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ABSTRACT

In visual cognitive neuroscience, there are two main theories about the function
of the ventral visual processing stream. One suggests that it serves to classify
objects (classification hypothesis); the other suggests that it generates intermediate
representations from which people can generate verbal descriptions, actions,
and other kinds of information (distributed semantic hypothesis). To adjudicate
these, we trained two deep convolutional AlexNet models on 330,000 images
belonging to 86 categories, representing the intersection of Ecoset images and the
semantic norms collected by the Leuven group. One model was trained to produce
category labels (classification hypothesis), the other to generate all of an item’s
semantic features (distributed semantic hypothesis). The two models learned very
different representational geometries throughout the network. We also estimated
the human semantic structure of the 86 classes by using a triadic comparison
task. The representations acquired by the feature-generating model aligned better
with human-perceived similarities amongst images, and better predicted human
judgments in a triadic comparison task. The results thus support (distributed
semantic hypothesis).

1 INTRODUCTION

Theories about human visual object recognition have generally oriented around two somewhat
different views. The first proposes that the recognition system serves to match a perceived item
to one of several stored object categories(Riesenhuber & Poggio, 2000; Serre et al., 2007). such
matching can then index into the human semantic system to allow for retrieval of other information
about the perceived item(Jolicoeur et al., 1984; Coltheart, 2004). On this classification hypothesis,
visual object recognition is contained solely within the visual system and provides access to a
separate, potentially amodal semantic store. The second perspective proposes that visual object
recognition is not separate from, but is deeply influenced by, semantic processing. On this
distributed semantic hypothesis, object recognition does not function to match a visually-perceived
object to a discrete category representation. Instead, visual object processing generates a distributed,
cross-modal representation that expresses the perceived item’s semantic or conceptual similarities to
other known items(Rogers et al., 2004). As a consequence, the representational structure expressed
within recognition systems can be influenced, not only by visual structure, but also by the rich
multi-modal semantic knowledge the perceiver possesses about the object.

The current paper assesses which view provides a better account of the similarities that people
discern amongst photographs of objects, by training models with identical encoding architectures
on identical distributions of images, but with different objectives corresponding to the two different
views. We first consider whether the objective matters, showing that the two model variants
learn different representational geometries that are most profound in deeper layers but persist all
the way to the shallowest layers. We then consider which variant provides a better account of
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human-perceived similarities, by considering how well model-based representations explain human
similarity judgements, and how well model representational structure aligns with structure derived
from human judgements.

Relationship to prior work. A broad range of recent work has considered how the internal
representations acquired by contemporary deep vision models can help to understand aspects
of human visual perception and/or the neural encoding of visual object information. Yamins
et al. (2014) has closely considered how the behavior of deep convolutional image classifiers
relate to human behavior, and how such models may explain fine-grained organization of feature-
detectors within primate visual cortex when constrained with additional losses(Margalit et al.,
2023). Muttenthaler et al. (2023) have considered how representations in deep image classifiers
can be directly regularized to show better accordance with human similarity judgements. Fel et al.
(2022) have showed that deep image classifiers can be regularised with the features that humans
pay attention to while perceiving images. Mehrer et al. (2021) showed that DCNNs better capture
patterns of human behavior when trained on more representative corpora of images than the usual
ImageNet dataset(Deng et al., 2009) .The current work contributes to these efforts by considering an
apples-to-apples comparison of models matched in all aspects except for the two losses considered,
each corresponding to a different cognitive hypothesis about the functioning of the visual object
recognition system.

2 DATASET

Sem-Alexnet (ECOSET-86)
Cat-Alexnet (ECOSET-86)

Model representational geometry
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Figure 1: Second-order RDM analysis
Mehrer et al. (2020) to visualise
representational geometry learned
by 5 instances of a model variant
(Cat-Alexnet and Sem-Alexnet).
Representational geometries of all
instances within a model variant seem
to be quite similar. Even though
layers that are deeper and densely
connected exhibit a stark contrast
in their geometries, differences are
observable across all layers, indicating
that the distinct objectives of the model
variants lead to systematically divergent
representational geometries throughout
the network.

The dataset used to train our models was constrained
by two goals. First, because we aim to understand
human-perceived similarities amongst photographs, we
wanted it to include a representative and ecologically
realistic distribution of images. We therefore began
with the ECOSET(Mehrer et al., 2021), a compilation
of images belonging to 565 basic-level object categories
that arguably represent the distribution of concepts with
which people are typically familiar. Second, we wished
to compare models that classify photographs by assigning
them to the appropriate basic-level category with models
that instead learn to generate a distributed semantic
representation of the items. For this, we employed the
Leuven norms, a dataset of semantic norms collected by
the Leuven group(De Deyne et al., 2008), which indicates
which of 2057 propositional features (e.g. ”has wings”,
”is big,” ”can move,” etc) are commonly judged to be
true of 300 different living and nonliving categories.
For such feature vectors, the feature overlap between
two concepts provides an indication of their semantic
relatedness(McRae et al., 2005), so that binary feature
vectors encoding the norm data can serve as proxies for
distributed output representations that encode semantic
similarity structure. To create the dataset for this study,
we therefore took the intersection of concepts appearing
in both the ECOSET and the Leuven norms—a set
that includes 330,000 images, each depicting an item
belonging to one of 86 possible basic-level categories,
and with each such category associated with a binary
semantic feature vector containing 2057 elements(1). We
will call this the ECOSET-86.
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3 ASSESSING
WHETHER THE OBJECTIVE MATTERS.

Study 1 assessed whether a DCNN will acquire similar or different internal representations when
trained with losses corresponding to the two hypotheses. Specificaly, categorization models learned
to generate a one-hot basic-level category label for each image, while distributed semantic models
learned to generate all of the semantic features associated with an image. Each model type adopted
the same encoding architecture, viewed the same distribution of images, and was trained to the
same performance criterion. We then assessed, at each model layer, how acquired representations
compared within and between model types.

Models were variants of the AlexNet architecture (Krizhevsky et al., 2017) trained to categorize
using standard cross-entropy loss (Cat-Alexnet (Table 2)) or to generate semantic features using
an independent binary cross-entropy loss on each output unit (Sem-Alexnet (Table 3)). Model
accuracy was measured as the proportion of times (a) the most active label was the correct label
(for Cat-Alexnet) or (b) the output vector was more similar to the target vector than any other
vector(for Sem-Alexnet). Five instances of each variant, differing only in initial random weight
configuration, were trained to the same accuracy criterion of 70%. We then evaluated similarity of
the representational geometries acquired at each model layer within and between model variants,
following the procedure described by (Mehrer et al., 2020): at each layer we computed pairwise
cosine distances in the elicited representations for a large test set of photographs. For each pair
of layers across all models, we then computed the pearson correlation in the resulting distance
matrices—producing a layer-to-layer distance matrix whose entries indicate dissimilarity in the
representational geometries acquired by each model layer. Finally, we reduced this matrix to three
components using classical multidimensional scaling.

Results are shown in Figure 1. Layers within a model instance are connected by a line; the two
model variants (categorization vs distributed semantic) are indicated with different colors; and
distances within the 3D embedding indicate dissimilarity of representational geometries between
layers. These tend to be quite similar within variant, dissimilar across variants at each layer. The
difference is most obvious in deeper densely-connected layers (well-separated green vs red points
toward the right) but is discernable through all layers, even to the most shallow. Thus the different
objectives produce systematically different representational geometries throughout the network.

Study 2 assessed whether the difference in learned representations would lead to differences in the
ability of the models to predict human behavior on a triplet judgement task.

Triadic comparison task Our primary objective is to test the representational alignment of different
model-based visual-semantic representations with human perceived visual-semantic representations.
In pursuit of this, we require a means of assessing human semantic representations for our objects of
interest. Here, we focus on naturalistic images of a set of inanimate and animate concepts. We adopt
a method used in several recent studies investigating human conceptual structure, namely triadic
similarity judgements Hebart et al. (2023); Suresh et al. (2023b;a); Mukherjee & Rogers (under
revision) (Figure 2A). This entails presenting participants with sets of image triplets and instructing
them to discern which among the two option images bears greater resemblance to a third reference
image. By collecting enough image triplet judgements, we estimate a latent embedding (Figure 2B)
for each of the unique images that participants are shown during the experiment Jamieson et al.
(2015); Hornsby & Love (2020); Sievert et al. (2023). These embedding can then be leveraged to
estimate a conceptual space that best predicts the judgements that humans made during the task.
Below, we describe the procedure for our human experiment.

Stimuli. Of the 86 categories, 46 were animate and 40 were were inanimate concepts. Within the
animate domain, images belonged to parent categories like Mammals, Insects, and Reptiles. Within
the inanimate domain, images belonged to parent categories like Household Objects, Instruments,
Vehicles, and Tools. Each category had a total of 3 images resulting in a total of 258 images.

Participants. We recruited 91 participants on Prolific to complete our task (Palan & Schitter, 2018).
Each participant provided informed consent in compliance with our Institutional IRB.

Procedure. On each trial, participants viewed a target image displayed above two option images,
and were instructed to choose via mouse click or arrow keys which of the two option images was
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most similar to the target image. Each participant completed 570 trials. On 520 of the trials, the
triplet on each trial was sampled randomly with uniform probability from the space of all possible
triplets. The remaining 50 trials (randomly dispersed during the experiment) constituted ’validation
triplets’. Each participant saw 50 ’validation trials’ from a curated pool of 258 triplets. The study
yielded a total of 49970 judgments, an order of magnitude larger than the minimal needed to estimate
an accurate 5-D embedding from random sampling according to estimates of sample complexity
in this task (Jamieson et al., 2015; Sievert et al., 2023). 80 % of the non-validation judgments
were used to estimate a 5-D embedding that minimized the crowd-kernel triplet loss on the training
set of triplet judgement trials (Tamuz et al., 2011). The resulting embedding was then tested by
assessing its accuracy in predicting human judgments on the non-validation held-out data. The final
embeddings predicted human decisions on held-out triplets with 75% accuracy.
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Figure 2: (A) Human triplet judgement task. (B)
Hierarchical cluster plot of the 5-D human embedding
derived from triplet judgement trials.(C) Procrustes
correlations for different model layers with human
judgement derived embeddings. The last 2 fully-
connected dense layers of AlexNet are presented here.
Sem-Alexnet at layer ‘classifier.5’, the deepest layer,
is most aligned with human representations. (D)
Accuracy at predicting human triplet judgements task
with original triplets seen by human participants and
swapped triplets with different images of the same
parent categories. Sem-Alexnet is more accurate at
predicting human judgements.

Model evaluation. For a direct
comparison between human judgments
and our model’s predictions, we expose
our trained models to the same set of
images that were used in the triplet
judgement task conducted on human
participants. We used activations from
intermediate layers that were present
in Sem-Alexnet, Cat-Alexnet, and
Alexnet pre-trained on ImageNet and
ECOSET and investigated differences in
learned representational geometries. To
assess the structural coherence of model
representations with human embeddings,
we computed the the average parent
category-wise Procrustes correlation of
the embeddings of the 258 images derived
from humans and models . This metric,
analogous to Pearson r, indicates the
extent to which variations in pairwise
distances from one representational space
are reflected in the other. To emulate
human decision-making during each
trial using the model, we computed the
cosine similarity between the hidden layer
representations of the images shown in
the trial, thereby determining the model’s
choice and using accuracy as a metric of
human-model alignment.

THE TRAINING OBJECTIVE INFLUENCES
HUMAN-MODEL ALIGNMENT

Procrustes alignment. We find that the
highest Procrustes correlation between
model and human representations is
achieved by the Sem-AlexNet in the

deepest layer (classifier.5) that is common to all the models ( Figure 2C) . This shows that models
trained on semantic feature elicitation are better aligned with human representations. It is widely
believed that the model performance improves as the training dataset size increases and becomes
more diverse Lei et al. (2018). To see if using an AlexNet trained on datasets that were diverse and
contained more image classes improved human-model alignment, we also compared the alignment
of our trained models to an AlexNet pre-trained on the entirety of Ecoset and on ImageNet. We
still find that the highest Procrustes correlation is achieved by classifier.5 layer of the Sem-AlexNet
which is trained on only ∼ 20-25% of the images (330,000) compared to ECOSET (1.5 million),
and Imagenet-1k (1.2 million) images. This suggests that a training objective that is centered around
human-generated semantic features allows vision models to acquire more human-like semantic
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representations relative to models trained on categorization objectives. These results thus lends
support to the distributed semantic hypothesis.

Triplet judgement prediction. In addition to investigating the alignment of model-human
representational geometries, we were also interested in how accurate judgments that were based
in model representations were. We specifically investigated how well models could predict human
judgements on the 258 validation triplets. The 258 triplets belonged to one of three types based on
how the the three images in the triplet were sampled. A third of the validation triplets were sampled
such that all the three images belonged to the same parent category (eg. (cat, dog, zebra) are all
mammals), a third were sampled such that two (including the anchor) belonged to the same parent
category and one belonged to a different parent category (eg. (cat, dog, ant) because cat and dog are
mammals and an ant is an insect), and a third were sampled such that all the three images belonged
to different parent categories (eg. (cat, ant, helicopter)). We simulated the triplet judgement task
using cosine distance between images from the intermediate layer activations of the model. The
image that was closer in representational space to the reference image was chosen as the ’answer’
on each trial. We also measured the human accuracy using the human estimated 5-D embeddings.
We found that the highest triplet prediction was achieved by classifier.5 layer of the Sem-AlexNet on
all three types of triplets, being the only model to reach human levels of accuracy, computed using
human embedding, in two of the three triplet types and even exceeding the human accuracy when all
the three images in a triplet belong to the same parent category. Predicting accuracy using a mixed-
effect logistic regression model1 also revealed that model type (Sem-Alexnet vs. Cat-Alexnet) was a
significant predictor with Sem-Alexnet having the higher accuracy (β = -0.05, SE = 0.02, p <.001).
These results (Figure 2D, Figure 3) suggest that Sem-Alexnet was more aligned with humans on the
triplet decision task relative to Cat-Alexnet providing additional support to the distributed semantic
hypothesis.

THE TRAINING OBJECTIVE MAKES THE MODEL SENSITIVE TO IMAGE-SPECIFIC INFORMATION

People might gauge similarity between a triplet of images not simply using category information
but visual features of the images. Is Sem-Alexnet more sensitive to this information relative to Cat-
Alexnet? To test this, we compare each models’ triplet judgement performance on true triplet sets
shown to participants during the human experiment and on simulated ‘swapped’ triplet sets, where
the categories in the triplet set were kept the same but the images were swapped to one of the other
images belonging to each category. In other words, if the original triplet was (cat1, dog1, zebra1),
we would use (cat2, dog2, zebra2) to simulate a swapped triplet. We swap the images 100 times
for each triplet. We then compute the means of each of the 100 runs to the accuracy obtained when
using real images. We find that Sem-Alexnet is more sensitive to image-specific properties because
it is more accurate while simulating triplets than Cat-Alexnet (Figure 2D). This was supported by
a significant model type × trial type (original vs. simulated) interaction effect in our mixed-effect
logistic regression model (β = .03, SE=.02, p <.05). This effect is driven by triplets of the type
where all the triplets belong to the same parent category. This suggests that training models to
elicit semantic features leads to learning within-category structure that is more aligned with that of
humans.

4 DISCUSSION

While numerous models addressing visual semantics and visual perception have been proposed,
our study distinguishes itself in its unique comparative methodology. To our knowledge, this
is the first investigation that contrasts representations across varied models under equitable
conditions—specifically,ensuring that the models are trained on identical datasets and achieve
comparable performance metrics (e.g., classification accuracy). Moreover no prior work
has compared image classifiers to alternative models aligning with the distributed semantic
hypothesis–that is, models in which representations in ventral stream are partially shaped by
linguistic and/or semantic knowledge. Furthermore, our study would be the first to collect a
large dataset of human similarity judgments to evaluate model-human representational alignment
complementing earlier such efforts Hebart et al. (2022). This dataset stands to benefit not only
cognitive scientists but also computer scientists with interests in human-AI alignment. From a

1refer to Appendix for statistical model details
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pragmatic standpoint, our models hold potential in the domain of medical research, particularly
in the study of neurodegenerative disorders such as semantic dementia (Rogers et al., 2004) .
By being the targets of controlled perturbation studies, these models stand to support controlled
simulations and could elucidate why certain therapeutic interventions exhibit heightened efficacy
at specific junctures in a disorder’s progression — a revelation of paramount significance to the
medical community.
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A APPENDIX

Table 1: The parent categories of all the 86 categories present in our
dataset

Parent Category Category
Mammals cat, donkey, pig, dog, dolphin, zebra, sheep, hamster, tiger, whale,

mouse, beaver, wolf, kangaroo, rabbit, monkey, hedgehog, horse,
squirrel, bison, cow, deer, lion, llama, elephant

Reptiles turtle, chameleon, crocodile, iguana, lizard, gecko, alligator, snake,
frog, salamander

Insects ant, wasp, bumblebee, mosquito, moth, beetle, caterpillar, spider,
cockroach, earwig, worm

Household Objects paintbrush, shield, toaster, jar, plate, glass, kettle, bowl, sieve, towel,
bottle, pan, spoon, wheelbarrow

Instruments piano, violin, cymbals, clarinet, drum, guitar
Vehicles car, tractor, hovercraft, boat, helicopter, bus, submarine, truck,

airplane, train, bicycle
Tools hammer, screwdriver, shovel, wrench, anvil, pliers, knife, axe,

crowbar
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Block Layer Config
Features Conv2d 3, 64, kernel size=(11, 11), stride=(4, 4), padding=(2, 2)
Features ReLU inplace=True
Features MaxPool2d kernel size=3, stride=2, padding=0
Features Conv2d 64, 192, kernel size=(5, 5), stride=(1, 1), padding=(2, 2)
Features ReLU inplace=True
Features MaxPool2d kernel size=3, stride=2, padding=0
Features Conv2d 192, 384, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)
Features ReLU inplace=True
Features Conv2d 384, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)
Features ReLU inplace=True
Features Conv2d 256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)
Features ReLU inplace=True
Features MaxPool2d kernel size=3, stride=2, padding=0
Features AdaptiveAvgPool2d output size=(6, 6)
Classifier Dropout p=0.5
Classifier Linear in features=9216, out features=4096
Classifier ReLU inplace=True
Classifier Dropout p=0.5
Classifier Linear in features=4096, out features=4096
Classifier ReLU inplace=True
Classifier Linear in features=4096, out features=2000
Classifier ReLU inplace=True
Classifier Linear in features=2000, out features=500
Classifier ReLU inplace=True
Classifier Linear in features=500, out features=100
Classifier ReLU inplace=True
Classifier Linear in features=100, out features=86

Table 2: Cat-AlexNet Architecture

DETAILS ON FITTING LOGISTIC REGRESSION MODELS

In this study, the mixed-effects logistic regression models were fit using the lme4 package in R,
specifically version 1.1.30. The bobyqa optimizer was utilized for the fitting of these mixed-effects
models.

Sem-Alexnet is more accurate at predicting human judgements and it is also more accurate
when the judgements are predicted using original images vs swaped images We fit a model
predicting the accuracy of a triplet judgement from the model (Sem-Alexnet or Cat-Alexnet), the
type of image (Real vs swapped), and their interaction while controlling for the layer (features.1
,features.4, features.7, features.9, features.11). We included random intercepts for the type of triplet
(all within parent category, two within parent category, and all different parent category) and the
Model (Sem-Alexnet or Cat-Alexnet).
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Block Layer Config
Features Conv2d 3, 64, kernel size=(11, 11), stride=(4, 4), padding=(2, 2)
Features ReLU inplace=True
Features MaxPool2d kernel size=3, stride=2, padding=0
Features Conv2d 64, 192, kernel size=(5, 5), stride=(1, 1), padding=(2, 2)
Features ReLU inplace=True
Features MaxPool2d kernel size=3, stride=2, padding=0
Features Conv2d 192, 384, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)
Features ReLU inplace=True
Features Conv2d 384, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)
Features ReLU inplace=True
Features Conv2d 256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)
Features ReLU inplace=True
Features MaxPool2d kernel size=3, stride=2, padding=0
Features AdaptiveAvgPool2d output size=(6, 6)
Classifier Dropout p=0.5
Classifier Linear in features=9216, out features=4096
Classifier ReLU inplace=True
Classifier Dropout p=0.5
Classifier Linear in features=4096, out features=4096
Classifier ReLU inplace=True
Classifier Linear in features=4096, out features=2000
Classifier ReLU inplace=True
Classifier Linear in features=2000, out features=500
Classifier ReLU inplace=True
Classifier Linear in features=500, out features=100
Classifier ReLU inplace=True
Classifier Linear in features=100, out features=86

Table 3: Sem-AlexNet Architecture
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Figure 3: Model accuracy in predicting human triplet judgements for original triplet trials and
simulated trials with swapped images. Sem-Alexnet (B) was generally more aligned with human
judgements than Cat-Alexnet (A) with later layers in both models showing generally higher
alignment for all 3 triplet trial types. Dashed lines indicate prediction accuracy from human
judgement-derived embeddings.
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