing multi-step rewards to train the value function as done in
Nachum et al. (2019). While this does not preclude the potential benefits of multi-step rewards for
offline GCRL, it does demonstrate that the advantages of hierarchies are not limited to temporally
extended value learning, in line with previous claims that the primary bottleneck in offline RL is
policy extraction and not value learning (Park et al., 2024b).

4.2 Value signal-to-noise ratio in offline GCRL

Instead, HIQL addresses a separate “signal-to-noise ratio” (SNR) issue in value functions conditioned
on distant goals, where a combination of sparse rewards and discounting makes it nearly impossible
to accurately determine the advantage of one primitive action over another with respect to distant
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goals. By separating policy extraction into two levels, the low-level actor can instead evaluate the
relative advantage of actions with respect to nearby subgoals and the high-level policy can utilize
multi-step advantage estimates to get a clearer learning signal with respect to distant goals.

To test whether improved SNR in advantage estimates with respect to distant goals is indeed the key to
HIQL’s superior performance, we propose to utilize subgoals to directly improve advantage estimates
in a simple baseline method we term goal-conditioned waypoint advantage estimation (GCWAE).
Briefly, we use the advantage of actions with respect to subgoals generated by a high-level policy as
an estimator of the undiscounted advantage with respect to the true goal

Ã(st, at, g) ≈ A (st, at, w) , (4)

where w ∼ πhsg(w | st, g) is a subgoal sampled from a high-level policy πh, and the sg subscript
indicates a stop-gradient operator. Apart from using this advantage to directly train a flat pol-
icy with AWR, we use the same architectures, sampling distributions, and training objective for
πh as HIQL. Despite large gains over one-step policy learning objectives in several navigation
tasks, GCWAE still underperforms its hierarchical counterpart, achieving a 75% success rate on
antmaze-large-navigate compared to 90% for HIQL without subgoal representations and
16% for GCIVL with AWR [Appendix H].

4.3 It’s easier to find good (dataset) actions for closer goals

While diagnosing this discrepancy, we observed that training statistics for the two methods were
largely identical except for a striking difference in the mean action advantage A(st, at, w). The
advantage was significantly lower for GCWAE, which samples “imagined” subgoals w ∼ πh(· | s, g)
from a high-level policy, than HIQL, which samples directly from the k-step future state distribution
w ∼ pD(st+k | st) of the dataset [Appendix H]. This hints at an obvious but important benefit
of training on real trajectories: in most cases, dataset actions are simply better with respect to
subgoals sampled from the same trajectory than “imagined” subgoals generated by a high-level policy.
Similarly, the dataset is far more likely to contain high-advantage actions for goals sampled at the ends
of short subsequences, whereas optimal state-action pairs for more distant goals along the trajectory
are much rarer, due to the combinatorial explosion of possible goal states as the goal-sampling
horizon increases.

The practical benefits of being able to easily sample high-advantage state-action-goal tuples are
hinted at in Park et al. (2024a), who pose the question “Why can’t we use random goals when training
policies?” after finding that offline GCRL algorithms empirically perform better when only sampling
(policy) goals from future states in the same trajectory as the initial state. While their comparison
focuses on in-trajectory versus random goals instead of nearer versus farther in-trajectory goals, we
hypothesize both observations are driven by similar explanations.

4.4 Hierarchies perform test-time policy bootstrapping

Our observations suggest that training policies on nearby goals benefits both from better value SNR
in advantage estimates and the ease of sampling good state-action-goal combinations. For brevity,
we will refer to such policies trained only on goals of a restricted horizon length as “subpolicies,”
denoted by πsub and analogous to the low-level policies πℓ in hierarchies. The remainder of this
work seeks to answer the question: how do hierarchical methods take advantage of the relative ease
of training subpolicies to reach distant goals, and can we use similar strategies to train flat policies?

HIQL separately trains a low-level subpolicy on goals sampled from states at most k steps into the
future, reaping all the benefits of policy training with nearby goals. Similar to other goal-conditioned
hierarchical methods (Nachum et al., 2018; Levy et al., 2018), it then uses the high-level policy to
predict optimal subgoals between the current state and the goal at test time, and “bootstraps” by using
the subgoal-conditioned action distribution as an estimate for the full goal-conditioned policy.
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5 Subgoal Advantage-Weighted Policy Bootstrapping

We now seek to unify the above insights into an objective to learn a single, flat goal-reaching
policy without the additional complexity of HRL. Following the bootstrapping perspective, a direct
analogue to hierarchies would use the subpolicy to construct training targets, regressing the full goal-
conditioned policy towards a target subpolicy πsub conditioned on the output of a subgoal generator
πsub

(
a | s, πh(w | s, g)

)
. This approach, taken by RIS [Figure 1], still inherits the full complexity

of hierarchical policies and then some: it requires learning a subgoal generator, a subpolicy, and an
additional flat policy.

5.1 Hierarchical RL as inference

To eliminate this additional machinery, we adopt the view of GCRL as probabilistic inference (Levine,
2018). In this framing, the bilevel objectives for HIQL’s hierarchical policy and the KL bootstrapping
term for RIS’s flat policy can be derived from the same inference problem with different choices
of variational posterior. Our main insight is that the expectation over generated subgoals can be
expressed as an expectation over the dataset distribution with an advantage-based importance weight,
yielding our SAW objective. We present an abridged version below and leave the full derivation to
Supplementary Section D.

Similar to previous work (Abdolmaleki et al., 2018), we cast the infinite-horizon, discounted
GCRL formulation as an inference problem by constructing a probabilistic model via the like-
lihood function p (U = 1 | τ, {w}, g) ∝ exp (β

∑∞
t=0 γ

tA (st, wt, g)), where the binary variable
U can be interpreted as the event of reaching the goal g as quickly as possible from state
st by passing through subgoal state w. The subgoal advantage is defined as A(st, w, g) =

−V (st, g) + γkV (w, g) +
∑k−1
t′=t r(st′ , g). In practice, we follow HIQL and simplify the advantage

estimate to V (w, g)− V (st, g), i.e., the progress towards the goal achieved by reaching w.

Without loss of generality (since we can represent any flat Markovian policy simply by setting
πh(· | s, g) to a point distribution on g), we use an inductive bias on the subgoal structure of GCRL
to consider policies π of a factored hierarchical form

pπ(τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πℓ(at | st, wt)πh(wt | st, g).

The distinctions between hierarchical approaches like HIQL and non-hierarchical approaches such
as RIS and SAW begin with our choice of variational posterior. For the former, we would consider
similarly factored distributions, whereas for the latter, we use a flat posterior qf (τ | g) that factors as

qf (τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)qf (at | st, g),

assuming that the dataset policies are Markovian. We also introduce a variational posterior qh({w} |
g) which factors over a sequence of waypoints {w} = {w0, w1, . . .} as

qh({w} | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πsub(at | st, wt)qh(wt | st, g).

where we treat the target subpolicy πsub as fixed. Using these definitions, we define the evidence
lower bound (ELBO) on the optimality likelihood pπ(U = 1) for policy π and goal distribution p(g)

log pπ(U = 1) = log

∫
p(g)pπ(τ, {w} | g)p(U = 1 | τ, {w}, g)d{w} dτ dg

≥ Eqf (τ |g),qh({w}|g),p(g) log

[
p(U = 1, τ, {w} | g)
qf (τ | g)qh({w} | g)

]
= J (q, π).
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Algorithm 1 Subgoal Advantage-Weighted Policy Bootstrapping (SAW)
1: Input: offline dataset D, goal distribution p(g).
2: Initialize value function Vϕ, target subpolicy πψ , and policy πθ.
3: while not converged do
4: Train value function: ϕ← ϕ− λ∇ϕLGCIVL(ϕ) with (st, st+1) ∼ pD, g ∼ p(g) [Equation 2]
5: end while
6: while not converged do
7: Train target subpolicy: ω ← ω − λ∇ωJAWR(ω) with (st, a, w) ∼ pD [Equation 3]
8: end while
9: while not converged do

10: Train policy: θ ← θ − λ∇θJSAW(θ) with (st, a, w) ∼ pD, g ∼ p(g) [Equation 7]
11: end while

Here, qf and qh serve as auxiliary distributions that allow us to optimize their corresponding
parametric policies πθ and πh via an iterative expectation-maximization (EM) procedure. Expanding
distributions according to their factorizations, dropping terms that are independent of the variationals,
and rewriting the discounted sum over time as an expectation over the (unnormalized) discounted
stationary state distribution µπ(s) =

∑∞
t=0 γ

tp(st = s | π) results in the final objective

J (q, π) = Eµ(s),p(g)
[
Eqh(w|s,g) [A(s, w, g)]− Eqf (a|s,g)

[
DKL(q

h(w | s, g)∥πh(w | s, g))
]

− Eqh(w|s,g)
[
DKL(q

f (a | s, g)∥πℓ(a | s, w))
] ]
, (5)

where we optimize an approximation ofJ by sampling from the dataset distribution µD(s) (Schulman
et al., 2015; Abdolmaleki et al., 2018; Peng et al., 2019).

5.2 Eliminating the subgoal generator

Both RIS and HIQL iteratively minimize the KL divergence between the parametric generative model
πhψ(w | s, g) and the optimal sample-based distribution qh(w | s, g) ∝ πhψ(w | s, g) exp(A(s, w, g)),
which is the closed-form solution to the first line of Equation 5. Then, RIS trains a flat policy πθ using
the remaining KL divergence term in the second line of Equation 5, which minimizes the divergence
between the flat goal-conditioned policy posterior qf and the subgoal-conditioned policy πℓ, in
expectation over subgoals sampled from πψ , which approximates the optimal subgoal distribution qh.

Instead of learning a generative model over the potentially high-dimensional space of subgoals, we
can directly estimate this expectation from dataset samples using a simple application of Bayes’ rule:

p(w | s, g, U = 1) ∝ pD(w | s)p(U = 1 | s, w, g)
∝ pD(w | s) exp(A(s, w, g)),

which replaces the expectation over q to yield our subgoal advantage-weighted bootstrapping term

Eµ(s),pD(w|s),p(g)[exp(A(s, w, g))DKL(πθ(a | s, g)∥πℓ(a | s, w))]. (6)

We learn an approximation to πℓ(a | s, w) by training a separate (sub)goal-conditioned policy with
AWR in a similar fashion to HIQL, whereas RIS uses an exponential moving average of the parameters
of its full goal-conditioned policy as a target. Since our regression target is a parametric distribution,
this conveniently allows us to directly model qf with another parametric policy πθ(a | s, g).

While approximating p(w | s, U = 1) with q directly and using our importance weight on the dataset
distribution are mathematically equivalent, the latter does introduce sampling-based limitations,
which we discuss in Appendix A. However, we show empirically that the benefits from lifting the
burden of learning a distribution over a high-dimensional subgoal space far outweigh these drawbacks,
especially in large state spaces with high intrinsic dimensionality.
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Figure 2: OGBench tasks. We train SAW on 20 datasets collected from 7 different environments
(pictured above) and perform evaluations across 5 state-goal pairs for each dataset.

5.3 The SAW objective

The importance weight in Equation 6 allows the policy to bootstrap from subgoals sampled directly
from dataset trajectories by ensuring that only subpolicies conditioned on high-advantage subgoals
influence the direction of the goal-conditioned policy. We combine our bootstrapping term with an
additional learning signal from a (one-step) policy extraction objective utilizing the value function,
which improves performance in stitching-heavy environments [Supplementary Section I]. Here, we
use one-step AWR [Equation 3], yielding the full SAW objective:

J (θ) = EpD(s,a,w),p(g)

[
eαA(s,a,g) log πθ(a | s, g)− eβA(s,w,g)DKL

(
πθ(a | s, g)∥πsub(a | s, w)

)]
(7)

where α and β are inverse temperature hyperparameters. This objective provides a convenient
dynamic balance between its two terms: as the goal horizon increases, the differences in action values
and therefore the contribution of one-step term decreases. This, in turn, downweights the noisier
value-based learning signal and shifts emphasis toward the policy bootstrapping term. Finally, we use
GCIVL to learn V , resulting in the full training scheme outlined in Algorithm 1.

6 Experiments

To assess SAW’s ability to reason over long horizons and handle high-dimensional observations, we
conduct experiments across 20 datasets corresponding to 7 locomotion and manipulation environments
[Figure 2] with both state- and pixel-based observation spaces. We report performance averaged over
5 state-goal pairs for each dataset, yielding 100 total evaluation tasks. Implementation details and
hyperparameter settings are discussed in Supplementary Sections F and G, respectively.

6.1 Experimental setup

We select several environments and their corresponding datasets from the recently released OGBench
suite (Park et al., 2024a), a comprehensive benchmark specifically designed for offline GCRL.
OGBench provides multiple state-goal pairs for evaluation and datasets tailored to evaluate desirable
properties of offline GCRL algorithms, such as the ability to reason over long horizons and stitch
across multiple trajectories or combinatorial goal sequences. We use the baselines from the original
OGBench paper, which include both one-step and hierarchical state-of-the-art offline GCRL methods.
We briefly describe each category of tasks below and baseline algorithms in Appendix C, and
encourage readers to refer to original OGBench work for further details.

Locomotion: Locomotion tasks require the agent to control a simulated robot to navigate through a
maze and reach a designated goal. The agent embodiment varies from a simple 2D point mass with
two-dimensional action and observation spaces to a humanoid robot with 21 degrees of freedom and
a 69-dimensional state space. In the visual variants, the agent receives a third-person, egocentric
64× 64× 3 pixel-based observations, with its location within the maze indicated by the floor color.
Maze layouts range from medium to giant, where tasks in the humanoidmaze version of the
latter require up to 3000 environment steps to complete.

https://github.com/seohongpark/ogbench
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Environment Dataset GCBC GCIVL GCIQL QRL CRL HIQL SAW

pointmaze
pointmaze-medium-navigate-v0 9 ±6 63 ±6 53 ±8 82 ±5 29 ±7 79 ±5 97 ±2

pointmaze-large-navigate-v0 29 ±6 45 ±5 34 ±3 86 ±9 39 ±7 58 ±5 85 ±10

pointmaze-giant-navigate-v0 1 ±2 0 ±0 0 ±0 68 ±7 27 ±10 46 ±9 68 ±8

antmaze
antmaze-medium-navigate-v0 29 ±4 72 ±8 71 ±4 88 ±3 95 ±1 96 ±1 97 ±1

antmaze-large-navigate-v0 24 ±2 16 ±5 34 ±4 75 ±6 83 ±4 91 ±2 90 ±3

antmaze-giant-navigate-v0 0 ±0 0 ±0 0 ±0 14 ±3 16 ±3 65 ±5 73 ±4

humanoidmaze
humanoidmaze-medium-navigate-v0 8 ±2 24 ±2 27 ±2 21 ±8 60 ±4 89 ±2 88 ±3

humanoidmaze-large-navigate-v0 1 ±0 2 ±1 2 ±1 5 ±1 24 ±4 49 ±4 46 ±4

humanoidmaze-giant-navigate-v0 0 ±0 0 ±0 0 ±0 1 ±0 3 ±2 12 ±4 35 ±4

cube
cube-single-play-v0 6 ±2 53 ±4 68 ±6 5 ±1 19 ±2 15 ±3 72∗

±5

cube-double-play-v0 1 ±1 36 ±3 40 ±5 1 ±0 10 ±2 6 ±2 40 ±7

cube-triple-play-v0 1 ±1 1 ±0 3 ±1 0 ±0 4 ±1 3 ±1 4 ±2

scene scene-play-v0 5 ±1 42 ±4 51 ±4 5 ±1 19 ±2 38 ±3 63 ±6

visual-antmaze
visual-antmaze-medium-navigate-v0 11 ±2 22 ±2 11 ±1 0 ±0 94 ±1 93 ±4 95 ±0

visual-antmaze-large-navigate-v0 4 ±0 5 ±1 4 ±1 0 ±0 84 ±1 53 ±9 82 ±4

visual-antmaze-giant-navigate-v0 0 ±0 1 ±1 0 ±0 0 ±0 47 ±2 6 ±4 10 ±2

visual-cube
visual-cube-single-play-v0 5 ±1 60 ±5 30 ±5 41 ±15 31 ±15 89 ±0 88 ±3

visual-cube-double-play-v0 1 ±1 10 ±2 1 ±1 5 ±0 2 ±1 39 ±2 40 ±3

visual-cube-triple-play-v0 15 ±2 14 ±2 15 ±1 16 ±1 17 ±2 21 ±0 20 ±1

visual-scene visual-scene-play-v0 12 ±2 25 ±3 12 ±2 10 ±1 11 ±2 49 ±4 47 ±6

Table 1: Evaluating SAW on state- and pixel-based offline goal-conditioned RL tasks. We compare our method’s average
(binary) success rate (%) against the numbers reported in Park et al. (2024a) across the five test-time goals for each environment,
averaged over 8 seeds (4 seeds for pixel-based visual tasks) with standard deviations after the ± sign. Numbers within
5% of the best value in the row are in bold. Results with an asterisk (∗) use different value learning hyperparameters and are
discussed further in Section 6.3.

Manipulation: Manipulation tasks use a 6-DoF UR5e robot arm to manipulate object(s), including
up to four cubes and a more diverse scene environment that includes buttons, windows, and drawers.
The multi-cube and scene environments are designed to test an agent’s ability to perform sequential,
long-horizon goal stitching and compose together multiple atomic behaviors. The visual variants
replace the ground truth state with a 64× 64× 3 pixel-based observation from a fixed third-person
perspective, where parts of the environment and arm are made semitransparent to ease state estimation.

6.2 Locomotion results

State-based locomotion: As a method designed for long-horizon reasoning, SAW excels in all
variants of the state-based locomotion tasks. It scales particularly well to long horizons, exhibiting
the best performance of 73% across all tasks in antmaze-giant-navigate and is the first
method to achieve non-trivial success in humanoidmaze-giant-navigate, reaching 35%
success compared to the previous state-of-the-art of 12% (Park et al., 2024a). We demonstrate that
training subpolicies with subgoal representations scales poorly to the giant maze environments
[Figure 3] but are critical to HIQL’s performance, emphasizing a fundamental tradeoff in hierarchical
methods: subgoal representations are essential for making high-level policy prediction tractable, but
those same representations can constrain policy expressiveness and limit overall performance. While
other subgoal representation learning objectives may perform better than those derived from the
value function, as in HIQL, this highlights the additional design complexity and tuning required for
HRL methods. We also implement an offline variant of RIS [Appendix C] and find that it performs
significantly worse than SAW with subgoal representations, which we suspect can be explained by
our insights in Section 4.3.

Pixel-based locomotion: SAW maintains strong performance when given 64 × 64 × 3 visual
observations and scales much better to visual-antmaze-large than does its hierarchical
counterpart. However, we do see a significant performance drop in the giant variant relative to
the results in the state-based observation space. As a possible explanation for this discrepancy, we
observed that value function training diverged for HIQL and SAW in visual-antmaze-giant
as well as all visual-humanoidmaze sizes (omitted since no method achieved non-trivial
performance). This occurred even without shared policy gradients, suggesting that additional work is
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Figure 3: Subgoal representations scale poorly to high-dimensional control in large state spaces.
Using HIQL’s subgoal representations (taken from an intermediate layer of the value function) for
SAW’s target subpolicy harms performance compared to training directly on observations. However,
HIQL fails to learn meaningful behaviors when predicting subgoals directly in the raw observation
space. RIS, which bootstraps on generated subgoals at every step, performs the worst of the three.

needed to scale offline value learning objectives to very long-horizon tasks with high-dimensional
visual observations.

6.3 Manipulation results

State-based manipulation: SAW consistently matches state-of-the-art performance in cube environ-
ments and significantly outperforms existing methods in the 5 scene tasks, which require extended
compositional reasoning. Interestingly, we found that methods which use expectile regression-based
offline value learning methods (GCIVL, GCIQL, HIQL, and SAW) are highly sensitive to value learn-
ing hyperparameters in the cube-single environment. Indeed, SAW performs more than twice as
well on cube-single-play-v0 with settings of τ = 0.9 and β = 0.3, reaching state-of-the-art
performance (72% ±5 vs. 32% ±4 with τ = 0.7). While SAW is agnostic to the choice of value
learning objective, we make special mention of these changes since they depart from the OGBench
convention of fixing value learning hyperparameters for each method across all datasets.

Pixel-based manipulation: In contrast to the state-based environments, SAW and HIQL achieve
near-equivalent performance in visual manipulation. This suggests that representation learning, and
not long-horizon reasoning or goal stitching, is the primary bottleneck in the visual manipulation
environments. While we do not claim any representation learning innovations for this paper, our
results nonetheless demonstrate that SAW is able to utilize similar encoder-sharing tricks as HIQL to
scale to high-dimensional observation spaces.

7 Discussion

We presented Subgoal Advantage-Weighted Policy Bootstrapping (SAW), a simple yet effective
policy extraction objective that leverages the subgoal structure of goal-conditioned tasks to scale
to long-horizon tasks, without learning generative subgoal models. SAW consistently matches or
surpasses current state-of-the-art methods across a wide variety of locomotion and manipulation tasks
that require different timescales of control, whereas existing methods tend to specialize in particular
task categories. Our method especially distinguishes itself in long-horizon reasoning, excelling in the
most difficult locomotion tasks and scene-based manipulation. While the simplicity of our objective
does introduce some practical limitations related to subgoal sampling, which we discuss in Appendix
A, we find that avoiding explicit subgoal prediction is crucial for maintaining performance in large
state spaces. By demonstrating a scalable approach to train unified policies for offline GCRL, we
believe that SAW takes a step toward realizing the full potential of robotic foundation models in
addressing the long-horizon, high-dimensional challenges of real-world control.
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A Limitations

A theoretical limitation of our approach, which is common to all hierarchical methods as well
as RIS, occurs in our assumption that the optimal policy can be represented in the factored form
πℓ(a | s, w)πh(w | s, g). While this is true in theory (since we could trivially set πh(w | s, g) to a
point distribution at g), practical algorithms typically fix the distance of the subgoals to a shorter
distance of k steps (or the midpoint in RIS), where subgoals st+k are sampled from the future state
distribution pDtraj(st+k | st). This introduces bias by limiting the space of subgoals to the support of
the dataset k-step distribution, when more optimal subgoals can be proposed by taking into account
policy improvement over the data collection policy. However, as discussed in Section 4.3, we find that
subgoals sampled from the future state distribution work empirically well with respect to goals also
sampled from the future state distribution, which is common in practice (Gupta et al., 2020; Ghosh
et al., 2020; Yang et al., 2021; Eysenbach et al., 2022; Park et al., 2023). We suspect that subgoal
generator-based methods may perform better in datasets that require a high degree of stitching:
they can synthesize “imagined” subgoals on which to bootstrap, while our approach may require
alternative subgoal-sampling strategies to reach the same level of performance.

B Planning Invariance

As an aside, we note that the discussions in this paper are closely related to the recently introduced
concept of planning invariance (Myers et al., 2024), which describes a policy that takes similar
actions when directed towards a goal as when directed towards an intermediate waypoint en route
to that goal. In fact, we can say that subgoal-conditioned HRL methods achieve a form of planning
invariance by construction, since they simply use the actions yielded by waypoint-conditioned policies
to reach further goals. By minimizing the divergence between the full goal-conditioned policy and an
associated subgoal-conditioned policy, both SAW and RIS can also be seen as implicitly enforcing
planning invariance.

C Offline GCRL Baseline Algorithms

In this section, we briefly review the baseline algorithms referenced in Table 1. For more thorough
implementation details, as well as goal-sampling distributions, interested readers may refer to
Appendix C of Park et al. (2024a) as well as the original works.

Goal-conditioned behavioral cloning (GCBC): GCBC is an imitation learning approach that clones
behaviors using hindsight goal relabeling on future states in the same trajectory.

Goal-conditioned implicit {Q, V}-learning (GCIQL & GCIVL): GCIQL is a goal-conditioned
variant of implicit Q-learning (Kostrikov et al., 2021), which performs policy iteration with an
expectile regression to avoid querying the learned Q-value function for out-of-distribution actions.
Park et al. (2023) introduced a V -only variant that directly regresses towards high-value transitions
[Equation 2], using r(s, g)+γV̄ (s′, g) as an estimator ofQ(s, a, g). Since it does not learn Q-values
and therefore cannot marginalize over non-causal factors, it is optimistically biased in stochastic
environments.

Although both baselines are value learning methods that can be used with multiple policy extraction
objectives (including our own, which uses GCIVL), the OGBench implementations are paired with
following objectives: Deep Deterministic Policy Gradient with a behavior cloning penalty term
(Fujimoto & Gu, 2021, DDPG+BC) for GCIQL, and AWR [Equation 3] for GCIVL.

Quasimetric RL (QRL): QRL (Wang et al., 2023) is a non-traditional value learning algorithm that
uses Interval Quasimetric Embeddings (Wang & Isola, 2022, IQE) to enforce quasimetric properties
(namely, the triangle inequality and identity of indiscernibles) of the goal-conditioned value function
on distances between representations. It uses a constrained “maximal spreading” objective to estimate
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the shortest paths between states, then learns a one-step dynamics model combined with DDPG+BC
to extract a policy from the learned representations.

Contrastive RL (CRL): CRL (Eysenbach et al., 2022) is a representation learning algorithm which
uses contrastive learning to enforce that the inner product between the learned representations of a
state-action pair and the goal state corresponds to the discounted future state occupancy measure of
the goal state, which is estimated directly from data using Monte Carlo sampling. CRL then performs
one-step policy improvement by choosing actions that maximize the future occupancy of the desired
goal state.

Hierarchical implicit Q-learning (HIQL): HIQL (Park et al., 2023) is a policy extraction method
that learns two levels of hierarchical policy from the same goal-conditioned value function. The
low-level policy πℓ is trained using standard AWR, and the high-level policy πh is trained using an
action-free, multi-step variant of AWR that treats (latent) subgoal states as “actions.”

Reinforcement learning with imagined subgoals (RIS): RIS (Chane-Sane et al., 2021) is a policy
extraction method originally designed for the online GCRL setting, which learns a subgoal generator
and a flat, goal-conditioned policy. Unlike SAW, RIS uses a fixed coefficient on the KL term, instead
learning a subgoal generator and bootstrapping directly on a target policy (parameterized by an
exponential moving average of online policy parameters rather than a separately learned subpolicy)
conditioned on “imagined” subgoals. It also incorporates a value-based policy learning objective
similar to our approach, but learns a Q-function and differentiates directly through the policy with
DDPG.

To modify RIS for the offline setting in our implementation for Figure 3, we fixed the coefficient
on the KL term to β = 3.0, trained a subgoal generator identical to the one in HIQL, and replaced
the dataset subgoals in SAW with “imagined” subgoals. Otherwise, for fairness of comparison, our
offline RIS implementation used the same hyperparameters and architectures as SAW, including a
separate target subpolicy network instead of a soft copy of the online policy, subgoals at a fixed
distance instead of at midpoints, and AWR instead of DDPG+BC for the policy extraction objective,
which we found to perform better in locomotion environments.
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layer networks for self-supervised RL: Scaling depth can enable new goal-reaching capabilities.
arXiv, 2503.14858 [cs], 2025.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning,
2020.

Tongzhou Wang and Phillip Isola. Improved representation of asymmetrical distances with in-
terval quasimetric embeddings. In NeurIPS Workshop on Symmetry and Geometry in Neural
Representations, 2022.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching rein-
forcement learning via quasimetric learning. In International Conference on Machine Learning,
2023.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline RL. In
International Conference on Learning Representations, 2021.

Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential
for unseen goal generalization of offline goal-conditioned RL? In International Conference on
Machine Learning, 2023.

Michał Zawalski, Michał Tyrolski, Konrad Czechowski, Tomasz Odrzygóźdź, Damian Stachura,
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Supplementary Materials
The following content was not necessarily subject to peer review.

D Derivations of HIQL, RIS, and SAW Objectives

We cast the infinite-horizon, discounted GCRL formulation as an inference problem by constructing
a probabilistic model via the likelihood function

p (Ut = 1 | τ, {w}, g) ∝ exp

(
β

∞∑
t=0

γtA (st, wt, g)

)
,

where β is an inverse temperature parameter and the binary variable U can be intuitively understood
as the event of reaching the goal g as quickly as possible by passing through a subgoal w, or passing
through a subgoal w which is on the shortest path between st and g.

We consider policies πℓ and πh of a factored hierarchical form

pπ(τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πℓθ(a | st, wt)πhψ(wt | st, g).

where the low-level policy over actions πℓ and high-level policy over subgoals πh are parameterized
by θ and ψ, respectively. However, for the sake of clarity, we drop the parameters from the notation
in the following derivations.

D.1 HIQL derivation

For HIQL’s hierarchical policy, we use variational posteriors qℓ and qh of the same form

q(τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at) qℓ(at | st, wt) qh(wt | st, g).

To incorporate training of the low-level policy, we also construct an additional probabilistic model
for the optimality of primitive actions towards a waypoint w (note that this can also be done to
incorporate target policy training into the SAW objective, but we leave it out for brevity)

p (Ot = 1 | τ, {w}) ∝ exp

(
α

∞∑
t=0

γtA (st, at, wt)

)
.

With these definitions, we define the evidence lower bound (ELBO) on the joint optimality likelihood
pπ(O = 1, U = 1) for policy π and posterior q as
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log pπ(O = 1, U = 1) = log

∫
p(g) p(O = 1, U = 1, τ, {w} | g)d{w} dτ dg

= log

∫
p(g)qℓ(τ | g)qh({w} | g)p(O = 1, U = 1, τ, {w} | g)

qℓ(τ | g) qh({w} | g)
d{w} dτ dg

= logEqℓ(τ |g),qh({w}|g),p(g)

[
p(O = 1, U = 1, τ, {w} | g)

qℓ(τ | g)qh({w} | g)

]
≥ Eqℓ(τ |g),qh({w}|g),p(g) log

[
p(O = 1, U = 1, τ, {w} | g)

qℓ(τ | g)qh({w} | g)

]
= J (q, π).

Expanding the fraction, moving the log inside, and dropping the start state distribution p(s0) and
transition distributions p(st+1 | st, at), which are fixed with respect to θ and ψ, gives us

Eqℓ(τ |g), qh({w}|g), p(g)

[
α

∞∑
t=0

γtA(st, at, wt) + β

∞∑
t=0

γtA(st, wt, g)

+

∞∑
t=0

log

(
πℓ(at | st, wt)πh(wt | st, g)
qℓ(at | st, g) qh(wt | st, g)

)]

We rewrite the discounted sum over time as an expectation over the (unnormalized) discounted
stationary state distribution µπ(s) =

∑∞
t=0 γ

tp(st = s | π) induced by policy π. In practice, however,
we optimize an approximation of J (q, θ, ψ) by sampling from the dataset distribution over states µD.
For brevity, we omit the conditionals in the expectations below, defining qℓ(a) := qℓ(a | s, g) and
qh(w) := qh(w | s, g) in the expectations below

Eµ(s),qℓ(a),qh(w),p(g)

[
αA(s, a, w) + log

[
πℓ(a | s, w)
qℓ(a | s, w)

]]
+ Eµ(s),qh(w),p(g)

[
βA(s, w, g) + log

[
πh(w | s, g)
qh(w | s, g)

]]
= Eµ(s),qℓ(a),qh(w),p(g) [αA(s, a, w)]− Eµ(s),qh(w),p(g)

[
DKL

[
qℓ(a | s, w)∥πℓ(a | s, w)

]]
+ Eµ(s),qh(w),p(g) [βA(s, w, g)]− Eµ(s),p(g)

[
DKL

[
qh(w | s, g)∥πh(w | s, g)

]]
. (8)

HIQL separately optimizes the two summation terms, which correspond to the low- and high-level
policies, respectively. Forming the Lagrangian with the normalization condition and solving for the
optimal low- and high-level policies, as done in Abdolmaleki et al. (2018) and Peng et al. (2019),
yields the optimal sample-based qℓ and qh distributions:

qℓ(a | s, g) ∝ πℓ(a | s, w) exp(A(s, a, w))
qh(a | s, g) ∝ πh(w | s, g) exp(A(s, w, g)).

Minimizing the KL divergence between the optimal (non-parametric) posteriors and their respective
parametric policies πℓθ and πhψ yields the bilevel AWR policy extraction objectives for HIQL

J ℓ(θ) = Eµ(s),qℓ(a),qh(w),p(g)

[
exp(A(s, a, w)) log πℓθ(a | s, w)

]
J h(ψ) = Eµ(s),qh(w),p(g)

[
exp(A(s, w, g)) log πhψ(w | s, g)

]
.
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While our derivation produces an on-policy expectation over actions and subgoals, the sampling
distribution over states, actions, subgoals, and goals in the offline setting varies in practice (see
Appendix C of Park et al. (2024a) for commonly used goal distributions).

D.2 RIS and SAW derivations

Unlike HIQL, RIS and SAW both seek to learn a unified flat policy, and therefore we choose a policy
posterior qf (τ) that factors as

qf (τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)qf (at | st, g).

For RIS, which learns a generative subgoal policy identical to that of HIQL, we also use the same
variational posterior qh which factors over a sequence of waypoints {w} = {w0, w1, . . .} as

qh({w} | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πsub(at | st, wt)qh(wt | st, g).

Rather than jointly learning low- and high-level policies, RIS bootstraps from a target subpolicy πsub,
which is treated as fixed. Using these definitions, we define the evidence lower bound (ELBO) on the
likelihood of subgoal optimality pπ(U = 1) for policy π

log pπ(U = 1) = log

∫
p(g)p(U = 1, τ, {w} | g)dτd{w}dg

= log

∫
p(g)qf (τ | g)qh({w} | g) p(U = 1, τ, {w} | g)

qf (τ | g)qh({w} | g)
d{w} dτ dg

= logEqf (τ |g),qh({w}|g),p(g)

[
p(U = 1, τ, {w} | g)
qf (τ | g)qh({w} | g)

]
≥ Eqf (τ |g),qh({w}|g),p(g) log

[
p(U = 1, τ, {w} | g)
qf (τ | g)qh({w} | g)

]
= J (q, π).

Expanding the fraction, moving the log inside, and dropping the start state distribution p(s0), transi-
tion distributions p(st+1 | st, at), and target subpolicy πsub(at | st, wt), which are fixed with respect
to the variationals, leaves us with

Eqf (τ |g), qh({w}|g), p(g)

[
β

∞∑
t=0

γtA(st, wt, g) +

∞∑
t=0

log

[
πℓ(at | st, wt)πh(wt | st, g)
qf (at | st, g) qh(wt | st, g)

]]

Once again, we express the discounted sum over time as an expectation over the discounted stationary
state distribution µ(s) and omit the conditionals in the expectation over qf (a) and qh(w) for brevity.
Simplifying gives us

Eµ(s),qf (a),qh(w), p(g)

[
βA(s, w, g) + log

[
πh(w | s, g)
qh(w | s, g)

]
+ log

[
πℓ(a | s, w)
qf (a | s, g)

]]
= Eµ(s),qh(w), p(g) [βA(s, w, g)]− Eµ(s), p(g)

[
DKL

(
qh(w | s, g)∥πh (w | s, g)

)]
+ Eµ(s),qh(w), p(g)

[
DKL

(
qf (a | s, g) ∥πℓ (a | s, w)

)]
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RIS: RIS partitions this objective into two parts and optimizes them separately. The first line is
identical to the HIQL high-level policy objective and yields the same AWR-like objective for a
parametric generative subgoal policy πhψ .

J h(ψ) = Eµ(s),qh(w),p(g)

[
exp(A(s, w, g)) log πhψ(w | s, g)

]
.

The remaining KL divergence term seeks to minimize the divergence between the flat goal-conditioned
policy posterior qf and the subgoal-conditioned policy πℓ(a | s, w), which is fit separately with the
target subpolicy πsub(a | s, w) from earlier. Importantly, because πsub(a | s, w) is (presumably) a
parametric distribution, we can directly optimize the KL divergence in the space of policies with
another parametric policy πθ(a | s, g), yielding the final bootstrapping objective

J f (θ) = Eµ(s),qh(w), p(g)[DKL(πθ(a | s, g)∥πsub(a | s, w))].

This divergence is minimized in expectation over optimal subgoals qh(w | s, g), which in turn is
approximated by the parametric subgoal policy πhψ(w | s, g).

SAW: Instead of fitting a generative model qh(w | s, g) over the potentially high-dimensional space
of subgoals, we can use a simple application of Bayes’ rule to directly approximate the expectation
over the optimality-conditioned distribution of subgoals p(w | s, g, U = 1), where

p(w | s, g, U = 1) ∝ pD(w | s)p(U = 1 | s, w, g)
∝ pD(w | s) exp(A(s, w, g)).

Although the proportionality constant in the first line is the pπ(U = 1), which is the subject of
our optimization, we note that approximating the expectation over subgoals w corresponds to the
expectation step in a standard expectation-maximization (EM) procedure (Abdolmaleki et al., 2018).
Because we are only seeking to fit the shape of the optimal variational posterior over subgoals for the
purposes of approximating the expectation over qh, and not maximizing pπ(U = 1) (the M step), we
can treat pπ(U = 1) as constant with respect to qh to get

J f (θ) = Eµ(s),qh(w), p(g)[DKL(πθ(a | s, g)∥πℓ(a | s, w))]

=

∫
µ(s) p(g) qh(w | s)[DKL(πθ(a | s, g)∥πℓ(a | s, w))]dw dg ds

∝
∫
µ(s) p(g) pD(w | s) exp(A(s, w, g))[DKL(πθ(a | s, g)∥πℓ(a | s, w))]dw dg ds

= Eµ(s),pD(w|s),p(g) exp(A(s, w, g))[DKL(πθ(a | s, g)∥πℓ(a | s, w))],

giving us the final subgoal advantage-weighted bootstrapping term in Equation 6.

E Computational Resources

All experiments were conducted on a cluster consisting of Nvidia GeForce RTX 3090 GPUs with 24
GB of VRAM and Nvidia GeForce RTX 3070 GPUs with 8 GB of VRAM. State-based experiments
take around 4 hours to run for the largest environments (humanoidmaze-giant-navigate)
and visual experiments up to 12 hours.
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F Implementation Details

Target policy: While Chane-Sane et al. (2021) use a exponential moving average (EMA) of the
online policy parameters θ as the target policy prior πθ, we instead simply train a smaller policy
network parameterized separately by ψ on (sub)goals sampled from k steps into the future, where k
is a hyperparameter. We find that this leads to faster training and convergence, albeit with a small
increase in computational complexity.

Architecture: During our experiments, we observed that the choice of network architecture for
both the value function and policy networks had a significant impact on performance in several
environments. Instead of taking in the raw concatenated state and goal inputs, HIQL prepends a
subgoal representation module consisting of an additional three-layer MLP followed by a bottleneck
layer of dimension 10 and a length-normalizing layer that projects state-(sub)goal representations to
the surface of a hypersphere with radius equal to the dimension of the input vector. The value and
low-level policy networks receive this representation in place of the goal information, as well as the
raw (in state-based environments) or encoded (in pixel-based environments) state information. We
found that simply adding these additional layers (separately) to the value and actor network encoders
significantly boosted performance in state-based locomotion tasks, with modifications to the former
improving training stability in pointmaze and modifications to the latter being critical for good
performance in the antmaze and humanoidmaze environments.

While we did not perform comprehensive architectural ablations due to computational limitations, we
note that the desirable properties of the unit hypersphere as a representation space are well-studied in
contrastive learning (Wang & Isola, 2020) and preliminary work by Wang et al. (2025) has explored
the benefits of scaling network depth for GCRL (albeit with negative results for the offline setting).
Further studying the properties of representations emerging from these architectural choices may
inform future work in representation learning for offline GCRL.

G Hyperparameters

We find that our method is robust to hyperparameter selection for different horizon lengths and
environment types in locomotion tasks, but is more sensitive to choices of the value learning expectile
parameter τ and the temperature parameter β of the divergence term in manipulation tasks (see
Supplementary Section I for training curves of different β settings). Unless otherwise stated in Table
2, all common hyperparameters are the same as specified in Park et al. (2024a) and state, subgoal,
and goal-sampling distributions are identical to those for HIQL.
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Environment Type Dataset Expectile τ AWR α KLD β Subgoal steps k

pointmaze
pointmaze-medium-navigate-v0 0.7 3.0 3.0 25
pointmaze-large-navigate-v0 0.7 3.0 3.0 25
pointmaze-giant-navigate-v0 0.7 3.0 3.0 25

antmaze
antmaze-medium-navigate-v0 0.7 3.0 3.0 25
antmaze-large-navigate-v0 0.7 3.0 3.0 25
antmaze-giant-navigate-v0 0.7 3.0 3.0 25

humanoidmaze
humanoidmaze-medium-navigate-v0 0.7 3.0 3.0 100
humanoidmaze-large-navigate-v0 0.7 3.0 3.0 100
humanoidmaze-giant-navigate-v0 0.7 3.0 3.0 100

visual-antmaze
visual-antmaze-medium-navigate-v0 0.7 3.0 3.0 25
visual-antmaze-large-navigate-v0 0.7 3.0 3.0 25
visual-antmaze-giant-navigate-v0 0.7 3.0 3.0 25

cube
cube-single-play-v0 0.9 3.0 0.3 10
cube-double-play-v0 0.7 3.0 1.0 10
cube-triple-play-v0 0.7 3.0 1.0 10

scene scene-play-v0 0.7 3.0 1.0 10

visual-cube
visual-cube-single-play-v0 0.7 3.0 3.0 10
visual-cube-double-play-v0 0.7 3.0 3.0 10
visual-cube-triple-play-v0 0.7 3.0 3.0 10

visual-scene visual-scene-play-v0 0.7 3.0 3.0 10

Table 2: SAW hyperparameters. Each cell indicates the hyperparameters for the corresponding
environment and dataset. From left to right, these hyperparameters are: the expectile parameter τ for
GCIVL, the one-step AWR temperature α (used for training both the target and policy networks), the
temperature on the KL divergence term β, and the number of subgoal steps k.
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H Waypoint Advantage Estimation

In this section, we report results for goal-conditioned waypoint advantage estimation (GCWAE),
which uses a subgoal generator to produce an advantage estimator. Our implementation uses the exact
same value and high-level policy training objective and architecture as HIQL, but instead evaluates
the advantage of dataset actions with respect to “imagined” subgoals en route to the goal to provide
a clearer signal for policy learning [Equation 4]. We show that this approach is able to achieve
significantly better performance than its one-step counterpart (GCIVL) in long-horizon locomotion,
but continues to lag in behind HIQL and struggles in manipulation tasks. In our experiments, we found
that all training statistics were nearly identical to those of HIQL, except for the action advantage, as
shown in the figures below.
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Figure 4: Training curves for scene-play, antmaze-large-navigate, and
humanoid-giant-navigate on the left, and the mean one-step advantage over dataset
actions on the right.
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I Ablations

I.1 One-step AWR ablation

We ablate the one-step AWR term in our objective, which is akin to pure distillation from a target
subpolicy. Note that ablating the bootstrapping term simply recovers the GCIVL baseline. We observe
that ablations to the one-step term primarily affect performance in short-horizon, stitching-heavy
manipulation environments. On the other hand, performance is largely unaffected in longer-horizon
manipulation and locomotion tasks, confirming that the bulk of SAW’s performance in more complex
tasks is due to policy bootstrapping rather than the one-step policy extraction signal.
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Figure 5: Training curves for cube-single-play, cube-double-play, scene-play, and
antmaze-large-navigate with one-step ablations.
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I.2 Hyperparameter sensitivity

Here, we investigate SAW’s sensitivity to the β inverse temperature hyperparameter and run different
settings of β ∈ {0.3, 1.0, 3.0, 10.0} across selected state-based environments. We observe a similar
pattern to the one-step AWR ablation experiments, where the simpler manipulation environments are
much more sensitive to hyperparameter settings compared to more complex, long-horizon tasks.
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Figure 6: Training curves for cube-single-play, cube-double-play, scene-play, and
antmaze-large-navigate with different values of β.


