
Flattening Hierarchies with Policy Bootstrapping

Flattening Hierarchies with Policy Bootstrapping

Anonymous authors
Paper under double-blind review

Abstract

Offline goal-conditioned reinforcement learning (GCRL) is a promising approach for1
pretraining generalist policies on large datasets of reward-free trajectories, akin to the2
self-supervised objectives used to train foundation models for computer vision and natu-3
ral language processing. However, scaling GCRL to longer horizons remains challenging4
due to the combination of sparse rewards and discounting, which obscures the com-5
parative advantages of primitive actions with respect to distant goals. Hierarchical RL6
methods achieve strong empirical results on long-horizon goal-reaching tasks, but their7
reliance on modular, timescale-specific policies and subgoal generation introduces signif-8
icant additional complexity and hinders scaling to high-dimensional goal spaces. In this9
work, we introduce an algorithm to train a flat (non-hierarchical) goal-conditioned policy10
by bootstrapping on subgoal-conditioned policies with advantage-weighted importance11
sampling. Our approach eliminates the need for a generative model over the (sub)goal12
space, which we find is key for scaling to high-dimensional control in large state spaces.13
We further show that existing hierarchical and bootstrapping-based approaches corre-14
spond to specific design choices within our derivation. Across a comprehensive suite of15
state- and pixel-based locomotion and manipulation benchmarks, our method matches or16
surpasses state-of-the-art offline GCRL algorithms and scales to complex, long-horizon17
tasks where prior approaches fail.18

1 Introduction19

Goal-conditioned reinforcement learning (GCRL) specifies tasks by desired outcomes, alleviating the20
burden of defining reward functions over the state-space and enabling the training of general policies21
capable of achieving a wide range of goals. Offline GCRL extends this paradigm to leverage existing22
datasets of reward-free trajectories and has been likened to the simple self-supervised objectives that23
have been successful in training foundation models for other areas of machine learning (Yang et al.,24
2023; Park et al., 2024a). However, the conceptual simplicity of GCRL belies practical challenges in25
learning accurate value functions and, consequently, effective policies for goals requiring complex,26
long-horizon behaviors. These limitations call into question its applicability as a general and scalable27
objective for learning foundation policies (Black et al., 2024; Park et al., 2024d; Physical Intelligence28
et al., 2025) that can be efficiently adapted to a diverse array of control tasks.29

Hierarchical reinforcement learning (HRL) is commonly used to address these challenges and is30
particularly well-suited to the recursive subgoal structure of goal-reaching tasks, where reaching31
distant goals entails first passing through intermediate subgoal states. Goal-conditioned HRL exploits32
this structure by learning a hierarchy composed of multiple levels: one or more high-level policies,33
tasked with generating intermediate subgoals between the current state and the goal; and a low-34
level actor, which operates over the primitive action space to achieve the assigned subgoals. These35
approaches have achieved state-of-the-art results in both online (Nachum et al., 2018; Levy et al.,36
2019) and offline GCRL (Park et al., 2024c), and are especially effective in long-horizon tasks.37
However, despite the strong empirical performance of HRL, it suffers from major limitations as a38
scalable pretraining strategy. In particular, the modularity of hierarchical policy architectures, fixed39
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to specific levels of temporal abstraction, precludes unified task representations and necessitates40
learning a generative model over the subgoal space to interface between policy levels.41

Learning to predict intermediate goals in a space that may be as high-dimensional as the raw42
observations poses a difficult generative modeling problem. To ensure that subgoals are physically43
realistic and reachable in the allotted time, previous work often implements additional processing44
and verification of proposed subgoals (Zhang et al., 2020; Hatch et al., 2024; Czechowski et al.,45
2024; Zawalski et al., 2024). An alternative is to instead predict in a compact learned latent subgoal46
space, but simultaneously optimizing subgoal representations and policies results in a nonstationary47
input distribution to the low-level actor, which can slow and destabilize training (Vezhnevets et al.,48
2017; Levy et al., 2019). The choice of objective for learning such representations, ranging from49
autoregressive prediction (Seo et al., 2022; Zeng et al., 2023) to metric learning (Tian et al., 2020;50
Nair et al., 2023; Ma et al., 2023), remains an open question and adds significant complexity to the51
design and tuning of hierarchical methods.52

Following the tantalizing promise that flat, one-step policies can be optimal in fully observable,53
Markovian settings (Puterman, 2005), this work aims to isolate the core advantages of hierarchies54
for offline GCRL and distill them into a simpler training recipe for a single, unified policy. We55
begin our empirical analysis by revisiting a state-of-the-art hierarchical method for offline GCRL56
that significantly outperforms previous approaches on a range of long-horizon goal-reaching tasks.57
Beyond the original explanation based on improved value function signal-to-noise ratio, we find that58
separately training a low-level policy on nearby subgoals improves sampling efficiency. We reframe59
this hierarchical approach as a form of implicit test-time bootstrapping on subgoal-conditioned60
policies, revealing a conceptual connection to earlier methods that learn subgoal generators and61
bootstrap directly from subgoal-conditioned policies to train a flat, unified goal-conditioned policy.62

Building on these insights, we present an inference-based theoretical framework that unifies these63
ideas and yields Subgoal Advantage-Weighted Policy Bootstrapping (SAW), a novel policy64
extraction objective for offline GCRL. SAW uses advantage-weighted importance sampling to65
bootstrap on subgoals sampled directly from data, capturing the long-horizon strengths of hierarchies66
in a single, flat policy without requiring a generative subgoal model. In evaluations across 2067
state- and pixel-based offline GCRL datasets, our method matches or surpasses all baselines in68
diverse locomotion and manipulation tasks and scales especially well to complex, long-horizon tasks,69
being the only existing approach to achieve nontrivial success in the humanoidmaze-giant70
environment.71

2 Related Work72

Our work builds on a rich body of literature encompassing goal-conditioned RL (Kaelbling, 1993),73
offline RL (Lange et al., 2012; Levine et al., 2020), and hierarchical RL (Dayan & Hinton, 1992;74
Sutton et al., 1999; Stone, 2008; Bacon et al., 2016; Vezhnevets et al., 2017). The generality of the75
GCRL formulation enables powerful self-supervised training strategies such as hindsight relabeling76
(Andrychowicz et al., 2018; Ghosh et al., 2020) and state occupancy matching (Ma et al., 2022).77
These are often combined with approaches that exploit the recursive subgoal structure of GCRL:78
either implicitly via quasimetric learning (Wang et al., 2023), probabilistic interpretations (Hoang79
et al., 2021; Zhang et al., 2021b), and contrastive learning (Eysenbach et al., 2022; Zheng et al.,80
2024); or explicitly through hierarchical decomposition into subtasks (Nachum et al., 2018; Levy81
et al., 2019; Gupta et al., 2020; Park et al., 2024c). Despite these advances, learning remains difficult82
for distant goals due to sparse rewards and discounting over time. Many methods use the key insight83
that actions which are effective for reaching an intermediate subgoal between the current state and the84
goal are also effective for reaching the final goal. Such subgoals are typically selected via planning85
(Huang et al., 2019; Zhang et al., 2021a; Hafner et al., 2022), searching within the replay buffer86
(Eysenbach et al., 2019), or, most commonly, sampling from generative models. Hierarchical methods87
in particular generate subgoals during inference and use them to query “subpolicies” trained on88
shorter horizon goals, which are generally easier to learn (Strehl et al., 2009; Azar et al., 2017). Our89
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(a) HIQL (b) RIS (c) SAW

Figure 1: Learning with subgoals. Both HIQL and RIS “imagine” subgoals (thought bubbles) en
route to the goal (red star) with generative models. However, HIQL samples actions directly from the
subgoal-conditioned policy, while RIS regresses (black arrow) a flat goal-conditioned policy towards
the subgoal-conditioned action distribution during training. SAW also performs regression but only
uses “real” subgoals from the dataset D, weighting the regression more heavily towards distributions
conditioned on good subgoals and less (gray arrow) towards bad ones.

method also leverages the ease of training subpolicies to effectively learn long-horizon behaviors, but90
aims to learn a flat, unified policy while avoiding the complexity of training generative models to91
synthesize new subgoals.92

Policy bootstrapping. Our work is most closely related to Reinforcement learning with Imagined93
Subgoals (Chane-Sane et al., 2021, RIS), which, to our knowledge, is the only prior work that performs94
bootstrapping on policies, albeit in the online setting. Similar to goal-conditioned hierarchies, RIS95
learns a generative model to synthesize “imagined” subgoals that lie between the current state and96
the goal. Unlike HRL approaches, however, it regresses the full-goal-conditioned policy towards the97
subgoal-conditioned target, treating the latter as a prior to guide learning and exploration [Figure 1].98
While RIS yields a flat policy for inference, it still requires the full complexity of a hierarchical policy,99
including a generative model over the goal space. In contrast, our work extends the core benefits100
of subgoal-based bootstrapping to offline GCRL with an advantage-based importance weight on101
subgoals sampled from dataset trajectories, eliminating the need for a subgoal generator altogether.102

3 Preliminaries103

Problem setting: We consider the problem of offline goal-conditioned RL, described by a Markov104
decision process (MDP) M = (S,A,R,P) where S is the state space, A the action space, R :105
S × S → R the goal-conditioned reward function (where we assume that the goal space G is106
equivalent to the state space S), and P : S × A → S the transition function. In the offline setting,107
we are given a dataset D of trajectories τ = (s0, a0, s1, a1, . . . , sT ) previously collected by some108
arbitrary policy (or multiple policies), and must learn a policy that can reach a specified goal state g109
from an initial state s0 ∈ S without further interaction in the environment, maximizing the objective110

J(π) = Eg∼p(g),τ∼pπ(τ)

[ ∞∑
t=0

γtr (st, g)

]
, (1)

where p(g) is the goal distribution and pπ(τ) is the distribution of trajectories generated by the policy111
π and the transition function P during (online) evaluation.112

Offline value learning: We use a goal-conditioned, action-free variant of implicit Q-learning113
(Kostrikov et al., 2021, IQL) referred to as goal-conditioned implicit value learning (Park et al.,114
2024c, GCIVL). The original IQL formulation modifies standard value iteration for offline RL by115
replacing the max operator with an expectile regression, in order to avoid value overestimation116
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for out-of-distribution actions. GCIVL replaces the state-action value function with a value-only117
estimator118

min
ψ
LGCIVL(ψ) = Es,a,g∼pD

[
ℓ2τ
(
r(s, g) + γV̄ (s′, g)− V (s, g)

)]
, (2)

where ℓ2τ (x) = |τ − 1(x < 0)|x2 is the expectile loss parameterized by τ ∈ [0.5, 1) and V̄ (·)119
denotes a target value function. Note that GCIVL is optimistically biased in stochastic environments,120
since it directly regresses towards high-value transitions without using Q-values to marginalize over121
action-independent stochasticity.122

Offline policy extraction: To learn a target subpolicy, we use Advantage-Weighted Regression (Peng123
et al., 2019, AWR) to extracts a policy from a learned value function. AWR reweights state-action124
pairs according to their exponentiated advantage with an inverse temperature hyperparameter α, via125
the objective126

max
π
JAWR(π) = Es,a,g∼D

[
eα(Q(s,a,g)−V (s,g)) log π(a | s, g)

]
, (3)

thus remaining within the support of the data without requiring an additional behavior cloning penalty.127

4 Understanding Hierarchies in Offline GCRL128

In this section, we seek to identify the core reasons behind the empirical success of hierarchies in129
offline GCRL that can be used to guide the design of a simpler training objective for a flat policy.130
We first review previous explanations for the benefits of HRL and propose an initial algorithm that131
seeks to capture these benefits in a flat policy, but find that it still fails to close the performance gap132
to Hierarchical Implicit Q-Learning (Park et al., 2024c, HIQL), a state-of-the art method. We then133
identify an additional practical benefit of hierarchical training schemes and show how HIQL exploits134
this from a policy bootstrapping perspective.135

4.1 Hierarchies in online and offline GCRL136

Previous investigations into the benefits of hierarchical RL in the online setting attribute their success137
to improved exploration (Stone, 2008) and training value functions with multi-step rewards (Nachum138
et al., 2019). They demonstrate that augmenting non-hierarchical agents in this manner can largely139
close the performance gap to hierarchical policies. However, the superior performance of hierarchical140
methods in the offline GCRL setting, where there is no exploration, calls this conventional wisdom141
into question.142

HIQL is a state-of-the-art hierarchical offline GCRL method that extracts a high-level policy over143
subgoals and a low-level policy over primitive actions from a single goal-conditioned value function144
trained using standard one-step temporal difference learning. HIQL achieves significant performance145
gains across a number of complex, long-horizon navigation tasks purely through improvement on146
the policy extraction side, without needing multi-step rewards to train the value function as done in147
Nachum et al. (2019). While this does not preclude the potential benefits of multi-step rewards for148
offline GCRL, it does demonstrate that the advantages of hierarchies are not limited to temporally149
extended value learning, in line with previous claims that the primary bottleneck in offline RL is150
policy extraction and not value learning (Park et al., 2024b).151

4.2 Value signal-to-noise ratio in offline GCRL152

Instead, HIQL addresses a separate “signal-to-noise ratio” (SNR) issue in value functions conditioned153
on distant goals, where a combination of sparse rewards and discounting makes it nearly impossible154
to accurately determine the advantage of one primitive action over another with respect to distant155
goals. By separating policy extraction into two levels, the low-level actor can instead evaluate the156
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relative advantage of actions with respect to nearby subgoals and the high-level policy can utilize157
multi-step advantage estimates to get a clearer learning signal with respect to distant goals.158

To test whether improved SNR in advantage estimates with respect to distant goals is indeed the key to159
HIQL’s superior performance, we propose to utilize subgoals to directly improve advantage estimates160
in a simple baseline method we term goal-conditioned waypoint advantage estimation (GCWAE).161
Briefly, we use the advantage of actions with respect to subgoals generated by a high-level policy as162
an estimator of the undiscounted advantage with respect to the true goal163

Ã(st, at, g) ≈ A (st, at, w) , (4)

where w ∼ πhsg(w | st, g) is a subgoal sampled from a high-level policy πh, and the sg subscript indi-164
cates a stop-gradient operator. Apart from using this advantage to directly train a flat policy with AWR,165
we use the same architectures, sampling distributions, and training objective for πh as HIQL. Despite166
large gains over one-step policy learning objectives in several navigation tasks, GCWAE still underper-167
forms its hierarchical counterpart, achieving a 55% success rate on antmaze-large-navigate168
compared to 90% for HIQL without subgoal representations and 16% for GCIVL with AWR.169

4.3 It’s easier to find good (dataset) actions for closer goals170

While diagnosing this discrepancy, we observed that training statistics for the two methods were171
largely identical except for a striking difference in the mean action advantage A(st, at, w). The172
advantage was significantly lower for GCWAE, which samples “imagined” subgoals w ∼ πh(· | s, g)173
from a high-level policy, than HIQL, which samples directly from the k-step future state distribution174
w ∼ pD(st+k | st) of the dataset. This leads us to an obvious but important insight: in most cases,175
dataset actions are simply better with respect to subgoals sampled from nearby future states in the176
trajectory than to distant goals or “imagined” subgoals generated by a high-level policy. The dataset is177
far more likely to contain high-advantage actions for goals sampled at the ends of short subsequences,178
whereas optimal state-action pairs for more distant goals along the trajectory are much rarer due to179
the combinatorial explosion of possible goal states as the goal-sampling horizon increases.180

The practical benefits of being able to easily sample high-advantage state-action-goal tuples are181
hinted at in Park et al. (2024a), who pose the question “Why can’t we use random goals when training182
policies?” after finding that offline GCRL algorithms empirically perform better when only sampling183
(policy) goals from future states in the same trajectory as the initial state. While their comparison184
focuses on in-trajectory versus random goals instead of nearer versus farther in-trajectory goals, we185
hypothesize both observations are driven by similar explanations.186

4.4 Hierarchies perform test-time policy bootstrapping187

Our observations suggest that training policies on nearby goals benefits both from better value SNR188
in advantage estimates and the ease of sampling good state-action-goal combinations. For brevity,189
we will refer to such policies trained only on goals of a restricted horizon length as “subpolicies,"190
denoted by πsub and analogous to the low-level policies πℓ in hierarchies. Now we ask: how do191
hierarchical methods take advantage of the relative ease of training subpolicies to reach distant goals,192
and can we use similar strategies to train flat policies?193

HIQL separately trains a low-level subpolicy on goals sampled from states at most k steps into the194
future, reaping all the benefits of policy training with nearby goals. Similar to other goal-conditioned195
hierarchical methods (Nachum et al., 2018; Levy et al., 2019), it then uses the high-level policy to196
predict optimal subgoals between the current state and the goal at test time, and “bootstraps” by using197
the subgoal-conditioned action distribution as an estimate for the full goal-conditioned policy.198
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5 Subgoal Advantage-Weighted Policy Bootstrapping199

We now seek to unify the above insights into an objective to learn a single, flat goal-reaching200
policy without the additional complexity of HRL. Following the bootstrapping perspective, a direct201
analogue to hierarchies would use the subpolicy to construct training targets, regressing the full202
goal-conditioned policy towards a target subpolicy conditioned on the output of a subgoal generator203
P
(
a | s, πh(w | s, g)

)
. This approach, taken by RIS [Figure 1], still inherits the full complexity of204

hierarchical policies and then some: it requires learning a subgoal generator, a subpolicy, and an205
additional flat policy.206

5.1 Hierarchical RL as inference207

To eliminate this additional machinery, we adopt the view of GCRL as probabilistic inference (Levine,208
2018). In this framing, the bilevel objectives for HIQL’s hierarchical policy and the KL bootstrapping209
term for RIS’s flat policy can be derived from the same inference problem with different choices210
of variational posterior. Our main insight is that the expectation over generated subgoals can be211
expressed as an expectation over the dataset distribution with an advantage-based importance weight,212
yielding our SAW objective. We present an abridged version below and leave the full derivation to213
Supplementary Section D.214

Similar to previous work (Abdolmaleki et al., 2018), we cast the infinite-horizon, discounted215
GCRL formulation as an inference problem by constructing a probabilistic model via the like-216
lihood function p (U = 1 | τ, {w}, g) ∝ exp (β

∑∞
t=0 γ

tA (st, wt, g)), where the binary variable217
U can be interpreted as the event of reaching the goal g as quickly as possible from state218
st by passing through subgoal state w. The subgoal advantage is defined as A(st, w, g) =219
−V (st, g) + γkV (w, g) +

∑k−1
t′=t r(st′ , g), where w ∼ pD(st+k | st). In practice, we follow220

HIQL and simplify the advantage estimate to V (w, g)− V (st, g), i.e., the progress towards the goal221
achieved by reaching w.222

Without loss of generality (since we can represent any flat Markovian policy simply by setting223
πh(· | s, g) to a point distribution on g), we use an inductive bias on the subgoal structure of GCRL224
to consider prior distributions π of a factored hierarchical form225

pπ(τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πℓ(at | st, wt)πh(wt | st, g).

The distinctions between hierarchical approaches like HIQL and non-hierarchical approaches such226
as RIS and SAW begin with our choice of variational posterior. For the former, we would consider227
similarly factored distributions, whereas for the latter, we use a flat policy πθ(τ | g) that factors as228

πθ(τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πθ(at | st, g),

assuming that the dataset policies are Markovian. We also introduce a variational posterior q({w} | g)229
which factors over a sequence of waypoints {w} = {w0, w1, . . .} as230

q({w} | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πsub(at | st, wt)q(wt | st, g).

where we treat the target subpolicy πsub as fixed. Using these definitions, we define the evidence231
lower bound (ELBO) on the optimality likelihood pπ(U = 1) for policy π and goal distribution p(g)232

log pπ(U = 1) = log

∫
p(g)pπ(τ, {w} | g)p(U = 1 | τ, {w}, g)d{w} dτ dg

≥ Eπθ(τ |g),q({w}|g),p(g) log

[
p(U = 1, τ, {w} | g)
πθ(τ | g)q({w} | g)

]
= J (πθ, q).
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Algorithm 1 Subgoal Advantage-Weighted Policy Bootstrapping (SAW)
1: Input: offline dataset D, goal distribution p(g).
2: Initialize value function Vϕ, target subpolicy πψ , and policy πθ.
3: while not converged do
4: Train value function: ϕ← ϕ− λ∇ϕLGCIVL(ϕ) with (st, st+1) ∼ pD, g ∼ p(g) [Equation 2]
5: end while
6: while not converged do
7: Train target subpolicy: ψ ← ψ − λ∇ψJAWR(ψ) with (st, a, w) ∼ pD [Equation 3]
8: end while
9: while not converged do

10: Train policy: θ ← θ − λ∇θJSAW(θ) with (st, a, w) ∼ pD, g ∼ p(g) [Equation 7]
11: end while

Expanding distributions according to their factorizations, dropping terms that are independent of the233
variationals, and rewriting the discounted sum over time as an expectation over the (unnormalized)234
discounted stationary state distribution µπ(s) =

∑∞
t=0 γ

tp(st = s | π) results in the final objective235

J (θ, q) = Eµ(s),p(g)
[
Eq(w|s,g) [A(s, w, g)]− Eπθ(a|s,g)

[
DKL(q(w | s, g)∥πh(w | s, g))

]
− Eq(w|s,g)

[
DKL(πθ(a | s, g)∥πℓ(a | s, w))

] ]
, (5)

where we optimize an approximation ofJ by sampling from the dataset distribution µD(s) (Schulman236
et al., 2017; Abdolmaleki et al., 2018; Peng et al., 2019).237

5.2 Eliminating the subgoal generator238

Both RIS and HIQL directly parameterize q(w | s, g) with a subgoal generator and optimize according239
the first line of Equation 5, which can be solved analytically and results in an objective similar to240
AWR [Equation 3] when projected into the space of parameterized policies241

J (q) = Eµ(s),p(g)
[
Eq(w|s,g)[A(s, w, g)]− Eπθ(a|s,g)

[
DKL(q(w | s, g)∥πh(w | s, g))

]]
∝ Eµ(s),p(g) [exp(A(s, w, g)) log q(w | s, g)] .

Then, RIS trains a flat policy πθ using the third term in Equation 5, which is an expectation over242
the subgoals generated by q. Our key insight is that, rather than learning a generative model to243
approximate p(w | s, g, U = 1), we can instead use a simple application of Bayes’ rule:244

p(w | s, g, U = 1) ∝ pD(w | s)p(U = 1 | s, w, g)
∝ pD(w | s) exp(A(s, w, g)),

which replaces the expectation over q to yield our subgoal advantage-weighted bootstrapping term245

Eµ(s),pD(w|s),p(g)[exp(A(s, w, g))DKL(πθ(a | s, g)∥πℓ(a | s, w))]. (6)

We separately learn an approximation to πℓ(a | s, w), which we do in practice by training a target246
subpolicy with AWR in a similar fashion to HIQL (whereas RIS uses a exponential moving average of247
its online goal-conditioned policy as a target). While we omit this for clarity, a subpolicy AWR term248
can be incorporated into our objective by introducing another optimality variable p (Ot = 1 | τ, {w})249
and a posterior for πℓ, similar to our derivation for HIQL in Supplementary Section D.250

While approximating p(w | s, U = 1) with q directly and using our importance weight on the dataset251
distribution are mathematically equivalent, the latter does introduce sampling-based limitations,252
which we discuss in Appendix A. However, we show empirically that the benefits from lifting the253
burden of learning a distribution over a high-dimensional subgoal space far outweigh these drawbacks,254
especially in large state spaces with high intrinsic dimensionality.255
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Figure 2: OGBench tasks. We train SAW on 20 datasets collected from 7 different environments
(pictured above) and perform evaluations across 5 state-goal pairs for each dataset.

5.3 The SAW objective256

The importance weight in Equation 6 allows the policy to bootstrap from subgoals sampled directly257
from dataset trajectories by ensuring that only subpolicies conditioned on high-advantage subgoals258
influence the direction of the goal-conditioned policy. We combine our bootstrapping term with an259
additional learning signal from a (one-step) policy extraction objective utilizing the value function,260
which improves performance in stitching-heavy environments [Supplementary Section H]. Here, we261
use one-step AWR [Equation 3], yielding the full SAW objective:262

J (θ) = EpD(s,a,w),p(g)

[
eαA(s,a,g) log πθ(a | s, g)− eβA(s,w,g)DKL

(
πθ(· | s, g)∥πsub

ψ (· | s, w)
)]
(7)

where α and β are inverse temperature hyperparameters. This objective provides a convenient263
dynamic balance between its two terms: as the goal horizon increases, the differences in action values264
and therefore the contribution of one-step term decreases. This, in turn, downweights the noisier265
value-based learning signal and shifts emphasis toward the policy bootstrapping term. Finally, we use266
GCIVL to learn V , resulting in the full training scheme outlined in Algorithm 1.267

6 Experiments268

To assess SAW’s ability to reason over long horizons and handle high-dimensional observations, we269
conduct experiments across 20 datasets corresponding to 7 locomotion and manipulation environments270
[Figure 2] with both state- and pixel-based observation spaces. We report performance averaged over271
5 state-goal pairs for each dataset, yielding 100 total evaluation tasks. Implementation details and272
hyperparameter settings are discussed in Supplementary Sections F and G, respectively.273

6.1 Experimental setup274

We select several environments and their corresponding datasets from the recently released OGBench275
suite (Park et al., 2024a), a comprehensive benchmark specifically designed for offline GCRL.276
OGBench provides multiple state-goal pairs for evaluation and datasets tailored to evaluate desirable277
properties of offline GCRL algorithms, such as the ability to reason over long horizons and stitch278
across multiple trajectories or combinatorial goal sequences. We use the baselines from the original279
OGBench paper, which include both one-step and hierarchical state-of-the-art offline GCRL methods.280
We briefly describe each category of tasks below and baseline algorithms in Appendix C, and281
encourage readers to refer to the Park et al. (2024a) for further details.282

Locomotion: Locomotion tasks require the agent to control a simulated robot to navigate through a283
maze and reach a designated goal. The agent embodiment varies from a simple 2D point mass with284
two-dimensional action and observation spaces to a humanoid robot with 21 degrees of freedom and285
a 69-dimensional state space. In the visual variants, the agent receives a third-person, egocentric286
64× 64× 3 pixel-based observations, with its location within the maze indicated by the floor color.287
Maze layouts range from medium to giant, where tasks in the humanoidmaze version of the288
latter require up to 3000 environment steps to complete.289
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Environment Dataset GCBC GCIVL GCIQL QRL CRL HIQL SAW

pointmaze
pointmaze-medium-navigate-v0 9 ±6 63 ±6 53 ±8 82 ±5 29 ±7 79 ±5 97 ±2

pointmaze-large-navigate-v0 29 ±6 45 ±5 34 ±3 86 ±9 39 ±7 58 ±5 85 ±10

pointmaze-giant-navigate-v0 1 ±2 0 ±0 0 ±0 68 ±7 27 ±10 46 ±9 68 ±8

antmaze
antmaze-medium-navigate-v0 29 ±4 72 ±8 71 ±4 88 ±3 95 ±1 96 ±1 97 ±1

antmaze-large-navigate-v0 24 ±2 16 ±5 34 ±4 75 ±6 83 ±4 91 ±2 90 ±3

antmaze-giant-navigate-v0 0 ±0 0 ±0 0 ±0 14 ±3 16 ±3 65 ±5 73 ±4

humanoidmaze
humanoidmaze-medium-navigate-v0 8 ±2 24 ±2 27 ±2 21 ±8 60 ±4 89 ±2 88 ±3

humanoidmaze-large-navigate-v0 1 ±0 2 ±1 2 ±1 5 ±1 24 ±4 49 ±4 46 ±4

humanoidmaze-giant-navigate-v0 0 ±0 0 ±0 0 ±0 1 ±0 3 ±2 12 ±4 35 ±4

cube
cube-single-play-v0 6 ±2 53 ±4 68 ±6 5 ±1 19 ±2 15 ±3 72∗

±5

cube-double-play-v0 1 ±1 36 ±3 40 ±5 1 ±0 10 ±2 6 ±2 40 ±7

cube-triple-play-v0 1 ±1 1 ±0 3 ±1 0 ±0 4 ±1 3 ±1 4 ±2

scene scene-play-v0 5 ±1 42 ±4 51 ±4 5 ±1 19 ±2 38 ±3 63 ±6

visual-antmaze
visual-antmaze-medium-navigate-v0 11 ±2 22 ±2 11 ±1 0 ±0 94 ±1 93 ±4 95 ±0

visual-antmaze-large-navigate-v0 4 ±0 5 ±1 4 ±1 0 ±0 84 ±1 53 ±9 82 ±4

visual-antmaze-giant-navigate-v0 0 ±0 1 ±1 0 ±0 0 ±0 47 ±2 6 ±4 10 ±2

visual-cube
visual-cube-single-play-v0 5 ±1 60 ±5 30 ±5 41 ±15 31 ±15 89 ±0 88 ±3

visual-cube-double-play-v0 1 ±1 10 ±2 1 ±1 5 ±0 2 ±1 39 ±2 40 ±3

visual-cube-triple-play-v0 15 ±2 14 ±2 15 ±1 16 ±1 17 ±2 21 ±0 20 ±1

visual-scene visual-scene-play-v0 12 ±2 25 ±3 12 ±2 10 ±1 11 ±2 49 ±4 47 ±6

Table 1: Evaluating SAW on state- and pixel-based offline goal-conditioned RL tasks. We compare our method’s average
(binary) success rate (%) against the numbers reported in Park et al. (2024a) across the five test-time goals for each environment,
averaged over 8 seeds (4 seeds for pixel-based visual tasks) with standard deviations after the ± sign. Numbers within
5% of the best value in the row are in bold. Results with an asterisk (∗) use different value learning hyperparameters and are
discussed further in Section 6.3.

Manipulation: Manipulation tasks use a 6-DoF UR5e robot arm to manipulate object(s), including290
up to four cubes and a more diverse scene environment that includes buttons, windows, and drawers.291
The multi-cube and scene environments are designed to test an agent’s ability to perform sequential,292
long-horizon goal stitching and compose together multiple atomic behaviors. The visual variants293
also provide 64× 64× 3 pixel-based observations where certain parts of the environment and robot294
arm are made semitransparent to ease state estimation.295

6.2 Locomotion results296

State-based locomotion: As a method designed for long-horizon reasoning, SAW excels in all297
variants of the state-based locomotion tasks. It scales particularly well to long horizons, exhibiting298
the best performance of 73% across all tasks in antmaze-giant-navigate and is the first299
method to achieve non-trivial success in humanoidmaze-giant-navigate, reaching 35%300
success compared to the previous state-of-the-art of 12% (Park et al., 2024a). We demonstrate that301
training subpolicies with subgoal representations scales poorly to the giant maze environments302
[Figure 3] but are critical to HIQL’s performance, emphasizing a fundamental tradeoff in hierarchical303
methods: subgoal representations are essential for making high-level policy prediction tractable, but304
those same representations can constrain policy expressiveness and limit overall performance. While305
other subgoal representation learning objectives may perform better than those derived from the306
value function, as in HIQL, this highlights the additional design complexity and tuning required for307
HRL methods. We also implement an offline variant of RIS [Appendix C] and find that it performs308
significantly worse than SAW with subgoal representations, which we suspect can be explained by309
our insights in Section 4.3.310

Pixel-based locomotion: SAW maintains strong performance when given 64 × 64 × 3 visual311
observations and scales much better to visual-antmaze-large than does its hierarchical312
counterpart. However, we do see a significant performance drop in the giant variant relative to313
the results in the state-based observation space. As a possible explanation for this discrepancy, we314
observed that value function training diverged for HIQL and SAW in visual-antmaze-giant315
as well as all visual-humanoidmaze sizes (omitted since no method achieved non-trivial316
performance). This occurred even without shared policy gradients, suggesting that additional work is317
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Figure 3: Subgoal representations scale poorly to high-dimensional control in large state spaces.
Using HIQL’s subgoal representations (taken from an intermediate layer of the value function) for
SAW’s target subpolicy harms performance compared to training directly on observations. However,
HIQL fails to learn meaningful behaviors when predicting subgoals directly in the raw observation
space. RIS, which bootstraps on generated subgoals at every step, performs the worst of the three.

needed to scale offline value learning objectives to very long-horizon tasks with high-dimensional318
visual observations.319

6.3 Manipulation results320

State-based manipulation: SAW consistently matches state-of-the-art performance in cube environ-321
ments and significantly outperforms existing methods in the 5 scene tasks, which require extended322
compositional reasoning. Interestingly, we found that methods which use expectile regression-based323
offline value learning methods (GCIVL, GCIQL, HIQL, and SAW) are highly sensitive to value learn-324
ing hyperparameters in the cube-single environment. Indeed, SAW performs more than twice as325
well on cube-single-play-v0 with settings of τ = 0.9 and β = 0.3, reaching state-of-the-art326
performance (72% ±5 vs. 32% ±4 with τ = 0.7). While SAW is agnostic to the choice of value327
learning objective, we make special mention of these changes since they depart from the OGBench328
convention of fixing value learning hyperparameters for each method across all datasets.329

Pixel-based manipulation: In contrast to the state-based environments, SAW and HIQL achieve330
near-equivalent performance in visual manipulation. This suggests that representation learning, and331
not long-horizon reasoning or goal stitching, is the primary bottleneck in the visual manipulation332
environments. While we do not claim any representation learning innovations for this paper, our333
results nonetheless demonstrate that SAW is able to utilize similar encoder-sharing tricks as HIQL to334
scale to high-dimensional observation spaces.335

7 Discussion336

We presented Subgoal Advantage-Weighted Policy Bootstrapping (SAW), a simple yet effective337
policy extraction objective that leverages the subgoal structure of goal-conditioned tasks to scale338
to long-horizon tasks, without learning generative subgoal models. SAW consistently matches or339
surpasses current state-of-the-art methods across a wide variety of locomotion and manipulation tasks340
that require different timescales of control, whereas existing methods tend to specialize in particular341
task categories. Our method especially distinguishes itself in long-horizon reasoning, excelling in the342
most difficult locomotion tasks and scene-based manipulation. While the simplicity of our objective343
does introduce some practical limitations related to subgoal sampling, which we discuss in Appendix344
A, we find that avoiding explicit subgoal prediction is crucial for maintaining performance in large345
state spaces. By demonstrating a scalable approach to train unified policies for offline GCRL, we346
believe that SAW takes a step toward realizing the full potential of robotic foundation models in347
addressing the long-horizon, high-dimensional challenges of real-world control.348
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A Limitations349

A theoretical limitation of our approach, which is common to all hierarchical methods as well350
as RIS, occurs in our assumption that the optimal policy can be represented in the factored form351
πℓ(a | s, w)πh(w | s, g). While this is true in theory (since we could trivially set πh(w | s, g) to a352
point distribution at g), practical algorithms typically fix the distance of the subgoals to a shorter353
distance of k steps (or the midpoint in RIS), where subgoals st+k are sampled from the future354
state distribution pDtraj(st+k | st). Intuitively, if the dataset contains only suboptimal trajectories355
towards waypoints occurring k steps later which are reachable in fewer than k steps with an optimal356
low-level policy πℓ, then the space of sampled subgoals will not contain these further state-subgoal357
pairs and any approximation of πh(w | s, g, U = 1) (whether an explicit subgoal generator or our358
importance-weighted approach), will suffer additional approximation gaps.359

However, as discussed in Section 4.3, we find that subgoals sampled from the future state distribution360
empirically work well with respect to goals also sampled from the future state distribution, which361
is common in practice (Gupta et al., 2020; Ghosh et al., 2020; Yang et al., 2022; Eysenbach et al.,362
2022; Park et al., 2024c). However, we expect subgoal generator-based methods to have the edge363
when we sample from a goal distribution for which in-trajectory state-subgoal pairs tend to be highly364
suboptimal. While a generative subgoal model can synthesize “imagined” subgoals on which to365
bootstrap, our approach may require alternative subgoal-sampling strategies to reach the same level366
of performance.367

B Planning Invariance368

As an aside, we note that the discussions in this paper are closely related to the recently introduced369
concept of planning invariance (Myers et al., 2025), which describes a policy that takes similar370
actions when directed towards a goal as when directed towards an intermediate waypoint en route371
to that goal. In fact, we can say that subgoal-conditioned HRL methods achieve a form of planning372
invariance by construction, since they simply use the actions yielded by waypoint-conditioned policies373
to reach further goals. By minimizing the divergence between the full goal-conditioned policy and an374
associated subgoal-conditioned policy, both SAW and RIS can also be seen as implicitly enforcing375
planning invariance.376

C Offline GCRL Baseline Algorithms377

In this section, we briefly review the baseline algorithms referenced in Table 1. For more thorough378
implementation details, as well as goal-sampling distributions, interested readers may refer to379
Appendix C of Park et al. (2024a) as well as the original works.380

Goal-conditioned behavioral cloning (GCBC): GCBC is an imitation learning approach that clones381
behaviors using hindsight goal relabeling on future states in the same trajectory.382

Goal-conditioned implicit {Q, V}-learning (GCIQL & GCIVL): GCIQL is a goal-conditioned383
variant of implicit Q-learning (Kostrikov et al., 2021), which performs policy iteration with an384
expectile regression to avoid querying the learned Q-value function for out-of-distribution actions.385
Park et al. (2024c) introduced a V -only variant that directly regresses towards high-value transitions386
[Equation 2], using r(s, g)+γV̄ (s′, g) as an estimator ofQ(s, a, g). Since it does not learn Q-values387
and therefore cannot marginalize over non-causal factors, it is optimistically biased in stochastic388
environments.389

Although both baselines are value learning methods that can be used with multiple policy extraction390
objectives (including our own, which uses GCIVL), the OGBench implementations are paired with391
following objectives: Deep Deterministic Policy Gradient with a behavior cloning penalty term392
(Fujimoto & Gu, 2021, DDPG+BC) for GCIQL, and AWR [Equation 3] for GCIVL.393
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Quasimetric RL (QRL): QRL (Wang et al., 2023) is a non-traditional value learning algorithm that394
uses Interval Quasimetric Embeddings (Wang & Isola, 2024, IQE) to enforce quasimetric properties395
(namely, the triangle inequality and identity of indiscernibles) of the goal-conditioned value function396
on distances between representations. It uses a constrained “maximal spreading” objective to estimate397
the shortest paths between states, then learns a one-step dynamics model combined with DDPG+BC398
to extract a policy from the learned representations.399

Contrastive RL (CRL): CRL (Eysenbach et al., 2022) is a representation learning algorithm which400
uses contrastive learning to enforce that the inner product between the learned representations of a401
state-action pair and the goal state corresponds to the discounted future state occupancy measure of402
the goal state, which is estimated directly from data using Monte Carlo sampling. CRL then performs403
one-step policy improvement by choosing actions that maximize the future occupancy of the desired404
goal state.405

Hierarchical implicit Q-learning (HIQL): HIQL (Park et al., 2024c) is a policy extraction method406
that learns two levels of hierarchical policy from the same goal-conditioned value function. The407
low-level policy πℓ is trained using standard AWR, and the high-level policy πh is trained using an408
action-free, multi-step variant of AWR that treats (latent) subgoal states as “actions.”409

Reinforcement learning with imagined subgoals (RIS): RIS (Chane-Sane et al., 2021) is a policy410
extraction method originally designed for the online GCRL setting, which learns a subgoal generator411
and a flat, goal-conditioned policy. Unlike SAW, RIS uses a fixed coefficient on the KL term, instead412
learning a subgoal generator and bootstrapping directly on a target policy (parameterized by an413
exponential moving average of online policy parameters rather than a separately learned subpolicy)414
conditioned on “imagined” subgoals. It also incorporates a value-based policy learning objective415
similar to our approach, but learns a Q-function and differentiates directly through the policy with416
DDPG.417

To modify RIS for the offline setting in our implementation for Figure 3, we fixed the coefficient418
on the KL term to β = 3.0, trained a subgoal generator identical to the one in HIQL, and replaced419
the dataset subgoals in SAW with “imagined” subgoals. Otherwise, for fairness of comparison, our420
offline RIS implementation used the same hyperparameters and architectures as SAW, including a421
separate target subpolicy network instead of a soft copy of the online policy, subgoals at a fixed422
distance instead of at midpoints, and AWR instead of DDPG+BC for the policy extraction objective,423
which we found to perform better in locomotion environments.424
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Supplementary Materials614

The following content was not necessarily subject to peer review.615
616

D Derivations of HIQL, RIS, and SAW Objectives617

We cast the infinite-horizon, discounted GCRL formulation as an inference problem by constructing618
a probabilistic model via the likelihood function619

p (Ut = 1 | τ, {w}, g) ∝ exp

(
β

∞∑
t=0

γtA (st, wt, g)

)
,

where β is an inverse temperature parameter and the binary variable U can be intuitively understood620
as the event of reaching the goal g as quickly as possible by passing through a subgoal w, or passing621
through a subgoal w which is on the shortest path between st and g.622

We consider prior distributions π of a factored hierarchical form623

pπ(τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πℓ(a | st, wt)πh(wt | st, g).

D.1 HIQL derivation624

Since HIQL learns two levels of a policy, we can use a variational posterior of the same form625

πθ,ψ(τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πℓθ(at | st, wt)πhψ(wt | st, g).

To incorporate training of the low-level policy, we also construct an additional probabilistic model626
for the optimality of primitive actions towards a waypoint w (note that this can also be done to627
incorporate target policy training into the SAW objective, but we leave it out for brevity)628

p (Ot = 1 | τ, {w}) ∝ exp

(
α

∞∑
t=0

γtA (st, at, wt)

)
.

With these definitions, we define the evidence lower bound (ELBO) on the joint optimality likelihood629
pπ(O = 1, U = 1) for policy π630

log pπ(O = 1, U = 1) = log

∫
p(g) p(O = 1, U = 1, τ, {w} | g)d{w} dτ dg

= log

∫
p(g)πθ(τ | g)πψ({w} | g)

p(O = 1, U = 1, τ, {w} | g)
πθ(τ | g)πψ({w} | g)

d{w} dτ dg

= logEπθ(τ |g),πψ({w}|g),p(g)

[
p(O = 1, U = 1, τ, {w} | g)

πθ(τ | g)πψ({w} | g)

]
≥ Eπθ(τ |g),πψ({w}|g),p(g) log

[
p(O = 1, U = 1, τ, {w} | g)

πθ(τ | g)πψ({w} | g)

]
= J (θ, ψ).
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Expanding the fraction, moving the log inside, and dropping the start state distribution p(s0) and631
transition distributions p(st+1 | st, at), which are fixed with respect to θ and ψ, gives us632

Eπθ(τ |g), πψ({w}|g), p(g)

[
α

∞∑
t=0

γtA(st, at, wt) + β

∞∑
t=0

γtA(st, wt, g)

+

∞∑
t=0

log

(
πℓ(at | st, wt)πh(wt | st, g)
πθ(at | st, g)πψ(wt | st, g)

)]

We rewrite the discounted sum over time as an expectation over the (unnormalized) discounted633
stationary state distribution µπ(s) =

∑∞
t=0 γ

tp(st = s | π) induced by policy π. In practice, however,634
we optimize an approximation of J (θ, ψ) by sampling from the dataset distribution over states µD.635
For brevity, we omit the conditionals in the expectations below, defining πθ(a) := πθ(a | s, g) and636
πψ(w) := πψ(w | s, g) in the expectations below637

Eµ(s),πθ(a),πψ(w),p(g)

[
αA(s, a, w) + log

[
πℓ(a | s, w)
πθ(a | s, w)

]
,

]
+ Eµ(s),πψ(w),p(g)

[
βA(s, w, g) + log

[
πh(w | s, g)
πψ(w | s, g)

]]
= Eµ(s),πθ(a),πψ(w),p(g) [αA(s, a, w)]− Eµ(s),πψ(w),p(g)

[
DKL

[
πθ(a | s, w)∥πℓ(a | s, w)

]]
+ Eµ(s),πψ(w),p(g) [βA(s, w, g)]− Eµ(s),p(g)

[
DKL

[
πψ(w | s, g)∥πh(w | s, g)

]]
. (8)

HIQL separately optimizes the two summation terms, which correspond to the low- and high-level638
policies, respectively. Forming the Lagrangian with the normalization condition and solving for the639
optimal low- and high-level policies, as done in Abdolmaleki et al. (2018) and Peng et al. (2019),640
yields the HIQL AWR objectives:641

Jπℓ(θ) = Eµ(s),πθ(a),πψ(w),p(g)

[
exp(αA(s, a, w)) log πℓθ(a | s, w)

]
Jπh(ψ) = Eµ(s),πψ(w),p(g)

[
exp(βA(s, w, g)) log πhψ(w | s, g)

]
.

While our derivation produces an on-policy expectation over actions and subgoals, the sampling642
distribution over states, actions, subgoals, and goals in the offline setting varies in practice (see643
Appendix C of Park et al. (2024a) for commonly used goal distributions).644

D.2 RIS and SAW derivations645

Unlike HIQL, both RIS and SAW seek to learn a unified flat policy, and therefore we choose a policy646
posterior πθ(τ) that factors as647

πθ(τ | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πθ(at | st, g).

We also introduce a variational posterior q which factors over a sequence of waypoints {w} =648
{w0, w1, . . .} as649

q({w} | g) = p(s0)

∞∏
t=0

p(st+1 | st, at)πsub(at | st, wt)q(wt | st, g),
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where πsub is a target subpolicy and is treated as fixed with respect to the parameters of the posteriors.650
Using these definitions, we define the evidence lower bound (ELBO) on the likelihood of subgoal651
optimality pπ(U = 1) for policy π652

log pπ(U = 1) = log

∫
p(g)p(U = 1, τ, {w} | g)dτd{w}dg

= log

∫
p(g)πθ(τ | g)q({w} | g)

p(U = 1, τ, {w} | g)
πθ(τ | g)q({w} | g)

d{w} dτ dg

= logEπθ(τ |g),q({w}|g),p(g)

[
p(U = 1, τ, {w} | g)
πθ(τ | g)q({w} | g)

]
≥ Eπθ(τ |g),q({w}|g),p(g) log

[
p(U = 1, τ, {w} | g)
πθ(τ | g)q({w} | g)

]
= J (πθ, q).

Expanding the fraction, moving the log inside, and dropping the start state distribution p(s0), transi-653
tion distributions p(st+1 | st, at), and target subpolicy πsub(at | st, wt), which are fixed with respect654
to the variationals, leaves us with655

Eπθ(τ |g), q({w}|g), p(g)

[
β

∞∑
t=0

γtA(st, wt, g) +

∞∑
t=0

log

[
πℓ(at | st, wt)πh(wt | st, g)
πθ(at | st, g) q(wt | st, g)

]]

Once again, we express the discounted sum over time as an expectation over the discounted stationary656
state distribution µ(s) and omit the conditionals in the expectation over πθ(a) and q(w) for brevity.657
Simplifying gives us658

Eµ(s),πθ(a),q(w), p(g)

[
βA(s, w, g) + log

[
πh(w | s, g)
q(w | s, g)

]
+ log

[
πℓ(a | s, w)
πθ(a | s, g)

]]
= Eµ(s),q(w), p(g) [βA(s, w, g)]− Eµ(s), p(g)

[
DKL

(
q (w | s, g) ∥πh (w | s, g)

)]
+ Eµ(s),q(w), p(g)

[
DKL

(
πθ (a | s, g) ∥πℓ (a | s, w)

)]
RIS: RIS partitions this objective into two parts and optimizes them separately, where the subgoal659
generator is trained according to the loss660

J h(q) = Eµ(s),q(w), p(g)[A(s, w, g)]− Eµ(s), p(g)
[
DKL(q(w | s, g)∥πh(w | s, g))

]
,

which is identical to the objective for the HIQL high-level policy πψ and yields the same AWR-like661
objective over subgoals exp(A(s, w, g)) log q(w | s, g). We then incorporate the remaining KL662
divergence term into the objective for the flat policy posterior πθ663

J (θ) = Eµ(s),q(w), p(g)[DKL(πθ(a | s, g)∥πℓ(a | s, w))],

which is an expectation over subgoals drawn from the (simultaneously learned) subgoal generator.664

SAW: Instead of directly learning q, we use Bayes’ rule and our earlier definition of p(U = 1 | s, w, g)665
to directly approximate the posterior distribution over subgoals p(w | s, g, U = 1), where666

p(w | s, g, U = 1) ∝ pD(w | s)p(U = 1 | s, w, g)
∝ pD(w | s) exp(A(s, w, g)).
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Although the proportionality constant in the first line is the pπ(U = 1), which is the subject of667
our optimization, we note that approximating the expectation over subgoals w corresponds to the668
expectation (E) step in a standard expectation-maximization (EM) procedure (Abdolmaleki et al.,669
2018). Because we are only seeking to fit the shape of the optimal variational posterior over subgoals670
for the purposes of approximating the expectation over q, and not maximizing pπ(U = 1) (the M671
step), we can treat pπ(U = 1) as constant with respect to q to get672

J (θ) = Eµ(s),q(w), p(g)[DKL(πθ(a | s, g)∥πℓ(a | s, w))]

=

∫
µ(s) p(g) q(w | s)[DKL(πθ(a | s, g)∥πℓ(a | s, w))]dw dg ds

∝
∫
µ(s) p(g) pD(w | s) exp(A(s, w, g))[DKL(πθ(a | s, g)∥πℓ(a | s, w))]dw dg ds

= Eµ(s),pD(w|s),p(g) exp(A(s, w, g))[DKL(πθ(a | s, g)∥πℓ(a | s, w))],

which yields our subgoal advantage-weighted bootstrapping term in Equation 6.673

E Computational Resources674

All experiments were conducted on a cluster consisting of Nvidia GeForce RTX 3090 GPUs with 24675
GB of VRAM and Nvidia GeForce RTX 3070 GPUs with 8 GB of VRAM. State-based experiments676
take around 4 hours to run for the largest environments (humanoidmaze-giant-navigate)677
and visual experiments up to 12 hours.678

F Implementation Details679

Target policy: While Chane-Sane et al. (2021) use a exponential moving average (EMA) of the680
online policy parameters θ as the target policy prior πθ, we instead simply train a smaller policy681
network parameterized separately by ψ on (sub)goals sampled from k steps into the future, where k682
is a hyperparameter. We find that this leads to faster training and convergence, albeit with a small683
increase in computational complexity.684

Architecture: During our experiments, we observed that the choice of network architecture for685
both the value function and policy networks had a significant impact on performance in several686
environments. Instead of taking in the raw concatenated state and goal inputs, HIQL prepends a687
subgoal representation module consisting of an additional three-layer MLP followed by a bottleneck688
layer of dimension 10 and a length-normalizing layer that projects state-(sub)goal representations to689
the surface of a hypersphere with radius equal to the dimension of the input vector. The value and690
low-level policy networks receive this representation in place of the goal information, as well as the691
raw (in state-based environments) or encoded (in pixel-based environments) state information. We692
found that simply adding these additional layers (separately) to the value and actor network encoders693
significantly boosted performance in state-based locomotion tasks, with modifications to the former694
improving training stability in pointmaze and modifications to the latter being critical for good695
performance in the antmaze and humanoidmaze environments.696

While we did not perform comprehensive architectural ablations due to computational limitations, we697
note that the desirable properties of the unit hypersphere as a representation space are well-studied in698
contrastive learning (Wang & Isola, 2022) and preliminary work by Wang et al. (2025) has explored699
the benefits of scaling network depth for GCRL (albeit with negative results for the offline setting).700
Further studying the properties of representations emerging from these architectural choices may701
inform future work in representation learning for offline GCRL.702
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G Hyperparameters703

We find that our method is robust to hyperparameter selection for different horizon lengths and704
environment types in locomotion tasks, but is more sensitive to choices of the value learning expectile705
parameter τ and the temperature parameter β of the divergence term in manipulation tasks (see706
Supplementary Section H for training curves of different β settings). Unless otherwise stated in Table707
2, all common hyperparameters are the same as specified in Park et al. (2024a) and state, subgoal,708
and goal-sampling distributions are identical to those for HIQL.709

Environment Type Dataset Expectile τ AWR α KLD β Subgoal steps k

pointmaze
pointmaze-medium-navigate-v0 0.7 3.0 3.0 25
pointmaze-large-navigate-v0 0.7 3.0 3.0 25
pointmaze-giant-navigate-v0 0.7 3.0 3.0 25

antmaze
antmaze-medium-navigate-v0 0.7 3.0 3.0 25
antmaze-large-navigate-v0 0.7 3.0 3.0 25
antmaze-giant-navigate-v0 0.7 3.0 3.0 25

humanoidmaze
humanoidmaze-medium-navigate-v0 0.7 3.0 3.0 25
humanoidmaze-large-navigate-v0 0.7 3.0 3.0 25
humanoidmaze-giant-navigate-v0 0.7 3.0 3.0 25

visual-antmaze
visual-antmaze-medium-navigate-v0 0.7 3.0 3.0 25
visual-antmaze-large-navigate-v0 0.7 3.0 3.0 25
visual-antmaze-giant-navigate-v0 0.7 3.0 3.0 25

cube
cube-single-play-v0 0.9 3.0 0.3 10
cube-double-play-v0 0.7 3.0 1.0 10
cube-triple-play-v0 0.7 3.0 1.0 10

scene scene-play-v0 0.7 3.0 1.0 10

visual-cube
visual-cube-single-play-v0 0.7 3.0 3.0 10
visual-cube-double-play-v0 0.7 3.0 3.0 10
visual-cube-triple-play-v0 0.7 3.0 3.0 10

visual-scene visual-scene-play-v0 0.7 3.0 3.0 10

Table 2: SAW hyperparameters. Each cell indicates the hyperparameters for the corresponding
environment and dataset. From left to right, these hyperparameters are: the expectile parameter τ for
GCIVL, the one-step AWR temperature α (used for training both the target and policy networks), the
temperature on the KL divergence term β, and the number of subgoal steps k.

H Ablations710

In this section, we ablate various components of our objective and assess its sensitivity to various711
hyperparameters.712

H.1 One-step AWR ablation713

We ablate the one-step AWR term in our objective, which is akin to training purely on bootstrapped714
policies from a target policy (which itself is trained with AWR). Note that ablating the bootstrapping715
term simply recovers the GCIVL baseline. We observe that ablations to the one-step term primarily716
affect performance in short-horizon, stitching-heavy tasks such as the simpler manipulation envi-717
ronments. On the other hand, performance is largely unaffected in longer-horizon manipulation and718
locomotion tasks, confirming our initial hypotheses that the bulk of SAW’s performance in more719
complex tasks is due to policy bootstrapping rather than one-step policy extraction.720

H.2 Hyperparameter sensitivity721

Here, we investigate SAW’s sensitivity to the β inverse temperature hyperparameter and run different722
settings of β ∈ {0.3, 1.0, 3.0, 10.0} across selected state-based environments. We observe a similar723
pattern to the one-step AWR ablation experiments, where the simpler manipulation environments are724
much more sensitive to hyperparameter settings compared to more complex, long-horizon tasks.725
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Figure 4: Training curves for cube-single-play and cube-double-play with one-step
ablations.
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Figure 5: Training curves for scene-play and antmaze-large-navigate with one-step
ablations.
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Figure 6: Training curves for cube-single-play and cube-double-play with different
values of β (where the default hyperparameters settings are β = 0.3 and β = 1, respectively).
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Figure 7: Training curves for scene-play and antmaze-large-navigate with different
values of β (where the default hyperparameters settings are β = 1 and β = 3, respectively).
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