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ABSTRACT

Evaluating the adversarial robustness of deep networks to gradient-based attacks
is challenging. While most attacks consider ¢/5- and ¢,,-norm constraints to craft
input perturbations, only a few investigate sparse ¢1- and {y-norm attacks. In
particular, /yp-norm attacks remain the least studied due to the inherent complex-
ity of optimizing over a non-convex and non-differentiable constraint. However,
evaluating adversarial robustness under these attacks could reveal weaknesses
otherwise left untested with more conventional /- and ¢.,-norm attacks. In this
work, we propose a novel /g-norm attack, called o—zero, which leverages a dif-
ferentiable approximation of the ¢y norm to facilitate gradient-based optimization,
and an adaptive projection operator to dynamically adjust the trade-off between
loss minimization and perturbation sparsity. Extensive evaluations using MNIST,
CIFARI10, and ImageNet datasets, involving robust and non-robust models, show
that o—zero finds minimum ¢y-norm adversarial examples without requiring any
time-consuming hyperparameter tuning, and that it outperforms all competing
sparse attacks in terms of success rate, perturbation size, and efficiency.

1 INTRODUCTION

Early research has revealed that machine learning models are fooled by adversarial examples, i.e.,
slightly-perturbed inputs optimized to cause misclassifications (Biggio et al., 2013 |Szegedy et al.,
2014). The discovery of this phenomenon has, in turn, demanded a more careful evaluation of
the robustness of such models, especially when deployed in security-sensitive and safety-critical
applications. Most of the gradient-based attacks proposed to evaluate the adversarial robustness of
Deep Neural Networks (DNNs) optimize adversarial examples under different £,-norm constraints.
In particular, while convex ¢4, {5, and ¢, norms have been widely studied (Chen et al.l 2018} |Croce
& Heinl 2021)), only a few ¢y-norm attacks have been considered to date. The main reason is that
finding minimum ¢y-norm solutions is known to be an NP-hard problem (Davis et al., [1997), and
thus ad-hoc approximations must be adopted to overcome issues related to the non-convexity and
non-differentiability of such (pseudo) norm. Although this is a challenging task, attacks based on the
£y norm have the potential to uncover issues in DNNs that may not be evident when considering other
attacks (Carlini & Wagner, [2017b; |Croce & Hein, [2021)). In particular, #y-norm attacks, known to
perturb a minimal fraction of input values, can be used to determine the most sensitive characteristics
that influence the model’s decision-making process, offering a different and relevant threat model to
benchmark existing defenses and a different understanding of the model’s inner workings.

Unfortunately, current £p-norm attacks exhibit a largely suboptimal trade-off between their success
rate and efficiency, i.e., they are either accurate but slow or fast but inaccurate. In particular,
the accurate ones use complex projections and advanced initialization strategies (e.g., adversarial
initialization) to find smaller input perturbations but suffer from time or memory limitations, hindering
their scalability to larger networks or high-dimensional data (Brendel et al., 2019a} |Césaire et al.,
2021)). Other attacks execute faster, but their returned solution is typically less accurate and largely
suboptimal (Matyasko & Chaul 2021 [Pintor et al.,|2021). This results in overestimating adversarial
robustness and, in turn, contributes to spreading a false sense of security, hindering the development
of effective defense mechanisms (Carlini et al., 2019; |Pintor et al.l [2022)). Developing a reliable,
scalable, and compelling method to assess the robustness of DNN models against sparse perturbations
with minimum ¢, norm remains thus a relevant and challenging open problem.
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Figure 1: The leftmost plot shows the execution of c—zero on a two-dimensional problem. The
initial point x (red dot) is updated via gradient descent to find the adversarial example x* (green star)
while minimizing the number of perturbed features (i.e., the £y norm of the perturbation). The gray
lines surrounding x demarcate regions where the £y, norm is minimized. The rightmost plot shows the
adversarial images (top row) and the corresponding perturbations (bottom row) found by c-zero
during the three steps highlighted in the leftmost plot, along with their prediction and ¢y norm.

In this work, we propose a novel £yp-norm attack, named o—-zero, which iteratively promotes the
sparsity of the adversarial perturbation by minimizing its £y norm (see [Figure 1|and [Sect. 2)). To over-
come the limitations of previous approaches, our attack leverages two main technical contributions:
(i) a smooth, differentiable approximation of the ¢y norm to enable the minimization of the attack
loss via gradient descent; and (ii) an adaptive projection operator that dynamically increases sparsity
to further reduce the perturbation size while keeping the perturbed sample in the adversarial region.

Our experiments provide compelling evidence of the remarkable performance of o—zero.
We evaluate it on 3 well-known benchmark datasets (i.e., MNIST, CIFAR10, and ImageNet), using
22 different models from Robustbench (Croce et al., 2021 and the corresponding official repositories.
We compare the performance of c—zero against more than 10 competing attacks, totaling almost
450 different comparisons. Our analysis shows that c—zero outperforms state-of-the-art attacks in
terms of both attack success rate and perturbation size (lower £y, norm), while being also significantly
faster (i.e., requiring fewer queries and lower runtime). Our attack also provides some additional
advantages: (i) it does not require any sophisticated, time-consuming hyperparameter tuning; (ii)
it does not require being initialized from an adversarial input; (iii) it is less likely to fail, i.e., it
consistently achieves an attack success rate of 100% for sufficiently-large perturbation budgets,
thereby enabling more reliable robustness evaluations (Carlini et al.l [2019). We thus believe that
o—-zero will foster significant advancements in the development of better robustness evaluation
tools and more robust models against sparse attacks. We conclude the paper by discussing related
work (Sect. 4), along with the main contributions and future research directions (Sect. 3)).

2 0-7zERO: MINIMUM {3-NORM ATTACKS

We present here c—-zero, a gradient-based attack that finds minimum ¢y-norm adversarial examples.

Threat Model. We assume that the attacker has complete access to the target model, including
its architecture and trained parameters, and exploits its gradient for staging white-box untargeted
attacks (Carlini & Wagner, 2017bj [Biggio & Roli, [2018)). This setting is useful for worst-case
evaluation of the adversarial robustness of DNNSs, providing an empirical assessment of the perfor-
mance degradation that may be incurred under attack. Note that this is the standard setting adopted
in previous work for gradient-based adversarial robustness evaluations (Carlini & Wagner} 2017bj
Brendel et al., 2019b} |Croce et al., 2021}, [Pintor et al., [2021).

Problem Formulation. In this work, we seek untargeted minimum ¢y-norm adversarial perturbations
that steer the model’s decision towards misclassification (Carlini & Wagner, 2017b). To this end, let
x € X = [0, 1]¢ be a d-dimensional input sample, y € Y = {1,...,1} its associated true label, and
f & x © ) the target model, parameterized by 8 € ©. While f outputs the predicted label, we
will also use f, to denote the continuous-valued output (logit) for class k € ). The goal of our attack
is to find the minimum £y-norm adversarial perturbation §* such that the corresponding adversarial
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example x* = x + 8 is misclassified by f. This can be formalized as:

S arglr%in 1610, (1)

st f(x+8,0) £y, @)

x+6¢[0,1]%, 3)

where || - ||o denotes the ¢y norm, which counts the number of non-zero components. The hard

constraint in Eq. (Z) ensures that the perturbation 4 is valid only if the target model f misclassifies
the perturbed sample x + §, while the box constraint in Eq. (3) ensures that the perturbed sample lies
in [0, 1]d Since the problem in Egs. — can not be solved directly, we reformulate it as:

5 € argmin L(x+6,y.0) + ééo(a) @
st. x+48¢[0,1]%, 3)

where we use a differentiable approximation /o (8) instead of ||6]|o, and normalize it with respect to
the number of features d to ensure that its value is within the interval [0, 1]. The loss £ is defined as:

£0x,9.6) = max ( £,x,6) =y f(x,6).0) +1(/(x.6) = ). ©®

The first term in £ represents the logit difference, which is positive when the sample is correctly
assigned to the true class y, and clipped to zero when it is misclassified (Carlini & Wagner, |2017b).
The second term merely adds 1 to the loss if the sample is correctly classiﬁed This ensures that
L = 0 only when an adversarial example is found and £ > 1 otherwise. In practice, when minimizing
the objective in Eq. (@), this loss term induces an alternate optimization process between minimizing
the loss function itself (to find an adversarial example) and minimizing the ¢y-norm of the adversarial
perturbation (when an adversarial example is found). It is also worth remarking that, conversely to
the objective function proposed by (Carlini & Wagner|(2017b)), our objective does not require tuning
any trade-off hyperparameters to balance between minimizing the loss and reducing the perturbation
size, thereby avoiding a computationally expensive line search for each input sample.

{y-norm Approximation. Besides the formalization of the attack objective, one of the main technical
advantages of c—-zero is the smooth, differentiable approximation of the £y norm, thereby enabling
the use of gradient-based optimization. To this end, we first note that the ¢y-norm of a vector can
be rewritten as ||x||o = Zle sign(w;)?, and then approximate the sign function as sign(z;) ~

zi/\/x? + o, where o > 0 is a smoothing hyperparameter that makes the approximation sharper as
o — 0. This, in turn, yields the following smooth approximation of the ¢y norm:

d 2

~ €Ts ~

Eo(x,a)zzwzia,a>0, lo(x,0) € [0,d]. (7)
i=1 "t

Adaptive Projection IL,. The considered ¢y-norm approximation allows optimizing Eq. via
gradient descent. However, using such a smooth approximation tends to promote solutions that are
not fully sparse, i.e., with many components that are very close to zero but not exactly equal to zero,
thereby yielding inflated £y-norm values. To overcome this issue, we introduce an adaptive projection
operator 11, that sets to zero the components with a perturbation intensity lower than a given sparsity
threshold T in each iteration. The sparsity threshold 7 is initialized with a starting value 7y and then
dynamically adjusted for each sample during each iteration; in particular, it is increased to find sparser
perturbations when the current sample is already adversarial, while it is decreased otherwise. The
updates to 7 are proportional to the step size and follow its annealing strategy, as detailed below.

Solution Algorithm. Our attack, given as[Algorithm 1] solves the problem in Eqs. (@)-(5) via a fast
and memory-efficient gradient-based optimization. After initializing the adversarial perturbation

0 = 0 (line 1), it computes the gradient of the objective in Eq. (@) with respect to § (line 3). The
gradient is then normalized such that its largest components (in absolute value) equal 1 (line 4).

"Note that, when the source point x is already misclassified by f, the solution is simply §* = 0.
*While a sigmoid approximation may be adopted to overcome the non-differentiability of the I term at the
decision boundary, we simply set its gradient to zero everywhere, without any impact on the experimental results.
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Algorithm 1 0-zero Attack Algorithm.

Input: x € [0, 1]d, the input sample; y, the true class label; 8, the target model; N, the number of
iterations; 1y = 1.0, the initial step size; o = 1073, the ¢y-norm smoothing hyperparameter;
70 = 0.3, the initial sparsity threshold; ¢ = 0.01, the sparsity threshold adjustment factor.
Qutput: x*, the minimum ¢y-norm adversarial example.

0+ 0; 0 «o00; T T05 MM

foriinl,..., N do
Vg + Vs[L(x+8,y,0) + 520(5, o) > Gradient Descent for Eq. () .
Vg« Vg/|IVgllco > Gradient Normalization.
d«clip(x+[6d—n-Vg]) —x > Box Constraints.
0« I1,.(9) > Adaptive Projection Operator.
7 = cosine_annealing(no,1) > Learning Rate Decay.
ifL(x+0,y,0)<0: 7+=t-n,elseT—=t-n > Adaptive Adjustment for 7.
if L(x+0,y,0) <0 A [|8]lo < ||6%lo: 6"« &

end

if L(x+6%,y,0) >0: 6+ o0
return x* < x + 6~

This stabilizes the optimization by making the update independent from the gradient size, and also
makes the selection of the step size independent from the input dimensionality (Rony et al.,[2018};
Pintor et al., 2021). We then update § to minimize the objective via gradient descent while also
enforcing the box constraints in Eq. (3] through the usage of the c11ip operator (fine 5). We increase
sparsity in § by zeroing all components lower than the current sparsity threshold 7 (line 6), as
discussed in the previous paragraph. We then decrease the step size 7 via cosine annealing (line 7), as
suggested by Rony et al.|(2018)); [Pintor et al.| (2021)), and adjust the sparsity threshold 7 accordingly
(fine §)). In particular, if the current sample is adversarial, we increase 7 by ¢ - 1) to promote sparser
perturbations; otherwise, we decrease 7 by the same amount to promote the minimization of £. The
above process is repeated for [V iterations while keeping track of the best solution found, i.e., the
adversarial perturbation §* with the lowest £y norm . If no adversarial example is found, the

algorithm sets 6* = oo (line 11)). It terminates by returning x* = x + §* (line 12).

Remarks. To summarize, the main contributions behind o-zero are: (i) the use of a smooth
ly-norm approximation, along with the definition of an appropriate objective (Eq. ), to enable
optimizing ¢y-norm adversarial examples via gradient descent; and (ii) the introduction of an adaptive
projection operator to further improve sparsity during the optimization. Our algorithm leverages also
common strategies like gradient normalization and step size annealing to speed up convergence. As
reported by our experiments, c—zero provides a more effective and efficient £y,-norm attack that
(1) is robust to different hyperparameter choices; (ii) does not require any adversarial initialization;
and (iii) enables more reliable robustness evaluations, being able to find adversarial examples also
when the competing attacks may fail (Carlini et al., 2019; [Pintor et al., [2022).

3 EXPERIMENTS

We report here an extensive experimental evaluation comparing o—zero against 11 state-of-the-art
sparse attacks, including both ¢y- and ¢;-norm attacks. We test all attacks using different settings on
18 distinct models and 3 different datasets, yielding almost 450 different comparisons in total.

3.1 EXPERIMENTAL SETUP

Datasets. We consider the three most popular datasets used for benchmarking adversarial robustness:
MNIST (LeCun & Cortes, [2005), CIFAR-10 (Krizhevskyl 2009) and ImageNet (Krizhevsky et al.,
2012)). To evaluate the attack performance, we use the entire test set for MNIST and CIFAR-10 (with
a batch size of 32), and a subset of 1000 test samples for ImageNet (with a batch size of 16).

Models. We use a selection of both baseline and robust models to evaluate the attacks under different
conditions. We evaluate c—zero on a vast set of models to ensure its broad effectiveness and expose
vulnerabilities that may not be revealed by other attacks (Croce & Hein, 2021). For the MNIST
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dataset, we consider two adversarially trained convolutional neural network (CNN) models by Rony
et al.| (2021)), i.e., CNN-DDN and CNN-Trades. These models have been trained to be robust to
both /5 and ¢, adversarial attacks. We denote them M1 and M2, respectively. For the CIFAR-10
and ImageNet datasets, we employ state-of-the-art robust models from RobustBench (Croce et al.|
2021)) and the paper’s official repositories. For CIFAR-10, we adopt ten models, denoted as C1-C10.
C1 (Carmon et al.,|2019) and C2 (Augustin et al.,2020) combine training data augmentation with
adversarial training to improve robustness to ¢, and ¢y attacks. C3 (Croce & Heinl 2021) and
C4 (Jiang et al., [2023) are ¢; robust models. C5 (Croce et al.,|2021])) is a non-robust WideResNet-28-
10 model. C6 (Gowal et al.| |2021)) uses generative models to artificially augment the original training
set and improve adversarial robustness to generic £,-norm attacks. C7 (Engstrom et al.,[2019) is an
adversarially trained model that is robust against /5-norm attacks. C8 (Chen et al., |2020)) is a robust
ensemble model. C9 (Xu et al., 2023) is a recently proposed adversarial training defense robust to £
attacks. C10 (Addepalli et al.,[2022) enforces diversity during data augmentation and combines it with
adversarial training. For ImageNet, we consider a pretrained ResNet-18 denoted with I1 (He et al.}
2015)), and five robust models to ¢ -attacks, denoted with 12 (Engstrom et al.,[2019), I3 (Hendrycks
et al.,2021), 14 (Debenedetti et al., 2023), IS (Wong et al.|[2020), and 16 (Salman et al., 2020). Lastly,
in the appendix, we present two {y-robust models, C11 (Zhong et al.,|2024) and C12 (Zhong et al.,
2024]), for CIFAR-10, along with two large /., -robust models, I7 (Peng et al.,|2023)) and I8 (Mo et al.
2022), for ImageNet.

Attacks. We compare o-zero against the following state-of-the-art minimum-norm attacks, in
their £y-norm variants: the Voting Folded Gaussian Attack (VFGA) attack (Césaire et al.l[2021)), the
Primal-Dual Proximal Gradient Descent (PDPGD) attack (Matyasko & Chaul,[2021), the Brendel &
Bethge (BB) attack (Brendel et al.,|2019al), including also its variant with adversarial initialization
(BBadv) and the Fast Minimum Norm (FMN) attack (Pintor et al.,|2021). We also consider two
state-of-the-art £1-norm attacks as additional baselines, i.e., the Elastic-Net (EAD) attack (Chen et al.}
2018) and SparseFool (SF) by Modas et al.|(2019). All attacks are set to manipulate the input values
independently; e.g., for CIFAR-10, the number of modifiable inputs is 3 x 32 x 32 = 3072.

Hyperparameters. We run our experiments using the default hyperparameters from the original
implementations provided in the authors’ repositories, AdversarialLib (Rony & Ben Ayed) and
Foolbox (Rauber et al.l 2017). We set the maximum number of iterations to N = 1000 to ensure that
all attacks reach convergence (Pintor et al., 2022)E] For 6-zero,wesetny =1, 7 =0.3,t = 0.01,
and o = 1073, and keep the same configuration for all models and datasets

Evaluation Metrics. For each attack, we report the Attack Success Rate (ASR) at different values of
k, denoted with ASRy, i.e., the fraction of successful attacks for which ||6*||¢ < &, and the median
value of ||6*||o over the test samples, denoted with EOH We compare the computational effort of each
attack considering the mean runtime (s) (per sample), the mean number of queries (q) (i.e., the total
number of forwards and backwards required to perform the attack, divided by the number of samples),
and the Video Random Access Memory (VRAM) consumed by the Graphics Processing Unit (GPU).
We measure the runtime on a workstation with an NVIDIA A100 Tensor Core GPU (40 GB memory)
and two Intel® Xeo® Gold 6238R processors. We evaluate memory consumption as the maximum
VRAM used among all batches, representing the minimum requirement to run without failure.

3.2 EXPERIMENTAL RESULTS

We report the success rate and computational effort metrics of c—zero against minimum-norm
attacks in and fixed-budget attacks in[Table 3}4] In these tables, we consider the most robust
models for each dataset, and we provide the remaining results in Appendix [B] Finally, for ImageNet,
we narrow our analysis to EAD, FMN, BBadv, and VFGA minimum-norm attacks, as they surpass
competing attacks on MNIST and CIFAR-10 in terms of ASR, perturbation size, or execution time.

Effectiveness. The median values of ||8*||o, denoted as /g, and the ASRs are reported in[Table 1|for
all models and datasets. To facilitate comparison, the attacks are sorted from the least to the most
effective, on average. In all dataset-model configurations, o—zero significantly outperforms all the

3We utilize the Foolbox DatasetAttack (Foolbox|[2017) for adversarial initialization.

*Additional results using only N = 100 steps are reported in Appendix

5To show that no specific hyperparameter tuning is required, additional results are reported in Appendix @
81f no adversarial example is found for a given x, we set [[6*|lo = oo, as done by |Brendel et al. (2019a).
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Table 1: Minimum-norm comparison results on MNIST, CIFAR10 and ImageNet with N = 1000.
For each attack and model (M), we report ASR at k = 24, 50, co, median perturbation size £, mean
runtime s (in seconds), mean number of queries ¢ (in thousands), and maximum VRAM usage (in
GB). When VFGA exceeds the VRAM limit, we re-run it using a smaller batch size, increasing its
runtime ¢. We denote those cases with the symbol ‘x’. Remaining models in Appendix [B] [Table 6

Attack M ASR., ASR;0ASR., /%y s q VRAM M ASR.; ASR;0ASR., /4y s q VRAM

MNIST
SF 6.66 6.76 9698 469| 1.07 0.18 0.06 1.03 1.21 91.68 463 2.87 0.86 0.07
EAD 3.83 53.66 100.0 49 | 047 6.28 0.05 2.13 55.57 100.0 48 | 0.50 6.73 0.05
PDPGD 26.77 74.08 100.0 38 | 0.23 2.00 0.04 1691 66.30 100.0 42 | 0.23 2.00 0.04
VFGA Ml 4358 82.42 9998 27 | 0.05 0.77 0.21 M2 5.00 3933 9995 57| 0.05 133 021
FMN 3590 93.74 100.0 29 | 0.21 2.00 0.04 50.74 91.84 99.41 24 | 022 2.00 0.04
BB 7123 97.86 100.0 18 | 0.90 2.99 0.05 56.53 91.62 100.0 18 | 0.74 3.71 0.05
BBadv 67.06 91.23 100.0 19 | 0.77 2.01 0.07 29.17 40.88 100.0 89 | 0.71 2.01 0.07
0-zero 83.79 99.98 100.0 16 | 0.31 2.00 0.04 98.03 100.0 100.0 9 | 0.31 2.00 0.04

CIFAR-1
SF 1871 1877 56.39 3072|11.31 1.40 1.62 20.46 2436 58.29 3072 1.63 0.48 0.66
EAD 16.32 30.38 100.0 90 | 1.92 570 147 13.01 13.23 100.0 800 | 0.94 4.89 0.65
PDPGD 26.84 4250 100.0 63 | 0.64 2.00 1.32 2230 35.13 100.0 75 | 041 2.00 0.59
VFGA ci 51.06 7537 99.92 24 | 0.59 0.78 11.71 c3 2847 4998 99.72 51 | 0.32 1.25 444
FMN 48.89 7470 100.0 26 | 0.59 2.00 1.31 27.45 4887 100.0 52 | 0.24 2.00 0.60
BB 1327 1424 1470 oo | 0.63 2.05 1.47 16.88 2291 27.64 oo | 1.04 225 0.65
BBadv 65.96 90.57 100.0 16 | 4.68 2.01 1.64 36.47 72.43 100.0 34 | 528 2.01 0.64
0-zero 76.53 95.38 100.0 11 | 0.73 2.00 1.53 38.60 73.02 100.0 32 | 043 2.00 0.71
SF 19.66 21.22 98.74 3070| 3.62 0.46 1.90 31.76 43.07 91.14 69 | 432 1.49 0.66
EAD 9.73 1142 100.0 360| 2.53 5.62 1.89 2421 2478 100.0 768 | 1.04 4.99 0.65
PDPGD 28.02 45.15 100.0 55 | 1.12 2.00 1.8 26.89 4238 100.0 66 | 040 2.00 0.60
VFGA 2 39.58 66.50 99.62 34 | 048 0.94 16.53 c4 46.71 69.47 99.83 28 | 0.25 0.82 4.22
FMN 39.30 71.70 100.0 33 | 1.08 2.00 1.8 43.06 6296 100.0 34 | 0.35 2.00 0.59
BB 38.73 56.78 58.64 33 | 2.31 2.89 1.89 2595 2798 2950 oo | 0.54 2.09 0.65
BBadv 70.07 96.31 100.0 17 | 3.92 2.01 1.99 53.17 82.46 100.0 22 | 3.03 2.01 0.65
0-zero 74.63 97.55 100.0 15 | 141 2.00 1.92 5542 82.92 1000 20 | 042 2.00 0.72

ImageNet
EAD 354 363 100.0 460| 4.13 2.69 0.46 27.0 284 100.0 981 |19.25 549 141
VFGA 579 725 999 14 | 1.22* 1.08 >40 467 595 979 31 |693* 1.98 >40
FMN| /1| 62.6 81.0 1000 12 | 0.73 2.00 0.66 |I3| 49.1 67.7 100.0 25 | 1.98 2.00 2.30
BBadv 77.5 932 1000 7 |231.672.01 0.72 647 855 100.0 14 |205.112.01 241
0-zero 82.6 959 1000 5 | 1.18 2.00 0.84 66.7 869 100.0 13 | 2.76 2.00 2.52
EAD 46.8 51.0 100.0 42 |18.10 545 142 328 33,5 100.0 572|11.43 534 1.68
VFGA 5477 634 967 12 |821* 235 >40 400 465 955 66 |33.8873.97 >40
FMN| 2| 57.8 67.0 1000 9 | 1.97 2.00 230 |I4| 40.3 472 100.0 58 | 428 2.00 297
BBadv 71.0 823 100 4 |182.652.01 2.40 46.8 59.8 100.0 31 (178.062.01 3.07
o-zero 769 874 1000 3 | 275 2.00 2.52 50.7 65.1 100.0 23 | 572 2.00 3.20

considered attacks. Taking the best-performing attack among the fastest competitors as a reference
(i.e., FMN), o—zero is able to find smaller perturbations and higher ASRs in all configurations.
In particular, on CIFAR-10, 0-zero reduces the median number of manipulated features from
52 to 32 against the most robust model (C3), with an average reduction of 49% across all models.
On ImageNet, this improvement is even more pronounced, with a reduction of up to 58%. In the
best case (I4), the median ||6*||o is reduced from 58 to 23, and in the worst case (I12), from 9 to
3. Alternatively, the most competitive attack in finding small perturbations is BBadv, which is
significantly slower and requires starting from an already-adversarial input. The ASR, of BB
(i.e., without adversarial initialization) indeed decreases with increasing input dimensionality (e.g.,
CIFAR-10). This occurs because BB often stops unexpectedly before reaching the specified number
of steps due to initialization failures; in particular, shows that the median perturbation size
found by BB is sometimes oo, as its ASR, is lower than 50%. Although BBadv does not suffer
from the same issue, as it leverages adversarial initialization, it is still outperformed by c-zero.
Specifically, c-zero reduces the /o norm of the adversarial examples from 16 to 11 in the best
case (C1), while achieving an average improvement of 24% across all dataset-model configurations.

Efficiency. We evaluate the computational effort required to run each attack by reporting in
the mean runtime s (in seconds), the mean number of queries ¢ issued to the model (in thousands),
and the maximum VRAM used. Note that, while the runtime s and the consumed VRAM may
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Figure 2: Robustness evaluation curves (ASR vs. perturbation budget k) for M2 on MNIST (left), C1
on CIFAR-10 (middle), and I1 on ImageNet (right).

depend on the attack implementation, the number of queries ¢ counts the total number of forward and
backward passes performed by the attack, thus providing a fairer evaluation of the attack complexity.
In fact, some attacks perform more than 2000 queries even if N = 1000, i.e., they perform more than
one forward and one backward pass per iteration (see, e.g., EAD and BB). Other attacks, instead,
might use less than 2000 queries as they implement early stopping strategies. The results indicate
that o—zero exhibits similar runtime performance when compared to the fastest algorithms FMN,
PDPGD, and VFGA, while preserving higher effectiveness. In contrast, when compared against
the BBadv attack, which competes in terms of £;, our attack is much faster across all the dataset-
model configurations, especially for Imagenet. For example, c—zero is 10 times faster than BBadv
on C4 and 100 times faster on I3 on ImageNet. This confirms that c—zero establishes a better
effectiveness-efficiency trade-off than that provided by state-of-the-art £y-norm attacks.

Reliability. Complementary to we present the robustness evaluation curves in [Figure 2] for
each attack on M2, C1, and I1. In Appendix[B.3] we include similar curves for all other configurations.

These curves go beyond the only median statistic and ASRy, providing further evidence that c-zero
achieves higher ASRs with smaller £y-norm perturbations compared to the competing attacks. More
importantly, the ASR of o—zero reaches almost always 100% as the perturbation budget grows,
meaning that its optimization only rarely fails to find an adversarial example. In Appendix [B.T}
we further demonstrate that even when the number of iterations is reduced to N = 100, c—zero
consistently achieves an ASR,, of 100% across all models. This is not observed with other attacks,
which often fail when using fewer iterations, thereby increasing the risk of overestimating adversarial
robustness. These results reinforce our previous findings, confirming that o—zero can help mitigate
the issue of overestimating adversarial robustness — a crucial aspect to foster scientific progress in
defense developments and evaluations (Carlini et al.}2019; Pintor et al.| 2022).

Ablation Study. In we present an ablation study to evaluate the relevance of o-zero’s
components. Our findings indicate that all the non-trivial components in c—zero are essential for
ensuring the effectiveness of the attack. Specifically, we observe that the ¢y-norm approximation
to (Eq. leads the optimization algorithm to perturb all input features, albeit with small
contributions. The projection operator plays a crucial role by significantly decreasing the
number of perturbed features, effectively removing the least significant contributions. Furthermore,
gradient normalization accelerates convergence, enhancing efficiency. Lastly, the adaptive
projection operator fine-tunes the results, reduces the number of perturbed features, and
mitigates the dependency on hyperparameter choices. These results underline the importance of each
component in c-zero, highlighting their contributions to the overall performance of the attack.

Comparison with Fixed-budget Attacks. We complement our analysis by comparing c-zero
with three fixed-budget {y-norm attacks, i.e., the {g-norm Projected Gradient Descent (PGD-/j)
attack (Croce & Hein, |2019), the Sparse Random Search (Sparse-RS) attack (Croce et al., 2022)[]
and the Sparse-PGD attack (Zhong et al.||2024)). For Sparse-PGD, we consider the implementation
with sparse (sPGD,,) and with unprojected (sPGD,,) gradient. In contrast to minimum-norm attacks,
fixed-budget attacks optimize adversarial examples within a given maximum perturbation budget k.
For a fairer comparison,as done in fixed-budget approaches, we early stop the c—zero optimization

Sparse-RS is a gradient-free (black-box) attack, which only requires query access to the target model. We
consider it as an additional baseline in our experiments, but it should not be considered a direct competitor of
gradient-based attacks, as it works under much stricter assumptions (i.e., no access to input gradients).
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Table 2: Ablation study on the c-zero components integrated in [Algorithm 1] Columns describe
respectively: Gradient normalization factor (line 4); dynamic projection adjustment[[ine 8} projection

operator I1 (line 6); and the ¢y, norm approximation N dline 3]).
Model Normalization Adaptive 7 Projection /o ASRy; ASR;, ASR 116]lo

v v v v 21.68  73.02 1000 32

v v v 2189 7166 1000 32

C10 v v v 1681 39.76 100.0 65
v v 1295 13.23  100.0 505
v 1295 1295 100.0 3004
v v 1295 12.95 100.0 3070

v v v v 3727 8292 1000 20

v v v 37.01 79.83 1000 21

Cs v v v 2956 5283 1000 46
v v 2546 3284 1000 144
v 2378 2378 100.0 3064
v v 2378 2378 100.0 3068

Table 3: Fixed-budget comparison results with N = 1000 (/N = 2000 for Sparse-RS) on MNIST
and CIFAR-10 at budgets k£ = 24, 50, 100. Columns q24 and sa4 show the average number of queries
(in thousands) and the average execution time per sample (in seconds) at k = 24.

Attack M ASR24 ASR50 ASR100 (o4 S24 VRAM M ASR24 ASR50 ASRlOO (24 S24 VRAM

MNIST
PGD-(, 7399 99.90 100.0 [2.00 0.09 0.04 61.87 94.15 98.50 |2.000.09 0.04
Sparse-RS 79.54 9635 99.79 |0.83 021 0.04 98.92 99.96 100.0 |0.24 0.07 0.04
sPGD,[M1 | 65.55 97.97 99.99 [0.46 0.09 0.05 [M2|67.92 9857 99.97 [0.920.08 0.05
sPGD,, 82.79 99.65 100.0 [0.09 0.08 0.05 6225 98.11 99.99 [1.000.09 0.05
o-zero 8371 99.98 100.0 [0.430.02 0.06 98.11 100.0 100.0 |0.14 0.01 0.06
CIFAR-10
PGD-7, 38.18 59.67 87.19 |2.000.78 1.90 2299 3620 67.54 |2.000.35 0.69
Sparse-RS 7251 86.59 94.28 |0.770.36 1.95 30.87 45.65 63.26 |1.470.28 0.68
sPGD,|C1 | 66.37 89.21 99.36 [0.74 0.41 2.06 |C3 [31.82 5862 93.19 [1.390.17 0.73
sPGD,, 6633 91.07 99.75 |0.720.41 2.06 36.16 70.06 98.07 [1.300.16 0.73
o-zero 77.08 9533 99.95 |0.650.29 2.07 38.67 73.00 98.53 |1.330.15 0.75
PGD-7, 3241 59.19 89.22 [2.000.57 246 3435 4499 68.61 |2.000.35 0.70
Sparse-RS 59.24 79.81 9243 |1.040.35 2.46 4935 63.01 76.51 [1.110.37 0.68
sPGD,|C2 | 58.91 88.15 99.42 [0.890.39 2.57 |C4 |50.41 75.86 97.52 [1.020.18 0.73
sPGD,, 648 93.15 99.92 |0.76 0.48 2.56 55.89 84.64 99.56 [0.910.19 0.73
o-zero 7509 97.67 100.0 0.650.17 2.68 5569 82.72 99.07 |0.940.11 0.75

process as soon as an adversarial example with an ¢y-norm perturbation smaller than k is found.
In these evaluations, we set N = 1000 for c~zero, PGD-{y, sPGD,, and sPGD,,, while using
N = 2000 for Sparse-RS. Therefore, when using N = 1000 steps for c—zero (which amounts to
performing 1000 forward and 1000 backward calls), we set N = 2000 steps for Sparse-RS (which
amounts to performing 2000 forward calls) Furthermore, to compute the ASR at different & (ASRy,),
we separately execute fixed-budget attacks for k£ = 24, 50, 100 features on MNIST and CIFAR-10,
and with k£ = 150 features on ImageNet (excluding PGD-/;, due to computational demands), reporting
only the maximum number of queries and execution time across all distinct runs. We report the
average query usage at k (qx) and the average execution time per sample at & (s;). We report the
execution time of sy for the smaller k, as it requires, on average, more iterations due to the more
challenging problem. The results, shown in Tables 34} confirm that 0—zero outperforms competing
approaches in 17 out of 18 configurations (see Appendix [B.2]for additional results). Only against C4
the fixed-budget attack sPGD,, slightly increases the ASR. The advantages of c—zero become even

8N = 2000 is suggested as a lower bound number of iterations to ensure the convergence of Sparse-RS
by (Croce et al.| (2022). Additional results with N = 5000,/10000 for Sparse-RS can be found in Appendix
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Table 4: Fixed-budget comparison results with N = 1000 (/N = 2000 for Sparse-RS) on ImageNet
at budgets & = 100, 150. See the caption of [Table 3|for further details.

Attack M ASR100 ASR15() q100 S100 VRAM M ASRlO() ASR150 q100 S100 VRAM

ImageNet
Sparse-RS 89.3 91,5 10.39 032 1.29 81.1 84.1 1053 05 4.39
sPGD,, I 95.4 985 |0.31 0.16 1.40 » 85.6 912 033 0.64 448
sPGD,, 93.6 97.8 1033 0.12 1.40 82.6 88.7 0.37 0.39 4.49
0-zero 99.7 100.0 |0.19 0.06 1.79 94.7 971 |0.15 0.17 4.90
Sparse-RS 69.1 72.2 |0.81 0.62 4.39 459 474 | 1.17 1.12  5.72
sPGD,, I3 854 934 032 0.55 4.49 14 66.3 749 10.73 1.39 5.84
sPGD,, 83.9 92.1 035 039 4.49 66.0 76.0 [0.72 1.01 5.84
0-zero 97.7 99.6 |0.34 0.37 4.90 78.8 85.8 |0.49 0.70 6.29

more evident when looking at the results on ImageNet, where, on average, it improves the ASR;g¢ of
9.6% across all models in The results also indicate that early stopping enables c-zero to
save a significant number of queries and runtime while preserving a high ASR. In Appendix [B.2] we
also report additional comparisons with N = 2500 and N = 5000, i.e. a more favorable scenario for
the competing attacks, confirming that c-zero remains competitive even at higher budgets.

Summary. Our experiments show that c—-zero: (i) outperforms minimum-norm attacks by im-
proving the success rate and decreasing the £y norm of the generated adversarial examples (see
[Table I|and Appendix [B.I); (ii) is significantly faster and scales easily to large datasets (see
ble Ifand Appendix [B.I); (iii) is robust to hyperparameter selection, not requiring sophisticated
and time-consuming tuning (see Appendix [A.2)); (iv) does not require any adversarial initialization
(see[Table 1)); (v) provides more reliable adversarial robustness evaluations, consistently achieving
100% ASRs (see[Table 1} [Figure 2| Appendix[B.3); and (vi) remains competitive against fixed-budget
attacks even when given the same query budget (Table 3}4).

4 RELATED WORK

Optimizing ¢y-norm adversarial examples with gradient-based algorithms is challenging due to non-
convex and non-differentiable constraints. We categorize them into two main groups: (i) multiple-
norm attacks extended to ¢y, and (ii) attacks specifically designed to optimize the ¢y norm.

Multiple-norm Attacks Extended to /). These attacks have been developed to work with multiple
¢, norms, including extensions for the £o norm. While they can find sparse perturbations, they often
rely heavily on heuristics in this setting. [Brendel et al.|(2019a)) initialize the attack from an adversarial
example far away from the clean sample and optimizes the perturbation by following the decision
boundary to get closer to the source sample. In general, the algorithm can be used for any £, norm,
including ¢, but the individual optimization steps are very costly. [Pintor et al.|(2021) propose the
FMN attack that does not require an initialization step and converges efficiently with lightweight
gradient-descent steps. However, their approach was developed to generalize over £, norms, but does
not make special adaptations to minimize the ¢y, norm specifically. Matyasko & Chaul(2021) use
relaxations of the £y norm (e.g., £12) to promote sparsity. However, this scheme does not strictly
minimize the /o norm, as the relaxation does not set the lowest components exactly to zero.

£y-specific Attacks. [Croce et al.|(2022) introduced Sparse-RS, a random search-based attack that,
unlike minimum-norm attacks, aims to find adversarial examples that are misclassified with high
confidence within a fixed perturbation budget. On the same track we find Sparse-PGD (Zhong et al.|
2024) and PGD-/¢ (Croce & Heinl 2019)), white-box fixed-budget alternatives to Sparse-RS. Lastly,
Césaire et al.[(2021) induces folded Gaussian noise to selected input components, iteratively finding
the set that achieves misclassification with minimal perturbation. However, it requires considerable
memory to explore possible combinations and find an optimal solution, limiting its scalability.

Overall, current implementations of £p-norm attacks present a crucial suboptimal trade-off between
their success rate and efficiency, i.e., they are either accurate but slow (e.g., BB) or fast but inaccurate
(e.g., FMN). This is also confirmed by a recent work that has benchmarked more than 100 gradient-
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based attacks (Cina et al.| [2024)) on 9 additional robust models. In that open-source benchmark,
o—-zero consistently and significantly outperformed all the existing implementations of competing
fy-norm attacks, establishing a performance very close to that of the empirical oracle (obtained by
ensembling all the attacks tested). In summary, our attack combines the benefits of the two families
of attack detailed above, i.e., effectiveness and efficiency, providing the state-of-the-art solution for
adversarial robustness evaluations of DNNs when considering ¢y-norm attacks.

5 CONCLUSIONS AND FUTURE WORK

In this work, we propose o—zero, a novel attack aimed to find minimum ¢y-norm adversarial
examples, based on the following main technical contributions: (i) a differentiable approximation
of the ¢y norm to define a novel, smooth objective that can be minimized via gradient descent; and
(i1) an adaptive projection operator to enforce sparsity in the adversarial perturbation, by zeroing
out the least relevant features in each iteration. c—zero also leverages specific optimization tricks
to stabilize and speed up the optimization. Our extensive experiments demonstrate that c-zero
consistently discovers more effective and reliable /y-norm adversarial perturbations across all models
and datasets while maintaining computational efficiency and robustness to hyperparameters choice.
In conclusion, o—zero emerges as a highly promising candidate to evaluate robustness against
£y-norm perturbations and promote the development of novel robust models against sparse attacks.

Ethics Statement. Based on our comprehensive analysis, we assert that there are no identifiable
ethical considerations or foreseeable negative societal consequences that warrant specific attention
within the limits of this study. This study will rather help improve the understanding of adversarial
robustness of DNNs and identify potential ways to improve it.

Reproducibility. To ensure the reproducibility of our work, we have detailed the experimental setup
in Section@ where we describe the datasets, models, and attacks used, along with their respective
sources. Additionally, we have provided our source code as part of the supplementary material, which
will be made publicly available as open source upon acceptance.
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A APPENDIX

A.1 ROBUST MODELS

The experimental setup described in this paper (Section utilizes pre-trained baseline and robust
models obtained from RobustBench (Croce et al.,[2021)). The goal of RobustBench is to track the
progress in adversarial robustness for /- and ¢o-norm attacks since these are the most studied settings
in the literature. We summarize in the models we employed for testing the performance
of o—-zero. Each entry in the table includes the label reference from RobustBench, the short
name we assigned to the model, and the corresponding clean and robust accuracy under the specific
threat model. The robustness of these models is evaluated against an ensemble of white-box and
black-box attacks, specifically AutoAttack. We also include in our experiments models trained to
be robust against ¢ sparse attacks, i.e., C3 (Croce & Hein, [2021) and C4 (Jiang et al.| 2023). Our
experimental setup is designed to encompass a wide range of model architectures and defensive
techniques, ensuring a comprehensive and thorough performance evaluation of the considered attacks.

Table 5: Summary of Robustbench models used in our experiments. For each model, we report its
reference label in Robustbench, its threat model, and the corresponding clean and robust accuracy.

Dataset Reference Model Threat model Clean accuracy % Robust accuracy %
Carmon2019Unlabeled C1 (Carmon et al.|[2019) loo 89.69 59.53
Augustin2020Adversarial C2 (Augustin et al.|[2020) 123 91.08 7291
Standard C5 (Croce et al.|[2021) - 94.78 0

CIFAR-10 Gowal2020Uncovering C6 (Gowal et al.|[2021) lo 90.90 74.50
Engstrom2019Robustness C7 (Engstrom et al.}[2019) loo- Lo 87.03 - 90.83 49.25 - 69.24
Chen2020Adversarial C8 (Chen et al.|2020) loo 86.04 51.56
Xu2023Exploring_ WRN-28-10 C9 (Xu et al.||2023) loo 93.69 63.89
Addepalli2022Efficient RN18 C10 (Addepalli et al.|[2022) loo 85.71 52.48
Standard_R18 11 (He et al.|[2015) - 76.52 0
Engstrom2019Robustness 12 (Engstrom et al./|2019) loo 62.56 29.22

ImageNet Hendrycks2020Many 13 (Hendrycks et al.[|2021) loo 76.86 52.90
Debenedetti2022Light_XCiT-S12 14 (Debenedetti et al.|[2023) loo 72.34 41.78
Wong2020Fast 15 (Wong et al.||2020) loo 55.62 26.24
Salman2020Do_R18 16 (Salman et al.|[2020) U 64.02 34.96
Peng2023Robust 17 (Peng et al.|[2023) loo 73.44 48.94
Mo02022When_Swin-B 18 (Mo et al.}[|2022) loo 74.66 38.30

A.2 o0-zErR0: HYPERPARAMETER ROBUSTNESS

To assess the strength and potential limitations of our proposed attack, we conducted an ablation
study on its key hyperparameters, 79, o, and t.

The parameter 7 governs the initial tolerance threshold in[Algorithm T} which induces sparsity within
the adversarial perturbation. The parameter o defines the approximation quality of l in Eq.
compared to the actual ¢, function. Our ablation study, depicted in[Figure 3| involved two distinct
models: C10 (top row) and I1 (bottom row). We executed the attack on 1000 randomly selected
samples from each dataset and recorded the ASR at different perturbation budgets k£ and the median
£y norm of the resulting adversarial perturbations. We observe a significant robustness of c—zero
with respect to these two hyperparameters; in particular: (i) the choice of the initial value of 7y exerts
negligible influence on the ultimate outcome, given that the parameter dynamically adapts throughout
the optimization process; and (ii) the selection of ¢ is not particularly challenging, especially when
incorporating the sparsity projection operator.

We also conducted an ablation study on the sparsity threshold adjustment factor ¢ used to adaptively
update 7. In the following we keep the default values for 7o = 0.3 and 0 = 1073, We executed the
attack on 1000 randomly selected samples against C3 and C4 models and recorded the AS Ry and
the median [y norm of the resulting adversarial perturbations. In[Figure 4] we once against observe
the robustness of c—zero to this parameter, yielding similar and effective results when ¢t < 107!,

Overall, the ablation study revealed consistent trends across the distinct models and datasets. In all
cases, we identified a broad parameter configuration range where our attack maintained robustness to
the hyperparameter selection, making hyperparameter optimization for the attacker a swift task. This
robustness is further evidenced by the results presented in the experimental comparisons, where our
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Figure 3: Ablation study on o (y-axis) and 7o (x-axis) for CIFAR-10 C10 (top-row), ImageNet I1, (bottom-row).

For each combination, we report the attack success rate at different k and the median ¢, perturbation value.

attack consistently outperforms competing attacks even with a shared hyperparameter configuration
across all models.
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Figure 4: Ablation study on ¢ for CIFAR-10 C3 and C4. For each, we report the attack success rate at
the 50 feature budget (left) and the median ¢y norm of the adversarial perturbation (right).

B ADDITIONAL EXPERIMENTAL COMPARISONS

B.1 COMPARISONS WITH MINIMUM-NORM ATTACK

In our experimental setup, we also consider a reduced number of queries, to test whether the attack can
also run faster while remaining effective. We thus replicate our experimental comparison involving
o-zero and state-of-the-art sparse attacks while restricting the number of steps to N = 100. The
results are summarized in Tables Compared to the results with N = 1000 steps reported in
Tables[T]and[6] the ASR of most competitive attacks decreases, while c—zero remains effective by
consistently reaching an ASR of 100%. This shows that c—zero remains an effective, reliable and
fast approach to crafting minimum-norm attacks even with reduced query budgets.

B.2 COMPARISONS WITH FIXED-BUDGET ATTACKS

Fixed-budget attacks, i.e., Sparse-RS 2022), PGD-{ (Croce & Hein| [2019), and Sparse-
PGD (Zhong et al},[2024)), have been designed to generate sparse adversarial perturbations given a
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fixed-budget k, therefore, drawing comparisons with minimum-norm attacks is not a straightforward
task. Specifically, in their threat model, the attacker imposes a maximum limit on the number of
perturbed features, and the attack then outputs the adversarial example that minimizes the model’s
confidence in predicting the true label of the sample. However, since the fixed-budget threat model
differs from the minimum-norm scenario we consider in this paper, which does not assume a
maximum norm value k, we evaluate c-zero in a fixed-budget fashion by discarding all adversarial
perturbations that exceed k. Furthermore, as for fixed-budget attack, we let c—zero to leverage
the input parameter k to early stop the optimization procedure and reduce the number of consumed
queries to the target model. Throughout this evaluation, the number of steps taken by Sparse-RS
is always doubled compared to the other two white-box attacks, as it does not utilize the backward
pass employed by the others. The main paper reports to this end an evaluation of o—zero in a
fixed-budget approach (cf. Tables [3}4). The remaining experiments, involving additional models
for CIFAR-10 and ImageNet, are reported in Tables [TOHTT] Furthermore, to explore the effects of
increased iterations on convergence and success rate, we increased the number of iterations up to
N = 10000 (Tables [I2HI5), while always doubling the iterations for Sparse-RS. These additional
experiments cover the three datasets MNIST, CIFAR-10, and ImageNet, 18 distinct models, and
various feature budgets. The results again affirm that, o0—zero consistently outperforms competing
approaches or synergizes well with them for a comprehensive robustness assessment.

B.3 ROBUSTNESS EVALUATION CURVES

We provide robustness evaluation curves for fixed-budget attacks on a CIFAR-10 model (C3), running
each attack multiple times across various perturbation budgets k. The number of iterations is set
to N = 1000 and N = 5000, with Sparse-RS allocating twice the iterations due to its reliance
solely on forward passes. The results, depicted in demonstrates that c—zero consistently
outperforms fixed-budget attacks across all perturbation budgets k. Additionally, we present in
Figs. the robustness evaluation curves depicting the performance of minimum-norm /¢-attacks
against all the models analyzed in our paper. These findings reinforce our experimental analysis,
explicitly demonstrating that the o—zero attack consistently achieves higher values of ASR while
employing smaller ¢y-norm perturbations compared to alternative attacks.

—V— Sparse-RS —e— sPGD,, >— sPGD, —A— o-zero
100 100
>
> >
8o} . ] 80
I
e g e
£ 60} ] =
< > <
401 1 40 »
20 1 20
20 40 60 80 100 20 40 60 80 100
k k

Figure 5: Robustness evaluation curves for fixed-budget attacks on C3. For each budget level k,
each attack has been run with 1000 iterations (left-most plot) and 5000 iterations (right-most plot).
Sparse-RS has been run with double the iterations as it relies solely on forward calls.
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Figure 6: From the leftmost to the rightmost we report the robustness evaluation curves for M1, M2,
C1 (top-row), C2, C3, C4 (middle-row) and C5, C6, C7 (bottom-row).
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Figure 7: From the leftmost to the rightmost we report the robustness evaluation curves for C8, C9,
C10 (top-row), 11, 12, I3 (middle-row) and 14, 15, 16 (bottom-row)
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Table 6: Minimum-norm comparison results for CIFAR-10 and ImageNet with N = 1000 on
remaining models. For each attack and model (M), we report ASR at £ = 10, 50, co, median
perturbation size ¢y, mean runtime s (in seconds), mean number of queries ¢ (< 1000), and maximum
VRAM usage (in GB). When VFGA exceeds the VRAM limit, we re-run it using a smaller batch
size, increasing its runtime ¢. We denote those cases with the symbol ‘x’. Lastly we indicate with
o-zero * the case where weuse 0 = 1 and 9 = 0.1.

Attack M ASRy;; ASR;0ASR., #;, s q VRAM M ASRy; ASRs0ASR,, /; s q VRAM

CIFAR-10
SF 11.19 11.19 56.56 3072| 1.42 0.37 1.57 23.67 24.85 62.41 3072| 9.86 0.20 5.50
EAD 1091 21.33 100.0 126 | 2.32 690 1.47 23.23 33.68 100.0 105| 833 537 5.39
PDPGD 4170 7897 100.0 27 | 0.64 2.00 1.31 3338 48.96 99.82 51 | 2.15 2.00 5.12
VFGA c5 7725 9341 9999 11 | 0.17 0.32 11.96 cs 56.76 81.79 99.89 20 |4.30* 0.62 >40
FMN 9599 9997 1000 7 | 0.60 2.00 1.3 5474 79.70 100.0 21 | 2.05 2.00 5.12
BB 97.43 99.79 100.0 7 | 5.81 276 147 59.82 78.76 83.58 16 |12.49 3.14 5.39
BBadv 97.50 99.86 100.0 7 | 457 201 1.63 7451 9342 1000 13 | 6.99 201 5.51
0-zero 99.20 100.0 100.0 5 | 0.74 2.00 1.1 81.23 97.33 100.0 10 | 2.75 2.00 5.90
SF 16.78 16.79 3538 oo |19.74 0.62 10.00 12.12 12.14 70.77 3072| 3.28 022 2.25
EAD 20.75 3590 100.0 74 |10.76 5.55 9.92 1451 23.62 100.0 148 | 2.23 5.80 2.15
PDPGD 23.84 40.89 100.0 69 | 3.96 2.00 8.86 2531 38.41 1000 69 | 0.76 2.00 2.0
VFGA c6 4528 67.51 99.88 29 [491* 1.02 >40 9 38.42 56.72 99.81 39 |3.15* 1.84 >40
FMN 45.73 68.38 100.0 29 | 3.91 2.00 8.86 4438 70.24 100.0 30 | 0.73 2.00 2.0
BB 1526 17.14 1794 oo | 346 2.08 9.93 70.11 93.24 100.0 15 | 6.49 2.87 2.16
BBadv 64.47 88.92 100.0 16 | 8.85 2.01 10.03 69.45 9291 100.0 15| 6.02 2.01 222
o-zero 75.63 94.47 100.0 11 | 441 2.00 10.43 79.59 96.93 100.0 11 | 0.89 2.00 2.65
SF 29.51 40.86 93.82 3039| 93 1.56 1.90 25.88 26.54 51.80 3072| 0.58 0.33 0.51
EAD 9.92 11.14 100.0 398 | 2.57 5.66 1.89 19.44 29.23 100.0 118 | 1.01 532 041
PDPGD 32.60 49.19 100.0 51 | 1.16 2.00 1.8 29.98 41.00 100.0 66 | 0.44 2.00 0.36
VFGA c7 61.19 90.04 99.88 19 | 0.28 0.52 16.53 cio 48.63 74.15 99.54 25 | 0.17 0.77 3.07
FMN 52.14 85.60 100.0 23 | 1.09 2.00 1.8 47.89 73771 100.0 26 | 041 2.00 0.36
BB 21.44 31.03 3136 oo | 3.01 237 1.89 68.37 91.83 100.0 15 |10.90 2.93 041
BBadv 77.88 99.11 100.0 14 | 451 2.01 1.99 67.35 93.04 100.0 16 | 460 2.01 0.54
0-zero 81.38 99.15 100.0 12 | 1.39 2.00 1091 73.96 94.21 1000 13 | 0.63 2.00 0.51
FMN 39.57 7475 100.0 32| 0.11 2.00 0.59 483 78.16 100.0 26 | 0.11 2.00 0.59
BBadv ci1 14.07 18.57 100.0 183 | 2.52 2.01 0.65 c12 18.33 19.75 100.0 290 | 2.57 2.01 0.65
o-zero 12.38 1591 100.0 144 | 0.24 2.00 1.03 18.52 21.31 100.0 187| 0.33 2.00 1.03
o-zero * 44.78 85.05 100.0 27 | 0.23 2.00 1.03 54.62 90.12 100.0 22 | 0.23 2.00 1.03
ImageNet

Attack M ASR24 ASR50 ASROO ZU S q VRAM M ASRQ4 ASR5U ASROO ZU S q VRAM
EAD 56.6 60.2 100.0 0 |21.38 5.50 1.41] 59.0 614 1000 O | 7.89 529 048
VFGA 69.0 762 988 0 |6.11* 1.43 >40 66.8 76.6 993 0 |1.74* 1.21 >40
FMN [I5 | 71.0 79.5 1000 O | 1.97 2.00 230 |16 | 709 787 100.0 O | 0.72 2.00 0.67
BBadv 823 89.0 1000 O |185342.01 241 803 89.6 100 0O (199.472.01 0.73
0-zero 851 914 1000 O | 2.76 2.00 252 86.2 928 1000 O | 1.13 2.00 0.84
FMN 392 485 100 545|584 2 1744 38.1 46.8 100 67 | 5.17 2 791
BBadv | 17 | 49.7 62 100 25.5[1282 2 17.86 | I8 | 465 58.6 100 29.5|113.87 2 830
o-zero 554 682 100 16 | 8.62 2 19.03 501 644 100 24 | 66 2 947

Table 7: Minimum-norm comparison results for MNIST with NV = 100. See the caption of [Table 6
for further details.
Attack M ASRy; ASRs; ASR,, 0y s q VRAM M ASR3:; ASR50 ASR. by s q VRAM

MNIST
SF 511 6.76 96.98 469/1.07 0.18 0.07 098 1.21 91.68 463]2.87 0.86 0.07
EAD 373 46.65 100.0 520.06 1.14 0.07 3.51 3557 100.0 61 (0.06 0.99 0.07
PDPGD 098 0.98 100.0 359/0.01 0.20 0.07 052  0.52 95.02 254/0.01 0.20 0.07
VFGA M1 4.82 82.68 100.0 27(0.070.76 0.23 w2 4.82 3899 99,98 5710.071.34 0.24
BB 68.52 98.00 100.0 20 (0.131.19 0.08 62.98 83.00 87.87 18|0.131.69 0.08
FMN 33.03 83.09 88.92 30(0.010.20 0.07 10.05 14.03 14.81 <o |0.01 0.20 0.07
BBadv 62.29 90.88 100.0 210.090.21 0.08 41.19 58.80 100.0 34 0.07 0.21 0.08
o-zero 61.12 98.45 100.0 22(0.01 0.20 0.08 87.20 99.82 100.0 13(0.01 0.20 0.08
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Table 8: Minimum-norm comparison results for CIFAR-10 with N = 100. See the caption of
for further details.
Attack M ASR,; ASR;0 ASR., % s q VRAM M ASRy, ASRs ASR.. f s q VRAM

CIFAR-10
SF 17.67 1776 4726 oo |3.17035 1.62 16.75 16.79 3536 oo [19.74 0.62 10.00
EAD 16.74 28.74 100.0 100.0/0.27 0.80 1.53 19.79 3294 100.0 83 |1.58 0.82 10.04
PDPGD 10.31 10.31 99.39 2421|0.050.20 1.43 11.26 11.26 99.75 2814|0.32 0.2 8.97
VFGA ci 50.73 7534 93.69 24 |0.230.72 11.83 cs 45.33 67.05 87.75 29 |3.75 0.86 >40
FMN 4690 69.36 80.68 27 (0.050.20 1.43 42,67 61.49 7234 33 1031 02 898
BB 1298 1429 1497 oo (044195 1.59 1499 16,88 1791 oo |2.67 1.95 10.04
BBadv 60.52 86.63 100.0 18 |0.410.21 1.59 59.61 84.59 100.0 18 [0.76 0.21 10.04
0-zero 63.60 88.27 100.0 16 [0.08 0.20 1.84 63.44 87.2 100.0 16 | 044 0.2 10.29
SF 17.86 20.59 94.26 3071|2.440.26 191 21.07 38.76 82.71 3062|4.30 9.67 1.90
EAD 9.50 10.67 100.0 451 |0.300.71 2.01 9.68 10.56 100.0 434 (0.48 0.90 2.00
PDPGD 892 892 7531 3052(0.090.20 191 9.17 9.7 99.90 2709(0.12 0.20 1.91
VFGA 2 3931 66.46 91.64 33 |0.340.87 16.64 c7 60.94 90.04 99.16 19 [0.29 0.52 16.64
FMN 37.13 6241 713 36 |0.080.20 1.92 50.70 79.48 87.20 24 [0.08 0.20 1.91
BB 38.18 53.53 57.05 40 |0.591.90 2.00 26.39 3241 3283 oo [0.50 1.93 2.00
BBadv 63.56 92.74 100.0 19 [0.400.21 2.00 7491 98.37 100.0 15 | 041 0.21 2.00
0-zero 56.94 88.60 100.0 21 |0.110.20 2.25 68.14 94.90 100.0 16 |0.11 0.20 2.25
SF 20.89 24.36 58.29 3072(1.63 0.48 0.66 23.87 24.85 6242 3072{9.86 0.2 5.50
EAD 13.03 13.18 100.0 835 |0.11 0.65 0.64 21.71 29.59 100.0 128 |0.67 0.66 5.51
PDPGD 12.95 12.98 99.47 2566(0.04 0.20 0.59 13.96 13.96 54.16 3072/ 0.21 0.2 5.23
VFGA c3 28.63 49.73 8294 51 |0.131.13 4.44 cs 56.81 82.04 97.08 20 [4.32 0.61 >40
FMN 26.76 3790 4390 oo [0.030.20 0.59 5342 7659 87.1 22.0(021 02 524
BB 1640 2291 27.64 oo (1.042.25 0.65 60.74 78.14 8446 17 |1.36 1.67 5.55
BBadv 33.68 66.79 100.0 37 |0.400.21 0.65 70.31 91.58 100.0 14 |0.55 0.21 5.51
0-zero 30.56 57.71 100.0 43 |0.04 0.20 0.89 69.49 91.87 1000 14 [0.25 02 6.76
SF 31.85 4297 84.45 70 |1.540.47 0.66 12.03 12.14 70.77 3072{3.28 0.22 2.25
EAD 24.1 244 100.0 844 |0.120.66 0.65 13.61 21.61 100.0 162 |0.31 0.8 2.27
PDPGD 23.78 23.78 66.62 3072|0.04 0.2 0.59 6.31 631 962 2773/0.06 0.2 2.11
VFGA c4 46.7 69.52 93.05 28 |0.140.77 4.22 9 3822 56.56 75.79 39.5|1.45 1.06 >40
FMN 42.69 5878 65.83 35 (0.03 0.2 0.59 40.27 59.69 68.88 35 |0.06 02 2.19
BB 2591 2798 29.51 oo (0.542.09 0.65 66.02 90.74 100.0 16 |0.65 1.07 2.27
BBadv 52.25 80.64 100.0 23 |0.360.21 0.65 6441 89.7 1000 17 |0.42 0.21 2.27
0-zero 49.74 73775 100.0 25 |0.04 0.2 0.89 65.96 90.95 100.0 16 |0.09 02 2.52
SF 11.19 11.19 56.56 3072|1.420.37 1.56 2428 26.54 51.90 3072]0.58 0.33 0.52
EAD 1042 19.09 100.0 146 |0.26 0.77 1.58 18.82 26.17 100.0 144 ]0.11 0.79 0.52
PDPGD 523 523 100.0 3057(0.050.20 1.43 1429 14.29 90.95 3057{0.03 0.2 047
VFGA Cs 7722 93.44 9899 11 |0.170.38 12.08 cio 4849 74.14 94.16 26 |0.12 0.73 3.18
FMN 89.83 97.72 9886 8 |0.050.20 1.43 46.75 69.77 80.68 27 |0.03 0.2 048
BB 84.42 97.55 100.0 10 |0.620.95 1.59 63.70 89.39 100.0 17 [0.43 1.13 0.53
BBadv 83.81 97.35 100.0 10 |0.450.21 1.59 63.29 90.08 100.0 17 |0.35 0.21 0.53
0-zero 91.54 99.84 1000 9 |(0.080.20 1.83 60.79 86.02 100.0 18 [0.04 0.2 0.77

Table 9: Minimum-norm comparison results for ImageNet with N = 100. See the caption of
for further details.

Attack M ASR.; ASRso ASR., 4 s q VRAMMASR., ASR;0ASR,, /; s g VRAM
ImageNet

EAD 347 359 100.0 484]1.02 0.67 0.46 324 33.0 1000 808|5.15 0.7 1.68
VFGA 583 722 853 14 |1.06 0.70 >40 40.0 468 569 665/923 12 >40
FMN|/I| 554 645 681 14 |0.08 0.20 0.66 |I4] 399 462 475 oo |044 02 297
BBadv 67.6 833 100.0 10 |23.020.21 0.72 464 58.0 999 3221.230.21 3.07
0-zero 69.2 869 100.0 10 |0.13 0.20 0.84 437 552 100.0 32 |0.61 02 3.20
EAD 47.1 50.1 100.0 48 |2.32 0.68 1.42 562 602 1000 O |246 0.72 141
VFGA 543 632 96.7 13 |2.88 0.72 >40 689 760 83.0 O |233 059 >40
FMN|/2| 559 60.0 624 10 {020 020 230 |I5| 67.8 720 743 0 |0.20 0.20 2.30

BBadv 70.1 80.1 100.0 5 {20.490.21 2.40 80.8 87.8 100.0 0 |18.60 0.21 2.41
0-zero 71.0 82.7 1000 4 [0.29 020 2.52 81.8 893 1000 0O |[0.29 020 2.52
EAD 269 277 100.0 1108|0.58 0.61 1.41 574 60.0 1000 O |1.03 0.72 0.48

VFGA 47.0 587 740 31 |3.07 0.96 >40 66.8 752 839 0 |091 0.59 =40
FMN|/3| 444 50.6 532 47 |0.16 02 230 |I6] 692 749 772 0 |0.07 02 0.67
BBadv 53.6 747 100.0 20 (23.860.21 241 80.1 89.1 100.0 0O |19.68 0.21 0.73
o-zero 529 744 1000 21 {023 02 252 822 905 1000 O [0.12 02 0.84
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Table 10: Fixed-budget comparison results with N = 1000 on CIFAR10 remaining models. Sparse-
RS was executed with double the steps, 2/V, to ensure fair comparison as it lacks backward passes.
For each attack, we report the corresponding ASR with different feature budget levels (24,50,100).
We report the execution time sp4 and query usage o, for the smaller £ = 24, as it requires, on
average, more iterations due to the more challenging problem.

Attack M ASR24 ASR50 ASRlOO (24 S24 VRAM M ASR24 ASR50 ASR100 (o4 S24 VRAM

CIFAR-10
PGD-¢ 68.60 88.89 98.14 |2.001.95 1.89 4281 66.19 90.49 |2.00 3.24 7.36
Sparse-RS 99.71 100.0 100.0 {0.08 0.10 1.91 72.54 86.72 94.84 |0.78 1.10 7.35
sPGD, |C5 |99.82 100.0 100.0 |0.020.16 2.06 |C8 |68.47 90.47 99.56 |0.70 1.48 7.62
sPGD,, 97.84 99.98 100.0 [0.09 0.37 2.06 73.55 94.55 99.97 [0.60 1.65 7.62
0-zero 99.20 100.0 100.0 {0.22 0.11 2.07 81.23 97.33 99.97 [0.52 0.54 7.76
PGD-¢, 32.80 50.53 77.06 |2.00 4.88 12.79 3145 52.79 80.27 |2.002.01 291
Sparse-RS 76.61 89.88 96.22 [0.67 1.98 12.74 68.77 82.06 89.81 |0.850.56 2.89
sPGD,, |C6 | 63.66 87.07 98.67 |0.802.83 13.77 |C9 | 61.0 83.49 96.76 |0.87 0.88 3.03
sPGD,, 64.28 88.25 99.09 |0.77 2.77 13.77 63.48 87.59 98.49 0.810.85 3.03
0-zero 75.63 94.47 99.78 [0.66 1.75 13.82 79.59 96.93 99.91 [0.572.04 291
PGD-¢, 3791 68.90 9531 [2.001.96 2.47 38.33 61.88 89.50 (2.00 1.12 0.51
Sparse-RS 63.75 84.49 95.74 |0.97 0.61 2.46 64.80 81.46 91.13 |0.910.45 0.50
sPGD, |C7 |72.82 96.74 99.98 10.61 0.94 2.57 |C10|59.94 84.87 98.82 (0.870.44 0.55
sPGD,, 81.64 99.09 100.0 [0.420.69 2.57 65.07 90.78 99.83 [0.750.41 0.55
0-zero 81.38 99.15 100.0 {0.46 0.21 2.68 73.96 94.21 99.80 [0.67 0.14 0.57
Sparse-RS 28.08 41.89 58.45 |0.38 1.53 0.59 51.64 7127 86.57 |0.321.14 0.59
sPGD,, 15.87 21.43 32.67 |0.26 1.71 0.65 2278 26.56 34.09 [0.311.58 0.64
sPGD, |Cl11|13.61 17.07 30.11 |0.251.74 0.65 |C12|24.52 3439 59.89 (0.30 1.54 0.65
o-zero 12.38 1591 30.43 |0.20 1.77 1.03 18.52 21.31 28.81 |0.27 1.65 1.03
o-zero * 44.78 85.05 99.76 [0.151.33 1.03 54.62 90.12 99.94 [0.131.15 1.03

Table 11: Fixed-budget comparison results for ImageNet with N = 1000 on remaining models.
Sparse-RS was executed with double the steps, 2N, to ensure fair comparison as it lacks backward
passes. For each attack, we report the corresponding ASR with budget level £ = 150. We report the
execution time Sy and query usage q,, for the smaller k£ = 100, as it requires, on average, more
iterations due to the more challenging problem.

Attack M ASRlOO ASR150 q100 S100 VRAM M ASR150 ASR150 q100 S100 VRAM

ImageNet
Sparse-RS 83.6 87.5 1044 285 4.39 85.4 89.2 1041 346 1.29
sPGD,, 15 89.8 945 1024 1.64 4.48 16 90.4 952 022 0.98 1.33
sPGD,, 86.5 92.6 |0.29 1.55 448 89.1 940 |0.24 1.15 1.33
o—-zero 95.9 98.2 |0.12 0.16 4.90 98.1 98.8 |[0.10 0.08 1.79
Sparse-RS 58.20 60.60 (095 521 1743 4920 52.10 |1.13 3.28 7.89
sPGD,, 17 67.50 75.50 |0.70 4.85 17.80 I8 65.10 75.20 |0.75 3.56 8.24
sPGD,, 65.70  75.10 |0.73 537 17.82 65.10 75.20 |0.73 568 8.23
o-zero 82.10 87.00 |{0.43 1.87 19.03 78.00 86.20 [0.50 1.67 9.46

Table 12: Fixed-budget comparison results with N' = 5000 on MNIST. See the caption of Table[I0|
for further details.
Attack M ASR24 ASR50 ASR100 (o4 S24 VRAM M ASR24 ASR50 ASRlUU (24 S24 VRAM

MNIST
Sparse-RS 88.13 99.26 99.99 [2.451.86 0.04 99.88 99.97 100.0 |0.310.17 0.04
sPGD,, Mi 81.22 9930 100.0 |2.83 1.50 0.05 M2 83.88 99.88 99.97 {233 0.9 0.05
sPGD,, 87.30 99.85 100.0 |1.60 1.44 0.05 74.38 99.46 99.99 |3.47 0.96 0.05
0—zero 88.63 100.0 100.0 (1.38 0.20 0.08 99.67 100.0 100.0 |0.24 0.02 0.08

20



Under review as a conference paper at ICLR 2025

Table 13: Fixed-budget comparison results with N' = 5000 on CIFAR10. See the caption of TableT0]
for further details.
Attack M ASR24 ASR50 ASRlOO (24 So4 VRAM M ASR24 ASR50 ASRlOO (o4 So4 VRAM

CIFAR-10
Sparse-RS 82.94 9477 98.68 [2.551.81 1.92 99.93 99.98 99.99 |0.150.14 191
sPGD,, C1 71.88 93.17 99.75 |3.212.78 2.06 Cs 99.93 100.0 100.0 {0.170.18 2.05
sPGD,, 69.73 92.86 99.79 [3.342.98 2.06 99.73 100.0 100.0 |0.26 1.31 2.05
0—zero 80.91 96.81 99.98 |3.23 1.35 2.09 99.81 100.0 100.0 [0.61 0.18 2.05
Sparse-RS 71.21 90.28 97.69 [3.892.49 246 77.06 9433 99.25 |3.382.15 2.46
sPGD,, I 64.88 92.03 99.85 [3.973.69 2.57 7 78.41 98.36 100.0 {2.595.87 2.57
sPGD,, 68.61 9499 99.96 [3.493.46 2.57 84.17 99.41 100.0 [1.856.26 2.57
0—2Zero 78.14 98.39 100.0 [3.16 1.02 2.70 83.99 99.49 100.0 (1.820.69 2.70
Sparse-RS 38.43 5827 79.59 [6.772.61 0.69 79.69 8998 953 |2.811.95 2.89
sPGD,, 3 34.62 65.54 96.55 [6.702.52 0.73 9 66.39 87.65 98.19 [3.732.75 3.03
sPGD,, 37.29 72.03 98.49 [6.482.96 0.73 68.03 90.7 99.23 |3.562.64 3.04
0—2Zero 40.99 76.00 98.98 [6.321.42 0.77 83.92 98.39 99.99 2.19 0.99 3.09
Sparse-RS 54.85 7195 86.25 |5.032.37 0.69 76.62 915 97.89 (3.201.46 0.50
sPGD,, ca 53.36 80.97 99.13 [4.942.24 0.73 C10 65.92 90.38 99.72 {3.86 1.63 0.55
sPGD,, 57.31 86.11 99.72 |4.46 2.36 0.73 68.59 9293 9991 [3.71 1.62 0.55
0-zero 57.11 84.54 99.34 1447 1.04 0.77 77.74 95.86 99.92 |2.75 0.57 0.59

Table 14: Fixed-budget comparison results with N = 5000 on ImageNet. See the caption of
for further details.

Attack M ASR100 ASR150 q100 S100 VRAM M ASR100 ASR150 q100 S100 VRAM

ImageNet
Sparse-RS 94.2 95.1 |1.397.73 1.29 48.8 51.7 15.68 13.51 5.73
sPGD,, 1 97.3 99.6 (045195 141 14 66.2 78.4 13.68 21.65 5.84
sPGD,, 93.6 98.5 (0.71 2.48 1.40 64.1 78.5 (3.78 20.71 5.84
0-zero 100.0 100.0 (0.72 0.31 1.83 77.3 87.8 (242 4.17 6.33
Sparse-RS 85.1 86.8 [2.06 11.0 4.39 89.6 913 |1.54 335 4.39
sPGD,, » 85.9 92.8 |1.63 833 4.49 15 920 959 |0.94 335 4.39
sPGD,, 81.3 90.5 |2.00 6.88 4.49 88.0 931 |1.28 5.89 4.48
0-zero 946 973 |0.630.61 4.94 96.9 98.4 (041 0.34 494
Sparse-RS 74.8 76.6 |3.54 6.38 4.39 87.5 92.7 |1.36 2.05 1.29
sPGD,, 3 87.6 954 |1.61 6.29 4.49 16 96.5 97.0 10.83 1.39 1.33
sPGD,, 814 937 |2.04 654 4.49 90.4 947 12.04 235 1.33
0-zero 982 99.7 |1.68 1.44 4.94 97.2 99.1 [0.35 0.12 1.83

Table 15: Fixed-budget comparison results with N = 10000 on CIFAR-10 and ImageNet. See the
caption of Tables [TOIT]for further details.

Attack M ASR24 ASR50 ASRlOO (24 S24 VRAM M ASRlOO ASR150 q100 S100 VRAM

Sparse-RS 41.12 63  83.99 |3.4412.82 0.60 87.2 883 [9.663.67 0.14
sPGD,, 3 3795 72.6  98.59 |1.9912.56 0.65 D 869 91.6 |7.84195 0.15
sPGD,, 35.89 6792 9742 |2.12 13.2 0.65 81.8 889 |84 385 0.15

0-zero 41.67 76.38 99.01 [0.33 3.07 2.41 951 97.2 (1.310.23 0.21
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C VisuAL COMPARISON

In Figures[8|{I0] we show adversarial examples generated with competing {y-attacks, and our c—zero.
First, we can see that ¢/, adversarial perturbations are clearly visually distinguishable|Carlini & Wagner
(2017a)); Brendel et al.|(2019a)); |Pintor et al.|(2021)). Their goal, indeed, is not to be indistinguishable
to the human eye — a common misconception related to adversarial examples (Biggio & Rolil 2018
Gilmer et al.,[2018]) — but rather to show whether and to what extent models can be fooled by just
changing a few input values.

A second observation derived from Figures [8}{I0]is that the various attacks presented in the state of
the art can identify distinct regions of vulnerability. For example, note how FMN and VFGA find
similar perturbations, as they mostly target overlapping regions of interest. Conversely, EAD finds
sparse perturbations scattered throughout the image but with a lower magnitude. This divergence
is attributed to EAD’s reliance on an ¢; regularizer, which promotes sparsity, thus diminishing
perturbation magnitude without necessarily reducing the number of perturbed features. Conversely,
our attack does not focus on specific areas or patterns within the images but identifies diverse critical
features, whose manipulation is sufficient to mislead the target models. Given the diverse solutions
offered by the attacks, we argue that their combined usage may still improve adversarial robustness
evaluation to sparse attacks.

EAD [lo]f: 57.0 VFGA [lfo]l: 740 SPA BB [[80]): 37.0

BBadv [o]]: 65.0

PGDO [[30: 43.0

FMN [[§o]]: 20.0

VEGA [[do]l: 6.0  SPARSEF BB [fof: 60 BBadv PGDO [[do]l: 19.0

EAD [d]: 26.0 VFGA [}do[|: 4.0 SPARSEF 8.0 PDPGD [8o]|: 30.0 BB [[6o]]: 12.0 PGDO [[30]]: 1.0 Sparse-RS [|3o]|: 4.0

EAD [l50]): 34.0 VFGA [lfo]l: 40.0  SPARSEFOOL 2540 PDPGD [lo: 14.0

EAD & 107.0 VFGA [jaofl: 13.0  SPARSEFOOL [[dofl: 120 PDPGD [[aofl: 30.0 BB 5o]|: 0.0 BBadv []]: 11.0 PGDO (13 30.0 Sparse-RS [|3: 15.0 FMN []: 140 a-zero [5oll: 9.0

ﬁ Iﬁﬁ Iﬁﬁ ‘-

EAD |[|3]: 48.0 SPARSEFOOL [|&]: 6.0 PDPGD ||do]: 18.0 Sparse-RS ||d]: 5.0 FMN [|8o]: 7.0

BB [[5o]|: 4.0 BBadv |5]: 177.0 PGDO [|do]l: 11.0

CIEe

Figure 8: Randomly chosen adversarial examples from MNIST M2.

Sparse-RS [|3o]|: 4.0

=

= i = 1 =

VFGA [}a]|: 10.0 BB [|50]|: 0.0 BBadv [do]l: 8.0 PGDO [[30]|: 15.0

EAD [ 2.0 VFGA |5l 10 SPARSEFOOL |- 30 ~ PDPGD |ja]): 45.0 BB [|50]|: 0.0 BBadv [o]l: 1.0 PGDD [15]: 3.0 S [150]]: 2.0 FMN [6o]f: 1.0 o
! ! l | H E I H ! ! ! ' | H l | H !
EAD [6]: 145.0 VFGA [8]: 9.0 SPARSEFOOL [[5]): 130 PDPGD [ja]): 27.0 BB [150]|: 0.0 BBadv [do]f: 9.0 PGDO [|3o]): 21.0 Sparse-RS (3] 8.0 FMN [[6o]|: 13.0 a-zcr0 (16

Figure 9: Randomly chosen adversarial examples from CIFAR-10 C1.
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EAD ||&o|: 4129.0 VEGA ||6o|: 68.0 BBadv ||8|: 24.0 FMN |do|: 38.0 a-zero ||§|: 17.0
|| \| | ||

BBadv [|do]: 13.0

Figure 10: Randomly chosen adversarial examples from ImageNet I1.
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