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ABSTRACT

Fatigue-induced crack growth is a leading cause of structural failure across criti-
cal industries such as aerospace, civil engineering, automotive, and energy. Accu-
rate prediction of stress intensity factors (SIFs) — the key parameters governing
crack propagation in linear elastic fracture mechanics — is essential for assessing
fatigue life and ensuring structural integrity. While machine learning (ML) has
shown great promise in SIF prediction, its advancement has been severely limited
by the lack of rich, transparent, well-organized, and high-quality datasets.

To address this gap, we introduce SIFBench, an open-source, large-scale bench-
mark database designed to support ML-based SIF prediction. SIFBench contains
over 5 million 3D crack and component geometries derived from high-fidelity
finite element simulations across 37 distinct scenarios, and provides a unified
Python interface for data access and customization. We report baseline results
using a range of popular ML models — including random forests, support vector
machines, feedforward neural networks, and Fourier neural operators — alongside
comprehensive evaluation metrics and template code for model training, valida-
tion, and assessment. By offering a standardized and scalable resource, SIFBench
substantially lowers the entry barrier and fosters the development and application
of ML methods in damage tolerance design and predictive maintenance.

1 MOTIVATION

Fatigue is a leading cause of failure in engineering structures across numerous critical industries,
such as aerospace (Aliabadi et al.,|1987), civil engineering (Albrecht & Yamada, |1977), automotive
(Dehning et al., 2017), and energy (Callister Jr & Rethwisch, 2020). Components subjected to re-
peated or cyclic loading can develop cracks that propagate over time, even when the applied stresses
are below the material’s yield strength. This process, known as fatigue crack growth, can lead to
sudden and catastrophic failure without prior warning. Ensuring the safety, reliability, and longevity
of such structures hinges critically on the ability to accurately predict and manage the initiation and
propagation of fatigue cracks.

The central parameter for predicting fatigue behavior is the stress intensity factor (SIF), a fundamen-
tal quantity in linear elastic fracture mechanics that describes the stress and strain fields near a crack
tip (Newman, [2000). The SIF quantifies the severity of the stress concentration and is directly linked
to the crack driving force (Irwinl [1957). It also determines the fracture mode — Mode I (opening),
Mode II (in-plane shear), or Mode III (out-of-plane shear) — and, in the context of fatigue, serves
as the primary variable governing crack growth under cyclic loading, as described by Paris’ Law:
;—J‘\‘, = C(AK)™ where K denotes the SIF. Accurate determination of the SIF for a given crack
geometry and loading condition is therefore indispensable for predicting a component’s remaining
fatigue life, conducting damage tolerance assessments, and designing against fracture.

While analytical solutions for SIFs exist for simple geometries and loading conditions, real-world
engineering structures often feature complex shapes, multiple cracks, and intricate boundary con-
ditions. To handle such complexities, numerical methods, particularly the Finite Element Method
(FEM), are widely used to compute SIFs (Dixon & Pookl [1969) with high accuracy. However,
high-fidelity FEM simulations are often computationally expensive and time-consuming, making
them impractical for large-scale structures or applications requiring rapid evaluation, such as design
optimization or real-time structural health monitoring. Although experimental techniques can offer
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Figure 1: Cracks in brake rotor and turbine blade.

valuable insights, they are typically costly and limited in applicability due to constraints related to
equipment, testing environments, and the range of accessible parameters.

As a result, engineers and researchers frequently rely on handbook solutions manually crafted by
domain experts. These solutions serve as efficient surrogate models, offering reasonably accurate
estimates of SIFs. For instance, the classical Raju-Newman (Newman Jr & Rajul [1981}; [Raju &|
Newman), [1979) and [Fawaz & Andersson| (2004) equations, expressed as polynomial functions, are
capable of predicting SIFs for simple crack geometries such as semi-elliptical surface cracks and
quarter-elliptical corner cracks near holes. Similarly, [Pommier et al|(1999) provided a set of en-
gineering formulas for Mode I surface cracks, while Wang & Lambert (1995) constructed local
weight functions to compute SIFs for semi-elliptical surface cracks in finite-thickness plates. How-
ever, these handbook solutions are confined to simple geometries and loading conditions. These
limitations highlight the pressing need for more flexible, general, and automated methods that can
accommodate a broader range of geometric variations and complex loading scenarios — without
requiring tedious and nontrivial manual derivations (Gautam et al., 2025).

Machine learning (ML) has recently emerged as a promising approach for SIF prediction. ML
models, such as deep neural networks, offer great flexibility to handle complex geometries, boundary
conditions, and loading scenarios through automated training, while also demonstrating improved
accuracy (Zhang et al 2023)). Notable recent contributions include the work of 2022)),
who employed a convolutional neural network (CNN) to predict Mode I SIFs in coal rocks; and
let al|(2022)), exploring Gaussian process (GP) regression (Williams & Rasmussen, 2006), tree-based
models, and feed-forward neural networks for probabilistic failure risk assessment in aeroengine
disks. Their hybrid model improved SIF prediction accuracy by 5%-35% compared to the widely
adopted universal weight function (Glinka & Shenl [1991). In addition, [Zhang et al| (2023)) used a

multi-layer feed-forward neural network to predict mixed-mode SIFs in composite materials.

However, ML approaches are data-driven and their success depends critically on the availability of
rich, high-quality training data (Merrell et al., 2024). Given analytical solutions are limited and
experimental data is scarce and costly to collect, the training datasets are mainly generated using
high-fidelity FEM (Gali¢ et al, 2018). However, generating accurate FEM data for SIFs is far
from trivial (Liu et al., 2004). It demands domain expertise in meshing, particularly near crack
tips where stress singularities arise. Accurately capturing the stress field in these regions often
requires extremely fine meshes or specialized elements, e.g., quarter-point singular elements. The
computation can be highly costly and time-consuming 2006), especially when dealing with
complex 3D geometries or conducting parametric studies varying crack dimensions and locations.
Furthermore, extracting SIFs from FEM results involves sophisticated post-processing techniques,
e.g., (Courtin et al}, 2005} [Fu et al., [2012; [Hou et al., 2022)), which adds another layer of complexity
and potential for error. Collectively, the high cost, required expertise, and time-consuming nature of
this process create a substantial barrier to advancing ML methods in this domain.

To address these challenges, we introduce:

» SIFBench — an open-source, large-scale benchmark database designed to support the de-
velopment and evaluation of ML methods for SIF prediction and fatigue analysis. The
database contains an extensive collection of high-fidelity FEM-derived SIF solutions, cov-
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ering approximately 5 million unique cracks, geometries, and loading conditions across 37
distinct scenarios representative of operational aircraft wing environments. Figure I shows
cracks in critical components like brake rotors and turbine blades. The datasets we provide
are representative of the cracks noticed commonly in the airframe or fuselages but are not
too different from the scenarios shown in Figure

* A unified and convenient Python interface — enabling users to easily access and cus-
tomize the datasets tailored to specific use cases.

* Baseline ML models — including random forests, support vector regression, feed-
forward neural networks, and Fourier neural operator — applied to the datasets to provide
reference results and a solid starting point for further development.

* Comprehensive evaluation metrics — to facilitate thorough assessment of predictive per-
formance across diverse models and tasks.

* Source code templates and examples — covering data loading, model training, validation,
and performance evaluation to streamline downstream development.

By substantially lowering the entry barrier, SIFBench is poised to accelerate progress in ML-based
fatigue analysis and unlock new applications across structural integrity assessment, predictive main-
tenance, and beyond.

2 SIFBENCH: A BENCHMARK FOR MACHINE LEARNING-BASED FATIGUE
ANALYSIS

We now introduce SIFBench, a benchmark database developed to sup-
port the advancement and validation of ML methods for SIF prediction.
The database contains approximately 5 million unique configurations of
3D cracks, geometries, and loading conditions, organized into 37 dis-
tinct scenarios — each defined by a specific combination of geometry
type and loading setup. These scenarios are divided into single-crack
and twin-crack cases, comprising roughly 1.6 million and 3.3 million
geometries, respectively.

»

Vertex location

The single-crack category includes semi-elliptical surface cracks in a fi-
nite plate subjected to tensile loading, as well as various quarter-elliptical
and through-thickness corner cracks located at straight and countersunk
bolt holes. Most configurations are analyzed under three independent
loading conditions: tension, bending, and bearing. The twin-crack cat-
egory consists of paired quarter-elliptical and through-thickness corner
cracks, also positioned at straight and countersunk bolt holes and evalu-
ated under the same three loading conditions, each applied separately.

Vertex location

All the datasets (except the surface crack dataset) were obtained from the S —
Center for Aircraft Structural Life Extension (CAStLE) at the U.S. Air s
Force Academy (Fawaz & Andersson, 2004). The meshes were specif-

ically designed for the hp-version of the FEM (Babuska & Suri, [1990), Figure 2: Mesh pattern
allowing high accuracy in stress field resolution (Zeng & Wiberg},[1992).  for the 2000 element edges
For the problems considered, the relative errors upon mesh convergence ~along the crack front

are consistently around 0.05%. Furthermore, the solvers were validated

against cases with known analytical solutions, where the FEM solutions

achieved relative errors consistently below 0.03% (Litvinov et al.| 2019). [Fawaz et al|(2003) also
verified the results experimentally using specimens made from 7075-T651 bare aluminum plate and
found a good agreement between the simulations and the experiments. Figure 2] shows the FEM
mesh, which was refined near the crack front to accurately capture the complex stress fields. To as-
sess the accuracy of the dataset, several analyses were conducted at CAStLE and by other industry
experts (Pilarczyk et all [2022), to the extent that this dataset is now regarded as the most reliable
simulation dataset available for SIFs (Pilarczyk et al.,2020). More details related to the dataset and
the FEM simulations are shown in Appendix.

In the twin crack database, all the cases are 12 dimensional. For the single crack database, surface
crack case is 5 dimensional and all the other cases are 6 dimensional. The scenarios increase in
complexity in the following order: Surface Crack in a Rectangular Plate (Section 2.1.1) < Corner
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Crack from a Straight Shank-Hole in a Plate (Section 2.1.2) < Corner Crack from a Countersunk
Hole in a Plate (Section 2.1.3) < Twin-Crack Cases (Section 2.2). This progression in difficulty is
primarily due to:

* Geometric complexity: Structural features such as holes—and especially countersunk
holes—induce complex stress concentrations that demand more detailed modeling.

* Loading conditions: Compared to simple tension, non-uniform loading conditions (e.g.,
bending, bearing) lead to more varied and challenging stress distributions.

* Number of cracks: The presence of multiple cracks introduces crack interaction effects,
which complicate the stress field and require more sophisticated analysis.

2.1 SINGLE-CRACK DATASETS

We first present the single-crack datasets, where each component contains one crack. These datasets
were generated using high-fidelity FEM simulations, and span three distinct geometry types, varying
in both component and crack shapes.

2.1.1 SURFACE CRACK IN A RECTANGULAR PLATE

The first type represents semi-elliptical surface
cracks embedded in rectangular plates subjected
to Mode I tensile loading Merrell et al.| (2024). 2
The SIFs (K7) were extracted from FEM-computed

displacement fields using Abaqu in con- .
junction with the fracture mechanics software ‘&
FRANC3D (Wawrzynek et al., 2010). The Kj

values were calculated from the stress fields via the 2c
method in (Hou et al., 2022). a) Crack front b) Inside the component

This dataset contains 2,956 unique simulations, each
defined by distinct plate and crack geometries as
illustrated in Figure In total, approximately
100,000 SIF values were generated. Each crack geometry is characterized by three dimension-
less parameters: a/t, a/c, and ¢/b, where a is the crack depth, c is the surface half-length, ¢ is the
plate thickness, and b is the plate width. The range of these parameters is summarized in Appendix
Table[3| Individual points along the crack front are identified by the angle ¢, measured with respect
to the inscribed circle.

Figure 3: Surface crack in a rectangular plate.

2.1.2 CORNER CRACK FROM A STRAIGHT SHANK-HOLE IN A PLATE

The second geometry type involves corner cracks
originating at a straight shank-hole in a plate. Three a)TensionLoad b)Bending Load c) Bearing Load
distinct loading conditions were considered indepen- (] 1

dently: tension, bending, and bearing/pin loading.
Figure []illustrates the plate and hole geometry un-
der each of these loading scenarios. There are two
crack configurations:

10-w

Quarter-Elliptical Corner Crack. In the first case,
one end of the crack front is at the front of the
plate and and the other end is at the hole, forminga ) ]
quarter-elliptical shape (see Figure [5a). The dataset Figure 4: A load of unit 1 acts on the plate with
comprises 28,781 simulations, each representing a 2 Straight shank-hole.

unique combination of plate and crack geometries.

The geometries are described by the dimensionless

parameters W/R, a/c, a/t, and R/t, where W is the plate width, R is the hole radius (fixed to 10
units), a is the crack depth, c is the surface half-length, and ¢ is the plate thickness. SIF values along
the crack front are recorded using the parametric angle ¢, sampled at a resolution of 0.024 radians.
Additional information is provided in Appendix Table 4]

'https://www.3ds.com/products/simulia/abaqus
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Figure 5: Single corner crack from a straight shank-hole in a plate. Shaded is the crack front.

Through-Thickness Corner Crack. In the second case, the two ends of the crack front are at the
front and the back of the plate (see Figure @) The dataset includes 5,426 distinct simulations, with
geometries characterized by the same parameters: W/R, a/c, a/t, and R/t. As with the previous
case, SIF values are provided along the crack front as a function of the parametric angle ¢, with a
resolution of 0.024 radians. Additional information is listed in Appendix Table 5]

2.1.3 CORNER CRACK FROM A COUNTERSUNK HOLE IN A PLATE

The third geometry type involves corner cracks orig- @) TensionLoad  b)BendingLoad  c)Bearing Load
inating from a countersunk hole in a plate. Asin Sec- (1.
tion 2.1.2] FEM results were obtained from the Cen-
ter for Aircraft Structural Life Extension (CAStLE)
at the U.S. Air Force Academy (Fawaz & Anders-
son, [2004), using hp-version finite element meshes
tailored for high accuracy (Babuska & Suri, |1990).
Tension, bending, and bearing/pin loading condi-
tions were applied independently. The overall plate
and hole geometry under these loading conditions (4) A Joad of unit I acts on the plate with a coun-
is shown in Figure [6al The datasets contain four  tersunk shank-hole.

types of countersunk holes, each defined by a dif-

ferent slant start depth. As shown in Figure [6b] this T L s e
depth is captured by the non-dimensional parameter g, g, MM T
b/t, where b is the vertical distance from the front of S s iy LS
the plate to the start of the countersink, and ¢ is the s A R I
total thickness of the plate. Two crack configurations [ I
are considered: S

Quarter-Elliptical Corner Crack. In this configu-
ration, the two ends of the crack front are at the front
of the plate and at the cylindrical section of the hole, Figure 6: A plate with a countersunk hole.
forming a quarter-elliptical shape. The geometry of

this configuration is shown in Figure |7_5[ The finite element models generate 114,442; 127,884,
85,360; and 72,275 unique plate and crack geometries for b/t = 0.75, 0.5, 0.25, and 0.05, respec-
tively. Each simulation is characterized by the following dimensionless parameters: W/ R, a/c, a/t,
r/t where W is the plate width, R is the hole radius, a is the crack depth, and c is the surface length
of the quarter-elliptical crack. SIFs are computed along the crack front and represented using the
parametric angle ¢, which tracks the position along the crack front. The values are sampled at a res-
olution of 0.024 radians. Detailed statistics for each b/t case are provided in Appendix Tables

(b) Four types of countersunk holes.

Through-Thickness Corner Crack. In the second configuration, the two ends of the crack front
are at the front of the plate and the countersink or the back of the plate. The geometry is shown in
Figure[7b] The finite element models generate 22,417 and 84,265 distinct plate and crack geometries
for b/t = 0.5 and 0.05, respectively. The same geometric features as above — W/r, a/c, a/t, and
r/t — are used to describe the configurations. The corresponding SIF values are extracted along the
crack front using the angle ¢ at a resolution of 0.024 radians. More details are provided in Appendix
Tables [0 and [T11
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(a) Quarter-Elliptical (b) Through-Thickness

Figure 7: Single corner crack from a countershank hole in a plate. Shaded is the crack front.

2w

(a) Quarter-Elliptical (b) Through-Thickness

Figure 8: Twin corner cracks from a straight shank-hole in a plate. Shaded are crack fronts.
2.2 TWIN-CRACK DATASETS

We next present the twin-crack datasets, in which each instance includes a pair of cracks. These
datasets span two geometry types, as described in Sections [2.1.2]and 2.1.3] with two crack config-
urations considered for each type. The same FEM methods described earlier were used to generate
all datasets.

Quarter-Elliptical Corner Cracks from a Straight Shank Hole in a Plate. The crack geometry
is illustrated in Figure [8a The FE models generate 72,000 unique plate and crack configurations,
each represented by the ratio of plate width to hole radius (W/r), the aspect ratios of the two cracks
(a1/c1 and as/co), the relative crack depths (a3 /t and as/t), and the ratio of hole radius to plate
thickness (r/t). SIF values are recorded along both crack fronts and are parameterized by the angles
¢1 and ¢, each sampled at a resolution of 0.024 radians. Summary statistics for this dataset are
provided in Appendix Table[T2]

Through-Thickness Corner Cracks from a Straight Shank Hole in a Plate. The corresponding
geometry is shown in Figure[8b] This dataset consists of 3,055 simulations, with each configuration
described by the same set of features: W/r, a1/c1, ai/t, as/ca, as/t, and r/t. As before, SIF
values are evaluated along the crack fronts using the parametric angles ¢; and ¢, with a resolution
of 0.024 radians. Summary statistics are presented in Appendix Table [I3]

Quarter-Elliptical Corner Cracks from a Countersunk Hole in a Plate. This configuration,
shown in Figure @ includes 1,091,419 plate and crack geometries generated for b/t = 0.5. Each
geometry is described by W/r, a1 /c1, a1/t, as/ca, as/t, and r/t, with SIF values reported along
the two crack fronts using ¢; and ¢, as the parametric angles (again sampled at 0.024 radians).
Summary statistics for this dataset appear in Appendix Table [T4}

Through-Thickness Corner Cracks from a Countersunk Hole in a Plate. The geometry for this
case is shown in Figure The dataset contains 2,720 simulations for b/t = 0.5. Each case is
described using the same set of geometric features—W/r, a1 /c1, a1/t, as/ca, as/t, and r /t—and
SIF values parameterized along the crack fronts using angles ¢; and ¢, with a resolution of 0.024
radians. Summary statistics are listed in Appendix Table[15]

2.3  OVERVIEW OF METRICS

We introduce three metrics to enable a comprehensive evaluation of SIF prediction. Let y4 denote
the FEM-computed SIF value at the angle ¢ (i.e.,ground-truth), and §, denote the prediction of an
ML method given the input, including geometric parameters, loading conditions, and ¢.
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Figure 9: Twin corner cracks from a countershank hole in a plate. Shaded are the crack fronts.

» Normalized Absolute Error (NAE): defined as |ys — 9|/ |ys|-

* Relative L, Error: a metric used to evaluate the predictive performance on a whole crack.
Denote all the ground-truth SIF values computed at the crack front by {4, ,...,Ysy }- The

relative Lo error is defined as: \/vazl (Yops — %i)?/\/zilil yi

e Complementary Cumulative Density Function of NAE (CCDF-NAE): A metric used
to evaluate predictive performance across an entire dataset encompassing diverse crack
geometries, component shapes, and loading conditions. It is defined as 1 — CDF(e) where
the CDF is the cumulative density function of the model’s NAE values across the dataset.
For any error €, a smaller CCDF-NAE indicates better performance.

2.4 BASELINE METHODS

The baseline methods fall into two categories. The first class comprises models that predict a single
SIF value at a time. Given geometry parameters, loading conditions, and a specific angle ¢ — to-
gether forming a feature vector — the model predicts the SIF value of the crack front corresponding
to ¢. Methods in this class include Random Forest Regression (RFR), Support Vector Regres-
sion (SVR), and Feedforward Neural Networks (FNN). The second class consists of recent neural
operators (Azizzadenesheli et al.| 2024}, which learn mappings between functional spaces. Here, the
SIF along the full crack front is treated as a function of angle ¢. The input includes the geometry pa-
rameters, loading conditions, and a set of angles ¢1, ..., ¢ for which predictions are desired. The
output is the corresponding set of N predicted SIF values. We adopt the Fourier Neural Operator
(FNO) (Hou et al.,2022) as a representative model from this class.

2.5 DATA FORMAT AND ACCESS

The benchmark database comprises a collection of CSV files (Mitlohner et al.| 2016), each corre-
sponding to a distinct type of component-crack geometry. Each file includes multiple columns de-
tailing the crack geometry, component geometry, loading, parametric angle (¢), and the associated
SIF values. All the datasets will be hosted on Hugging Face and readily accessible for download.
A detailed README file would be included in the repository to guide users through the dataset
structure and usage. The data can be conveniently accessed using the Python Pandas libraryﬂ, which
also supports flexible customization, modification, and analysis. Listing [I] shows a code snippet
that loads the surface crack dataset described in Section and trains a Random Forest Regres-
sion (RFR) model on it. The provided scripts can be easily extended to other datasets and machine
learning models. Comprehensive training and testing scripts will be made available in the dedicated
GitHub repository, lowering the barrier for users to experiment with various datasets and modeling
approaches.

Listing 1: Training RFR on surface crack dataset

import pandas as pd
from sklearn.ensemble import RandomForestRegressor

df = pd.read_csv (”SURFACE_.CRACK_TRAIN. csv”)
# Drop crack index

https://pandas.pydata.org/
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Figure 10: CCDF-NAE.

d = df.to_numpy ()[:,1:]

# Train

rfr = RandomForestRegressor (max_depth=None)
rfr. fit(d[:,:-1], d[:,-1]))

# Test

df_test = pd.read_csv (”SURFACE_.CRACK_TEST. csv”)
df_test = df_test.to_numpy ()[:,1:]

y_pred = rfr.predict(d[:,:-1])

3 ML BENCHMARKS

This section presents a selection of experiments conducted on our SIFBench datasets, providing
reference results and baselines for future development. Specifically, Tables[I|and[2]report the relative
L errors for the single-crack and twin-crack datasets, respectively. The mean NAE values are
provided in Appendix Tables |16|and For each case, we have trained and tested the models on a
subset of the data with details in Appendix Section[A.3]

In single-crack scenarios, the Feedforward Neural Network (FNN) often achieves the best perfor-
mance among the tested methods, whereas in twin-crack datasets, Random Forest Regression (RFR)
generally performs best. Although the neural operator model — Fourier Neural Operator (FNO) —
is conceptually appealing due to its ability to model functional mappings, it frequently lags behind
the more straightforward single-value prediction models in terms of accuracy. Figures[I0a] and [I0D|
illustrate the Complementary Cumulative Density Function of NAE (CCDF-NAE) for each method
on the surface cracks in a plate and the through-thickness corner cracks from a straight bolt hole in
a plate under tension loading, respectively.

Overall, these preliminary results highlight the potential of machine learning methods for SIF pre-
diction — for instance, many relative Lo errors are within a few percent. However, for these methods
to be viable in broader engineering and scientific applications, a more stable relative Ly error on the
order of 10~ or lower is generally required. This underscores the need for continued improvement
and the development of more powerful machine learning methodologies.

4 CONCLUSION

We have introduced SIFBench— a novel benchmark database designed to advance machine learning
development and applications in stress intensity factor (SIF) prediction and fatigue analysis. The
database includes over five million unique crack and component geometries spanning 37 distinct
scenarios. It is accompanied by a user-friendly Python interface and sample training and evalua-
tion code, significantly lowering the barrier to entry for both researchers and engineers. Prelimi-
nary experiments demonstrate the strong potential of ML methods in this direction. By providing
standardized datasets, evaluation metrics, and template code, SIFBench is well-positioned to fos-
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Table 1: Relative Lo errors on selected single-crack datasets. Abbreviations: QE = Quarter-Elliptical, TT =
Through-Thickness, CC = Corner Crack, SC = Surface Crack.

Scenario Loading | RFR SVR FNN FNO

QE SC (Finite Plate) Tension | 0.0355 | 0.0156 | 0.0076 | 0.0451
Tension | 0.0210 | 0.0847 | 0.0145 | 0.0680

QE CC (Straight Hole) Bending | 0.0529 | 0.2465 | 0.0616 | 0.1275

Bearing | 0.0364 | 0.2478 | 0.0362 | 0.2049
Tension | 0.0294 | 0.1601 | 0.0184 | 0.1550
TT CC (Straight Hole) Bending | 0.0268 | 0.9059 | 0.0719 | 0.1751
Bearing | 0.0674 | 0.5235 | 0.0889 | 0.2706
Tension | 0.0195 | 0.1448 | 0.0138 | 0.2509
QE CC (Countersunk Hole; b/t = 0.75) | Bending | 0.0219 | 0.1250 | 0.0118 | 0.2037
Bearing | 0.0301 | 0.1592 | 0.0168 | 0.2229
Tension | 0.0231 | 0.1798 | 0.0232 | 0.1795
QE CC (Countersunk Hole; b/t = 0.5) Bending | 0.0256 | 0.2187 | 0.0146 | 0.2111
Bearing | 0.1771 | 0.5372 | 0.3090 | 0.4605
Tension | 0.1671 | 0.1634 | 0.1757 | 0.1174
TT CC (Countersunk Hole; b/t = 0.5) Bending | 0.2261 | 0.4616 | 0.3021 | 0.2079
Bearing | 0.1757 | 0.1758 | 0.1738 | 0.1175
Tension | 0.0198 | 0.1595 | 0.0144 | 0.2377
QE CC (Countersunk Hole; b/t = 0.25) | Bending | 0.0240 | 0.1301 | 0.0139 | 0.2138
Bearing | 0.0305 | 0.1681 | 0.0173 | 0.2572
Tension | 0.0179 | 0.1590 | 0.0142 | 0.2271
QE CC (Countersunk Hole; b/t = 0.05) | Bending | 0.0189 | 0.1366 | 0.0111 | 0.2219
Bearing | 0.0297 | 0.1498 | 0.0138 | 0.2226
Tension | 0.0284 | 0.1229 | 0.0373 | 0.0888
TT CC (Countersunk Hole; b/t = 0.05) | Bending | 0.0286 | 0.1351 | 0.0416 | 0.1073
Bearing | 0.0352 | 0.1373 | 0.0377 | 0.0910

Table 2: Relative Lo errors on selected twin-crack datasets. C1 indicates the error for crack at the right side
of the hole, and C2 at left side. The slant start depth of the countersunk hole datasets is b/t = 0.5.

RFR SVR FNN FNO

Cl1 C2 Cl1 C2 Cl C2 Cl C2

Tension | 0.020 | 0.020 | 0.314 | 0.320 | 0.036 | 0.031 | 0.261 | 0.264
QE CC (Straight) Bending | 0.026 | 0.027 | 0.468 | 0.474 | 0.039 | 0.035 | 0.338 | 0.353
Bearing | 0.021 | 0.021 | 0.559 | 0.575 | 0.028 | 0.040 | 0.365 | 0.359
Tension | 0.034 | 0.033 | 0.236 | 0.230 | 0.038 | 0.045 | 0.208 | 0.183
TT CC (Straight) Bending | 0.032 | 0.031 | 0.915 | 0.930 | 0.203 | 0.076 | 0.216 | 0.221
Bearing | 0.039 | 0.043 | 0.591 | 0.589 | 0.038 | 0.041 | 0.326 | 0.332
Tension | 0.013 | 0.013 | 0.080 | 0.079 | 0.014 | 0.014 | 0.060 | 0.056
QE CC (Countersunk) | Bending | 0.013 | 0.013 | 0.110 | 0.112 | 0.012 | 0.012 | 0.097 | 0.100
Bearing | 0.015 | 0.015 | 0.104 | 0.101 | 0.013 | 0.016 | 0.056 | 0.057
Tension | 0.028 | 0.020 | 0.095 | 0.077 | 0.077 | 0.084 | 0.108 | 0.088
TT CC (Countersunk) | Bending | 0.043 | 0.029 | 0.159 | 0.171 | 0.035 | 0.033 | 0.138 | 0.139
Bearing | 0.033 | 0.026 | 0.092 | 0.078 | 0.074 | 0.303 | 0.076 | 0.081

Scenario Loading

ter innovation and accelerate the development of more accurate and efficient methods for structural
integrity assessment and predictive maintenance in critical industries.

Limitations and Future Work: While SIFBench covers a wide range of scenarios, it does not yet
fully capture the complexity of real-world component shapes and crack geometries, crack interac-
tions beyond twin cracks, or a broader spectrum of loading conditions, such as dynamic, thermal, or
multi-axial stresses. We plan to expand the database by conducting high-fidelity finite element simu-
lations on these more complex cases and integrating real-world experimental data to further enhance
its utility. As this work primarily focuses on providing benchmark datasets for SIF prediction, we
have limited it to SIF values. However, in future work, we will work on releasing a well-organized
dataset of full stress fields. Such datasets would be substantially larger and contain much richer
information, enabling broader applications.
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A APPENDIX

A.1 BACKGROUND

The stress intensity factor (SIF) is a fundamental parameter in linear elastic fracture mechanics
(LEFM), used to characterize the stress state at the tip of a crack in a linear elastic material (Perez,
2004). It quantifies the magnitude of the singular stress field near the crack tip, which governs
crack propagation. LEFM assumes that plastic deformation is confined to a small region around
the crack tip compared to the crack size and component dimensions (Anderson & Anderson, [2005).
The SIF depends on the applied loading, crack size, and orientation, and the geometry of the com-
ponent (Wang, |1996). There are three basic modes of crack face displacement — Mode I (opening
mode): tensile stresses are applied perpendicular to the crack plane; Mode II (sliding mode): in-
plane shear stresses act parallel to the crack plane and perpendicular to the crack front; Mode III
(tearing mode): out-of-plane shear stresses act parallel to both the crack plane and crack front. The
corresponding SIFs are denoted by K7, Kj;, and Kjy, respectively.

The general expression for SIF is given by K = Yo+/ma (Wang, 1996) where o is the nominal
applied stress, a is a characteristic dimension of the crack (e.g.,half the length of an internal crack
or the full length of an edge crack), and Y is a dimensionless correction factor that accounts for the
geometry of the component and crack, and the type of loading. For example, in an infinite plate
containing a central crack of length 2a subjected to a uniform tensile stress o, the geometry factor
is Y = 1.0, yielding the Mode I SIF: K; = oy/ma. In more realistic, finite geometries or under
non-uniform loading, Y is often a more complex function, typically dependent on geometric ratios
such as a/W, where W is the width of the component. The critical stress intensity factor, known as
the fracture toughness (denoted as K .), is a material property that quantifies the material’s resistance
to fracture (Launey & Ritchiel 2009). Crack propagation is predicted to occur when the applied SIF
reaches or exceeds the critical value, i.e., K > K.

While analytical solutions or handbook values exist for many simple geometries and loading cases,
calculating SIFs for complex, real-world components often requires numerical methods (Ander-
son & Anderson, [2005). The finite element method (FEM) is widely used for this purpose (Han
et al., 2015). In FEM analysis, the component geometry, including the crack, is discretized into a
mesh of finite elements, and the governing equations of elasticity are solved numerically to obtain
the displacement and stress fields throughout the component under the applied loads and boundary
conditions (Spencer, |2004). Special attention is paid to meshing around the crack tip, often using
refined meshes or specialized singular elements to accurately capture the stress singularity. Once
the near-tip stress and displacement fields are obtained, SIFs (K, K, Kyyp) can be extracted using
various post-processing techniques. Standard methods include the displacement correlation method
(Fu et al}2012) — fitting the numerically obtained displacements near the crack tip to the theoreti-
cal LEFM displacement equations — and the J-integral method (Courtin et al.,[2005) — evaluating
the path-independent energy release rate integral J around the crack tip, which is directly related to
the SIFs under linear elastic conditions. Overall, FEM provides a powerful and flexible framework
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for accurately computing SIFs in components with complex geometries and loading conditions, en-
abling reliable fracture assessments in engineering applications.

A.2 DATASET DETAILS

The datasets were generated by the Center for Aircraft Structural Life Extension (CAStLE) at the
U.S. Air Force Academy and have been developed over the course of more than 10 years. The
simulations were performed on large internal CPU clusters and took over 5 million CPU hours
in total (over the course of several years on multiple clusters in parallel). The Table [B{I3] detail
the geometric parameter space for thirteen distinct datasets characterizing various crack and plate
configurations. The datasets cover surface cracks, single and twin quarter-ellipse corner cracks,
and single and twin through-thickness corner cracks, considering both general straight bolt-hole
(BH) and specific countersunk (CS) hole configurations defined by different b/¢ ratios (0.75, 0.5,
0.25, 0.05). For each dataset, the tables specify the key dimensionless geometric features, such as
crack aspect ratio (a/c), relative crack depth (a/t), relative crack length (¢/b), width-to-radius ratio
(W/R), and radius-to-thickness ratio (R/t). For twin crack configurations, parameters for both
cracks (e.g., al/cl, al/t, a2/c2, a2/t) are defined. Each table outlines the minimum and maximum
values explored for these features, establishing the bounds of the parameter space covered, along
with the coarsest resolution or step size used between data points for each feature within that range.
Collectively, these tables define the scope and granularity of the geometric variations included in
each specific crack dataset.

Table 3: Feature information for the surface cracks in a rectangular plate.

| Feature | Min value | Max value | Resolution (coarsest) |

ajc 0.2 2 0.05
aft 0.2 0.85 0.05
c/b 0.01 03 0.1

Table 4: Feature information for the single quarter-ellipse corner cracks from a straight shank-hole in a plate.

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 1.6 1000 200
a/c 0.1 10 1
aft 0.1 0.95 0.1
RJt 0.1 10 2

Table 5: Feature information for the single through-thickness corner cracks from a straight shank-hole in a

plate.

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 10 1000 200
a/c 0.1 10 1
aft 1,05 10 2
R/t 0.1 10 2

Table 6: Feature information for single quarter-ellipse corner cracks from a countersunk hole in a plate, with

b/t = 0.75.
| Feature | Min value | Max value | Resolution (coarsest) |
W/R 1.6 100 60
afc 0.1 10 4
aft 0.01 0.1 0.01
R/t 0.1 9 I
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Table 7: Feature information for single quarter-ellipse corner cracks from a countersunk hole in a plate, with

b/t = 0.5.

Table 8: Feature information for single quarter-ellipse corner cracks from a countersunk hole in a plate, with

b/t = 0.25.

Table 9: Feature information for single quarter-ellipse corner cracks from a countersunk hole in a plate,

b/t = 0.05.

Table 10: Feature information for single through-thickness corner cracks from a countersunk hole in a plate,

with b/t = 0.5.

Table 11: Feature information for single through-thickness corner cracks from a countersunk hole in a plate,

with b/t = 0.05.

Table 12: Feature information of the twin quarter-ellipse corner cracks from a straight shank hole in a plate.

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 16 100 60
a/c 0.1 10 4
at 0.01 05 0.1
R/t 0.1 10 1

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 1.6 100 60
a/c 0.1 10 4
aft 0.01 0.1 0.01
R/t 0.1 10 1

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 1.6 100 60
a/c 0.1 10 4
a/t 0.01 0.05 0.01
R/t 0.1 10 I

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 2.4 100 60
a/c 0.1 10 4
aft 0.6 15 35
R/t 0.2 5 2

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 1.6 1605.5 800
a/c 0.1 10 4
aft 0.06 0.95 0.01
RJi 01 10 T

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 333 500 300
al/cl 0.1 10 2
al/t 0.1 0.95 0.1
a2/c2 0.1 10 2
a2/t 0.1 0.95 0.1
R/t 0.2 3 I
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Table 13: Feature information of the twin through-thickness corner cracks from a straight shank hole in a

plate.

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 333 500 300
al/cl 0.1 10 2
al/i 1.05 5 1
a2/c2 0.1 10 2
a2/t 1.05 5 1
R/l 02 3 1

Table 14: Feature information of the twin quarter-ellipse corner cracks from a countersunk hole in a plate,

with b/t = 0.5.

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 333 500 300
al/cl 0.1 10 2
al/t 0.1 0.95 0.1
a2/c2 0.1 10 2
a2/t 0.1 0.95 0.1
R/t 02 3 T

Table 15: Feature information of the twin through-thickness corner cracks from a countersunk hole

in a plate, with b/t = 0.5.

| Feature | Min value | Max value | Resolution (coarsest) |

W/R 24 100 60
al/cl 0.1 10 4
al/t 0.1 0.95 0.1
a2/c2 0.1 10 4
a2/t 0.6 0.95 0.1
R/t 05 5 2

A.3 ML TRAINING DETAILS

Tables[I6|and[I7]show the mean NAE for all the cases involving single and twin cracks, respectively.
In each case the dataset was split into train-test with 75%-25% ratio, and training details for each
ML algorithm are as follows:

1. RFRE]: RFR model was trained using a subset of the full dataset. Specifically, a random
sample of up to 100,000 data points was selected without replacement to form the training
set. The input features for the model consisted of all columns representing the crack and
plate geometries, while the target variable was SIF. During instantiation, the RFR model
was configured with the max_depth hyperparameter set to None, allowing the individual
decision trees within the forest to expand until all leaves were pure or contained fewer than
the minimum samples required for a split. All other hyperparameters for the RFR, such
as the number of trees (n_estimators) and criteria for splitting nodes, were kept at their
default values as defined by the scikit-learn library. The model was then trained using the
fit method on the prepared subset and subsequently saved for later use.

2. SVRE]: SVR model training utilized a randomly selected subset of the data, also capped
at a maximum size of 100,000 samples chosen without replacement from the complete
dataset. The input features and the target output variable were defined identically to the
RFR setup. The SVR model was instantiated using the SVR() constructor without any
specified arguments, meaning all hyperparameters were set to their default values provided

3Trained using Ryzen 7 7700 CPU with 32 GB RAM
*Trained using Ryzen 7 7700 CPU with 32 GB RAM
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by the scikit-learn library. These defaults typically include using the Radial Basis Function
(rbf) kernel, a regularization parameter C of 1.0, and an epsilon value of 0.1, among others.
Following initialization, the SVR model was trained on its respective data subset via the fit
method and the resulting trained model was saved.

3. Nl\ﬂ: NN used was a deep, fully connected feedforward architecture designed for regres-
sion tasks. Its configuration was governed by two primary hyperparameters: the number
of input features and the number of neurons in each hidden layer. The network consisted
of five hidden layers with 15 neurons each, utilizing the leaky rectified linear unit (leaky
ReLU) activation function. This particular activation function is chosen to address the van-
ishing gradient problem and to ensure that neurons can continue to learn even when not
strongly activated. The model outputs a single SIF value. For training, the model employs
a mean-squared-error loss function, which quantifies the difference between the predicted
and actual values. Optimization is performed using Adam, which iteratively updates the
network’s parameters to minimize the loss. The training process is conducted over a prede-
fined 150,000 epochs, with the model’s performance assessed after each epoch on both the
training and validation datasets. Progress is monitored and reported at regular intervals to
provide feedback on the training and validation errors. An important aspect of the training
procedure is the implementation of model checkpointing and early stopping. Whenever
the validation loss improves, the current state of the model is saved, ensuring that the best-
performing version is preserved. If the validation loss does not improve for a large number
of consecutive epochs, an early stopping criterion is triggered to halt training, thereby pre-
venting overfitting and saving computational resources. Throughout training, the model
alternates between training and evaluation modes as appropriate, and gradient computation
is disabled during validation to enhance efficiency. The training and validation losses are
recorded at each checkpoint, enabling a detailed analysis of the model’s learning dynam-
ics. Collectively, these hyperparameters and training strategies are designed to optimize
both the effectiveness and efficiency of the learning process, while safeguarding against
overfitting and ensuring reproducibility.

4. FN(ﬂ The FNO model architecture is composed of several key hyperparameters: the num-
ber of input features (decided by the number crack and plate geometric features in the select
dataset), the number of Fourier modes retained in the spectral convolution layers (we used
64), and the width of the network (we have used 64), which determines the number of
channels in the lifted representation. The network begins by projecting the input data into
a higher-dimensional feature space, followed by four consecutive layers that each combine
a spectral convolution in the Fourier domain with a standard pointwise convolution. The
spectral convolutions operate by transforming the input into the frequency domain, apply-
ing learnable complex-valued weights to a fixed number of Fourier modes, and then trans-
forming the result back to physical space. This approach enables the model to efficiently
capture both global and local patterns in the data. Each layer is followed by a non-linear
activation function (GELU), and the final output is produced through two fully connected
layers that map the features back to the desired output dimension. For training, the code uti-
lizes a mini-batch approach with data loaded via PyTorch’s Datal.oader, and optimization
is performed using the Adam algorithm with weight decay for regularization. The learning
rate is scheduled to decay at fixed intervals, controlled by the step size and decay factor
hyperparameters. The loss function employed is a relative L? loss, which measures the
normalized difference between predicted and true outputs, providing a scale-invariant met-
ric that is particularly suitable for function regression tasks. Training progress is monitored
using the normalized root mean squared error (NRMSE) and normalized mean squared
error (NMSE) on both training and test sets, with these metrics computed and stored af-
ter each epoch. The model incorporates checkpointing, saving the parameters whenever
a new best test NRMSE is achieved, thus ensuring that the best-performing model is pre-
served. Throughout training, the network alternates between training and evaluation modes
as appropriate, and gradient computations are disabled during validation phases to improve
efficiency. The combination of spectral and pointwise convolutions, advanced loss metrics,
learning rate scheduling, and robust checkpointing collectively enable the model to achieve
high accuracy and generalization in learning complex mappings between functions.

>Trained using NVIDIA RTX3090 GPU
STrained using NVIDIA RTX3090 GPU
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Table 16: Mean NAE on selected single-crack datasets. Abbreviations: QE = Quarter-Elliptical, TT =
Through-Thickness, CC = Corner Crack, SC = Surface Crack.

Scenario Loading RFR SVR FNN FNO

QE SC (Finite Plate) Tension | 0.0341 0.0138 0.0063 0.0429
Tension | 0.0183 0.0783 0.0126 0.0654

QE CC (Straight Hole) Bending 0.2494 1.7469 0.1756 0.5131

Bearing 0.0578 0.8123 0.0718 0.7145
Tension 0.0277 0.1458 0.0155 0.1437
TT CC (Straight Hole) Bending | 0.0420 2.0930 0.3294 0.7150
Bearing 0.0610 0.5495 0.0800 0.2668
Tension 0.0168 0.1415 0.0124 0.2454
QE CC (Countersunk Hole; b/t = 0.75) | Bending | 0.0192 0.1159 0.0103 0.2020
Bearing 0.0263 0.1694 0.0155 0.2127
Tension 0.0299 0.2242 0.0233 0.1907
QE CC (Countersunk Hole; b/t = 0.5) Bending 0.0271 0.2888 0.0189 0.2522
Bearing 0.6051 1.4120 0.8022 0.7981
Tension | 25.8989 | 214.8582 | 63.1247 | 102.6938
TT CC (Countersunk Hole; b/t = 0.5) Bending | 11.7549 | 284.9972 | 107.7207 | 118.3158
Bearing | 13.3025 | 204.2497 | 44.5282 | 103.0246
Tension 0.0212 0.1895 0.0152 0.2408
QE CC (Countersunk Hole; b/t = 0.25) | Bending 0.0211 0.1208 0.0122 0.2123
Bearing 0.0334 0.2833 0.0189 0.2609
Tension 0.0155 0.1499 0.0123 0.2220
QE CC (Countersunk Hole; b/t = 0.05) | Bending 0.0167 0.1261 0.0098 0.2199
Bearing 0.0263 0.1464 0.0123 0.2165
Tension 0.0269 0.1220 0.0374 0.0888
TT CC (Countersunk Hole; b/t = 0.05) | Bending 0.0270 0.2550 0.0386 0.2342
Bearing 0.0366 0.1517 0.0431 0.1464

Table 17: Mean NAE on selected twin-crack datasets. C1 indicates the error for crack at the right side of the
hole, and C2 at left side. The slant start depth of the countersunk hole datasets is b/t = 0.5.

RFR SVR FNN FNO

Cl C2 Cl C2 Cl C2 Cl C2

Tension | 0.017 | 0.017 | 0.322 | 0.331 | 0.032 | 0.028 | 0.269 | 0.274
QE CC (Straight) Bending | 0.073 | 0.134 | 2.263 | 3.181 | 0.117 | 0.149 | 1.890 | 1.966
Bearing | 0.017 | 0.018 | 0.932 | 0.984 | 0.029 | 0.040 | 0.449 | 0.460
Tension | 0.032 | 0.031 | 0.223 | 0.217 | 0.033 | 0.039 | 0.196 | 0.173
TT CC (Straight) Bending | 0.054 | 0.044 | 2.337 | 2.179 | 0.637 | 0.264 | 1.118 | 0.841
Bearing | 0.035 | 0.039 | 0.641 | 0.630 | 0.032 | 0.037 | 0.326 | 0.334
Tension | 0.010 | 0.011 | 0.073 | 0.071 | 0.012 | 0.012 | 0.059 | 0.055
QE CC (Countersunk) | Bending | 0.013 | 0.015 | 0.170 | 0.190 | 0.015 | 0.015 | 0.297 | 0.407
Bearing | 0.012 | 0.012 | 0.107 | 0.102 | 0.013 | 0.015 | 0.060 | 0.058
Tension | 0.025 | 0.017 | 0.085 | 0.070 | 0.069 | 0.076 | 0.100 | 0.082
TT CC (Countersunk) | Bending | 0.169 | 0.149 | 0.889 | 1.187 | 0.128 | 0.145 | 0.898 | 1.141
Bearing | 0.029 | 0.022 | 0.083 | 0.074 | 0.071 | 0.339 | 0.068 | 0.084

Scenario Loading
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