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Abstract— State-of-the-art perceptive Reinforcement Learning
controllers for legged robots either (i) impose oscillator or
IK-based gait priors that constrain the action space, add
bias to the policy optimization and reduce adaptability across
robot morphologies, or (ii) operate “blind”, which struggle
to anticipate hind-leg terrain, and are brittle to noise. In this
paper, we propose Phase-Guided Terrain Traversal (PGTT),
a perception-aware deep-RL approach that overcomes these
limitations by enforcing gait structure purely through reward
shaping, thereby reducing inductive bias in policy learning com-
pared to oscillator/IK-conditioned action priors. PGTT encodes
per-leg phase as a cubic Hermite spline that adapts swing height
to local heightmap statistics and adds a swing-phase contact
penalty, while the policy acts directly in joint space supporting
morphology-agnostic deployment. Trained in MuJoCo (MJX)
on procedurally generated stair-like terrains with curriculum
and domain randomization, PGTT achieves the highest success
under push disturbances (median +7.5% vs. the next best
method) and on discrete obstacles (+9%), with comparable
velocity tracking. We validate PGTT on a Unitree Go2 using a
real-time LiDAR elevation-to-heightmap pipeline, and we report
preliminary results on ANYmal-C obtained with the same
hyperparameters. These findings indicate that terrain-adaptive,
phase-guided reward shaping is a simple and general mechanism
for robust perceptive locomotion across platforms.

I. INTRODUCTION

Legged robots promise unmatched mobility in cluttered,
uneven, and human-made environments, but robust
gait control on such terrain remains challenging [1], [2].
Reinforcement learning (RL) has shown that agile locomotion
behaviors can be learned from data [3], yet many studies
assume idealized sensing (privileged terrain information) or
operate “blind,” which hinders anticipation of obstacles and
reduces reliability on hardware [4], [S]. As a result, perception
is essential, but the representation and how it interfaces with
control are pivotal for generality and robustness.

We propose Phase-Guided Terrain Traversal (PGTT), a
perception-aware deep-RL approach that retains the benefits
of rhythmic structure while avoiding IK and action-space
constraints. PGTT uses a robot-centric heightmap (derived
online from LiDAR elevation mapping) as a compact terrain

*This work was supported by the Hellenic Foundation for Research and
Innovation (H.F.R.I.) under the “3rd Call for H.ER.I. Research Projects to
support Post-Doctoral Researchers” (Project Acronym: NOSALRO, Project
Number: 7541). This work has also been partially supported by project MIS
5154714 of the National Recovery and Resilience Plan Greece 2.0 funded
by the European Union under the NextGenerationEU Program.

1Laboratory of Automation and Robotics (LAR) in the Department
of Electrical & Computer Engineering, University of Patras,
GR-26504  Patras,  Greece, a_-ntagkas@ac.upatras.gr,
costashatz@upatras.gr

2 Archimedes/Athena RC, Greecechairig@Rathenarc.gr

3Computational Intelligence Laboratory (CILab), Department of
Mathematics, University of Patras, GR-26110 Patras, Greece

1,2,3

Fig. 1: Real-world example of the Unitree Go2 robot climbing stair terrain.

representation and encodes per-leg phase with a cubic Hermite
spline whose swing apex adapts to local height statistics. Cru-
cially, the phase prior is enforced only through reward shaping,
while the policy acts directly in joint space. This design
keeps the action space unconstrained and reduces inductive
bias in policy learning compared to oscillator/IK-conditioned
targets, easing deployment across different morphologies.
The main contributions of this manuscript are: 1) A
terrain-adaptive, phase-guided reward that encodes a
Hermite-spline swing trajectory driven by local heightmap
statistics and penalizes swing-phase contacts, without
constraining the action space or using IK, thereby reducing in-
ductive bias and improving morphology-agnostic deployment,
and 2) an accessible training stack using MuJoCo/MJX that
provides accurate dynamic simulation and high throughput on
a single consumer GPU, offering a lightweight alternative to
Isaac Gym-based pipelines [6] (our code is available at https:

//github.com/NtagkasAlex/phase_guided_terrain_traversal )

II. RELATED WORK

Phase-augmented controllers specify foot or joint targets
as functions of a per-leg phase and track them with IK/PD
controllers, improving stability but coupling the policy to
morphology and introducing action-space bias [4], [7]. Central
Pattern Generators (CPG)-based methods similarly embed
oscillators and let RL modulate their parameters, inheriting the
same limitations [8]. An alternative is to encode gait regularity
in the objective rather than in the actions: phase-guided
reward shaping encourages desired swing/stance timing and
foot clearance while leaving the policy free to decide the
final commands [9]. This shift reduces inductive bias and
eases deployment across platforms with different kinematics.

In this landscape, PGTT aligns with direct joint-space
control but differs in how structure is injected: it uses
a robot-centric heightmap for perception and enforces a
terrain-adaptive, phase-guided prior purely through reward
shaping, avoiding oscillators and IK. This design aims to
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Fig. 2: Simulation snapshots of PGTT. Left: Go2 on stairs with projected front-foot trajectories (red). Middle: Go2 traversing discrete obstacles. Right:
ANYmal C on stairs.

retain the benefits of rhythmic organization while minimizing
action-space constraints, thereby reducing inductive bias
and supporting morphology-agnostic deployment relative to
oscillator/IK-conditioned policies [4], [7], [9].

III. PHASE-GUIDED TERRAIN TRAVERSAL

At a high level, Phase-Guided Terrain Traversal
(PGTT) combines three ideas (Fig. E[): (i) a compact
perception module that encodes terrain as a robot-centric
heightmap derived online from LiDAR measurements, (ii)
phase variables and reward function that provide rhythmic
structure without constraining the action space, and (iii) an
asymmetric actor—critic architecture trained with PPO in
GPU-accelerated MuJoCo (MJX) environments.

A. Problem Formulation

We model legged locomotion as an infinite-horizon
partially observable Markov decision process (POMDP)

M= (SaA,O;P,era’y,pO)a

where s; €S is the full state, a; € A the action, and o; € O
a partial observation. The transition kernel is P(s¢11|s¢,a¢),
the observation model (sensor and preprocessing pipeline) is
Q(or|st), r:Sx A—R is the reward, v€[0,1) the discount
factor, and pg the initial-state distribution. In our setting,
o; comprises proprioception and a robot-centric heightmap
derived online from LiDAR, while s, additionally includes
privileged quantities used only during training. A stochastic
policy mg(at|o;) maximizes the discounted return
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Action Space: The action space is a 12 x 1 vector, ay,
corresponding to the desired joint angle of the robot. To
facilitate learning, we train the policy to infer the desired
joint angle around the robot’s stand still pose. Hence, the
robot’s desired joint angles are computed as

Qdef +ka, @)

where k is a constant action scale parameter.

Observation Space: The observation space o;, which is
passed to the policy network 7y (a¢|o;), consists of mainly
proprioceptive and exteroceptive measurements. To encode the

leg phase, we use cos(¢),sin(¢) instead of ¢ = [¢g,¢1,02,03],
which is a smooth and unique representation for the angle [7].
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where w¢,gt,qt,qt,c08(¢),sin(d),he, fras—1 and vepmq are the
body angular velocity, the gravity vector expressed in the
local frame, the joint angles, the joint velocities, the phase
representation, the flattened height-scans of the terrain, the
base frequency, the last action and the command.

Value Network: The value network is trained to output an
estimation of the true state value, V' (s;). Unlike the policy
the state s; contains privileged information

St = [Ot Ut ]T7 4

where v, is the linear velocity in the local frame. Linear
velocity is critical because it correlates strongly with the
main objective-track commanded velocity- and thus with the
value function output.

B. Phase-Guided Reward Function

Reward design is central to legged locomotion with
reinforcement learning. Most existing approaches combine
a forward-velocity tracking term with a set of penalties (slip,
foot clearance) to promote stable gaits. While effective, these
reward structures often require extensive manual tuning and
are usually combined with oscillators or IK-based controllers.

PGTT pursues a different route: we aim to generate
phase-guided swing trajectories without inverse kinematics.
The phase prior influences learning only through the reward,
which reduces the number of hand-tuned terms and avoids
constraining the policy. The core idea is to use cubic Hermite
splines to define smooth foot trajectories conditioned on a
per-leg phase variable and local terrain information.

We denote by p; . ; the z-axis (height) position of foot
1 in the hip-joint frame, and by p,, ¢ .; the corresponding
position in the world frame. Let d, be the nominal foot
height in stance (default configuration) and d, the nominal
swing apex (see Fig. ). To adapt the trajectory to terrain,
we compute local statistics around each leg: Hyyax; and
Hin,; are the maximum and minimum terrain heights in
the world frame, and 6 H; = Huax,i — Hmin,; is added to the
swing trajectory to guarantee obstacle clearance.

Formally, a cubic Hermite spline is defined by start and
end positions pg,p1, tangents mg,m1, and duration 7'. For
t€[0,17], the trajectory is

P(t)=co+cit+eat? +c3t?,
Co=po, C1=Mmy,

3 2 1 (5)
€2 = 75 (P1=P0) = Mo — 1,

2 1
3= —sz(pl —po)+ T2 5 (mo+ma).
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Fig. 3: PGTT combines curriculum learning, a robot-centric heightmap, reward shaping through Hermite splines, asymmetric actor-critic learning, and

low-level PD controllers for effective perceptive legged locomotion.

Fig. 4: Distances relative to the hip-joint frame and world frame. The black
leg is the nominal stance, the dashed line a possible swing trajectory, and
the red leg a random leg configuration.

We divide each leg trajectory
(parameterized by ¢; ;):

into three phases

« Stance: foot remains at d until ¢;; = Tyance, Where
Tstance = 2T Pstance and Pgrance 18 the stance ratio.

e Swing up: spline Ps, with parameters (dp, ds +
5H1’30,07Tswing)a duration T@wing :27r(17pstance)/2-

e« Swing down: spline PFPs; with parameters
(ds + O6H;, dy, 0, 0, Tiing), starting at
Dit :Tpeak = 277(1+pstance)/2o

The desired z-position of foot ¢ at phase ¢;; is then
db7

Psu,i (¢i,t _Tstanceaht)v
Psg.i(hi,t — Tpeak t),

0 S ¢i,t < Tstzmcev
Titance S ¢i,t < Tpeaka (6)
Tpeak < ¢i,t <2m.

P(}?i,i (¢i,t,he) =

Apart from the task-specific rewards (e.g. linear velocity
tracking in our case), the central positive term encourages each
foot to follow its terrain-adaptive, phase-guided trajectory:
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To discourage premature contacts during swing, we
include a negative penalty:
Tcontact = § ]]-ﬂ"Sd)i’t<27|'C7;7 ®)
i€feet

where c¢; =1 if foot ¢ is in ground contact and 0 otherwise.
This term penalizes collisions when the phase variable
indicates that the leg should be swinging.

IV. EXPERIMENTAL SETUPS AND RESULTS

In this section we will present the results of the proposed
policy in simulation and the real world and compare them with
the baseline policies in terms of several metrics. All policies
were trained on a workstation equipped with an Intel Core i9-
14900K CPU and a single NVIDIA GeForce RTX 3080 GPU.
Training used a physics-integration time step of dt=0.005s.
During deployment, in both Sim2Sim and Sim2Real transfers,
control commands are issued at 50 Hz (i.e., every 0.02 s).

A. Baselines

We select baseline methods that are both relevant to our
problem and representative of existing approaches to enable
a fair comparison with our method. To evaluate whether
locomotion without fixed gait scheduling can yield more
efficient behaviors, we include MassLoco [10], including
rewards inspired by Margolis et al. [11] to encourage more
natural walking patterns. On the other hand, when considering
a state-of-the-art method that leverages gait priors, we
compare against Wild [7]. We did not include Visual CPG-
RL [12], since, although its framework is similar to Wild,
it is not trained or evaluated on stairs or obstacle traversal,
and is therefore considered less relevant for our study.

B. Metrics

We compare our method PGTT with the two
aforementioned baseline MassLoco and Wild in terms of
linear and angular velocity tracking and success rate. Success
rate (SR) is defined as follows Gangapurwala et al. [13]:

Ne

SR=1 Ny

with N, referring to the number of rollouts that terminated

early due to a prohibited behavior and Np being the total

number of rollouts. Using Nt = 1000, we randomize the

base linear and angular velocity command with 0.7 - p™&*
from the one used during training.

(€))

C. Simulation Results

We apply perturbations of uniformly sampled magnitude
between 7.5 to 30 N and we also sample durations and wait
times between consecutive perturbations. We replicate the
whole training pipeline over 5 different seeds. All metrics
excluding the success rate are normalized with respect the
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Fig. 5: Comparison of PGTT with baseline methods MassLoco and Wild across three metrics: linear velocity tracking, angular velocity tracking and
success rate. Solid lines show the median over 5 different training seeds and the shaded regions are the regions between the 25-th and 75-th percentiles.

TABLE I: Evaluation metrics when the robot traverses discrete obstacles of
varying height from 2cm to 9cm. Success rate, normalized body linear veloc-
ity error ¥, and normalized body angular velocity error & for 1000 quadrupeds.
Results are (median, 25th percentile, 75th percentile) over 5 training seeds.

Method S‘l’f;?s o @
PGTT (0.848,0.842,0.855) | (0.965,0.958,0.972) | (0.991,0.986,0.994)
MassLoco || (0.702,0.659,0.711) | (0.983,0.939,0.986) | (0.903,0.863,0.904)
Wild (0.756,0.756,0.769) | (0.998,0.998,1.000) | (0.935,0.935,0.941)

Fig. 6: Real world experiments. The bottom left image shows the gridmap
and the bottom right shows the odometry.

the maximum value. The results reveal several clear trends
(Fig. 5): PGTT and Wild exhibit very similar commanded
velocity tracking, whereas MassLoco lags behind. PGTT
achieves the highest success rate, outperforming the
second-best method, Wild, by 7.5% on average.

Similar behavior is observed when evaluating the three
methods in environments with discrete obstacles, with PGTT
achieving the highest success rate; 9% higher than the
second-best method. Additionally, both angular and linear
velocity tracking are very similar across all methods (Table [I).

ANYmal C Experiments: We also applied our method
on the same task with the ANYmal C robot. Our preliminary
experiments showcase that PGTT is able to generate walking
behaviors without even changing the hyper-parameters (see
Fig. 2] and the supplementary video).

D. Real-World Deployment

We evaluate the Sim2Real capabilities of our method
on a Unitree Go2 quadruped. For perception, a L1 LiDAR
is fused with IMU data using Point-LIO [14], a tightly

coupled LiDAR-Inertial Odometry framework. The resulting
odometry and transformed point cloud are used to construct
a robot-centric elevation grid map [15], where each cell (i,5)
stores a mean height iLij and variance oij® to represent
terrain uncertainty. Since raw LiDAR maps often contain
holes (NaN values) that can destabilize the policy, we apply
a median-fill filter that in-paints only small gaps (below
radius 7he)e) surrounded by reliable data, while leaving larger
unknown regions untouched.

To provide real-time input to the policy, we extract a
robot-centric heightmap by sampling an 11x9 grid within a
1.1mx0.9m area centered on the robot. Although accuracy
is bounded by grid resolution, the domain randomization used
during training makes the policy robust to such imperfections.
The locomotion policy executes at 50 H z, producing joint
targets that are translated into torques through a lightweight
PD controller (k, =60, kq=3) before being applied by the
Go2’s onboard low-level controller.

Our experiments showcase that policies trained with the
PGTT effectively transfer to the real-world (Fig. [6), and
the robot is able to walk both on static stair and discrete
obstacles environments, and withstand real-life perturbations.
The supplementary video showcases such examples.

V. CONCLUSION

In this work, we introduced Phase-Guided Terrain Traver-
sal (PGTT), a perception-aware locomotion framework that
integrates local heightmap perception, reinforcement learning,
and terrain-adaptive gait priors to achieve robust and efficient
terrain traversal. Our results demonstrate that PGTT increases
traversal success rates by 7.5%. Moreover, it generalizes
across robot platforms without relying on inverse kinematics
and transfers successfully to real hardware, as demonstrated
by reliable deployment on a Unitree Go2. A key strength of
PGTT is its reliance on the lightweight MuJoCo simulation
stack, which allows perception-aware locomotion policies
to be developed and trained on affordable hardware such
as a single consumer-grade GPU, thus lowering the barrier
to entry for this line of research.

Overall, PGTT provides an accessible and effective
foundation for advancing agile, robust, and affordable
legged locomotion in real-world environments, empowering
researchers and laboratories without extensive computational
resources to contribute to this field.
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