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Abstract

DNA sequence modeling has advanced with specialized foundation models such1

as HyenaDNA, yet these models capture only partial genomic cues. In this work,2

we investigate whether large language models (LLMs)—both subword-tokenized3

(LLaMA) and byte-level (EvaByte)—provide complementary perspectives when4

applied to DNA classification. Through experiments on the Human Enhancer5

Cohn benchmark, we find that DNA-pretrained models and LLMs succeed on6

largely disjoint subsets of data, revealing genuine cross-family complementarity.7

Building on this insight, we propose a confidence-guided distillation framework8

that aggregates supervision only from correct and confident teachers, producing soft9

labels that safely transfer diverse knowledge. Our method consistently improves10

both compact DNA-specific models and large byte-level LLMs, achieving gains of11

up to +2.34 accuracy points while remaining robust against overfitting even under12

near-perfect training accuracy. These findings highlight that DNA and language13

models encode orthogonal yet synergistic representations, and that principled14

distillation can unify them into a single model for robust genomic prediction.15

1 Introduction16

DNA sequence analysis lies at the heart of modern genomics. With the rapid advances in artificial17

intelligence, deep learning has emerged as a powerful paradigm for tackling DNA-related tasks18

such as enhancer detection, and regulatory element classification [Zhou and Troyanskaya, 2015,19

Kelley et al., 2016]. Motivated by the success of large-scale language modeling [Devlin et al., 2019,20

Touvron et al., 2023], a growing body of research has introduced DNA-specific foundation models21

such as DNABERT [Ji et al., 2021], DNABERT2 [Zhou et al., 2023], and HyenaDNA [Nguyen et al.,22

2023], which adapt Transformer to genomic sequences [Dalla-Torre et al., 2023, Avsec et al., 2021].23

More recently, this line of work has been extended with models like Caduceus, which incorporates24

bi-directional equivariant long-range modeling [Cao et al., 2024], and DNABERT-S, which introduces25

species-aware embeddings for improved cross-species generalization [Zhang et al., 2024].26

Despite these advances, current approaches remain limited. In particular, our understanding of27

what features these models capture from DNA sequences—and how these features contribute to28

classification performance—remains incomplete. More critically, DNA-pretrained models, though29

specialized, may fail to capture alternative structural or semantic cues that could be extracted if DNA30

sequences are treated as symbolic strings, analogous to natural language [Malusare et al., 2023].31

In this work, we explore this perspective by hypothesizing that DNA sequences, viewed as ordered32

character strings, can be effectively modeled not only by DNA-specific pretraining but also by33

general-purpose large language models (LLMs). We investigate two complementary directions:34

(i) a subword-tokenized LLM such as LLaMA [Touvron et al., 2023], which leverages Byte-Pair35

Encoding (BPE), and (ii) a byte-level pre-trained model such as EvaByte [Zheng et al., 2025], which36
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processes inputs at the character level. The latter is particularly appealing, as it naturally aligns with37

the character-based nature of DNA sequences, enabling finer-grained representations without reliance38

on arbitrary subword segmentation [Malusare et al., 2023, Xue et al., 2022, Tay et al., 2022].39

Through experiments, we demonstrate that DNA-pretrained models, standard LLMs, and byte-level40

LLMs capture different aspects of DNA sequences. Importantly, these models succeed and fail on41

complementary subsets of samples, both in test and training data. Building on this observation, we42

propose a simple yet safe knowledge distillation framework [Hinton et al., 2015, Furlanello et al.,43

2018, Zhang et al., 2019] that leverages model confidence to construct a soft-labeled distillation44

dataset. By averaging the confidences of models that correctly classify a sample, we generate training45

signals that preserve complementary knowledge. Distilling across DNA-specific and language-based46

models consistently improves performance, and notably, the resulting models remain robust even47

when trained to near-perfect accuracy on the distillation set.48

Our contributions are threefold:49

• We reveal that LLMs, including byte-level models, extract complementary representations50

from DNA sequences compared to DNA-pretrained models.51

• We introduce a confidence-guided distillation dataset construction method that is both simple52

and resistant to overfitting.53

• We empirically validate that this approach enhances DNA classification performance by54

safely integrating complementary knowledge across model families.55

2 Method56

2.1 Preliminary57

We consider three types of models: a DNA-pretrained model (HyenaDNA), a subword-based large58

language model (LLaMA), and a byte-level language model (EvaByte). For LLaMA and EvaByte,59

we follow a generative prompt-based setup: each DNA sequence is provided in the form of Use60

your background knowledge about DNA enhancers. Classify the following DNA61

sequence as an enhancer (O) or not (X):{DNA sequence}, Answer:, and the model is62

trained to generate a binary answer (O for positive and X for negative). In contrast, HyenaDNA is63

trained following the original design in Nguyen et al. [2023], where a classifier head is attached to64

the backbone and optimized with supervised cross-entropy loss.65

2.2 Motivation66

During evaluation, we observe that the three models (HyenaDNA, LLaMA, and EvaByte) often67

succeed on different subsets of test samples, as shown in Figure 1. Although there exists a substantial68

overlap among correctly predicted samples, the disagreement across models is considerably larger69

than the discrepancy observed when comparing HyenaDNA models trained with different random70

seeds, as shown in Appendix B. This indicates that LLaMA and EvaByte capture aspects of DNA71

sequences that HyenaDNA fails to recognize, and vice versa.72

Interestingly, such complementary behavior is not restricted to test data. Even among training samples,73

the models show differences in which instances they predict correctly or incorrectly. This finding74

suggests that each model focuses on distinct features of the input sequences during training, leading75

to complementary strengths. Building on this observation, we propose to leverage training samples76

themselves for distillation, enabling integration of the diverse knowledge captured by different77

models.78

2.3 Distillation Framework79

Based on the above observation, we construct a confidence-guided distillation dataset. Specifically,80

from the training set, we extract all samples that are correctly predicted by at least one of the three81

models. For each such sample, we record the confidence scores of the models that made correct82

predictions and compute the average of these scores to form a soft label. This process yields a83

soft-labeled dataset that captures complementary signals across models.84

2



225
(3.2%) 445

(6.4%)

384
(5.5%)

272
(3.9%)

439
(6.3%) 411

(5.9%)

3841
(55.3%)

LLaMA Hyena

Eva

All Correct (center): 3841  |  All Incorrect (complement): 931 (13.4%)

Test set: Complementarity of correct predictions

698
(4.2%) 789

(4.7%)

879
(5.3%)

592
(3.6%)

1142
(6.9%) 952

(5.7%)

9609
(57.8%)

LLaMA Hyena

Eva

All Correct (center): 9609  |  All Incorrect (complement): 1997 (12.0%)

Training set: Complementarity of correct predictions

Figure 1: Complementarity of correct predictions among LLaMA, Hyena, and Eva on the test
(left) and training (right) sets. Numbers indicate counts with percentages relative to the total; the
complement region (all incorrect) is shown below each plot. Note that pairwise disagreements
across model families substantially exceed the seed variance of a single family, evidencing genuinely
complementary competence.

Finally, we use this distillation dataset to further train the models (HyenaDNA, LLaMA, and EvaByte).85

This simple yet effective framework allows each model to benefit from the unique perspectives of the86

others. The overall procedure is summarized in Algorithm 1.87

Algorithm 1 Confidence-Guided Distillation
1: Input: Training set Dtrain, teacher modelsM
2: Initialize distillation set Ddistill ← ∅
3: for each sample (x, y) ∈ Dtrain do
4: Collect predictions and confidences from all teachers
5: Keep only teachers that predict y correctly
6: if at least one correct teacher exists then
7: Soft label ỹ(x)← average confidence of correct teachers
8: Add (x, ỹ(x)) to Ddistill
9: end if

10: end for
11: Return Ddistill

3 Experiments88

3.1 Experimental Setup89

We conduct all experiments on the Human Enhancer Cohn dataset from GenomicBenchmarks90

[Gresova et al., 2022], a widely used benchmark for enhancer identification. The task is formulated91

as a binary classification problem, distinguishing enhancer from non-enhancer sequences, with an92

equal number of samples per class to ensure balance. The dataset contains 10,421 positive and 10,42293

negative samples in the training set, and 3,474 samples per class in the test set.94

We evaluate three model families: HyenaDNA (1.6M parameters), a DNA-pretrained model with a95

classifier head; EvaByte (6.5B parameters), a byte-level large language model; and LLaMA3-8B (8B96

parameters), a subword-tokenized large language model. All models are first trained and evaluated97

on the Human Enhancer Cohn dataset using the same train/test split.98
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After this supervised training stage, we perform confidence-guided distillation. Specifically, distilla-99

tion is applied to HyenaDNA, EvaByte, and LLaMA separately, starting from their baseline models100

trained on the Human Enhancer Cohn dataset, while keeping all other settings unchanged.101

3.2 Baselines102

As baselines, we use the three model families introduced above—HyenaDNA, EvaByte, and LLaMA3-103

8B—each trained individually on the dataset. In addition, we consider simple ensemble heuristics: (i)104

majority voting across the three models and (ii) a confidence-based strategy that selects the prediction105

from the most confident model. Finally, we compare these baselines against our confidence-guided106

distillation applied to each model family individually, as summarized in Table 1.107

3.3 Main Results108

Table 1: Effect of confidence-guided distillation on the Hu-
man Enhancer Cohn dataset. Distilled rows indicate models
fine-tuned from the corresponding baseline. ∆ denotes the
accuracy gain over baseline.

Model Variant Pretraining Acc. (%) ∆

HyenaDNA Baseline DNA 73.06 –
Distilled DNA 73.33 +0.27

EvaByte Baseline Natural Language 71.60 –
Distilled Natural Language 73.50 +1.90

LLaMA3-8B Baseline Natural Language 70.06 –
Distilled Natural Language 72.40 +2.34

Majority Voting Ensemble 73.07 –
Confidence-based Ensemble 73.70 –

Table 1 summarizes the effect of dis-109

tillation compared to ensemble heuris-110

tics. Both HyenaDNA and EvaByte111

improve after distillation; LLaMA3-112

8B shows the largest gains. Major-113

ity voting and confidence-based en-114

sembling achieve slightly higher ac-115

curacy in aggregate, but they require116

multiple models at inference time. By117

contrast, our confidence-guided dis-118

tillation compresses complementary119

knowledge into a single student, offer-120

ing comparable accuracy with much121

greater efficiency and deployability.122

3.4 No Collapse under High Memorization123

10 20 30 40 50 60
Epoch

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

EvaByte vs. LLaMA distilled: Training vs. Test Accuracy

EvaByte Train
EvaByte Test
LLaMA Train
LLaMA Test

Figure 2: EvaByte and LLaMA under
confidence-guided distillation.

A key finding is that even as both EvaByte124

and LLaMA achieve very high training accuracy125

(98.36% and 95.6%, respectively), their test ac-126

curacy does not collapse and stays stable around127

72–74%. Even though the models memorize the128

training data almost perfectly, their test accuracy129

remains stable without degradation. This indicates130

that our distillation targets do not induce over-131

fitting collapse, but instead provide robust gen-132

eralization under high memorization. Figure 2133

illustrates the training trajectory.134

4 Conclusion and Discussion135

We investigated the complementarity between DNA-pretrained models and language-pretrained136

LLMs for DNA classification, showing that they capture orthogonal genomic signals. Building137

on this, we proposed a confidence-guided distillation strategy that integrates only reliable teacher138

signals, yielding consistent improvements—modest for HyenaDNA and substantial for EvaByte and139

LLaMA—while remaining robust against overfitting.140

A key limitation of our approach is that distillation requires an additional training phase, which adds141

computational overhead and may constrain scalability. Looking forward, it would be valuable to move142

beyond post-hoc distillation and design unified architectures that can directly fuse heterogeneous143

sources of complementary knowledge. More broadly, our findings suggest that language-based144

LLMs can provide non-redundant genomic insights, pointing toward new opportunities for leveraging145

foundation models to advance trustworthy biomedical AI.146
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A Experimental Details205

We follow the standard GenomicBenchmarks split: training and test sets are provided, and we further206

reserve 20% of the training set for validation. All models are trained with AdamW optimizer, a linear207

warmup of 100 steps, and early stopping with patience of 3 based on validation performance. Final208

results are reported on the held-out test split using the checkpoint with the best validation score.209

A.1 HyenaDNA: Training and Evaluation Details210

For HyenaDNA, DNA sequences are tokenized at the character level ({A,C,G,T,N}) with maximum211

length 500. The model is initialized from a pretrained HyenaDNA checkpoint. Training uses AdamW212

(learning rate 6× 10−4, weight decay 0.1, batch size 256) and cross-entropy loss. Unlike the original213

HyenaDNA setup that trains for 100 epochs, we apply early stopping on validation loss and select the214

best checkpoint.215

A.2 LLaMA3-8B: Training and Evaluation Details216

For LLaMA3-8B, we adopt a generative prompt-based setup, where each DNA sequence217

is presented as: Use your background knowledge about DNA enhancers. Classify218

the following DNA sequence as an enhancer (O) or not (X): {DNA sequence},219

Answer: and the model is trained to autoregressively predict the label (O/X). We apply LoRA220

(rank r = 8, α = 16, dropout 0.05) to the attention projection modules (q_proj, k_proj, v_proj,221

up_proj, down_proj). Optimization uses learning rate 1× 10−5 and batch size 16. We train for up222

to 100 epochs with early stopping on validation accuracy.223

A.3 EvaByte: Training and Evaluation Details224

EvaByte is trained with the same prompt-based causal language modeling setup as LLaMA3-8B,225

where each DNA sequence is followed by a binary label (O/X) to be predicted autoregressively. The226

main differences are in the hyperparameters: we use batch size 4 (instead of 16), and learning rate227

1× 10−5 without weight decay. LoRA (rank r = 8, α = 16, dropout 0.05) is applied to the attention228

projection modules as in the LLaMA3-8B experiments.229

B Complementarity Beyond Seed Variance230

To verify that the observed complementarity is not simply due to randomness in training or seed231

variance, we compared overlaps between HyenaDNA models trained with different seeds and between232

HyenaDNA and other model families. Table 2 shows that the disagreement between HyenaDNA runs233

(seed0 vs. seed42) is relatively small, while the disagreement between HyenaDNA and EvaByte is234

substantially larger. This confirms that the complementarity arises from model family differences235

rather than stochastic variation.236

Compared to the ∼10% disagreement across HyenaDNA seeds, cross-family comparisons with237

EvaByte exhibit nearly double the disagreement rate (around 20%). This demonstrates that large238
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Table 2: Comparison of prediction overlaps on the Human Enhancer Cohn dataset. “Both Correct”
denotes samples where both models predict correctly, “Disagree” denotes samples where one model
is correct and the other is not, and “Both Wrong” denotes samples where both fail. Percentages are
relative to the full test set.

Pair of Models Both Correct Disagree Both Wrong

Hyena (seed0, 72.25%) vs. Hyena (seed42, 73.13%) 67.7% 9.9% 22.3%
Hyena (seed42, 73.13%) vs. EvaByte (71.43%) 61.2% 22.2% 16.6%
Hyena (seed0, 72.25%) vs. EvaByte (71.43%) 62.4% 19.9% 18.7%

language models such as EvaByte capture distinct genomic cues that DNA-pretrained models like239

HyenaDNA do not, indicating genuine complementarity rather than random variation. Therefore, our240

distillation framework leverages orthogonal knowledge across model families, beyond what can be241

obtained by simply retraining the same architecture with different seeds.242
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1. Claims244

Question: Do the main claims made in the abstract and introduction accurately reflect the245

paper’s contributions and scope?246

Answer: [Yes]247

Justification: Abstract and introduction includes paper’s contributions.248

Guidelines:249

• The answer NA means that the abstract and introduction do not include the claims250

made in the paper.251

• The abstract and/or introduction should clearly state the claims made, including the252

contributions made in the paper and important assumptions and limitations. A No or253

NA answer to this question will not be perceived well by the reviewers.254

• The claims made should match theoretical and experimental results, and reflect how255

much the results can be expected to generalize to other settings.256

• It is fine to include aspirational goals as motivation as long as it is clear that these goals257

are not attained by the paper.258

2. Limitations259

Question: Does the paper discuss the limitations of the work performed by the authors?260

Answer: [Yes]261

Justification: Section 4 Conclusion and Discussion includes limitations of the work.262

Guidelines:263

• The answer NA means that the paper has no limitation while the answer No means that264

the paper has limitations, but those are not discussed in the paper.265

• The authors are encouraged to create a separate "Limitations" section in their paper.266

• The paper should point out any strong assumptions and how robust the results are to267

violations of these assumptions (e.g., independence assumptions, noiseless settings,268

model well-specification, asymptotic approximations only holding locally). The authors269

should reflect on how these assumptions might be violated in practice and what the270

implications would be.271

• The authors should reflect on the scope of the claims made, e.g., if the approach was272

only tested on a few datasets or with a few runs. In general, empirical results often273

depend on implicit assumptions, which should be articulated.274

• The authors should reflect on the factors that influence the performance of the approach.275

For example, a facial recognition algorithm may perform poorly when image resolution276

is low or images are taken in low lighting. Or a speech-to-text system might not be277

used reliably to provide closed captions for online lectures because it fails to handle278

technical jargon.279

• The authors should discuss the computational efficiency of the proposed algorithms280

and how they scale with dataset size.281

• If applicable, the authors should discuss possible limitations of their approach to282

address problems of privacy and fairness.283

• While the authors might fear that complete honesty about limitations might be used by284

reviewers as grounds for rejection, a worse outcome might be that reviewers discover285

limitations that aren’t acknowledged in the paper. The authors should use their best286

judgment and recognize that individual actions in favor of transparency play an impor-287

tant role in developing norms that preserve the integrity of the community. Reviewers288

will be specifically instructed to not penalize honesty concerning limitations.289

3. Theory assumptions and proofs290

Question: For each theoretical result, does the paper provide the full set of assumptions and291

a complete (and correct) proof?292

Answer:[NA]293
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Justification: This paper does not include theorem.294

Guidelines:295

• The answer NA means that the paper does not include theoretical results.296

• All the theorems, formulas, and proofs in the paper should be numbered and cross-297

referenced.298

• All assumptions should be clearly stated or referenced in the statement of any theorems.299

• The proofs can either appear in the main paper or the supplemental material, but if300

they appear in the supplemental material, the authors are encouraged to provide a short301

proof sketch to provide intuition.302

• Inversely, any informal proof provided in the core of the paper should be complemented303

by formal proofs provided in appendix or supplemental material.304

• Theorems and Lemmas that the proof relies upon should be properly referenced.305

4. Experimental result reproducibility306

Question: Does the paper fully disclose all the information needed to reproduce the main ex-307

perimental results of the paper to the extent that it affects the main claims and/or conclusions308

of the paper (regardless of whether the code and data are provided or not)?309

Answer: [Yes]310

Justification: Section 3 Experiments include those information.311

Guidelines:312

• The answer NA means that the paper does not include experiments.313

• If the paper includes experiments, a No answer to this question will not be perceived314

well by the reviewers: Making the paper reproducible is important, regardless of315

whether the code and data are provided or not.316

• If the contribution is a dataset and/or model, the authors should describe the steps taken317

to make their results reproducible or verifiable.318

• Depending on the contribution, reproducibility can be accomplished in various ways.319

For example, if the contribution is a novel architecture, describing the architecture fully320

might suffice, or if the contribution is a specific model and empirical evaluation, it may321

be necessary to either make it possible for others to replicate the model with the same322

dataset, or provide access to the model. In general. releasing code and data is often323

one good way to accomplish this, but reproducibility can also be provided via detailed324

instructions for how to replicate the results, access to a hosted model (e.g., in the case325

of a large language model), releasing of a model checkpoint, or other means that are326

appropriate to the research performed.327

• While NeurIPS does not require releasing code, the conference does require all submis-328

sions to provide some reasonable avenue for reproducibility, which may depend on the329

nature of the contribution. For example330

(a) If the contribution is primarily a new algorithm, the paper should make it clear how331

to reproduce that algorithm.332

(b) If the contribution is primarily a new model architecture, the paper should describe333

the architecture clearly and fully.334

(c) If the contribution is a new model (e.g., a large language model), then there should335

either be a way to access this model for reproducing the results or a way to reproduce336

the model (e.g., with an open-source dataset or instructions for how to construct337

the dataset).338

(d) We recognize that reproducibility may be tricky in some cases, in which case339

authors are welcome to describe the particular way they provide for reproducibility.340

In the case of closed-source models, it may be that access to the model is limited in341

some way (e.g., to registered users), but it should be possible for other researchers342

to have some path to reproducing or verifying the results.343

5. Open access to data and code344

Question: Does the paper provide open access to the data and code, with sufficient instruc-345

tions to faithfully reproduce the main experimental results, as described in supplemental346

material?347
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.362
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.364
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should state which ones are omitted from the script and why.367

• At submission time, to preserve anonymity, the authors should release anonymized368

versions (if applicable).369

• Providing as much information as possible in supplemental material (appended to the370

paper) is recommended, but including URLs to data and code is permitted.371

6. Experimental setting/details372

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-373

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the374

results?375

Answer: [Yes]376

Justification: Section 3 Experiments include those information.377

Guidelines:378

• The answer NA means that the paper does not include experiments.379

• The experimental setting should be presented in the core of the paper to a level of detail380

that is necessary to appreciate the results and make sense of them.381

• The full details can be provided either with the code, in appendix, or as supplemental382

material.383

7. Experiment statistical significance384

Question: Does the paper report error bars suitably and correctly defined or other appropriate385

information about the statistical significance of the experiments?386

Answer: [No]387

Justification: The experiments are conducted on a single seed but the results are justified388

with same results across various model architecture.389

Guidelines:390

• The answer NA means that the paper does not include experiments.391

• The authors should answer "Yes" if the results are accompanied by error bars, confi-392

dence intervals, or statistical significance tests, at least for the experiments that support393

the main claims of the paper.394

• The factors of variability that the error bars are capturing should be clearly stated (for395

example, train/test split, initialization, random drawing of some parameter, or overall396

run with given experimental conditions).397

• The method for calculating the error bars should be explained (closed form formula,398

call to a library function, bootstrap, etc.)399
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• The assumptions made should be given (e.g., Normally distributed errors).400

• It should be clear whether the error bar is the standard deviation or the standard error401

of the mean.402

• It is OK to report 1-sigma error bars, but one should state it. The authors should403

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis404

of Normality of errors is not verified.405

• For asymmetric distributions, the authors should be careful not to show in tables or406

figures symmetric error bars that would yield results that are out of range (e.g. negative407

error rates).408

• If error bars are reported in tables or plots, The authors should explain in the text how409

they were calculated and reference the corresponding figures or tables in the text.410

8. Experiments compute resources411

Question: For each experiment, does the paper provide sufficient information on the com-412

puter resources (type of compute workers, memory, time of execution) needed to reproduce413

the experiments?414

Answer: [Yes]415

Justification: Section 3 Experiments include those information.416

Guidelines:417

• The answer NA means that the paper does not include experiments.418

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,419

or cloud provider, including relevant memory and storage.420

• The paper should provide the amount of compute required for each of the individual421

experimental runs as well as estimate the total compute.422

• The paper should disclose whether the full research project required more compute423

than the experiments reported in the paper (e.g., preliminary or failed experiments that424

didn’t make it into the paper).425

9. Code of ethics426

Question: Does the research conducted in the paper conform, in every respect, with the427

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?428

Answer: [Yes]429

Justification: This research follows the guidelines.430

Guidelines:431

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.432

• If the authors answer No, they should explain the special circumstances that require a433

deviation from the Code of Ethics.434

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-435

eration due to laws or regulations in their jurisdiction).436

10. Broader impacts437

Question: Does the paper discuss both potential positive societal impacts and negative438

societal impacts of the work performed?439

Answer: [No]440

Justification: There is no societal impact of the work performed.441

Guidelines:442

• The answer NA means that there is no societal impact of the work performed.443

• If the authors answer NA or No, they should explain why their work has no societal444

impact or why the paper does not address societal impact.445

• Examples of negative societal impacts include potential malicious or unintended uses446

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations447

(e.g., deployment of technologies that could make decisions that unfairly impact specific448

groups), privacy considerations, and security considerations.449
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• The conference expects that many papers will be foundational research and not tied450

to particular applications, let alone deployments. However, if there is a direct path to451

any negative applications, the authors should point it out. For example, it is legitimate452

to point out that an improvement in the quality of generative models could be used to453

generate deepfakes for disinformation. On the other hand, it is not needed to point out454

that a generic algorithm for optimizing neural networks could enable people to train455

models that generate Deepfakes faster.456

• The authors should consider possible harms that could arise when the technology is457

being used as intended and functioning correctly, harms that could arise when the458

technology is being used as intended but gives incorrect results, and harms following459

from (intentional or unintentional) misuse of the technology.460

• If there are negative societal impacts, the authors could also discuss possible mitigation461

strategies (e.g., gated release of models, providing defenses in addition to attacks,462

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from463

feedback over time, improving the efficiency and accessibility of ML).464

11. Safeguards465

Question: Does the paper describe safeguards that have been put in place for responsible466

release of data or models that have a high risk for misuse (e.g., pretrained language models,467

image generators, or scraped datasets)?468

Answer: [NA]469

Justification: This research does not include risk for misuse.470

Guidelines:471

• The answer NA means that the paper poses no such risks.472

• Released models that have a high risk for misuse or dual-use should be released with473

necessary safeguards to allow for controlled use of the model, for example by requiring474

that users adhere to usage guidelines or restrictions to access the model or implementing475

safety filters.476

• Datasets that have been scraped from the Internet could pose safety risks. The authors477

should describe how they avoided releasing unsafe images.478

• We recognize that providing effective safeguards is challenging, and many papers do479

not require this, but we encourage authors to take this into account and make a best480

faith effort.481

12. Licenses for existing assets482

Question: Are the creators or original owners of assets (e.g., code, data, models), used in483

the paper, properly credited and are the license and terms of use explicitly mentioned and484

properly respected?485

Answer: [Yes]486

Justification: They are properly cited in references.487

Guidelines:488

• The answer NA means that the paper does not use existing assets.489

• The authors should cite the original paper that produced the code package or dataset.490

• The authors should state which version of the asset is used and, if possible, include a491

URL.492

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.493

• For scraped data from a particular source (e.g., website), the copyright and terms of494

service of that source should be provided.495

• If assets are released, the license, copyright information, and terms of use in the496

package should be provided. For popular datasets, paperswithcode.com/datasets497

has curated licenses for some datasets. Their licensing guide can help determine the498

license of a dataset.499

• For existing datasets that are re-packaged, both the original license and the license of500

the derived asset (if it has changed) should be provided.501
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• If this information is not available online, the authors are encouraged to reach out to502

the asset’s creators.503

13. New assets504

Question: Are new assets introduced in the paper well documented and is the documentation505

provided alongside the assets?506

Answer: [NA]507

Justification: This paper does not release new assets.508

Guidelines:509

• The answer NA means that the paper does not release new assets.510

• Researchers should communicate the details of the dataset/code/model as part of their511

submissions via structured templates. This includes details about training, license,512

limitations, etc.513

• The paper should discuss whether and how consent was obtained from people whose514

asset is used.515

• At submission time, remember to anonymize your assets (if applicable). You can either516

create an anonymized URL or include an anonymized zip file.517

14. Crowdsourcing and research with human subjects518

Question: For crowdsourcing experiments and research with human subjects, does the paper519

include the full text of instructions given to participants and screenshots, if applicable, as520

well as details about compensation (if any)?521

Answer: [NA]522

Justification: This paper does not involve crowdsourcing nor research with human subjects.523

Guidelines:524

• The answer NA means that the paper does not involve crowdsourcing nor research with525

human subjects.526

• Including this information in the supplemental material is fine, but if the main contribu-527

tion of the paper involves human subjects, then as much detail as possible should be528

included in the main paper.529

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,530

or other labor should be paid at least the minimum wage in the country of the data531

collector.532

15. Institutional review board (IRB) approvals or equivalent for research with human533

subjects534

Question: Does the paper describe potential risks incurred by study participants, whether535

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)536

approvals (or an equivalent approval/review based on the requirements of your country or537

institution) were obtained?538

Answer: [NA]539

Justification: This paper does not involve crowdsourcing nor research with human subjects.540

Guidelines:541

• The answer NA means that the paper does not involve crowdsourcing nor research with542

human subjects.543

• Depending on the country in which research is conducted, IRB approval (or equivalent)544

may be required for any human subjects research. If you obtained IRB approval, you545

should clearly state this in the paper.546

• We recognize that the procedures for this may vary significantly between institutions547

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the548

guidelines for their institution.549

• For initial submissions, do not include any information that would break anonymity (if550

applicable), such as the institution conducting the review.551

16. Declaration of LLM usage552
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Question: Does the paper describe the usage of LLMs if it is an important, original, or553

non-standard component of the core methods in this research? Note that if the LLM is used554

only for writing, editing, or formatting purposes and does not impact the core methodology,555

scientific rigorousness, or originality of the research, declaration is not required.556

Answer: [NA]557

Justification: The core method development in this research does not involve LLMs as any558

important, original, or non-standard components.559

Guidelines:560

• The answer NA means that the core method development in this research does not561

involve LLMs as any important, original, or non-standard components.562

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)563

for what should or should not be described.564

14

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	Preliminary
	Motivation
	Distillation Framework

	Experiments
	Experimental Setup
	Baselines
	Main Results
	No Collapse under High Memorization

	Conclusion and Discussion
	Experimental Details
	HyenaDNA: Training and Evaluation Details
	LLaMA3-8B: Training and Evaluation Details
	EvaByte: Training and Evaluation Details

	Complementarity Beyond Seed Variance

