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Abstract— State-of-the-art perceptive Reinforcement Learning
controllers for legged robots either (i) impose oscillator or
IK-based gait priors that constrain the action space, add
bias to the policy optimization and reduce adaptability across
robot morphologies, or (ii) operate “blind”, which struggle
to anticipate hind-leg terrain, and are brittle to noise. In this
paper, we propose Phase-Guided Terrain Traversal (PGTT),
a perception-aware deep-RL approach that overcomes these
limitations by enforcing gait structure purely through reward
shaping, thereby reducing inductive bias in policy learning com-
pared to oscillator/IK-conditioned action priors. PGTT encodes
per-leg phase as a cubic Hermite spline that adapts swing height
to local heightmap statistics and adds a swing-phase contact
penalty, while the policy acts directly in joint space supporting
morphology-agnostic deployment. Trained in MuJoCo (MJX)
on procedurally generated stair-like terrains with curriculum
and domain randomization, PGTT achieves the highest success
under push disturbances (median +7.5% vs. the next best
method) and on discrete obstacles (+9%), with comparable
velocity tracking. We validate PGTT on a Unitree Go2 using a
real-time LiDAR elevation-to-heightmap pipeline, and we report
preliminary results on ANYmal-C obtained with the same
hyperparameters. These findings indicate that terrain-adaptive,
phase-guided reward shaping is a simple and general mechanism
for robust perceptive locomotion across platforms.

I. INTRODUCTION

Legged robots promise unmatched mobility in cluttered,

uneven, and human-made environments, but robust

gait control on such terrain remains challenging [1], [2].

Reinforcement learning (RL) has shown that agile locomotion

behaviors can be learned from data [3], yet many studies

assume idealized sensing (privileged terrain information) or

operate “blind,” which hinders anticipation of obstacles and

reduces reliability on hardware [4], [5]. As a result, perception

is essential, but the representation and how it interfaces with

control are pivotal for generality and robustness.

We propose Phase-Guided Terrain Traversal (PGTT), a

perception-aware deep-RL approach that retains the benefits

of rhythmic structure while avoiding IK and action-space

constraints. PGTT uses a robot-centric heightmap (derived

online from LiDAR elevation mapping) as a compact terrain
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Fig. 1: Real-world example of the Unitree Go2 robot climbing stair terrain.

representation and encodes per-leg phase with a cubic Hermite

spline whose swing apex adapts to local height statistics. Cru-

cially, the phase prior is enforced only through reward shaping,

while the policy acts directly in joint space. This design

keeps the action space unconstrained and reduces inductive

bias in policy learning compared to oscillator/IK-conditioned

targets, easing deployment across different morphologies.

The main contributions of this manuscript are: 1) A

terrain-adaptive, phase-guided reward that encodes a

Hermite-spline swing trajectory driven by local heightmap

statistics and penalizes swing-phase contacts, without

constraining the action space or using IK, thereby reducing in-

ductive bias and improving morphology-agnostic deployment,

and 2) an accessible training stack using MuJoCo/MJX that

provides accurate dynamic simulation and high throughput on

a single consumer GPU, offering a lightweight alternative to

Isaac Gym-based pipelines [6] (our code is available at https:

//github.com/NtagkasAlex/phase_guided_terrain_traversal).

II. RELATED WORK

Phase-augmented controllers specify foot or joint targets

as functions of a per-leg phase and track them with IK/PD

controllers, improving stability but coupling the policy to

morphology and introducing action-space bias [4], [7]. Central

Pattern Generators (CPG)-based methods similarly embed

oscillators and let RL modulate their parameters, inheriting the

same limitations [8]. An alternative is to encode gait regularity

in the objective rather than in the actions: phase-guided

reward shaping encourages desired swing/stance timing and

foot clearance while leaving the policy free to decide the

final commands [9]. This shift reduces inductive bias and

eases deployment across platforms with different kinematics.

In this landscape, PGTT aligns with direct joint-space

control but differs in how structure is injected: it uses

a robot-centric heightmap for perception and enforces a

terrain-adaptive, phase-guided prior purely through reward

shaping, avoiding oscillators and IK. This design aims to
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Fig. 2: Simulation snapshots of PGTT. Left: Go2 on stairs with projected front-foot trajectories (red). Middle: Go2 traversing discrete obstacles. Right:
ANYmal C on stairs.

retain the benefits of rhythmic organization while minimizing

action-space constraints, thereby reducing inductive bias

and supporting morphology-agnostic deployment relative to

oscillator/IK-conditioned policies [4], [7], [9].

III. PHASE-GUIDED TERRAIN TRAVERSAL

At a high level, Phase-Guided Terrain Traversal

(PGTT) combines three ideas (Fig. 3): (i) a compact

perception module that encodes terrain as a robot-centric

heightmap derived online from LiDAR measurements, (ii)

phase variables and reward function that provide rhythmic

structure without constraining the action space, and (iii) an

asymmetric actor–critic architecture trained with PPO in

GPU-accelerated MuJoCo (MJX) environments.

A. Problem Formulation

We model legged locomotion as an infinite-horizon

partially observable Markov decision process (POMDP)

M=(S,A,O,P,Ω,r,γ,ρ0),

where st∈S is the full state, at∈A the action, and ot∈O
a partial observation. The transition kernel is P (st+1 |st,at),
the observation model (sensor and preprocessing pipeline) is

Ω(ot |st), r :S×A→R is the reward, γ∈ [0,1) the discount

factor, and ρ0 the initial-state distribution. In our setting,

ot comprises proprioception and a robot-centric heightmap

derived online from LiDAR, while st additionally includes

privileged quantities used only during training. A stochastic

policy πθ(at |ot) maximizes the discounted return

J(πθ)=E s0∼ρ0

ot∼Ω(·|st),at∼πθ(·|ot)
st+1∼P (·|st,at)

[

∞
∑

t=0

γtr(st,at)

]

. (1)

Action Space: The action space is a 12× 1 vector, at,
corresponding to the desired joint angle of the robot. To

facilitate learning, we train the policy to infer the desired

joint angle around the robot’s stand still pose. Hence, the

robot’s desired joint angles are computed as

qdes=qdef+kat, (2)

where k is a constant action scale parameter.

Observation Space: The observation space ot, which is

passed to the policy network πθ(at|ot), consists of mainly

proprioceptive and exteroceptive measurements. To encode the

leg phase, we use cos(ϕ),sin(ϕ) instead of ϕ=[ϕ0,ϕ1,ϕ2,ϕ3],
which is a smooth and unique representation for the angle [7].

ot=[ωt gt qt q̇t cos(ϕ) sin(ϕ) ht f at−1 vcmd]
T , (3)

where ωt,gt,qt,q̇t,cos(ϕ),sin(ϕ),ht,f,at−1 and vcmd are the

body angular velocity, the gravity vector expressed in the

local frame, the joint angles, the joint velocities, the phase

representation, the flattened height-scans of the terrain, the

base frequency, the last action and the command.

Value Network: The value network is trained to output an

estimation of the true state value, V (st). Unlike the policy

the state st contains privileged information

st=[ot vt ]
T , (4)

where vt is the linear velocity in the local frame. Linear

velocity is critical because it correlates strongly with the

main objective-track commanded velocity- and thus with the

value function output.

B. Phase-Guided Reward Function

Reward design is central to legged locomotion with

reinforcement learning. Most existing approaches combine

a forward-velocity tracking term with a set of penalties (slip,

foot clearance) to promote stable gaits. While effective, these

reward structures often require extensive manual tuning and

are usually combined with oscillators or IK-based controllers.

PGTT pursues a different route: we aim to generate

phase-guided swing trajectories without inverse kinematics.

The phase prior influences learning only through the reward,

which reduces the number of hand-tuned terms and avoids

constraining the policy. The core idea is to use cubic Hermite

splines to define smooth foot trajectories conditioned on a

per-leg phase variable and local terrain information.

We denote by pf,z,i the z-axis (height) position of foot

i in the hip-joint frame, and by pw,f,z,i the corresponding

position in the world frame. Let db be the nominal foot

height in stance (default configuration) and ds the nominal

swing apex (see Fig. 4). To adapt the trajectory to terrain,

we compute local statistics around each leg: Hmax,i and

Hmin,i are the maximum and minimum terrain heights in

the world frame, and δHi=Hmax,i−Hmin,i is added to the

swing trajectory to guarantee obstacle clearance.

Formally, a cubic Hermite spline is defined by start and

end positions p0,p1, tangents m0,m1, and duration T . For

t∈ [0,T ], the trajectory is

P (t)=c0+c1t+c2t
2+c3t

3,

c0=p0, c1=m0,

c2=
3

T 2
(p1−p0)−

2

T
m0−

1

T
m1,

c3=−
2

T 3
(p1−p0)+

1

T 2
(m0+m1).

(5)
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Fig. 3: PGTT combines curriculum learning, a robot-centric heightmap, reward shaping through Hermite splines, asymmetric actor-critic learning, and
low-level PD controllers for effective perceptive legged locomotion.

Fig. 4: Distances relative to the hip-joint frame and world frame. The black

leg is the nominal stance, the dashed line a possible swing trajectory, and
the red leg a random leg configuration.

We divide each leg trajectory into three phases

(parameterized by ϕi,t):

• Stance: foot remains at db until ϕi,t = Tstance, where

Tstance=2πpstance and pstance is the stance ratio.

• Swing up: spline Psu with parameters (db, ds +
δHi,0,0,Tswing), duration Tswing=2π(1−pstance)/2.

• Swing down: spline Psd with parameters

(ds + δHi, db, 0, 0, Tswing), starting at

ϕi,t=Tpeak=2π(1+pstance)/2.

The desired z-position of foot i at phase ϕi,t is then

pdes
f,z,i(ϕi,t,ht)=











db, 0≤ϕi,t<Tstance,

Psu,i(ϕi,t−Tstance,ht), Tstance ≤ϕi,t<Tpeak,

Psd,i(ϕi,t−Tpeak,ht), Tpeak ≤ϕi,t<2π.

(6)

Apart from the task-specific rewards (e.g. linear velocity

tracking in our case), the central positive term encourages each

foot to follow its terrain-adaptive, phase-guided trajectory:

rphase=
∑

i∈feet

exp

(

−
(pdes

f,z,i(ϕi,t,h)−pf,z,i)
2

σf

)

. (7)

To discourage premature contacts during swing, we

include a negative penalty:

rcontact=
∑

i∈feet

1π≤ϕi,t<2πci, (8)

where ci=1 if foot i is in ground contact and 0 otherwise.

This term penalizes collisions when the phase variable

indicates that the leg should be swinging.

IV. EXPERIMENTAL SETUPS AND RESULTS

In this section we will present the results of the proposed

policy in simulation and the real world and compare them with

the baseline policies in terms of several metrics. All policies

were trained on a workstation equipped with an Intel Core i9-

14900K CPU and a single NVIDIA GeForce RTX 3080 GPU.

Training used a physics-integration time step of dt=0.005s.
During deployment, in both Sim2Sim and Sim2Real transfers,

control commands are issued at 50 Hz (i.e., every 0.02 s).

A. Baselines

We select baseline methods that are both relevant to our

problem and representative of existing approaches to enable

a fair comparison with our method. To evaluate whether

locomotion without fixed gait scheduling can yield more

efficient behaviors, we include MassLoco [10], including

rewards inspired by Margolis et al. [11] to encourage more

natural walking patterns. On the other hand, when considering

a state-of-the-art method that leverages gait priors, we

compare against Wild [7]. We did not include Visual CPG-

RL [12], since, although its framework is similar to Wild,

it is not trained or evaluated on stairs or obstacle traversal,

and is therefore considered less relevant for our study.

B. Metrics

We compare our method PGTT with the two

aforementioned baseline MassLoco and Wild in terms of

linear and angular velocity tracking and success rate. Success

rate (SR) is defined as follows Gangapurwala et al. [13]:

SR=1−
Ne

NT

, (9)

with Ne referring to the number of rollouts that terminated

early due to a prohibited behavior and NT being the total

number of rollouts. Using NT = 1000, we randomize the

base linear and angular velocity command with 0.7 · vmax

from the one used during training.

C. Simulation Results

We apply perturbations of uniformly sampled magnitude

between 7.5 to 30 N and we also sample durations and wait

times between consecutive perturbations. We replicate the

whole training pipeline over 5 different seeds. All metrics

excluding the success rate are normalized with respect the
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Fig. 5: Comparison of PGTT with baseline methods MassLoco and Wild across three metrics: linear velocity tracking, angular velocity tracking and
success rate. Solid lines show the median over 5 different training seeds and the shaded regions are the regions between the 25-th and 75-th percentiles.

TABLE I: Evaluation metrics when the robot traverses discrete obstacles of
varying height from 2cm to 9cm. Success rate, normalized body linear veloc-
ity error v̄, and normalized body angular velocity error ω̄ for 1000 quadrupeds.
Results are (median, 25th percentile, 75th percentile) over 5 training seeds.

Method
Success

Rate
v̄ ω̄

PGTT (0.848,0.842,0.855) (0.965,0.958,0.972) (0.991,0.986,0.994)

MassLoco (0.702,0.659,0.711) (0.983,0.939,0.986) (0.903,0.863,0.904)

Wild (0.756,0.756,0.769) (0.998,0.998,1.000) (0.935,0.935,0.941)

Fig. 6: Real world experiments. The bottom left image shows the gridmap
and the bottom right shows the odometry.

the maximum value. The results reveal several clear trends

(Fig. 5): PGTT and Wild exhibit very similar commanded

velocity tracking, whereas MassLoco lags behind. PGTT

achieves the highest success rate, outperforming the

second-best method, Wild, by 7.5% on average.

Similar behavior is observed when evaluating the three

methods in environments with discrete obstacles, with PGTT

achieving the highest success rate; 9% higher than the

second-best method. Additionally, both angular and linear

velocity tracking are very similar across all methods (Table I).

ANYmal C Experiments: We also applied our method

on the same task with the ANYmal C robot. Our preliminary

experiments showcase that PGTT is able to generate walking

behaviors without even changing the hyper-parameters (see

Fig. 2 and the supplementary video).

D. Real-World Deployment

We evaluate the Sim2Real capabilities of our method

on a Unitree Go2 quadruped. For perception, a L1 LiDAR

is fused with IMU data using Point-LIO [14], a tightly

coupled LiDAR–Inertial Odometry framework. The resulting

odometry and transformed point cloud are used to construct

a robot-centric elevation grid map [15], where each cell (i,j)
stores a mean height ĥij and variance σij2 to represent

terrain uncertainty. Since raw LiDAR maps often contain

holes (NaN values) that can destabilize the policy, we apply

a median-fill filter that in-paints only small gaps (below

radius rhole) surrounded by reliable data, while leaving larger

unknown regions untouched.

To provide real-time input to the policy, we extract a

robot-centric heightmap by sampling an 11×9 grid within a

1.1m×0.9m area centered on the robot. Although accuracy

is bounded by grid resolution, the domain randomization used

during training makes the policy robust to such imperfections.

The locomotion policy executes at 50Hz, producing joint

targets that are translated into torques through a lightweight

PD controller (kp=60, kd=3) before being applied by the

Go2’s onboard low-level controller.

Our experiments showcase that policies trained with the

PGTT effectively transfer to the real-world (Fig. 6), and

the robot is able to walk both on static stair and discrete

obstacles environments, and withstand real-life perturbations.

The supplementary video showcases such examples.

V. CONCLUSION

In this work, we introduced Phase-Guided Terrain Traver-

sal (PGTT), a perception-aware locomotion framework that

integrates local heightmap perception, reinforcement learning,

and terrain-adaptive gait priors to achieve robust and efficient

terrain traversal. Our results demonstrate that PGTT increases

traversal success rates by 7.5%. Moreover, it generalizes

across robot platforms without relying on inverse kinematics

and transfers successfully to real hardware, as demonstrated

by reliable deployment on a Unitree Go2. A key strength of

PGTT is its reliance on the lightweight MuJoCo simulation

stack, which allows perception-aware locomotion policies

to be developed and trained on affordable hardware such

as a single consumer-grade GPU, thus lowering the barrier

to entry for this line of research.

Overall, PGTT provides an accessible and effective

foundation for advancing agile, robust, and affordable

legged locomotion in real-world environments, empowering

researchers and laboratories without extensive computational

resources to contribute to this field.
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