
TRIM: Scalable 3D Gaussian Diffusion Inference with
Temporal and Spatial Trimming

Zeyuan Yin Xiaoming Liu
Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, USA

{zeyuan, liuxm}@msu.edu

“A candy house.”

Input Generated 3D Gaussians Centers

DiffSplat

DiffSplat

TRIM

TRIM

Figure 1: Comparison between baseline DiffSplat [1] (Rows 1&3) and our TRIM (Rows 2&4). For text-to-3D,
TRIM yields houses more aligned with the “candy” characteristics. For image-to-3D, TRIM generates more
realistic details on eyes, tails, and horns. TRIM also reduces inference time from 8 to 5 seconds.

Abstract

Recent advances in 3D Gaussian diffusion models suffer from time-intensive
denoising and post-denoising processing due to the massive number of Gaussian
primitives, resulting in slow generation and limited scalability along sampling
trajectories. To improve the efficiency of 3D diffusion models, we propose TRIM
(Trajectory Reduction and Instance Mask denoising), a post-training approach that
incorporates both temporal and spatial trimming strategies, to accelerate inference
without compromising output quality while supporting the inference-time scaling
for Gaussian diffusion models. Instead of scaling denoising trajectories in a costly
end-to-end manner, we develop a lightweight selector model to evaluate latent
Gaussian primitives derived from multiple sampled noises, enabling early trajectory
reduction by selecting candidates with high-quality potential. Furthermore, we
introduce instance mask denoising to prune learnable Gaussian primitives by
filtering out redundant background regions, reducing inference computation at
each denoising step. Extensive experiments and analysis demonstrate that TRIM
significantly improves both the efficiency and quality of 3D generation.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1 Introduction

Recent advancements [2, 3, 1] in text-to-3D generation have transformed creative industries, enabling
the synthesis of high-fidelity 3D objects from textual descriptions for applications in filmmaking,
gaming design, and virtual reality. Inspired by diffusion models’ success in 2D image generation [4,
5], text-to-3D generation has made significant progress with the integration of diffusion models,
enabling high-quality 3D synthesis from text prompts. Recent works, such as DiffSplat [1] and
GaussianAtlas [6], have shown that re-purposing image diffusion models with a 2D prior for Gaussian
primitives generation can produce highly realistic and semantically consistent 3D objects.

To better utilize generative models, numerous post-training techniques have been proposed to en-
hance models’ efficiency and output quality. In the 2D domain, image generation speed has been
effectively increased via efficient inference methods like diffusion distillation [7, 8] and model com-
pression [9, 10]. Concurrently, generation quality is often improved via post-training strategies such
as reinforcement learning (RL)-based fine-tuning [11, 12] and best-of-N selection with inference-time
scaling [13, 14]. However, migrating these 2D diffusion post-training techniques to 3D diffusion is
widely regarded as difficult due to two main restrictions. First, the unstructured nature of the 3D
Gaussian Splatting representation, where numerous primitives are scattered in 3D space, complicates
structured compression and optimization. The second is the extensive computational pipeline where
the 3DGS diffusion model sequentially executes image-to-3D reconstruction, 3DGS generation,
and rendering, shortly as a Recon-Gen-Render process. Compared to simple 2D denoising, this
three-stage process incurs considerably more computation cost and hinders its inference time scaling
ability and further RL-based fine-tuning.

To address these challenges, we propose TRIM (Trajectory Reduction and Instance Mask denoising),
a novel post-training framework designed for the 3D diffusion’s Recon-Gen-Render pipeline to
enhance the inference efficiency and scalability without compromising quality. Our design is
motivated by identifying and resolving two key inefficiencies in existing 3D diffusion pipelines. (1)
At the trajectory level, we observe that inference-time scaling by increasing the number of sampled
trajectories significantly improves the chance of producing high-quality 3D assets, but requires
extensive computation in 3D diffusion models. To overcome this costly end-to-end denoising, our
TRIM introduces a latent selector to identify promising latent trajectories early in the denoising
process. This significantly reduces the number of fully denoised trajectories and 3D renderer calls.
(2) At the token level, we identify a key drawback of prior works: the unnecessary optimization of
transparent background regions, which leads to inefficient denoising. To resolve this, TRIM develops
an instance masking mechanism to detect and eliminate background splat tokens. This focuses
computational resources on the foreground object. Subsequently, a post-denoising correction module
utilizes the instance mask to mitigate rendering artifacts by adjusting Gaussian primitive parameters.

Our TRIM conducts the temporal and spatial trimming to address both trajectory-level and token-level
redundancies, achieving substantial savings in computational resources. Our main contributions are
summarized as follows:

• We propose a novel framework for accelerating 3D Gaussian diffusion inference by per-
forming trajectory-level and token-level pruning, which involves a three-stage inference
procedure of trajectory reduction, instance mask denoising, and post-denoising correction.

• Our post-training framework is model-agnostic and can be integrated into a variety of
transformer-based 3D diffusion model backbones without the need of retraining.

• Extensive experiments demonstrate that TRIM achieves higher efficiency in text-to-3D and
image-to-3D generation and improves generation quality across multiple benchmarks.

2 Related Work

3D Generation. Diffusion models [15] have become a dominant approach for the visual generative
task. There are a lot works [2, 16, 17, 1, 18] proposed for 3D object generation in the 3D domain.
Specifically, GVGEN [2] achieves 3D Gaussian diffusion by transforming sparsely located 3D
Gaussians into more structured 3D volumes. LRM [16] is a large reconstruction model by scaling
the training data and parameters in feed-forward transformer-based models. InstantMesh [17]
further integrates novel view synthesis models into LRM with more reference images from different

2

Selector Decoder Renderer

Trajectory Reduction Instance Mask Denoising

⋯

⋯

⋯

⋯

📷

Post-denoising Processing

Reference
Attention

Flatten

MergeRouter

⋯
Mask

Generator

Spatial Trimming Scheme

⋯

Selector

Selector

Selector

Temporal Trimming Scheme

Figure 2: Overview of our TRIM framework. It consists of three stages: given a text prompt A rocking horse
with scroll-work, in the first stage, multiple denoising trajectory candidates are reduced to one trajectory with
high-quality potential. In the second stage, an instance mask is performed to simplify background regions during
denoising process. In the last stage, the Gaussian primitive parameters are corrected by the mask.

viewpoints. To leverage the prior knowledge in the advanced image diffusion models, like PixArt-
Σ [4] and Stable Diffusion 3 [5], which are trained on the large-scale Internet data, DiffSplat [1]
and Gaussian Atlas [6] transform the 2D model structure for 3D Gaussian representation to enable
fine-tuning a well-pretrained image diffusion for 3D Gaussian generation.

Inference-Time Scaling. Inference-time scaling has been demonstrated to be an effective strategy
for improving performance in Large Language Models (LLMs), enhancing reasoning capabilities
and output quality through longer inference [19, 20, 21]. Inspired by LLMs, similar trends are
explored and validated in image diffusion models [22, 13, 14], where sampling multiple denoising
trajectories or noise initializations improves generation quality. Several recent works emphasize
the significance of diverse noise seeds in diffusion sampling, and propose strategies to optimize or
select better denoising trajectories through scoring [13], training-free search [14, 23], or optimization
mechanisms [24]. However, inference-time scaling remains underexplored in 3D diffusion models.
Compared to image generation, 3D generation models, like DiffSplat [1], involve an additional
rendering process and higher denoising costs due to a large amount of Gaussian primitives, making it
impractical to directly apply evaluation or optimization on noisy 3D assets. In this work, we address
this gap by exploring inference-time scaling in 3D diffusion via a lightweight trajectory selection
framework that enables efficient quality improvement with minimal overhead.

Efficient Diffusion Models. Recent works have explored various strategies to improve the efficiency
of diffusion-based generative models. One prominent direction is to reduce the token complexity
in transformer-based architectures. SANA [10] introduces a linear attention mechanism tailored for
high-resolution synthesis, enabling linear-time complexity with respect to sequence length. Token
Merging (ToMe) [25] proposes to merge redundant tokens with similar representation, significantly
accelerating diffusion inference with minimal quality loss. Similarly, DiffCR [26] learns adaptive
token compression ratios per layer and timestep, providing a fine-grained trade-off between speed and
quality. However, these methods often rely on architecture updates and model retraining, which limit
their applicability in 3D domains. In contrast, we propose a training-free instance mask denoising
method to eliminate redundant background tokens during inference, which is easily plugged into the
off-the-shelf transformer-based 3D diffusion models without any retraining cost.

3 Method

In this section, we present the proposed TRIM framework. First, we provide an overview of the
method in Sec. 3.1. Then, we detail two main components integrated into diffusion inference: (1)
Trajectory Reduction in Sec. 3.2 and (2) Instance Mask Denoising in Sec. 3.3.

3.1 Overview of TRIM

Our proposed TRIM framework accelerates diffusion inference for 3D generation by integrating two
novel components: (1) Trajectory Reduction, which uses a latent selector to identify and retain the
most promising trajectory at an early timestep, thereby reducing redundant denoising on multiple
trajectories; and (2) Instance Mask Denoising, which leverages a training-free mechanism to detect
and progressively mask background regions to reduce token computation in denoising transformers.

3

As illustrated in Figure 2, TRIM initially samples diverse noises and generates multiple denoising
trajectories. A lightweight Latent Selector is trained to evaluate intermediate latents and identify the
trajectory with high-quality potential. The chosen trajectory continues for the remaining denoising
steps while other trajectories are terminated, significantly reducing inference cost. In parallel, TRIM
introduces a spatial mask strategy to compress background tokens during denoising. This mask is self-
detected from latent features using a reference-attention mechanism and progressively expanded to
ensure stability. Integrated with token merging and post-denoising correction, TRIM enables efficient
background filtering while preserving generation quality. These two components are integrated into
the diffusion inference for faster and higher-quality 3D generation.

3.2 Trajectory Reduction

To enable early trajectory reduction, we introduce a latent selector to identify the candidate with the
highest quality potential during the denoising process in the latent space. We formulate training for
the latent selector as a knowledge distillation problem. The goal is to distill knowledge from the
Decoder-Renderer-Evaluator joint model, where the selector learns to predict the quality of latent
representations by approximating the relationship between latent splats on the denoising trajectory
and scores evaluated at the final rendered images.

Given a prompt p and a denoising latent trajectory, denoted as T = {zT , zT−1, · · · , z0}, the latent
selector is optimized by aligning its prediction on an intermediate latent zt with the evaluation score
of the Evaluator on the rendered images derived from z0. Specifically, the objective is formulated as:

θselector = argmin
θ
L (Selectorθ(p, zt), Evaluator (p, Renderer (CM, Decoder(z0)))) , (1)

whereL(·) denotes a distillation loss function and CM represents the camera matrix used for Gaussian
splatting rendering. The latent zt is selected at timestep t from the denoising trajectory T .

Instead of directly training the selector by distilling knowledge from a 3D diffusion model, we
adopt an offline distillation strategy, consisting of two decoupled stages: data synthesis and selector
training, to reduce training costs significantly. In the first stage, we infer the text-to-3D diffusion
model to generate 3D views and apply metric-based evaluations, constructing a dataset of {trajectory,
score} pairs. In the second stage, we train the latent selector on this pre-processed dataset for
pairwise selection tasks, predicting the trajectory with higher quality. This offline distillation strategy
effectively alleviates the difficulty in training the latent selector.

Data Synthesis. As shown in Algorithm 1 in the Appendices, we construct a triplet dataset of
{description prompts, denoising trajectories, evaluation scores}. Specifically, we leverage ChatGPT
to generate a set of 100 vivid textual prompts, denoted as P ∈ R100×Lprompt , each describing a single
object, multiple objects, or an object within a scene. For each prompt pj ∈ P , we generate 64 diverse
latent trajectories using a denoising model G. Each trajectory, denoted Ti = {ziT , ziT−1, . . . , z

i
0},

where zit is the latent state at timestep t, is produced by inferring G with the random seed ri . The final
latent state zi0 of each trajectory is decoded into a 3D object representation Oi using a VAE decoder
and then this object is rendered into a set of images Ii ∈ RVout×H×W from Vout viewpoints, specified
by a camera matrix CM . The quality of the rendered images is evaluated using an off-the-shelf image
metric evaluator, yielding a scalar score si. This evaluation score si ∈ R serves as the proxy for the
overall quality of the whole denoising trajectory Ti that produced zi0.

Finally, we assemble a triplet dataset D =
{(

pj , {(Ti, si)}Mi=1

)}N

j=1
, where N is the number of

prompts and M is the number of random seeds (N = 100, M = 64 in our settings). This generation
approach ensures diversity in the generated outputs by leveraging stochasticity introduced by the
distinct seeds, enabling an expansive exploration space for selector training.

Latent Selector Training. Considering challenges in distilling knowledge from a large Decoder-
Renderer-Evaluator joint model to a lightweight selector in Eq. 1, we turn to train the latent selector
under a pairwise selection setting. Given two intermediate latent codes z1t and z2t at an intermediate
timestep t (0 < t < T) along two denoising trajectories T1 and T2 conditioned on the same prompt,
the model is trained to predict which latent corresponds to a higher-quality 3D object. The supervision
signal is determined based on the associated evaluation scores, with the latent corresponding to the
higher score designated as the preferred choice.

4

Reference
Attention

Flatten

MergeScheduler

Spatial Trimming Scheme

Selector

Selector

Selector

Temporal Trimming Scheme

Split

Figure 3: Details about temporal (left) and spatial (right) trimming schemes. In temporal trimming, high-quality
trajectories are selected early using a lightweight selector. In spatial trimming, the mask is detected and utilized
to separate and merge background tokens, reducing the number of tokens processed during denoising.

Our lightweight selector architecture comprises a CNN feature extractor and an MLP discriminator
with a prompt fusion mechanism. Specifically, given two latent representations z1t and z2t with
scores s1 and s2, the selector is trained to predict the preference label y = 1(s1 > s2), which
is 1 if the evaluation score s1 exceeds s2 and 0 otherwise. Firstly, we extract the latent features
f1 = CNN(z1t) and f2 = CNN(z2t). The MLP discriminator, equipped with a prompt fusion
mechanism, concatenates the feature difference f1 − f2 with the prompt embedding ep (from prompt
p), then predicts the label ŷ = MLP([f1 − f2; ep]). The selector (CNN+MLP) is optimized using a
binary cross-entropy loss:

LBCE(y, ŷ) = − (y log σ(ŷ) + (1− y) log(1− σ(ŷ))) , (2)

where σ(·) denotes the sigmoid activation function.

Temporal Trimming Scheme. In the diffusion model inference with N samples, we leverage
the well-trained selector to reduce denoising trajectories at a given t timestep using a pairwise
tournament selection strategy, shown in the left scheme of Figure 3. Identifying a high-quality
trajectory early reduces the total denoising steps, originally NT . With the reduction strategy, we
denoise N candidates from timestep T to t, then 1 candidate from t− 1 to 0, totaling NT − (N − 1)t
steps, saving (N − 1)t steps. Furthermore, since the number of final latents is reduced from N to 1,
the post-denoising processing costs, including VAE decoding and Gaussian splatting rendering, are
also reduced by N times.

3.3 Instance Mask Denoising

We introduce an instance masking mechanism during denoising to eliminate redundant background
splats in the Gaussian splatting grid. Specifically, as shown in the right scheme of Figure 3, we first
detect a mask to distinguish the instance and background based on the latent representation. Then
the mask is gradually applied to drop the background and maintain the instance region in the latent
representation, effectively reducing the number of tokens processed in the denoising transformer.

Instance Mask Detection via Reference Attention. Inspired by the patch-level attention mechanism
in DINO [27], which highlights semantically salient regions via attention between the [CLS] token
and patch tokens, we propose a lightweight, model-free instance mask detection via corner-reference
attention to detect a binary segmentation mask that distinguishes instance regions from the background
on the latent representation. Specifically, we observe that the four corners of the latent feature grid
typically correspond to transparent background regions. We extract and aggregate features from
these corner regions to form a reference token, denoted as [REF]. For each patch in the feature grid,
we compute the similarity between its feature and the [REF] token. Regions with low similarity to
[REF] are treated as potential instance regions. We threshold the similarity map using a predefined
value τ to obtain the binary mask, where 0 and 1 represent the foreground instance and background
regions, respectively. Corner-reference attention is less reliable in early denoising steps due to noisy
latent representations, which hinder accurate instance localization. As denoising progresses, the
latent becomes more structured, enabling more precise mask detection. Thus, we apply the mask
selectively during the middle-to-late denoising stages.

Progressive Mask Expansion Scheduler. To enable a smooth transition from unmasked to masked
region denoising, we adopt progressive mask expansion, a spatially controlled strategy that gradually
expands the masked area from the outer boundary toward the center of the latent grid. As illustrated
in the scheduler module of Figure 3, assuming a 16× 16 latent patch grid (e.g., in Stable Diffusion 3),

5

Text Prompt

An antique
glass perfume

bottle.

A candle
burns beside
an ancient,

leather book.

The golden
trophy shines
brightly with
a ruffled blue

ribbon.

TRIM DiffSplat Image Input TRIM DiffSplat

Figure 4: Qualitative results and comparisons on Text-to-3D (left) and Image-to-3D (right) generation.

we divide the denoising process into four phases. In the first phase, only the outermost 2 row/column
patches are subjected to background masking. In subsequent phases, the masked region is expanded
to include 4, 6, and finally 8 (entire grid) row/column patches. The progressive expansion reduces the
risk of artifacts introduced by hard masking and improves robustness during early-to-mid denoising
steps, while still enabling efficient background reduction in later stages.

Token Merging and Padding. Once the instance mask is obtained via corner-reference attention and
the mask region is scheduled through progressive mask expansion, they are combined to produce a
final binary mask that separates foreground instance and background regions. All background-region
tokens in the latent grid are aggregated into a merged background token, denoted as [BG], and then
concatenated to the flattened foreground instance token sequence. The instance-region tokens along
with [BG] token are fed into the denoising transformer. After denoising, the output [BG] token is
padded back in the masked background positions, restoring the full 2D latent grid structure. The
token merging and padding process ensures compatibility with downstream modules, including VAE
decoding and the Gaussian splatting rendering.

Post-denoising Correction. After denoising, the latent representation is decoded into a set of
Gaussian primitives with explicit parameters, which are then rendered into images using Gaussian
splatting guided by a camera matrix CM . However, since our approach is training-free and directly
employs an off-the-shelf Gaussian diffusion model for inference, the model lacks prior knowledge to
the introduced mask and [BG] token during training. Consequently, the [BG] token is not optimally
denoised to a fully transparent background, leading to artifacts in the rendered images. To address
this, we utilize the mask generated from the last step’s latent representation to correct the parameters
of Gaussian primitives, as shown in Phase 3 of Figure 2. Specifically, we set the background-
region Gaussian primitives’ opacity values to zero. The corrected parameter effectively eliminates
background artifacts and the influence of background primitives on the rendered images.

4 Experiments

4.1 Experimental Settings

We adopt DiffSplat [1] as our main backbone model, trained on the G-Objaverse dataset [28]. For
the text-to-3D generation task, we evaluate on T3Bench [29], which consists of 300 descriptive
prompts about a single object, a single object with surrounding context, or multiple objects. We report
the CLIP Similarity Score [30] and CLIP R-Precision [31] using ViT-B/32 to measure alignment
between the input prompts and the rendered images. Additionally, we utilize ImageReward [32]
to assess perceptual quality based on human aesthetic preference. For the image-to-3D generation
task, we randomly select 300 objects from the Google Scanned Objects (GSO) dataset [33]. For
each object, the front-facing image serves as input for 3D generation, while rendered images from
other viewpoints act as ground-truth. We evaluate reconstruction fidelity using PSNR, SSIM, and
LPIPS [34]. For our TRIM configuration, trajectory reduction is performed at the midpoint of the
denoising process (t = T/2), and the selector model is trained on latent representations extracted at
this intermediate timestep. More details about experiments are contained in the Appendices.

6

Table 1: Quantitive results on T3Bench for text-to-3D generation.
Benchmark Metric GVGEN [2] DIRECT-3D [3] LGM [35] DiffSplat [1] TRIM (Ours)

Single
Object

CLIP Sim.% 23.66 24.80 29.96 30.95 31.58
CLIP R-Prec.% 23.25 30.75 78.00 81.00 81.42
ImageReward -2.15 -2.00 -0.72 -0.49 0.12

Single
Object
w/ Sur.

CLIP Sim.% 22.65 23.05 27.79 30.20 31.48
CLIP R-Prec.% 26.75 25.75 55.00 80.75 88.25
ImageReward -2.25 -2.19 -1.77 -0.67 -0.50

Multiple
Objects

CLIP Sim.% 21.48 21.89 27.07 29.46 30.11
CLIP R-Prec.% 8.00 7.75 51.00 69.50 70.01
ImageReward -2.27 -2.24 -1.73 -0.84 -0.24

Table 2: Quantitive results on GSO dataset for image-to-3D reconstruction.

Metric LGM [35] InstantMesh [17] DiffSplat [1] TRIM (Ours)

PSNR↑ 14.90 15.53 16.20 16.78
SSIM↑ 0.71 0.77 0.79 0.82
LPIPS↓ 0.25 0.22 0.19 0.17

4.2 Text-to-3D Generation

As shown in Table 1, on the Single Object category of T3Bench, TRIM achieves the highest CLIP
Similarity and CLIP R-Precision, indicating stronger semantic alignment between the generated
3D assets and the input text prompts. Moreover, TRIM is the only method to yield a positive
ImageReward score of 0.12, suggesting higher visual fidelity from a human preference perspective.
On more challenging cases such as Single Object with Surroundings and Multiple Objects, TRIM
maintains a clear lead over all the baseline methods, with improvements of 0.73 and 0.65 in CLIP
Similarity over DiffSplat, respectively. The ImageReward scores in these sub remain competitive,
highlighting TRIM’s robustness in complex scenes. These results demonstrate the effectiveness of
TRIM’s temporal and spatial trimming strategies on enhancing the quality of generated 3D assets.

4.3 Image-to-3D Reconstruction

Table 2 and Figure 4 report the quantitative and qualitative results on the GSO dataset for the image-
to-3D reconstruction task. TRIM improves the reconstruction performance over strong baselines
such as DiffSplat, but the gains are relatively smaller than those observed in the text-to-3D setting.
We attribute this to the stronger conditioning signal provided by the input images compared to text
prompts, which inherently reduces the diversity among different sampled trajectories. As a result, the
benefit from inference-time trajectory scaling becomes less obvious. Nevertheless, TRIM consistently
enhances the PSNR, SSIM, and LPIPS scores, demonstrating its general effectiveness in improving
3D reconstruction quality under image conditioning.

4.4 Ablation and Analysis

Qualitative Analysis of Inference Step Scaling. Figure 5 presents qualitative comparisons of 3D
assets generated by DiffSplat with an SD-3.5-Medium backbone using different numbers of inference
steps T = [10, 40, 80]. As the number of steps increases, the generated outputs generally become
more refined and detailed. However, beyond a certain step count, the visual improvements begin
to saturate or even degrade slightly. In the first example about single object generation, excessive
denoising introduces fake details or artifacts, such as debris-like details, which aren’t implied by the
prompt. In the second example about multiple object generation, longer denoising leads to semantic
inconsistencies: the box handle becomes unnaturally large, and the number of pocket watches conflicts
with the prompt description. In the third example about the single object with surroundings, the
model fails to preserve semantic details such as the human figure at the higher inference steps. This
phenomenon, where more inference steps may cause semantic drift or over-smoothing, particularly
for complex scenes, has been observed in recent studies [36, 37, 13]. These observations highlight the

7

A bright red
fire hydrant.

A shiny gold
pocket watch
ticking away
in a velvet

box.

A gardener is
watering

plants with a
hose.

Text Prompt Zoom-in View Comparison

Figure 5: Qualitative comparisons on inference step scaling. Best viewed with zoom.

10 20 40 80
Inference Budget (steps)

30.0

30.5

31.0

31.5

CL
IP

 S
im

ila
rit

y
(%

)

0.5

0.4

0.3

0.2

0.1

Im
ageReward Score

TRIM CLIP
DiffSplat CLIP

TRIM ImageReward
DiffSplat ImageReward

Figure 6: Trajectory scaling vs. inference step scaling.
TRIM improves steadily via trajectory scaling, while
DiffSplat plateaus and eventually degrades with step
scaling.

20 40 60 80 100
Selector Application Timestep (%)

30.8

31.0

31.2

31.4

31.6

CL
IP

 S
im

ila
rit

y
(%

)

0.5

0.4

0.3

0.2

0.1

0.0

Im
ageReward Score

CLIP Similarity
ImageReward Score

Figure 7: Ablation results on selector application
time. Each data point indicates the performance
when applying the selector at a certain timestep.

limitation of naive inference-step scaling and motivate the need for smarter inference-time trajectory
scaling strategies.

Analysis of Inference-time Scaling. Figure 6 compares the evaluation results of Trajectory scaling
and inference step scaling. To ensure a fair comparison under the same total number of inference steps,
the baseline method DiffSplat scales the number of denoising steps from 10 to 80 on one trajectory,
while TRIM fixes the denoising step count to 10 and scales the number of sampled trajectories from
1 to 8. The results reveal that TRIM with trajectory scaling achieves steadily higher performance
across both CLIP Similarity and ImageReward scores as more trajectories are sampled. In contrast,
the DiffSplat with the inference step scaling shows limited improvement in CLIP scores and a clear
decline in ImageReward scores with more denoising steps, likely due to over-smoothing or the
accumulation of artifacts. These findings suggest that inference-time computation is better spent on
trajectory diversity rather than excessively long denoising steps.

Ablation on Selector Architecture. We explore the design space of the selector model using a
C-layer CNN as a feature extractor followed by an L-layer MLP as the discriminator, optionally
conditioned on the text prompt from T3Bench-Single. To evaluate selector performance, we report
two kinds of results on selector training and 3D generation: (1) pairwise accuracy measures binary
classification accuracy on the validation set of pairwise comparisons during selector training; (2)
CLIP similarity and ImageReward scores measure the generation quality of output 3D objects after
applying the selector to trajectory reduction and rendering. Table 3 shows that a convolutional feature
extractor is crucial for selector performance. Specifically, adding one convolutional layer, from FC2
to Conv1-FC2, leads to a substantial improvement in both pairwise accuracy of 20.82% and CLIP
similarity of 0.75%. We further notice that increased model complexity does not yield additional
gains for the pairwise comparison task. This suggests that a lightweight selector with a single
convolutional layer and a two-layer MLP is sufficient to capture discriminative latent features for
effective selection. Moreover, its minimal computational overhead ensures that it does not introduce

8

Table 3: Ablation results on Selector architecture.

Architecture Pairwise
Acc.% ↑

CLIP
Sim.% ↑

ImageReward
Score↑

w/o selector – 30.44 -0.51
FC2 53.36 30.83 -0.40
Conv1-FC2 74.18 31.58 -0.16
Conv1-FC3 73.90 31.54 -0.20
Conv2-FC2 73.09 31.31 -0.22
Conv1-FC2-Prompt 73.73 31.14 -0.26
Conv1-FC3-Prompt 72.91 31.09 -0.28

Table 4: Computation resource comparison.

Method FLOPs
(T)↓

Mem.
(GB)↓

Throughput
(step/s)↑

SD-3.5-Medium 195.68 33.26 13.18
+ IM 165.60 32.85 18.09
+ TR 110.07 33.55 13.18
+ TRIM 106.31 33.13 18.09

0 2 4 6 8
Runtime (seconds)

30.4

30.6

30.8

31.0

31.2

31.4

CL
IP

 S
im

ila
rit

y
(%

)

w/ TR
w/o TR

(a) Ablation results on TR.

0 2 4 6 8
Runtime (seconds)

30.4

30.6

30.8

31.0

31.2

31.4

CL
IP

 S
im

ila
rit

y
(%

)
w/ IM
w/o IM

(b) Ablation results on IM.

0 2 4 6 8
Runtime (seconds)

30.4

30.6

30.8

31.0

31.2

31.4

CL
IP

 S
im

ila
rit

y
(%

)

w/ TRIM
w/o TRIM

(c) Ablation studies on TRIM.

Figure 8: Ablation results on trajectory scaling with or without TRIM. The integration of TRIM improves
generation quality under reduced computational budgets.

noticeable latency to the diffusion inference process, making it a practical and efficient component
for trajectory reduction in 3D diffusion inference scaling.

Ablation on Selector Application Time. We investigate the impact of applying the trajectory selector
at different denoising timesteps. Figure 7 shows that both CLIP similarity and ImageReward scores
improve as the selector is applied in later timesteps, but the performance gains plateau when applying
after the 50% progress. This reflects a trade-off between efficiency and quality: applying the selector
too early yields poor performance due to high noise in the latent features at the early stage, while
applying it too late diminishes the efficiency gain of early pruning. Thus, we adopt the midpoint of
the denoising process, 50% of the total steps, as the default selector application point in TRIM.

Ablation on TRIM. We analyze the contributions of Trajectory Reduction (TR) and Instance Masking
(IM) in Figure 8a and Figure 8b, respectively. We observe that TR primarily improves the CLIP
similarity score of the generated 3D outputs with a slight increase in processing time, while IM is
more effective at reducing overall runtime while maintaining similar CLIP scores. Thus, as shown in
Figure 8c, combining both components in TRIM leads to improvements in both generation quality
and inference efficiency. Notably, TRIM gains generation quality and denoising efficiency under
less inference runtime, benefiting from our proposed early trajectory reduction mechanism. This
demonstrates that TRIM not only accelerates inference but also leads to higher-quality final 3D
outputs.

Diversity Analysis. To investigate the output diversity, we measure the diversity of generated outputs
with or without trajectory reduction on the T3Bench-Single dataset. We repeat the generation process
8 and 16 times, and report the evaluation results on both semantic and geometric diversity via various
metrics, including CLIP similarity, ImageReward scores, and Chamfer Distance. Specifically, CLIP
similarity and ImageReward scores primarily focus on capturing semantic alignment, while Chamfer

Table 5: Results on output diversity with and without trajectory reduction.

Metric TR # repeat of 8 # repeat of 16

CLIP Sim. 30.89 ± 0.21 30.95 ± 0.16
✓ 31.51 ± 0.14 31.53 ± 0.11

ImageReward -0.45 ± 0.05 -0.48 ± 0.04
✓ 0.12 ± 0.04 0.11 ± 0.03

Chamfer Distance 1840, [952, 3060] 1791, [699, 4435]
✓ 2042, [1187, 2813] 2310, [1187, 4079]

9

Distance is used for measuring the distance between two point clouds, which is more sensitive to
geometric diversity.

In Table 5, we report the average evaluation performance along with the standard deviation on
CLIP similarity and ImageReward scores, where the standard deviation is generally regarded as a
key indicator for evaluating diversity. Table 5 also presents the averaged Chamfer Distance (non-
normalized), along with the minimum and maximum values (avg., [min., max.]), via the pair-wise
comparison among all the repeated generation results. The reported maximum value of the Chamfer
Distance is important to reflect the maximum pairwise difference among multiple outputs and indicate
the upper bound of diversity. For the implementation details about Chamfer Distance, we first extract
the locations of Gaussian primitives, converting each generated 3D output into a point cloud, as
shown in the rightmost column of Figure 1. We then calculate the Chamfer Distance for every pair of
point cloud outputs among the 8 or 16 generated objects. Take the 8-output setting as an example: we
calculate the Chamfer Distance for

(
8
2

)
= 28 pairs of outputs and report the average, minimum, and

maximum values.

For the semantic diversity shown in the Table 5, we observe that the model’s diversity is slightly
reduced when using trajectory reduction, with an increase in the average performance. We attribute
this to the selector’s effect with an early discarding of unpromising trajectories. By filtering out the
less promising generation trajectories, the selector effectively shifts the output distribution of diversity
toward a higher quality range. This means that TRIM sacrifices diversity in the low-quality outputs to
improve the average quality of final outputs. For the geometric diversity, we notice that the range
of Chamfer Distances is slightly narrowed and the upper bound is consistently lower when using
trajectory reduction across both settings. These observations indicate that the trajectory reduction
strategy slightly hurts the diversity of outputs and makes the output distribution narrower.

Thus, we can conclude that initial noises primarily drive the diversity of the outputs, and our latent
selector acts as a quality filter, enabling the effective selection from a pool of diverse candidates
to high-quality outputs with a narrower variance/diversity. These results are well-aligned with our
motivation and support our method to prune unpromising trajectories and shift the output distribution
towards a high-quality and narrow range.

Computation Analysis. We analyze the computational efficiency of our proposed TRIM and present
the detailed comparison results in Table 6 of the Appendix. Specifically, we measure the total FLOPs
across all denoising steps. Compared to the baseline DiffSplat with the SD-3.5-Medium backbone,
Instance Masking (IM) reduces FLOPs by 15.7% and increases throughput from 13.18 to 18.09
steps/s, while also slightly lowering memory usage. In contrast, Trajectory Reduction (TR) reduces
the total number of denoising steps in the temporal axis, thus achieving less total FLOPs. Specifically,
by selecting a high-quality trajectory at an intermediate timestep t, the total denoising cost drops
from NT to NT − (N − 1)t, saving (N − 1)t steps. Additionally, as only one trajectory proceeds
to post-denoising, the cost of VAE decoding and Gaussian rendering is also reduced by N times.
Therefore, TRIM leverages trajectory reduction and instance masking to improve inference efficiency
along the temporal and spatial axes, respectively.

5 Conclusion

In this paper, we propose TRIM, a post-training framework for accelerating 3D Gaussian diffusion
inference through temporal and spatial inference-time trimming. By introducing latent trajectory
reduction and instance masking, TRIM effectively reduces low-quality denoising trajectories and
redundant background regions while preserving and improving generation quality. Extensive experi-
ments across multiple benchmarks demonstrate that TRIM not only enhances inference efficiency but
also enables effective inference-time scaling, outperforming prior state-of-the-art methods in both
semantic alignment and aesthetic quality.

Limitations and Future Work. Current 3D diffusion pipelines heavily rely on repurposed 2D
backbones, leading to inefficient and repetitive 3D-to-2D structural transformations. This limits
spatial trimming to the denoising transformer blocks and prevents its application across the full
generative pipeline. To overcome this, it is promising to investigate a 3D-structure-aware diffusion
that not only leverages the 2D priors but also enables end-to-end spatial trimming for more efficient
training and inference.

10

References
[1] Chenguo Lin, Panwang Pan, Bangbang Yang, Zeming Li, and Yadong Mu. Diffsplat: Re-

purposing image diffusion models for scalable 3d gaussian splat generation. In International
Conference on Learning Representations, 2025.

[2] Xianglong He, Junyi Chen, Sida Peng, Di Huang, Yangguang Li, Xiaoshui Huang, Chun Yuan,
Wanli Ouyang, and Tong He. Gvgen: Text-to-3d generation with volumetric representation. In
European Conference on Computer Vision, pages 463–479. Springer, 2024.

[3] Qihao Liu, Yi Zhang, Song Bai, Adam Kortylewski, and Alan Yuille. Direct-3d: Learning direct
text-to-3d generation on massive noisy 3d data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6881–6891, 2024.

[4] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-σ: Weak-to-strong training of diffusion
transformer for 4k text-to-image generation. In European Conference on Computer Vision,
pages 74–91. Springer, 2024.

[5] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
formers for high-resolution image synthesis. In Forty-first international conference on machine
learning, 2024.

[6] Tiange Xiang, Kai Li, Chengjiang Long, Christian Häne, Peihong Guo, Scott Delp, Ehsan Adeli,
and Li Fei-Fei. Repurposing 2d diffusion models with gaussian atlas for 3d generation, 2025.

[7] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score
identity distillation: Exponentially fast distillation of pretrained diffusion models for one-step
generation. In Forty-first International Conference on Machine Learning, 2024.

[8] Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-Jun Qi. One-step
diffusion distillation through score implicit matching. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

[9] Yang Zhao, Yanwu Xu, Zhisheng Xiao, Haolin Jia, and Tingbo Hou. Mobilediffusion: Instant
text-to-image generation on mobile devices. In European Conference on Computer Vision,
pages 225–242. Springer, 2024.

[10] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang,
Muyang Li, Ligeng Zhu, Yao Lu, and Song Han. SANA: Efficient high-resolution text-to-image
synthesis with linear diffusion transformers. In The Thirteenth International Conference on
Learning Representations, 2025.

[11] Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. 2025.

[12] Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu,
Wei Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation.
arXiv preprint arXiv:2505.07818, 2025.

[13] Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Yujun Lin, Zhekai Zhang,
Muyang Li, Junyu Chen, Han Cai, et al. Sana 1.5: Efficient scaling of training-time and
inference-time compute in linear diffusion transformer, 2025.

[14] Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan
Yang, Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion
models beyond scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[16] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan
Sunkavalli, Trung Bui, and Hao Tan. LRM: Large reconstruction model for single image to 3d.
In The Twelfth International Conference on Learning Representations, 2024.

11

[17] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. In-
stantmesh: Efficient 3d mesh generation from a single image with sparse-view large reconstruc-
tion models. arXiv preprint arXiv:2404.07191, 2024.

[18] Zhiyuan Ren, Minchul Kim, Feng Liu, and Xiaoming Liu. Tiger: Time-varying denoising
model for 3d point cloud generation with diffusion process. In In Proceeding of IEEE Computer
Vision and Pattern Recognition, Seattle, WA, June 2024.

[19] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[20] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[21] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling
laws: An empirical analysis of compute-optimal inference for llm problem-solving. In The
Thirteenth International Conference on Learning Representations, 2025.

[22] Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown,
and Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

[23] Ye Tian, Ling Yang, Xinchen Zhang, Yunhai Tong, Mengdi Wang, and Bin Cui. Diffusion-
sharpeninging: Fine-tuning diffusion models with denoising trajectory sharpeninging. arXiv
preprint arXiv:2502.12146, 2025.

[24] Po-Hung Yeh, Kuang-Huei Lee, and Jun cheng Chen. Training-free diffusion model alignment
with sampling demons. In The Thirteenth International Conference on Learning Representations,
2025.

[25] Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. CVPR Workshop on
Efficient Deep Learning for Computer Vision, 2023.

[26] Haoran You, Connelly Barnes, Yuqian Zhou, Yan Kang, Zhenbang Du, Wei Zhou, Lingzhi
Zhang, Yotam Nitzan, Xiaoyang Liu, Zhe Lin, Eli Shechtman, Sohrab Amirghodsi, and
Yingyan Celine Lin. Layer-and timestep-adaptive differentiable token compression ratios
for efficient diffusion transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2025.

[27] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the International Conference on Computer Vision, 2021.

[28] Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi Zuo, Mutian Xu, Yushuang Wu, Weihao Yuan,
Zilong Dong, Liefeng Bo, and Xiaoguang Han. Richdreamer: A generalizable normal-depth
diffusion model for detail richness in text-to-3d. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9914–9925, 2024.

[29] Yuze He, Yushi Bai, Matthieu Lin, Wang Zhao, Yubin Hu, Jenny Sheng, Ran Yi, Juanzi Li,
and Yong-Jin Liu. T3 bench: Benchmarking current progress in text-to-3d generation. arXiv
preprint arXiv:2310.02977, 2023.

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[31] Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Darrell, and Anna Rohrbach. Benchmark
for compositional text-to-image synthesis. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

12

[32] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36:15903–15935, 2023.

[33] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Rey-
mann, Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality
dataset of 3d scanned household items. In 2022 International Conference on Robotics and
Automation (ICRA), pages 2553–2560. IEEE, 2022.

[34] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[35] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu.
Lgm: Large multi-view gaussian model for high-resolution 3d content creation. In European
Conference on Computer Vision, pages 1–18. Springer, 2024.

[36] Senmao Li, taihang Hu, Joost van de Weijer, Fahad Khan, Tao Liu, Linxuan Li, Shiqi Yang,
Yaxing Wang, Ming-Ming Cheng, and jian Yang. Faster diffusion: Rethinking the role of the
encoder for diffusion model inference. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[37] Clement Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin. Flash diffusion: Accel-
erating any conditional diffusion model for few steps image generation. In The 39th Annual
AAAI Conference on Artificial Intelligence, 2025.

[38] Yuhan Zhang, Mengchen Zhang, Tong Wu, Tengfei Wang, Gordon Wetzstein, Dahua Lin, and
Ziwei Liu. 3dgen-bench: Comprehensive benchmark suite for 3d generative models. arXiv
preprint arXiv:2503.21745, 2025.

13

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect our proposed
framework and are supported by Sec. 3 Method and Sec. 4 Experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

14

Justification: We discuss the limitations and future work in Sec. 5 Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the formulas in the paper are numbered and clearly stated in the Sec.3
Method.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all experiments details to reproduce our results, including datasets,
models, parameter settings and code for main experiments.
Guidelines:

15

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all experiments details to reproduce our results, including datasets,
models, parameter settings and code for main experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, pre-processed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all experiments details to reproduce our results, including datasets,
models, parameter settings and code for main experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Following the previous baseline paper, we do not report error bars, but
we include the experiment settings about train/test dataset split, model initialization, and
hyperparameter settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include the experiment settings about the compute resources in the Appen-
dices.

17

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conform with NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses to improve the efficiency and accessibility of ML.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

18

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: The paper describes the safeguards in the Appendices.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper has cited all original paper that produced the code package and
datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper describes the details about the new assets in the Appendices.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

19

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Implementation Details

Datasets. For the text-to-3D generation task, T3Bench consists of three groups of prompts: a single
object, a single object with surroundings and multiple objects. Each subgroup contains 100 text
descriptions. For the image-to-3D generation task, due to the no access to the data selection list
and rendering parameters used in baseline methods, we randomly select 300 objects from the GSO
dataset. Each object is rendered from four orthogonal viewpoints: front, back, left, and right sides,
with a fixed elevation angle of 0◦.

3D Generation Setting. Our 3D generation model with the backbone of Stable-Diffusion-3.5-
Medium uses the original flow matching Euler ODE solver with 28 steps in the main experiments. The
classifier-free guidance scale is set to 7 for text-to-3D generation and 2 for image-to-3D generation.
The image input is center cropped and resized to 256×256 resolution.

Pairwise Data Synthesis. We first use ChatGPT-4o to generate N = 100 text prompts describing
diverse objects with various decorations. Following Algorithm 1, we perform data synthesis by
sampling M = 64 denoising trajectories per prompt using distinct random seeds. For each trajectory,
we decode and render the final denoised output z0 and compute the alignment score s using a
CLIP-based evaluator.

For data processing, we construct pairwise training and testing data from the 100 latent-score pairs.
Each data point consisted of (z1t , z2t , s1 − s2), where s1 − s2 represents the difference between
the scores of the two latent trajectories. The dataset was then split into a 7:3 ratio for training and
testing, respectively. A smaller score distance indicates minimal differentiation between two latent
trajectories, making accurate distinction challenging but less critical for selection. Conversely, a larger
score distance signifies substantial differences, highlighting the importance of correct classification
for effective selection. Due to the pairwise combination method, the data distribution is imbalanced,
with a disproportionately large portion of data samples exhibiting small score distances. To ensure
balanced data training, we group the data into 11 bins based on absolute score distance |s1 − s2|,
with intervals of 0.1, i.e., [0, 0.1), [0.1, 0.2), ..., [1, ∞). We ensure that each group contains 200
samples, resulting in a total training dataset of 2200 samples.

Selector Training Setting. We employ the AdamW optimizer with a learning rate of 0.001, a
weight decay of 0.01, and a cosine weight decay schedule. Training is conducted with a batch size
of 64 for 20 epochs. The model takes a pair of latent features (z1t , z

2
t) as input and predicts the

pairwise comparison outcome. The target label is defined as 1(s1 > s2), and the loss is computed
using binary cross-entropy over the softmaxed prediction. The trained selector achieves over 70%
test accuracy on the overall pairwise validation set in Table 3 and exceeds 90% accuracy for test
samples with large score gaps (|s1 − s2| > 1). This indicates that the well-trained selector effectively
captures discriminative features in the latent space and is capable of reliably identifying higher-quality
trajectories during inference.

Algorithm 1 Data Synthesis for Latent Selector Training

1: Input: Prompt set P = {pi}Ni=0, # trajectories per prompt M , # denoising steps T , camera
matrix CM , decoder, renderer, and evaluator models,

2: Output: A triplet dataset D = {(pj , {(Ti, si)}Mi=1)}Nj=1

3: Initialize empty dataset D ← ∅
4: for j = 1 to N do ▷ Iterate over prompts
5: Initialize empty set Sj ← ∅ ▷ Store trajectory-score pairs for prompt pj
6: for i = 1 to M do ▷ Iterate over random seeds
7: Set random seed ri ← i
8: Generate trajectory Ti = {ziT , ziT−1, . . . , z

i
0} ← G(pj , ri)

9: Decode final latent Oi ← Decoder(zi0)
10: Render images Ii ← Renderer(Oi,CM)
11: Evaluate quality si ← Evaluator(Ii)
12: Add pair to set Sj ← Sj ∪ {(Ti, si)}
13: end for
14: Add prompt and pairs to dataset D ← D ∪ {(pj ,Sj)}
15: end for
16: return D

21

B Experiment results

Computation Cost. Table 6 presents the ablation study on the computational contributions of the
proposed Trajectory Reduction (TR) and Instance Masking (IM) components. We observe that TR
significantly reduces the overall FLOPs by decreasing the total number of denoising steps. However,
since multiple trajectories are processed in parallel and the runtime is determined by the longest
trajectory, the actual GPU memory usage and runtime show a slight increase due to the additional cost
introduced by the selector model. In contrast, IM reduces the computational load of the denoising
transformer by pruning background tokens, resulting in clear improvements in both throughput and
runtime. Thus, the combined TRIM balances temporal and spatial efficiency, leading to improved
overall inference performance.

Table 6: Computation resource comparison. The best performance values are shown in bold, and the second-best
values are underlined. All results are reported based on RTX A6000 GPU.

Method FLOPs
(T)↓

Mem.
(GB)↓

Throughput
(step/s)↑

Runtime
(second)↓

SD-3.5-Medium 195.68 33.26 13.18 8.64
+ IM 165.60 32.85 18.09 5.16
+ TR 110.07 33.55 13.18 8.74
+ TRIM 106.31 33.13 18.09 5.24

Results on PixArt backbone. Our proposed trajectory reduction strategy is designed to be applicable
to most diffusion-based architectures, while the instance mask strategy specifically leverages the token
structure of Transformer-based backbones. In our main experiments, we choose Stable Diffusion
3.5, the latest diffusion model in the Stable Diffusion series, as the backbone. To further demonstrate
generalization, we also apply TRIM to PixArt-Sigma with a different diffusion backbone, and present
the results on the T3Bench-Single dataset in the Table 7. These results show that TRIM improves the
performance of DiffSplat with the backbone of PixArt-Sigma, demonstrating that TRIM consistently
improves both the generation quality and efficiency across various Transformer-based backbones.

Table 7: Quantitative results on T3Bench-Single

Method CLIP Sim.%↑ ImageReward Score↑ FLOPs (T)↓ Runtime (second)↓
SD-3.5-Medium 30.95 -0.49 195.68 8.64
SD-3.5-Medium + TRIM 31.58 0.12 106.31 5.24
PixArt-Sigma 30.73 -0.30 25.18 2.76
PixArt-Sigma + TRIM 31.24 -0.13 14.16 2.19

Results on 3DGen-Bench We apply the CLIP-based 3DGen-Score model in 3DGen-Bench [38]
as an additional metric to enhance our evaluation. The 3DGen-Score model requires multi-view
RGB images, normal maps, and a text prompt as input. The evaluation output contains five criteria:
Geometry Plausibility, Geometry Details, Texture Quality, Geometry-Texture Coherence, and Prompt-
Asset Alignment, each with different value scopes. We provide results on the T3Bench-Single dataset
in the Table 8, which is evaluated by the 3DGen-Score metric. The 3DGen-Score results show that
TRIM achieves better performance than the baseline DiffSplat on all five criteria.

Table 8: 3DGen-Bench results on T3Bench-Single

Method Geo. Plausibility Geo. Details Tex. Quality Geo.-Tex. Alignment

DiffSplat 6462.91 8.14 13.43 15790.92 8544.38
TRIM 6567.58 9.25 13.47 16144.38 8585.02

C More Visualization

We provide more visualization comparisons on text/image-to-3D generation from DiffSplat and
TRIM in this section. Figure 9 shows that TRIM captures finer details, such as the “splattered”

22

colors around the easel and the “worn-out” characteristics of the tire, demonstrating better alignment
with the input text prompts compared to DiffSplat. Figure 10 demonstrates that TRIM produces
more structurally consistent 3D shapes with fewer distortions, leading to more realistic and coherent
generation.

23

“A paint-splattered easel.”

“A sparkling diamond tiara.”

“A pirate flag with skull.”

“A polished grand piano.”

Input

“A worn-out rubber tire
swing.”

Figure 9: Visualization comparisons on T3Bench from DiffSplat (Rows 1,3,5,7&9) and TRIM (Rows
2,4,6,8&10).

24

Input

Figure 10: Visualization comparisons on GSO dataset from DiffSplat (Rows 1,3,5,7&9) and TRIM (Rows
2,4,6,8&10).

25

	Introduction
	Related Work
	Method
	Overview of TRIM
	Trajectory Reduction
	Instance Mask Denoising

	Experiments
	Experimental Settings
	Text-to-3D Generation
	Image-to-3D Reconstruction
	Ablation and Analysis

	Conclusion
	Implementation Details
	Experiment results
	More Visualization

