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ABSTRACT

Evaluating the adversarial robustness of deep networks to gradient-based attacks
is challenging. While most attacks consider ℓ2- and ℓ∞-norm constraints to craft
input perturbations, only a few investigate sparse ℓ1- and ℓ0-norm attacks. In
particular, ℓ0-norm attacks remain the least studied due to the inherent complex-
ity of optimizing over a non-convex and non-differentiable constraint. However,
evaluating adversarial robustness under these attacks could reveal weaknesses
otherwise left untested with more conventional ℓ2- and ℓ∞-norm attacks. In this
work, we propose a novel ℓ0-norm attack, called σ-zero, which leverages a dif-
ferentiable approximation of the ℓ0 norm to facilitate gradient-based optimization,
and an adaptive projection operator to dynamically adjust the trade-off between
loss minimization and perturbation sparsity. Extensive evaluations using MNIST,
CIFAR10, and ImageNet datasets, involving robust and non-robust models, show
that σ-zero finds minimum ℓ0-norm adversarial examples without requiring any
time-consuming hyperparameter tuning, and that it outperforms all competing
sparse attacks in terms of success rate, perturbation size, and efficiency.

1 INTRODUCTION

Early research has revealed that machine learning models are fooled by adversarial examples, i.e.,
slightly-perturbed inputs optimized to cause misclassifications (Biggio et al., 2013; Szegedy et al.,
2014). The discovery of this phenomenon has, in turn, demanded a more careful evaluation of
the robustness of such models, especially when deployed in security-sensitive and safety-critical
applications. Most of the gradient-based attacks proposed to evaluate the adversarial robustness of
Deep Neural Networks (DNNs) optimize adversarial examples under different ℓp-norm constraints.
In particular, while convex ℓ1, ℓ2, and ℓ∞ norms have been widely studied (Chen et al., 2018; Croce
& Hein, 2021), only a few ℓ0-norm attacks have been considered to date. The main reason is that
finding minimum ℓ0-norm solutions is known to be an NP-hard problem (Davis et al., 1997), and
thus ad-hoc approximations must be adopted to overcome issues related to the non-convexity and
non-differentiability of such (pseudo) norm. Although this is a challenging task, attacks based on the
ℓ0 norm have the potential to uncover issues in DNNs that may not be evident when considering other
attacks (Carlini & Wagner, 2017b; Croce & Hein, 2021). In particular, ℓ0-norm attacks, known to
perturb a minimal fraction of input values, can be used to determine the most sensitive characteristics
that influence the model’s decision-making process, offering a different and relevant threat model to
benchmark existing defenses and a different understanding of the model’s inner workings.

Unfortunately, current ℓ0-norm attacks exhibit a largely suboptimal trade-off between their success
rate and efficiency, i.e., they are either accurate but slow or fast but inaccurate. In particular,
the accurate ones use complex projections and advanced initialization strategies (e.g., adversarial
initialization) to find smaller input perturbations but suffer from time or memory limitations, hindering
their scalability to larger networks or high-dimensional data (Brendel et al., 2019a; Césaire et al.,
2021). Other attacks execute faster, but their returned solution is typically less accurate and largely
suboptimal (Matyasko & Chau, 2021; Pintor et al., 2021). This results in overestimating adversarial
robustness and, in turn, contributes to spreading a false sense of security, hindering the development
of effective defense mechanisms (Carlini et al., 2019; Pintor et al., 2022). Developing a reliable,
scalable, and compelling method to assess the robustness of DNN models against sparse perturbations
with minimum ℓ0 norm remains thus a relevant and challenging open problem.
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Figure 1: The leftmost plot shows the execution of σ-zero on a two-dimensional problem. The
initial point x (red dot) is updated via gradient descent to find the adversarial example x⋆ (green star)
while minimizing the number of perturbed features (i.e., the ℓ0 norm of the perturbation). The gray
lines surrounding x demarcate regions where the ℓ0 norm is minimized. The rightmost plot shows the
adversarial images (top row) and the corresponding perturbations (bottom row) found by σ-zero
during the three steps highlighted in the leftmost plot, along with their prediction and ℓ0 norm.

In this work, we propose a novel ℓ0-norm attack, named σ-zero, which iteratively promotes the
sparsity of the adversarial perturbation by minimizing its ℓ0 norm (see Figure 1 and Sect. 2). To over-
come the limitations of previous approaches, our attack leverages two main technical contributions:
(i) a smooth, differentiable approximation of the ℓ0 norm to enable the minimization of the attack
loss via gradient descent; and (ii) an adaptive projection operator that dynamically increases sparsity
to further reduce the perturbation size while keeping the perturbed sample in the adversarial region.

Our experiments (Sect. 3) provide compelling evidence of the remarkable performance of σ-zero.
We evaluate it on 3 well-known benchmark datasets (i.e., MNIST, CIFAR10, and ImageNet), using
22 different models from Robustbench (Croce et al., 2021) and the corresponding official repositories.
We compare the performance of σ-zero against more than 10 competing attacks, totaling almost
450 different comparisons. Our analysis shows that σ-zero outperforms state-of-the-art attacks in
terms of both attack success rate and perturbation size (lower ℓ0 norm), while being also significantly
faster (i.e., requiring fewer queries and lower runtime). Our attack also provides some additional
advantages: (i) it does not require any sophisticated, time-consuming hyperparameter tuning; (ii)
it does not require being initialized from an adversarial input; (iii) it is less likely to fail, i.e., it
consistently achieves an attack success rate of 100% for sufficiently-large perturbation budgets,
thereby enabling more reliable robustness evaluations (Carlini et al., 2019). We thus believe that
σ-zero will foster significant advancements in the development of better robustness evaluation
tools and more robust models against sparse attacks. We conclude the paper by discussing related
work (Sect. 4), along with the main contributions and future research directions (Sect. 5).

2 σ-ZERO : MINIMUM ℓ0-NORM ATTACKS

We present here σ-zero, a gradient-based attack that finds minimum ℓ0-norm adversarial examples.

Threat Model. We assume that the attacker has complete access to the target model, including
its architecture and trained parameters, and exploits its gradient for staging white-box untargeted
attacks (Carlini & Wagner, 2017b; Biggio & Roli, 2018). This setting is useful for worst-case
evaluation of the adversarial robustness of DNNs, providing an empirical assessment of the perfor-
mance degradation that may be incurred under attack. Note that this is the standard setting adopted
in previous work for gradient-based adversarial robustness evaluations (Carlini & Wagner, 2017b;
Brendel et al., 2019b; Croce et al., 2021; Pintor et al., 2021).

Problem Formulation. In this work, we seek untargeted minimum ℓ0-norm adversarial perturbations
that steer the model’s decision towards misclassification (Carlini & Wagner, 2017b). To this end, let
x ∈ X = [0, 1]d be a d-dimensional input sample, y ∈ Y = {1, . . . , l} its associated true label, and
f : X ×Θ 7→ Y the target model, parameterized by θ ∈ Θ. While f outputs the predicted label, we
will also use fk to denote the continuous-valued output (logit) for class k ∈ Y . The goal of our attack
is to find the minimum ℓ0-norm adversarial perturbation δ⋆ such that the corresponding adversarial
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example x⋆ = x+ δ⋆ is misclassified by f . This can be formalized as:

δ⋆ ∈ argmin
δ

∥δ∥0 , (1)

s.t. f(x+ δ,θ) ̸= y , (2)

x+ δ ∈ [0, 1]d , (3)

where ∥ · ∥0 denotes the ℓ0 norm, which counts the number of non-zero components. The hard
constraint in Eq. (2) ensures that the perturbation δ is valid only if the target model f misclassifies
the perturbed sample x+ δ, while the box constraint in Eq. (3) ensures that the perturbed sample lies
in [0, 1]d.1 Since the problem in Eqs. (1)-(3) can not be solved directly, we reformulate it as:

δ⋆ ∈ argmin
δ

L(x+ δ, y,θ) +
1

d
ℓ̂0(δ) (4)

s.t. x+ δ ∈ [0, 1]d , (5)

where we use a differentiable approximation ℓ̂0(δ) instead of ||δ||0, and normalize it with respect to
the number of features d to ensure that its value is within the interval [0, 1]. The loss L is defined as:

L(x, y,θ) = max

(
fy(x,θ)−max

k ̸=y
fk(x,θ), 0

)
+ I(f(x,θ) = y) . (6)

The first term in L represents the logit difference, which is positive when the sample is correctly
assigned to the true class y, and clipped to zero when it is misclassified (Carlini & Wagner, 2017b).
The second term merely adds 1 to the loss if the sample is correctly classified.2 This ensures that
L = 0 only when an adversarial example is found and L ≥ 1 otherwise. In practice, when minimizing
the objective in Eq. (4), this loss term induces an alternate optimization process between minimizing
the loss function itself (to find an adversarial example) and minimizing the ℓ0-norm of the adversarial
perturbation (when an adversarial example is found). It is also worth remarking that, conversely to
the objective function proposed by Carlini & Wagner (2017b), our objective does not require tuning
any trade-off hyperparameters to balance between minimizing the loss and reducing the perturbation
size, thereby avoiding a computationally expensive line search for each input sample.

ℓ0-norm Approximation. Besides the formalization of the attack objective, one of the main technical
advantages of σ-zero is the smooth, differentiable approximation of the ℓ0 norm, thereby enabling
the use of gradient-based optimization. To this end, we first note that the ℓ0-norm of a vector can
be rewritten as ∥x∥0 =

∑d
i=1 sign(xi)

2, and then approximate the sign function as sign(xi) ≈
xi/

√
x2
i + σ, where σ > 0 is a smoothing hyperparameter that makes the approximation sharper as

σ → 0. This, in turn, yields the following smooth approximation of the ℓ0 norm:

ℓ̂0(x, σ) =

d∑
i=1

x2
i

x2
i + σ

,σ > 0, ℓ̂0(x, σ) ∈ [0, d] . (7)

Adaptive Projection Πτ . The considered ℓ0-norm approximation allows optimizing Eq. (4) via
gradient descent. However, using such a smooth approximation tends to promote solutions that are
not fully sparse, i.e., with many components that are very close to zero but not exactly equal to zero,
thereby yielding inflated ℓ0-norm values. To overcome this issue, we introduce an adaptive projection
operator Πτ that sets to zero the components with a perturbation intensity lower than a given sparsity
threshold τ in each iteration. The sparsity threshold τ is initialized with a starting value τ0 and then
dynamically adjusted for each sample during each iteration; in particular, it is increased to find sparser
perturbations when the current sample is already adversarial, while it is decreased otherwise. The
updates to τ are proportional to the step size and follow its annealing strategy, as detailed below.

Solution Algorithm. Our attack, given as Algorithm 1, solves the problem in Eqs. (4)-(5) via a fast
and memory-efficient gradient-based optimization. After initializing the adversarial perturbation
δ = 0 (line 1), it computes the gradient of the objective in Eq. (4) with respect to δ (line 3). The
gradient is then normalized such that its largest components (in absolute value) equal ±1 (line 4).

1Note that, when the source point x is already misclassified by f , the solution is simply δ⋆ = 0.
2While a sigmoid approximation may be adopted to overcome the non-differentiability of the I term at the

decision boundary, we simply set its gradient to zero everywhere, without any impact on the experimental results.
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Algorithm 1 σ-zero Attack Algorithm.
Input: x ∈ [0, 1]d, the input sample; y, the true class label; θ, the target model; N, the number of

iterations; η0 = 1.0, the initial step size; σ = 10−3, the ℓ0-norm smoothing hyperparameter;
τ0 = 0.3, the initial sparsity threshold; t = 0.01, the sparsity threshold adjustment factor.

Output: x⋆, the minimum ℓ0-norm adversarial example.
1 δ ← 0; δ⋆ ←∞; τ ← τ0; η ← η0
2 for i in 1, . . . , N do
3 ∇g← ∇δ[L(x+ δ, y,θ) + 1

d ℓ̂0(δ, σ)] ▷ Gradient Descent for Eq. (4).

4 ∇g← ∇g/∥∇g∥∞ ▷ Gradient Normalization.
5 δ ← clip(x+ [δ − η · ∇g])− x ▷ Box Constraints.
6 δ ← Πτ (δ) ▷ Adaptive Projection Operator.
7 η = cosine_annealing(η0, i) ▷ Learning Rate Decay.
8 if L(x+ δ, y,θ) ≤ 0: τ+ = t · η, else τ− = t · η ▷ Adaptive Adjustment for τ.

9 if L(x+ δ, y,θ) ≤ 0 ∧ ∥δ∥0 < ∥δ⋆∥0: δ⋆ ← δ
10 end
11 if L(x+ δ⋆, y,θ) > 0: δ⋆ ←∞
12 return x⋆ ← x+ δ⋆

This stabilizes the optimization by making the update independent from the gradient size, and also
makes the selection of the step size independent from the input dimensionality (Rony et al., 2018;
Pintor et al., 2021). We then update δ to minimize the objective via gradient descent while also
enforcing the box constraints in Eq. (5) through the usage of the clip operator (line 5). We increase
sparsity in δ by zeroing all components lower than the current sparsity threshold τ (line 6), as
discussed in the previous paragraph. We then decrease the step size η via cosine annealing (line 7), as
suggested by Rony et al. (2018); Pintor et al. (2021), and adjust the sparsity threshold τ accordingly
(line 8). In particular, if the current sample is adversarial, we increase τ by t · η to promote sparser
perturbations; otherwise, we decrease τ by the same amount to promote the minimization of L. The
above process is repeated for N iterations while keeping track of the best solution found, i.e., the
adversarial perturbation δ⋆ with the lowest ℓ0 norm (line 9). If no adversarial example is found, the
algorithm sets δ⋆ =∞ (line 11). It terminates by returning x⋆ = x+ δ⋆ (line 12).

Remarks. To summarize, the main contributions behind σ-zero are: (i) the use of a smooth
ℓ0-norm approximation, along with the definition of an appropriate objective (Eq. 4), to enable
optimizing ℓ0-norm adversarial examples via gradient descent; and (ii) the introduction of an adaptive
projection operator to further improve sparsity during the optimization. Our algorithm leverages also
common strategies like gradient normalization and step size annealing to speed up convergence. As
reported by our experiments, σ-zero provides a more effective and efficient ℓ0-norm attack that
(i) is robust to different hyperparameter choices; (ii) does not require any adversarial initialization;
and (iii) enables more reliable robustness evaluations, being able to find adversarial examples also
when the competing attacks may fail (Carlini et al., 2019; Pintor et al., 2022).

3 EXPERIMENTS

We report here an extensive experimental evaluation comparing σ-zero against 11 state-of-the-art
sparse attacks, including both ℓ0- and ℓ1-norm attacks. We test all attacks using different settings on
18 distinct models and 3 different datasets, yielding almost 450 different comparisons in total.

3.1 EXPERIMENTAL SETUP

Datasets. We consider the three most popular datasets used for benchmarking adversarial robustness:
MNIST (LeCun & Cortes, 2005), CIFAR-10 (Krizhevsky, 2009) and ImageNet (Krizhevsky et al.,
2012). To evaluate the attack performance, we use the entire test set for MNIST and CIFAR-10 (with
a batch size of 32), and a subset of 1000 test samples for ImageNet (with a batch size of 16).

Models. We use a selection of both baseline and robust models to evaluate the attacks under different
conditions. We evaluate σ-zero on a vast set of models to ensure its broad effectiveness and expose
vulnerabilities that may not be revealed by other attacks (Croce & Hein, 2021). For the MNIST
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dataset, we consider two adversarially trained convolutional neural network (CNN) models by Rony
et al. (2021), i.e., CNN-DDN and CNN-Trades. These models have been trained to be robust to
both ℓ2 and ℓ∞ adversarial attacks. We denote them M1 and M2, respectively. For the CIFAR-10
and ImageNet datasets, we employ state-of-the-art robust models from RobustBench (Croce et al.,
2021) and the paper’s official repositories. For CIFAR-10, we adopt ten models, denoted as C1-C10.
C1 (Carmon et al., 2019) and C2 (Augustin et al., 2020) combine training data augmentation with
adversarial training to improve robustness to ℓ∞ and ℓ2 attacks. C3 (Croce & Hein, 2021) and
C4 (Jiang et al., 2023) are ℓ1 robust models. C5 (Croce et al., 2021) is a non-robust WideResNet-28-
10 model. C6 (Gowal et al., 2021) uses generative models to artificially augment the original training
set and improve adversarial robustness to generic ℓp-norm attacks. C7 (Engstrom et al., 2019) is an
adversarially trained model that is robust against ℓ2-norm attacks. C8 (Chen et al., 2020) is a robust
ensemble model. C9 (Xu et al., 2023) is a recently proposed adversarial training defense robust to ℓ2
attacks. C10 (Addepalli et al., 2022) enforces diversity during data augmentation and combines it with
adversarial training. For ImageNet, we consider a pretrained ResNet-18 denoted with I1 (He et al.,
2015), and five robust models to ℓ∞-attacks, denoted with I2 (Engstrom et al., 2019), I3 (Hendrycks
et al., 2021), I4 (Debenedetti et al., 2023), I5 (Wong et al., 2020), and I6 (Salman et al., 2020). Lastly,
in the appendix, we present two ℓ0-robust models, C11 (Zhong et al., 2024) and C12 (Zhong et al.,
2024), for CIFAR-10, along with two large ℓ∞-robust models, I7 (Peng et al., 2023) and I8 (Mo et al.,
2022), for ImageNet.

Attacks. We compare σ-zero against the following state-of-the-art minimum-norm attacks, in
their ℓ0-norm variants: the Voting Folded Gaussian Attack (VFGA) attack (Césaire et al., 2021), the
Primal-Dual Proximal Gradient Descent (PDPGD) attack (Matyasko & Chau, 2021), the Brendel &
Bethge (BB) attack (Brendel et al., 2019a), including also its variant with adversarial initialization
(BBadv),3 and the Fast Minimum Norm (FMN) attack (Pintor et al., 2021). We also consider two
state-of-the-art ℓ1-norm attacks as additional baselines, i.e., the Elastic-Net (EAD) attack (Chen et al.,
2018) and SparseFool (SF) by Modas et al. (2019). All attacks are set to manipulate the input values
independently; e.g., for CIFAR-10, the number of modifiable inputs is 3× 32× 32 = 3072.

Hyperparameters. We run our experiments using the default hyperparameters from the original
implementations provided in the authors’ repositories, AdversarialLib (Rony & Ben Ayed) and
Foolbox (Rauber et al., 2017). We set the maximum number of iterations to N = 1000 to ensure that
all attacks reach convergence (Pintor et al., 2022).4 For σ-zero, we set η0 = 1, τ0 = 0.3, t = 0.01,
and σ = 10−3, and keep the same configuration for all models and datasets.5

Evaluation Metrics. For each attack, we report the Attack Success Rate (ASR) at different values of
k, denoted with ASRk, i.e., the fraction of successful attacks for which ∥δ⋆∥0 ≤ k, and the median
value of ∥δ⋆∥0 over the test samples, denoted with ℓ̃0.6 We compare the computational effort of each
attack considering the mean runtime (s) (per sample), the mean number of queries (q) (i.e., the total
number of forwards and backwards required to perform the attack, divided by the number of samples),
and the Video Random Access Memory (VRAM) consumed by the Graphics Processing Unit (GPU).
We measure the runtime on a workstation with an NVIDIA A100 Tensor Core GPU (40 GB memory)
and two Intel® Xeo® Gold 6238R processors. We evaluate memory consumption as the maximum
VRAM used among all batches, representing the minimum requirement to run without failure.

3.2 EXPERIMENTAL RESULTS

We report the success rate and computational effort metrics of σ-zero against minimum-norm
attacks in Table 1 and fixed-budget attacks in Table 3-4. In these tables, we consider the most robust
models for each dataset, and we provide the remaining results in Appendix B. Finally, for ImageNet,
we narrow our analysis to EAD, FMN, BBadv, and VFGA minimum-norm attacks, as they surpass
competing attacks on MNIST and CIFAR-10 in terms of ASR, perturbation size, or execution time.

Effectiveness. The median values of ||δ⋆||0, denoted as ℓ̃0, and the ASRs are reported in Table 1 for
all models and datasets. To facilitate comparison, the attacks are sorted from the least to the most
effective, on average. In all dataset-model configurations, σ-zero significantly outperforms all the

3We utilize the Foolbox DatasetAttack (Foolbox, 2017) for adversarial initialization.
4Additional results using only N = 100 steps are reported in Appendix B.1.
5To show that no specific hyperparameter tuning is required, additional results are reported in Appendix A.2.
6If no adversarial example is found for a given x, we set ∥δ⋆∥0 = ∞, as done by Brendel et al. (2019a).
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Table 1: Minimum-norm comparison results on MNIST, CIFAR10 and ImageNet with N = 1000.
For each attack and model (M), we report ASR at k = 24, 50,∞, median perturbation size ℓ̃0, mean
runtime s (in seconds), mean number of queries q (in thousands), and maximum VRAM usage (in
GB). When VFGA exceeds the VRAM limit, we re-run it using a smaller batch size, increasing its
runtime t. We denote those cases with the symbol ‘⋆’. Remaining models in Appendix B, Table 6.

Attack M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM
MNIST

SF 6.66 6.76 96.98 469 1.07 0.18 0.06 1.03 1.21 91.68 463 2.87 0.86 0.07
EAD 3.83 53.66 100.0 49 0.47 6.28 0.05 2.13 55.57 100.0 48 0.50 6.73 0.05

PDPGD 26.77 74.08 100.0 38 0.23 2.00 0.04 16.91 66.30 100.0 42 0.23 2.00 0.04
VFGA 43.58 82.42 99.98 27 0.05 0.77 0.21 5.00 39.33 99.95 57 0.05 1.33 0.21

FMN 35.90 93.74 100.0 29 0.21 2.00 0.04 50.74 91.84 99.41 24 0.22 2.00 0.04
BB 71.23 97.86 100.0 18 0.90 2.99 0.05 56.53 91.62 100.0 18 0.74 3.71 0.05

BBadv 67.06 91.23 100.0 19 0.77 2.01 0.07 29.17 40.88 100.0 89 0.71 2.01 0.07
σ-zero

M1

83.79 99.98 100.0 16 0.31 2.00 0.04

M2

98.03 100.0 100.0 9 0.31 2.00 0.04
CIFAR-10

SF 18.71 18.77 56.39 3072 11.31 1.40 1.62 20.46 24.36 58.29 3072 1.63 0.48 0.66
EAD 16.32 30.38 100.0 90 1.92 5.70 1.47 13.01 13.23 100.0 800 0.94 4.89 0.65

PDPGD 26.84 42.50 100.0 63 0.64 2.00 1.32 22.30 35.13 100.0 75 0.41 2.00 0.59
VFGA 51.06 75.37 99.92 24 0.59 0.78 11.71 28.47 49.98 99.72 51 0.32 1.25 4.44

FMN 48.89 74.70 100.0 26 0.59 2.00 1.31 27.45 48.87 100.0 52 0.24 2.00 0.60
BB 13.27 14.24 14.70 ∞ 0.63 2.05 1.47 16.88 22.91 27.64 ∞ 1.04 2.25 0.65

BBadv 65.96 90.57 100.0 16 4.68 2.01 1.64 36.47 72.43 100.0 34 5.28 2.01 0.64
σ-zero

C1

76.53 95.38 100.0 11 0.73 2.00 1.53

C3

38.60 73.02 100.0 32 0.43 2.00 0.71
SF 19.66 21.22 98.74 3070 3.62 0.46 1.90 31.76 43.07 91.14 69 4.32 1.49 0.66

EAD 9.73 11.42 100.0 360 2.53 5.62 1.89 24.21 24.78 100.0 768 1.04 4.99 0.65
PDPGD 28.02 45.15 100.0 55 1.12 2.00 1.8 26.89 42.38 100.0 66 0.40 2.00 0.60

VFGA 39.58 66.50 99.62 34 0.48 0.94 16.53 46.71 69.47 99.83 28 0.25 0.82 4.22
FMN 39.30 71.70 100.0 33 1.08 2.00 1.8 43.06 62.96 100.0 34 0.35 2.00 0.59

BB 38.73 56.78 58.64 33 2.31 2.89 1.89 25.95 27.98 29.50 ∞ 0.54 2.09 0.65
BBadv 70.07 96.31 100.0 17 3.92 2.01 1.99 53.17 82.46 100.0 22 3.03 2.01 0.65

σ-zero

C2

74.63 97.55 100.0 15 1.41 2.00 1.92

C4

55.42 82.92 100.0 20 0.42 2.00 0.72
ImageNet

EAD 35.4 36.3 100.0 460 4.13 2.69 0.46 27.0 28.4 100.0 981 19.25 5.49 1.41
VFGA 57.9 72.5 99.9 14 1.22⋆ 1.08 > 40 46.7 59.5 97.9 31 6.93⋆ 1.98 > 40

FMN 62.6 81.0 100.0 12 0.73 2.00 0.66 49.1 67.7 100.0 25 1.98 2.00 2.30
BBadv 77.5 93.2 100.0 7 231.67 2.01 0.72 64.7 85.5 100.0 14 205.11 2.01 2.41

σ-zero

I1

82.6 95.9 100.0 5 1.18 2.00 0.84

I3

66.7 86.9 100.0 13 2.76 2.00 2.52
EAD 46.8 51.0 100.0 42 18.10 5.45 1.42 32.8 33.5 100.0 572 11.43 5.34 1.68

VFGA 54.7 63.4 96.7 12 8.21⋆ 2.35 > 40 40.0 46.5 95.5 66 33.88⋆ 3.97 > 40
FMN 57.8 67.0 100.0 9 1.97 2.00 2.30 40.3 47.2 100.0 58 4.28 2.00 2.97

BBadv 71.0 82.3 100 4 182.65 2.01 2.40 46.8 59..8 100.0 31 178.06 2.01 3.07
σ-zero

I2

76.9 87.4 100.0 3 2.75 2.00 2.52

I4

50.7 65.1 100.0 23 5.72 2.00 3.20

considered attacks. Taking the best-performing attack among the fastest competitors as a reference
(i.e., FMN), σ-zero is able to find smaller perturbations and higher ASRs in all configurations.
In particular, on CIFAR-10, σ-zero reduces the median number of manipulated features from
52 to 32 against the most robust model (C3), with an average reduction of 49% across all models.
On ImageNet, this improvement is even more pronounced, with a reduction of up to 58%. In the
best case (I4), the median ∥δ⋆∥0 is reduced from 58 to 23, and in the worst case (I2), from 9 to
3. Alternatively, the most competitive attack in finding small perturbations is BBadv, which is
significantly slower and requires starting from an already-adversarial input. The ASR∞ of BB
(i.e., without adversarial initialization) indeed decreases with increasing input dimensionality (e.g.,
CIFAR-10). This occurs because BB often stops unexpectedly before reaching the specified number
of steps due to initialization failures; in particular, Table 1 shows that the median perturbation size
found by BB is sometimes∞, as its ASR∞ is lower than 50%. Although BBadv does not suffer
from the same issue, as it leverages adversarial initialization, it is still outperformed by σ-zero.
Specifically, σ-zero reduces the ℓ0 norm of the adversarial examples from 16 to 11 in the best
case (C1), while achieving an average improvement of 24% across all dataset-model configurations.

Efficiency. We evaluate the computational effort required to run each attack by reporting in Table 1
the mean runtime s (in seconds), the mean number of queries q issued to the model (in thousands),
and the maximum VRAM used. Note that, while the runtime s and the consumed VRAM may
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Figure 2: Robustness evaluation curves (ASR vs. perturbation budget k) for M2 on MNIST (left), C1
on CIFAR-10 (middle), and I1 on ImageNet (right).

depend on the attack implementation, the number of queries q counts the total number of forward and
backward passes performed by the attack, thus providing a fairer evaluation of the attack complexity.
In fact, some attacks perform more than 2000 queries even if N = 1000, i.e., they perform more than
one forward and one backward pass per iteration (see, e.g., EAD and BB). Other attacks, instead,
might use less than 2000 queries as they implement early stopping strategies. The results indicate
that σ-zero exhibits similar runtime performance when compared to the fastest algorithms FMN,
PDPGD, and VFGA, while preserving higher effectiveness. In contrast, when compared against
the BBadv attack, which competes in terms of ℓ̃0, our attack is much faster across all the dataset-
model configurations, especially for Imagenet. For example, σ-zero is 10 times faster than BBadv
on C4 and 100 times faster on I3 on ImageNet. This confirms that σ-zero establishes a better
effectiveness-efficiency trade-off than that provided by state-of-the-art ℓ0-norm attacks.

Reliability. Complementary to Table 1, we present the robustness evaluation curves in Figure 2 for
each attack on M2, C1, and I1. In Appendix B.3, we include similar curves for all other configurations.
These curves go beyond the only median statistic and ASRk, providing further evidence that σ-zero
achieves higher ASRs with smaller ℓ0-norm perturbations compared to the competing attacks. More
importantly, the ASR of σ-zero reaches almost always 100% as the perturbation budget grows,
meaning that its optimization only rarely fails to find an adversarial example. In Appendix B.1,
we further demonstrate that even when the number of iterations is reduced to N = 100, σ-zero
consistently achieves an ASR∞ of 100% across all models. This is not observed with other attacks,
which often fail when using fewer iterations, thereby increasing the risk of overestimating adversarial
robustness. These results reinforce our previous findings, confirming that σ-zero can help mitigate
the issue of overestimating adversarial robustness – a crucial aspect to foster scientific progress in
defense developments and evaluations (Carlini et al., 2019; Pintor et al., 2022).

Ablation Study. In Table 2 we present an ablation study to evaluate the relevance of σ-zero’s
components. Our findings indicate that all the non-trivial components in σ-zero are essential for
ensuring the effectiveness of the attack. Specifically, we observe that the ℓ0-norm approximation
ℓ̂0 (Eq. 7, line 3) leads the optimization algorithm to perturb all input features, albeit with small
contributions. The projection operator (line 6) plays a crucial role by significantly decreasing the
number of perturbed features, effectively removing the least significant contributions. Furthermore,
gradient normalization (line 4) accelerates convergence, enhancing efficiency. Lastly, the adaptive
projection operator (line 8) fine-tunes the results, reduces the number of perturbed features, and
mitigates the dependency on hyperparameter choices. These results underline the importance of each
component in σ-zero, highlighting their contributions to the overall performance of the attack.

Comparison with Fixed-budget Attacks. We complement our analysis by comparing σ-zero
with three fixed-budget ℓ0-norm attacks, i.e., the ℓ0-norm Projected Gradient Descent (PGD-ℓ0)
attack (Croce & Hein, 2019), the Sparse Random Search (Sparse-RS) attack (Croce et al., 2022),7
and the Sparse-PGD attack (Zhong et al., 2024). For Sparse-PGD, we consider the implementation
with sparse (sPGDp) and with unprojected (sPGDu) gradient. In contrast to minimum-norm attacks,
fixed-budget attacks optimize adversarial examples within a given maximum perturbation budget k.
For a fairer comparison,as done in fixed-budget approaches, we early stop the σ-zero optimization

7Sparse-RS is a gradient-free (black-box) attack, which only requires query access to the target model. We
consider it as an additional baseline in our experiments, but it should not be considered a direct competitor of
gradient-based attacks, as it works under much stricter assumptions (i.e., no access to input gradients).

7
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Table 2: Ablation study on the σ-zero components integrated in Algorithm 1. Columns describe
respectively: Gradient normalization factor (line 4); dynamic projection adjustment line 8; projection
operator Πτ (line 6); and the ℓ0 norm approximation ℓ̂0 (line 3).

Model Normalization Adaptive τ Projection ℓ̂0 ASR10 ASR50 ASR ||δ||0

C10

✓ ✓ ✓ ✓ 21.68 73.02 100.0 32
✓ ✓ ✓ 21.89 71.66 100.0 32

✓ ✓ ✓ 16.81 39.76 100.0 65
✓ ✓ 12.95 13.23 100.0 505

✓ 12.95 12.95 100.0 3004
✓ ✓ 12.95 12.95 100.0 3070

C5

✓ ✓ ✓ ✓ 37.27 82.92 100.0 20
✓ ✓ ✓ 37.01 79.83 100.0 21

✓ ✓ ✓ 29.56 52.83 100.0 46
✓ ✓ 25.46 32.84 100.0 144

✓ 23.78 23.78 100.0 3064
✓ ✓ 23.78 23.78 100.0 3068

Table 3: Fixed-budget comparison results with N = 1000 (N = 2000 for Sparse-RS) on MNIST
and CIFAR-10 at budgets k = 24, 50, 100. Columns q24 and s24 show the average number of queries
(in thousands) and the average execution time per sample (in seconds) at k = 24.

Attack M ASR24 ASR50 ASR100 q24 s24 VRAM M ASR24 ASR50 ASR100 q24 s24 VRAM
MNIST

PGD-ℓ0

M1

73.99 99.90 100.0 2.00 0.09 0.04

M2

61.87 94.15 98.50 2.00 0.09 0.04
Sparse-RS 79.54 96.35 99.79 0.83 0.21 0.04 98.92 99.96 100.0 0.24 0.07 0.04

sPGDp 65.55 97.97 99.99 0.46 0.09 0.05 67.92 98.57 99.97 0.92 0.08 0.05
sPGDu 82.79 99.65 100.0 0.09 0.08 0.05 62.25 98.11 99.99 1.00 0.09 0.05

σ-zero 83.71 99.98 100.0 0.43 0.02 0.06 98.11 100.0 100.0 0.14 0.01 0.06
CIFAR-10

PGD-ℓ0

C1

38.18 59.67 87.19 2.00 0.78 1.90

C3

22.99 36.20 67.54 2.00 0.35 0.69
Sparse-RS 72.51 86.59 94.28 0.77 0.36 1.95 30.87 45.65 63.26 1.47 0.28 0.68

sPGDp 66.37 89.21 99.36 0.74 0.41 2.06 31.82 58.62 93.19 1.39 0.17 0.73
sPGDu 66.33 91.07 99.75 0.72 0.41 2.06 36.16 70.06 98.07 1.30 0.16 0.73

σ-zero 77.08 95.33 99.95 0.65 0.29 2.07 38.67 73.00 98.53 1.33 0.15 0.75
PGD-ℓ0

C2

32.41 59.19 89.22 2.00 0.57 2.46

C4

34.35 44.99 68.61 2.00 0.35 0.70
Sparse-RS 59.24 79.81 92.43 1.04 0.35 2.46 49.35 63.01 76.51 1.11 0.37 0.68

sPGDp 58.91 88.15 99.42 0.89 0.39 2.57 50.41 75.86 97.52 1.02 0.18 0.73
sPGDu 64.8 93.15 99.92 0.76 0.48 2.56 55.89 84.64 99.56 0.91 0.19 0.73

σ-zero 75.09 97.67 100.0 0.65 0.17 2.68 55.69 82.72 99.07 0.94 0.11 0.75

process as soon as an adversarial example with an ℓ0-norm perturbation smaller than k is found.
In these evaluations, we set N = 1000 for σ-zero, PGD-ℓ0, sPGDp, and sPGDu, while using
N = 2000 for Sparse-RS. Therefore, when using N = 1000 steps for σ-zero (which amounts to
performing 1000 forward and 1000 backward calls), we set N = 2000 steps for Sparse-RS (which
amounts to performing 2000 forward calls).8 Furthermore, to compute the ASR at different k (ASRk),
we separately execute fixed-budget attacks for k = 24, 50, 100 features on MNIST and CIFAR-10,
and with k = 150 features on ImageNet (excluding PGD-ℓ0 due to computational demands), reporting
only the maximum number of queries and execution time across all distinct runs. We report the
average query usage at k (qk) and the average execution time per sample at k (sk). We report the
execution time of sk for the smaller k, as it requires, on average, more iterations due to the more
challenging problem. The results, shown in Tables 3-4, confirm that σ-zero outperforms competing
approaches in 17 out of 18 configurations (see Appendix B.2 for additional results). Only against C4
the fixed-budget attack sPGDu slightly increases the ASR. The advantages of σ-zero become even

8N = 2000 is suggested as a lower bound number of iterations to ensure the convergence of Sparse-RS
by Croce et al. (2022). Additional results with N = 5000/10000 for Sparse-RS can be found in Appendix B.2.
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Table 4: Fixed-budget comparison results with N = 1000 (N = 2000 for Sparse-RS) on ImageNet
at budgets k = 100, 150. See the caption of Table 3 for further details.

Attack M ASR100 ASR150 q100 s100 VRAM M ASR100 ASR150 q100 s100 VRAM
ImageNet

Sparse-RS

I1

89.3 91.5 0.39 0.32 1.29

I2

81.1 84.1 0.53 0.5 4.39
sPGDp 95.4 98.5 0.31 0.16 1.40 85.6 91.2 0.33 0.64 4.48
sPGDu 93.6 97.8 0.33 0.12 1.40 82.6 88.7 0.37 0.39 4.49

σ-zero 99.7 100.0 0.19 0.06 1.79 94.7 97.1 0.15 0.17 4.90
Sparse-RS

I3

69.1 72.2 0.81 0.62 4.39

I4

45.9 47.4 1.17 1.12 5.72
sPGDp 85.4 93.4 0.32 0.55 4.49 66.3 74.9 0.73 1.39 5.84
sPGDu 83.9 92.1 0.35 0.39 4.49 66.0 76.0 0.72 1.01 5.84

σ-zero 97.7 99.6 0.34 0.37 4.90 78.8 85.8 0.49 0.70 6.29

more evident when looking at the results on ImageNet, where, on average, it improves the ASR100 of
9.6% across all models in Table 4. The results also indicate that early stopping enables σ-zero to
save a significant number of queries and runtime while preserving a high ASR. In Appendix B.2, we
also report additional comparisons with N = 2500 and N = 5000, i.e. a more favorable scenario for
the competing attacks, confirming that σ-zero remains competitive even at higher budgets.

Summary. Our experiments show that σ-zero: (i) outperforms minimum-norm attacks by im-
proving the success rate and decreasing the ℓ0 norm of the generated adversarial examples (see
Table 1 and Appendix B.1); (ii) is significantly faster and scales easily to large datasets (see Ta-
ble 1 and Appendix B.1); (iii) is robust to hyperparameter selection, not requiring sophisticated
and time-consuming tuning (see Appendix A.2); (iv) does not require any adversarial initialization
(see Table 1); (v) provides more reliable adversarial robustness evaluations, consistently achieving
100% ASRs (see Table 1, Figure 2, Appendix B.3); and (vi) remains competitive against fixed-budget
attacks even when given the same query budget (Table 3-4).

4 RELATED WORK

Optimizing ℓ0-norm adversarial examples with gradient-based algorithms is challenging due to non-
convex and non-differentiable constraints. We categorize them into two main groups: (i) multiple-
norm attacks extended to ℓ0, and (ii) attacks specifically designed to optimize the ℓ0 norm.

Multiple-norm Attacks Extended to ℓ0. These attacks have been developed to work with multiple
ℓp norms, including extensions for the ℓ0 norm. While they can find sparse perturbations, they often
rely heavily on heuristics in this setting. Brendel et al. (2019a) initialize the attack from an adversarial
example far away from the clean sample and optimizes the perturbation by following the decision
boundary to get closer to the source sample. In general, the algorithm can be used for any ℓp norm,
including ℓ0, but the individual optimization steps are very costly. Pintor et al. (2021) propose the
FMN attack that does not require an initialization step and converges efficiently with lightweight
gradient-descent steps. However, their approach was developed to generalize over ℓp norms, but does
not make special adaptations to minimize the ℓ0 norm specifically. Matyasko & Chau (2021) use
relaxations of the ℓ0 norm (e.g., ℓ1/2) to promote sparsity. However, this scheme does not strictly
minimize the ℓ0 norm, as the relaxation does not set the lowest components exactly to zero.

ℓ0-specific Attacks. Croce et al. (2022) introduced Sparse-RS, a random search-based attack that,
unlike minimum-norm attacks, aims to find adversarial examples that are misclassified with high
confidence within a fixed perturbation budget. On the same track we find Sparse-PGD (Zhong et al.,
2024) and PGD-ℓ0 (Croce & Hein, 2019), white-box fixed-budget alternatives to Sparse-RS. Lastly,
Césaire et al. (2021) induces folded Gaussian noise to selected input components, iteratively finding
the set that achieves misclassification with minimal perturbation. However, it requires considerable
memory to explore possible combinations and find an optimal solution, limiting its scalability.

Overall, current implementations of ℓ0-norm attacks present a crucial suboptimal trade-off between
their success rate and efficiency, i.e., they are either accurate but slow (e.g., BB) or fast but inaccurate
(e.g., FMN). This is also confirmed by a recent work that has benchmarked more than 100 gradient-
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based attacks (Cinà et al., 2024) on 9 additional robust models. In that open-source benchmark,
σ-zero consistently and significantly outperformed all the existing implementations of competing
ℓ0-norm attacks, establishing a performance very close to that of the empirical oracle (obtained by
ensembling all the attacks tested). In summary, our attack combines the benefits of the two families
of attack detailed above, i.e., effectiveness and efficiency, providing the state-of-the-art solution for
adversarial robustness evaluations of DNNs when considering ℓ0-norm attacks.

5 CONCLUSIONS AND FUTURE WORK

In this work, we propose σ-zero, a novel attack aimed to find minimum ℓ0-norm adversarial
examples, based on the following main technical contributions: (i) a differentiable approximation
of the ℓ0 norm to define a novel, smooth objective that can be minimized via gradient descent; and
(ii) an adaptive projection operator to enforce sparsity in the adversarial perturbation, by zeroing
out the least relevant features in each iteration. σ-zero also leverages specific optimization tricks
to stabilize and speed up the optimization. Our extensive experiments demonstrate that σ-zero
consistently discovers more effective and reliable ℓ0-norm adversarial perturbations across all models
and datasets while maintaining computational efficiency and robustness to hyperparameters choice.
In conclusion, σ-zero emerges as a highly promising candidate to evaluate robustness against
ℓ0-norm perturbations and promote the development of novel robust models against sparse attacks.

Ethics Statement. Based on our comprehensive analysis, we assert that there are no identifiable
ethical considerations or foreseeable negative societal consequences that warrant specific attention
within the limits of this study. This study will rather help improve the understanding of adversarial
robustness of DNNs and identify potential ways to improve it.

Reproducibility. To ensure the reproducibility of our work, we have detailed the experimental setup
in Section 3.1, where we describe the datasets, models, and attacks used, along with their respective
sources. Additionally, we have provided our source code as part of the supplementary material, which
will be made publicly available as open source upon acceptance.
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A APPENDIX

A.1 ROBUST MODELS

The experimental setup described in this paper (Section 3.1) utilizes pre-trained baseline and robust
models obtained from RobustBench (Croce et al., 2021). The goal of RobustBench is to track the
progress in adversarial robustness for ℓ∞- and ℓ2-norm attacks since these are the most studied settings
in the literature. We summarize in Table 5 the models we employed for testing the performance
of σ-zero. Each entry in the table includes the label reference from RobustBench, the short
name we assigned to the model, and the corresponding clean and robust accuracy under the specific
threat model. The robustness of these models is evaluated against an ensemble of white-box and
black-box attacks, specifically AutoAttack. We also include in our experiments models trained to
be robust against ℓ1 sparse attacks, i.e., C3 (Croce & Hein, 2021) and C4 (Jiang et al., 2023). Our
experimental setup is designed to encompass a wide range of model architectures and defensive
techniques, ensuring a comprehensive and thorough performance evaluation of the considered attacks.

Table 5: Summary of Robustbench models used in our experiments. For each model, we report its
reference label in Robustbench, its threat model, and the corresponding clean and robust accuracy.
Dataset Reference Model Threat model Clean accuracy % Robust accuracy %

CIFAR-10

Carmon2019Unlabeled C1 (Carmon et al., 2019) ℓ∞ 89.69 59.53
Augustin2020Adversarial C2 (Augustin et al., 2020) ℓ2 91.08 72.91
Standard C5 (Croce et al., 2021) - 94.78 0
Gowal2020Uncovering C6 (Gowal et al., 2021) ℓ2 90.90 74.50
Engstrom2019Robustness C7 (Engstrom et al., 2019) ℓ∞- ℓ2 87.03 - 90.83 49.25 - 69.24
Chen2020Adversarial C8 (Chen et al., 2020) ℓ∞ 86.04 51.56
Xu2023Exploring_WRN-28-10 C9 (Xu et al., 2023) ℓ∞ 93.69 63.89
Addepalli2022Efficient_RN18 C10 (Addepalli et al., 2022) ℓ∞ 85.71 52.48

ImageNet

Standard_R18 I1 (He et al., 2015) - 76.52 0
Engstrom2019Robustness I2 (Engstrom et al., 2019) ℓ∞ 62.56 29.22
Hendrycks2020Many I3 (Hendrycks et al., 2021) ℓ∞ 76.86 52.90
Debenedetti2022Light_XCiT-S12 I4 (Debenedetti et al., 2023) ℓ∞ 72.34 41.78
Wong2020Fast I5 (Wong et al., 2020) ℓ∞ 55.62 26.24
Salman2020Do_R18 I6 (Salman et al., 2020) ℓ∞ 64.02 34.96
Peng2023Robust I7 (Peng et al., 2023) ℓ∞ 73.44 48.94
Mo2022When_Swin-B I8 (Mo et al., 2022) ℓ∞ 74.66 38.30

A.2 σ-ZERO : HYPERPARAMETER ROBUSTNESS

To assess the strength and potential limitations of our proposed attack, we conducted an ablation
study on its key hyperparameters, τ0, σ, and t.

The parameter τ0 governs the initial tolerance threshold in Algorithm 1, which induces sparsity within
the adversarial perturbation. The parameter σ defines the approximation quality of ℓ̂0 in Eq. (7)
compared to the actual ℓ0 function. Our ablation study, depicted in Figure 3, involved two distinct
models: C10 (top row) and I1 (bottom row). We executed the attack on 1000 randomly selected
samples from each dataset and recorded the ASR at different perturbation budgets k and the median
ℓ0 norm of the resulting adversarial perturbations. We observe a significant robustness of σ-zero
with respect to these two hyperparameters; in particular: (i) the choice of the initial value of τ0 exerts
negligible influence on the ultimate outcome, given that the parameter dynamically adapts throughout
the optimization process; and (ii) the selection of σ is not particularly challenging, especially when
incorporating the sparsity projection operator.

We also conducted an ablation study on the sparsity threshold adjustment factor t used to adaptively
update τ . In the following we keep the default values for τ0 = 0.3 and σ = 10−3. We executed the
attack on 1000 randomly selected samples against C3 and C4 models and recorded the ASR50 and
the median l0 norm of the resulting adversarial perturbations. In Figure 4, we once against observe
the robustness of σ-zero to this parameter, yielding similar and effective results when t ≤ 10−1.

Overall, the ablation study revealed consistent trends across the distinct models and datasets. In all
cases, we identified a broad parameter configuration range where our attack maintained robustness to
the hyperparameter selection, making hyperparameter optimization for the attacker a swift task. This
robustness is further evidenced by the results presented in the experimental comparisons, where our
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Figure 3: Ablation study on σ (y-axis) and τ0 (x-axis) for CIFAR-10 C10 (top-row), ImageNet I1, (bottom-row).
For each combination, we report the attack success rate at different k and the median ℓ0 perturbation value.

attack consistently outperforms competing attacks even with a shared hyperparameter configuration
across all models.
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Figure 4: Ablation study on t for CIFAR-10 C3 and C4. For each, we report the attack success rate at
the 50 feature budget (left) and the median ℓ0 norm of the adversarial perturbation (right).

B ADDITIONAL EXPERIMENTAL COMPARISONS

B.1 COMPARISONS WITH MINIMUM-NORM ATTACK

In our experimental setup, we also consider a reduced number of queries, to test whether the attack can
also run faster while remaining effective. We thus replicate our experimental comparison involving
σ-zero and state-of-the-art sparse attacks while restricting the number of steps to N = 100. The
results are summarized in Tables 7-9. Compared to the results with N = 1000 steps reported in
Tables 1 and 6, the ASR of most competitive attacks decreases, while σ-zero remains effective by
consistently reaching an ASR of 100%. This shows that σ-zero remains an effective, reliable and
fast approach to crafting minimum-norm attacks even with reduced query budgets.

B.2 COMPARISONS WITH FIXED-BUDGET ATTACKS

Fixed-budget attacks, i.e., Sparse-RS (Croce et al., 2022), PGD-ℓ0 (Croce & Hein, 2019), and Sparse-
PGD (Zhong et al., 2024), have been designed to generate sparse adversarial perturbations given a
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fixed-budget k, therefore, drawing comparisons with minimum-norm attacks is not a straightforward
task. Specifically, in their threat model, the attacker imposes a maximum limit on the number of
perturbed features, and the attack then outputs the adversarial example that minimizes the model’s
confidence in predicting the true label of the sample. However, since the fixed-budget threat model
differs from the minimum-norm scenario we consider in this paper, which does not assume a
maximum norm value k, we evaluate σ-zero in a fixed-budget fashion by discarding all adversarial
perturbations that exceed k. Furthermore, as for fixed-budget attack, we let σ-zero to leverage
the input parameter k to early stop the optimization procedure and reduce the number of consumed
queries to the target model. Throughout this evaluation, the number of steps taken by Sparse-RS
is always doubled compared to the other two white-box attacks, as it does not utilize the backward
pass employed by the others. The main paper reports to this end an evaluation of σ-zero in a
fixed-budget approach (cf. Tables 3-4). The remaining experiments, involving additional models
for CIFAR-10 and ImageNet, are reported in Tables 10-11. Furthermore, to explore the effects of
increased iterations on convergence and success rate, we increased the number of iterations up to
N = 10000 (Tables 12-15), while always doubling the iterations for Sparse-RS. These additional
experiments cover the three datasets MNIST, CIFAR-10, and ImageNet, 18 distinct models, and
various feature budgets. The results again affirm that, σ-zero consistently outperforms competing
approaches or synergizes well with them for a comprehensive robustness assessment.

B.3 ROBUSTNESS EVALUATION CURVES

We provide robustness evaluation curves for fixed-budget attacks on a CIFAR-10 model (C3), running
each attack multiple times across various perturbation budgets k. The number of iterations is set
to N = 1000 and N = 5000, with Sparse-RS allocating twice the iterations due to its reliance
solely on forward passes. The results, depicted in Figure 5, demonstrates that σ-zero consistently
outperforms fixed-budget attacks across all perturbation budgets k. Additionally, we present in
Figs. 6-7 the robustness evaluation curves depicting the performance of minimum-norm ℓ0-attacks
against all the models analyzed in our paper. These findings reinforce our experimental analysis,
explicitly demonstrating that the σ-zero attack consistently achieves higher values of ASR while
employing smaller ℓ0-norm perturbations compared to alternative attacks.

Sparse-RS sPGDu sPGDp σ-zero
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Figure 5: Robustness evaluation curves for fixed-budget attacks on C3. For each budget level k,
each attack has been run with 1000 iterations (left-most plot) and 5000 iterations (right-most plot).
Sparse-RS has been run with double the iterations as it relies solely on forward calls.
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Figure 6: From the leftmost to the rightmost we report the robustness evaluation curves for M1, M2,
C1 (top-row), C2, C3, C4 (middle-row) and C5, C6, C7 (bottom-row).
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Figure 7: From the leftmost to the rightmost we report the robustness evaluation curves for C8, C9,
C10 (top-row), I1, I2, I3 (middle-row) and I4, I5, I6 (bottom-row)
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Table 6: Minimum-norm comparison results for CIFAR-10 and ImageNet with N = 1000 on
remaining models. For each attack and model (M), we report ASR at k = 10, 50,∞, median
perturbation size ℓ̃0, mean runtime s (in seconds), mean number of queries q (÷ 1000), and maximum
VRAM usage (in GB). When VFGA exceeds the VRAM limit, we re-run it using a smaller batch
size, increasing its runtime t. We denote those cases with the symbol ‘⋆’. Lastly we indicate with
σ-zero ∗ the case where we use σ = 1 and τ0 = 0.1.

Attack M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM
CIFAR-10

SF

C5

11.19 11.19 56.56 3072 1.42 0.37 1.57

C8

23.67 24.85 62.41 3072 9.86 0.20 5.50
EAD 10.91 21.33 100.0 126 2.32 6.90 1.47 23.23 33.68 100.0 105 8.33 5.37 5.39

PDPGD 41.70 78.97 100.0 27 0.64 2.00 1.31 33.38 48.96 99.82 51 2.15 2.00 5.12
VFGA 77.25 93.41 99.99 11 0.17 0.32 11.96 56.76 81.79 99.89 20 4.30⋆ 0.62 > 40
FMN 95.99 99.97 100.0 7 0.60 2.00 1.3 54.74 79.70 100.0 21 2.05 2.00 5.12
BB 97.43 99.79 100.0 7 5.81 2.76 1.47 59.82 78.76 83.58 16 12.49 3.14 5.39

BBadv 97.50 99.86 100.0 7 4.57 2.01 1.63 74.51 93.42 100.0 13 6.99 2.01 5.51
σ-zero 99.20 100.0 100.0 5 0.74 2.00 1.51 81.23 97.33 100.0 10 2.75 2.00 5.90

SF

C6

16.78 16.79 35.38 ∞ 19.74 0.62 10.00

C9

12.12 12.14 70.77 3072 3.28 0.22 2.25
EAD 20.75 35.90 100.0 74 10.76 5.55 9.92 14.51 23.62 100.0 148 2.23 5.80 2.15

PDPGD 23.84 40.89 100.0 69 3.96 2.00 8.86 25.31 38.41 100.0 69 0.76 2.00 2.0
VFGA 45.28 67.51 99.88 29 4.91⋆ 1.02 > 40 38.42 56.72 99.81 39 3.15⋆ 1.84 > 40
FMN 45.73 68.38 100.0 29 3.91 2.00 8.86 44.38 70.24 100.0 30 0.73 2.00 2.0
BB 15.26 17.14 17.94 ∞ 3.46 2.08 9.93 70.11 93.24 100.0 15 6.49 2.87 2.16

BBadv 64.47 88.92 100.0 16 8.85 2.01 10.03 69.45 92.91 100.0 15 6.02 2.01 2.22
σ-zero 75.63 94.47 100.0 11 4.41 2.00 10.43 79.59 96.93 100.0 11 0.89 2.00 2.65

SF 29.51 40.86 93.82 3039 9.3 1.56 1.90 25.88 26.54 51.80 3072 0.58 0.33 0.51
EAD 9.92 11.14 100.0 398 2.57 5.66 1.89 19.44 29.23 100.0 118 1.01 5.32 0.41

PDPGD 32.60 49.19 100.0 51 1.16 2.00 1.8 29.98 41.00 100.0 66 0.44 2.00 0.36
VFGA 61.19 90.04 99.88 19 0.28 0.52 16.53 48.63 74.15 99.54 25 0.17 0.77 3.07
FMN 52.14 85.60 100.0 23 1.09 2.00 1.8 47.89 73.71 100.0 26 0.41 2.00 0.36
BB 21.44 31.03 31.36 ∞ 3.01 2.37 1.89 68.37 91.83 100.0 15 10.90 2.93 0.41

BBadv 77.88 99.11 100.0 14 4.51 2.01 1.99 67.35 93.04 100.0 16 4.60 2.01 0.54
σ-zero

C7

81.38 99.15 100.0 12 1.39 2.00 1.91

C10

73.96 94.21 100.0 13 0.63 2.00 0.51
FMN

C11

39.57 74.75 100.0 32 0.11 2.00 0.59

C12

48.3 78.16 100.0 26 0.11 2.00 0.59
BBadv 14.07 18.57 100.0 183 2.52 2.01 0.65 18.33 19.75 100.0 290 2.57 2.01 0.65
σ-zero 12.38 15.91 100.0 144 0.24 2.00 1.03 18.52 21.31 100.0 187 0.33 2.00 1.03
σ-zero ∗ 44.78 85.05 100.0 27 0.23 2.00 1.03 54.62 90.12 100.0 22 0.23 2.00 1.03

ImageNet

Attack M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM
EAD 56.6 60.2 100.0 0 21.38 5.50 1.41 59.0 61.4 100.0 0 7.89 5.29 0.48

VFGA 69.0 76.2 98.8 0 6.11⋆ 1.43 > 40 66.8 76.6 99.3 0 1.74⋆ 1.21 > 40
FMN 71.0 79.5 100.0 0 1.97 2.00 2.30 70.9 78.7 100.0 0 0.72 2.00 0.67

BBadv 82.3 89.0 100.0 0 185.34 2.01 2.41 80.3 89.6 100 0 199.47 2.01 0.73
σ-zero

I5

85.1 91.4 100.0 0 2.76 2.00 2.52

I6

86.2 92.8 100.0 0 1.13 2.00 0.84
FMN

I7
39.2 48.5 100 54.5 5.84 2 17.44

I8
38.1 46.8 100 67 5.17 2 7.91

BBadv 49.7 62 100 25.5 128.2 2 17.86 46.5 58.6 100 29.5 113.87 2 8.30
σ-zero 55.4 68.2 100 16 8.62 2 19.03 50.1 64.4 100 24 6.6 2 9.47

Table 7: Minimum-norm comparison results for MNIST with N = 100. See the caption of Table 6
for further details.

Attack M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM
MNIST

SF 5.11 6.76 96.98 469 1.07 0.18 0.07 0.98 1.21 91.68 463 2.87 0.86 0.07
EAD 3.73 46.65 100.0 52 0.06 1.14 0.07 3.51 35.57 100.0 61 0.06 0.99 0.07

PDPGD 0.98 0.98 100.0 359 0.01 0.20 0.07 0.52 0.52 95.02 254 0.01 0.20 0.07
VFGA 4.82 82.68 100.0 27 0.07 0.76 0.23 4.82 38.99 99,98 57 0.07 1.34 0.24

BB 68.52 98.00 100.0 20 0.13 1.19 0.08 62.98 83.00 87.87 18 0.13 1.69 0.08
FMN 33.03 83.09 88.92 30 0.01 0.20 0.07 10.05 14.03 14.81 ∞ 0.01 0.20 0.07

BBadv 62.29 90.88 100.0 21 0.09 0.21 0.08 41.19 58.80 100.0 34 0.07 0.21 0.08
σ-zero

M1

61.12 98.45 100.0 22 0.01 0.20 0.08

M2

87.20 99.82 100.0 13 0.01 0.20 0.08
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Table 8: Minimum-norm comparison results for CIFAR-10 with N = 100. See the caption of Table 6
for further details.

Attack M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM
CIFAR-10

SF 17.67 17.76 47.26 ∞ 3.17 0.35 1.62 16.75 16.79 35.36 ∞ 19.74 0.62 10.00
EAD 16.74 28.74 100.0 100.0 0.27 0.80 1.53 19.79 32.94 100.0 83 1.58 0.82 10.04

PDPGD 10.31 10.31 99.39 2421 0.05 0.20 1.43 11.26 11.26 99.75 2814 0.32 0.2 8.97
VFGA 50.73 75.34 93.69 24 0.23 0.72 11.83 45.33 67.05 87.75 29 3.75 0.86 > 40

FMN 46.90 69.36 80.68 27 0.05 0.20 1.43 42.67 61.49 72.34 33 0.31 0.2 8.98
BB 12.98 14.29 14.97 ∞ 0.44 1.95 1.59 14.99 16,88 17.91 ∞ 2.67 1.95 10.04

BBadv 60.52 86.63 100.0 18 0.41 0.21 1.59 59.61 84.59 100.0 18 0.76 0.21 10.04
σ-zero

C1

63.60 88.27 100.0 16 0.08 0.20 1.84

C6

63.44 87.2 100.0 16 0.44 0.2 10.29
SF 17.86 20.59 94.26 3071 2.44 0.26 1.91 21.07 38.76 82.71 3062 4.30 9.67 1.90

EAD 9.50 10.67 100.0 451 0.30 0.71 2.01 9.68 10.56 100.0 434 0.48 0.90 2.00
PDPGD 8.92 8.92 75.31 3052 0.09 0.20 1.91 9.17 9.17 99.90 2709 0.12 0.20 1.91

VFGA 39.31 66.46 91.64 33 0.34 0.87 16.64 60.94 90.04 99.16 19 0.29 0.52 16.64
FMN 37.13 62.41 71.3 36 0.08 0.20 1.92 50.70 79.48 87.20 24 0.08 0.20 1.91

BB 38.18 53.53 57.05 40 0.59 1.90 2.00 26.39 32.41 32.83 ∞ 0.50 1.93 2.00
BBadv 63.56 92.74 100.0 19 0.40 0.21 2.00 74.91 98.37 100.0 15 0.41 0.21 2.00

σ-zero

C2

56.94 88.60 100.0 21 0.11 0.20 2.25

C7

68.14 94.90 100.0 16 0.11 0.20 2.25
SF 20.89 24.36 58.29 3072 1.63 0.48 0.66 23.87 24.85 62.42 3072 9.86 0.2 5.50

EAD 13.03 13.18 100.0 835 0.11 0.65 0.64 21.71 29.59 100.0 128 0.67 0.66 5.51
PDPGD 12.95 12.98 99.47 2566 0.04 0.20 0.59 13.96 13.96 54.16 3072 0.21 0.2 5.23

VFGA 28.63 49.73 82.94 51 0.13 1.13 4.44 56.81 82.04 97.08 20 4.32 0.61 > 40
FMN 26.76 37.90 43.90 ∞ 0.03 0.20 0.59 53.42 76.59 87.1 22.0 0.21 0.2 5.24

BB 16.40 22.91 27.64 ∞ 1.04 2.25 0.65 60.74 78.14 84.46 17 1.36 1.67 5.55
BBadv 33.68 66.79 100.0 37 0.40 0.21 0.65 70.31 91.58 100.0 14 0.55 0.21 5.51

σ-zero

C3

30.56 57.71 100.0 43 0.04 0.20 0.89

C8

69.49 91.87 100.0 14 0.25 0.2 6.76
SF 31.85 42.97 84.45 70 1.54 0.47 0.66 12.03 12.14 70.77 3072 3.28 0.22 2.25

EAD 24.1 24.4 100.0 844 0.12 0.66 0.65 13.61 21.61 100.0 162 0.31 0.8 2.27
PDPGD 23.78 23.78 66.62 3072 0.04 0.2 0.59 6.31 6.31 96.2 2773 0.06 0.2 2.11

VFGA 46.7 69.52 93.05 28 0.14 0.77 4.22 38.22 56.56 75.79 39.5 1.45 1.06 > 40
FMN 42.69 58.78 65.83 35 0.03 0.2 0.59 40.27 59.69 68.88 35 0.06 0.2 2.19

BB 25.91 27.98 29.51 ∞ 0.54 2.09 0.65 66.02 90.74 100.0 16 0.65 1.07 2.27
BBadv 52.25 80.64 100.0 23 0.36 0.21 0.65 64.41 89.7 100.0 17 0.42 0.21 2.27

σ-zero

C4

49.74 73.75 100.0 25 0.04 0.2 0.89

C9

65.96 90.95 100.0 16 0.09 0.2 2.52
SF 11.19 11.19 56.56 3072 1.42 0.37 1.56 24.28 26.54 51.90 3072 0.58 0.33 0.52

EAD 10.42 19.09 100.0 146 0.26 0.77 1.58 18.82 26.17 100.0 144 0.11 0.79 0.52
PDPGD 5.23 5.23 100.0 3057 0.05 0.20 1.43 14.29 14.29 90.95 3057 0.03 0.2 0.47

VFGA 77.22 93.44 98.99 11 0.17 0.38 12.08 48.49 74.14 94.16 26 0.12 0.73 3.18
FMN 89.83 97.72 98.86 8 0.05 0.20 1.43 46.75 69.77 80.68 27 0.03 0.2 0.48

BB 84.42 97.55 100.0 10 0.62 0.95 1.59 63.70 89.39 100.0 17 0.43 1.13 0.53
BBadv 83.81 97.35 100.0 10 0.45 0.21 1.59 63.29 90.08 100.0 17 0.35 0.21 0.53

σ-zero

C5

91.54 99.84 100.0 9 0.08 0.20 1.83

C10

60.79 86.02 100.0 18 0.04 0.2 0.77

Table 9: Minimum-norm comparison results for ImageNet with N = 100. See the caption of Table 6
for further details.

Attack M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM M ASR24 ASR50 ASR∞ ℓ̃0 s q VRAM
ImageNet

EAD 34.7 35.9 100.0 484 1.02 0.67 0.46 32.4 33.0 100.0 808 5.15 0.7 1.68
VFGA 58.3 72.2 85.3 14 1.06 0.70 > 40 40.0 46.8 56.9 66.5 9.23 1.2 > 40

FMN 55.4 64.5 68.1 14 0.08 0.20 0.66 39,9 46.2 47.5 ∞ 0.44 0.2 2.97
BBadv 67.6 83.3 100.0 10 23.02 0.21 0.72 46.4 58.0 99.9 32 21.23 0.21 3.07

σ-zero

I1

69.2 86.9 100.0 10 0.13 0.20 0.84

I4

43.7 55.2 100.0 32 0.61 0.2 3.20
EAD 47.1 50.1 100.0 48 2.32 0.68 1.42 56.2 60.2 100.0 0 2.46 0.72 1.41

VFGA 54.3 63.2 96.7 13 2.88 0.72 > 40 68.9 76.0 83.0 0 2.33 0.59 > 40
FMN 55.9 60.0 62.4 10 0.20 0.20 2.30 67.8 72.0 74.3 0 0.20 0.20 2.30

BBadv 70.1 80.1 100.0 5 20.49 0.21 2.40 80.8 87.8 100.0 0 18.60 0.21 2.41
σ-zero

I2

71.0 82.7 100.0 4 0.29 0.20 2.52

I5

81.8 89.3 100.0 0 0.29 0.20 2.52
EAD 26.9 27.7 100.0 1108 0.58 0.61 1.41 57.4 60.0 100.0 0 1.03 0.72 0.48

VFGA 47.0 58.7 74.0 31 3.07 0.96 > 40 66.8 75.2 83.9 0 0.91 0.59 > 40
FMN 44.4 50.6 53.2 47 0.16 0.2 2.30 69.2 74.9 77.2 0 0.07 0.2 0.67

BBadv 53.6 74.7 100.0 20 23.86 0.21 2.41 80.1 89.1 100.0 0 19.68 0.21 0.73
σ-zero

I3

52.9 74.4 100.0 21 0.23 0.2 2.52

I6

82.2 90.5 100.0 0 0.12 0.2 0.84
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Table 10: Fixed-budget comparison results with N = 1000 on CIFAR10 remaining models. Sparse-
RS was executed with double the steps, 2N , to ensure fair comparison as it lacks backward passes.
For each attack, we report the corresponding ASR with different feature budget levels (24,50,100).
We report the execution time s24 and query usage q24 for the smaller k = 24, as it requires, on
average, more iterations due to the more challenging problem.

Attack M ASR24 ASR50 ASR100 q24 s24 VRAM M ASR24 ASR50 ASR100 q24 s24 VRAM
CIFAR-10

PGD-ℓ0

C5

68.60 88.89 98.14 2.00 1.95 1.89

C8

42.81 66.19 90.49 2.00 3.24 7.36
Sparse-RS 99.71 100.0 100.0 0.08 0.10 1.91 72.54 86.72 94.84 0.78 1.10 7.35

sPGDp 99.82 100.0 100.0 0.02 0.16 2.06 68.47 90.47 99.56 0.70 1.48 7.62
sPGDu 97.84 99.98 100.0 0.09 0.37 2.06 73.55 94.55 99.97 0.60 1.65 7.62
σ-zero 99.20 100.0 100.0 0.22 0.11 2.07 81.23 97.33 99.97 0.52 0.54 7.76
PGD-ℓ0

C6

32.80 50.53 77.06 2.00 4.88 12.79

C9

31.45 52.79 80.27 2.00 2.01 2.91
Sparse-RS 76.61 89.88 96.22 0.67 1.98 12.74 68.77 82.06 89.81 0.85 0.56 2.89

sPGDp 63.66 87.07 98.67 0.80 2.83 13.77 61.0 83.49 96.76 0.87 0.88 3.03
sPGDu 64.28 88.25 99.09 0.77 2.77 13.77 63.48 87.59 98.49 0.81 0.85 3.03
σ-zero 75.63 94.47 99.78 0.66 1.75 13.82 79.59 96.93 99.91 0.57 2.04 2.91
PGD-ℓ0

C7

37.91 68.90 95.31 2.00 1.96 2.47

C10

38.33 61.88 89.50 2.00 1.12 0.51
Sparse-RS 63.75 84.49 95.74 0.97 0.61 2.46 64.80 81.46 91.13 0.91 0.45 0.50

sPGDp 72.82 96.74 99.98 0.61 0.94 2.57 59.94 84.87 98.82 0.87 0.44 0.55
sPGDu 81.64 99.09 100.0 0.42 0.69 2.57 65.07 90.78 99.83 0.75 0.41 0.55
σ-zero 81.38 99.15 100.0 0.46 0.21 2.68 73.96 94.21 99.80 0.67 0.14 0.57

Sparse-RS

C11

28.08 41.89 58.45 0.38 1.53 0.59

C12

51.64 71.27 86.57 0.32 1.14 0.59
sPGDu 15.87 21.43 32.67 0.26 1.71 0.65 22.78 26.56 34.09 0.31 1.58 0.64
sPGDp 13.61 17.07 30.11 0.25 1.74 0.65 24.52 34.39 59.89 0.30 1.54 0.65
σ-zero 12.38 15.91 30.43 0.20 1.77 1.03 18.52 21.31 28.81 0.27 1.65 1.03
σ-zero ∗ 44.78 85.05 99.76 0.15 1.33 1.03 54.62 90.12 99.94 0.13 1.15 1.03

Table 11: Fixed-budget comparison results for ImageNet with N = 1000 on remaining models.
Sparse-RS was executed with double the steps, 2N , to ensure fair comparison as it lacks backward
passes. For each attack, we report the corresponding ASR with budget level k = 150. We report the
execution time s100 and query usage q100 for the smaller k = 100, as it requires, on average, more
iterations due to the more challenging problem.

Attack M ASR100 ASR150 q100 s100 VRAM M ASR150 ASR150 q100 s100 VRAM
ImageNet

Sparse-RS

I5

83.6 87.5 0.44 2.85 4.39

I6

85.4 89.2 0.41 3.46 1.29
sPGDp 89.8 94.5 0.24 1.64 4.48 90.4 95.2 0.22 0.98 1.33
sPGDu 86.5 92.6 0.29 1.55 4.48 89.1 94.0 0.24 1.15 1.33
σ-zero 95.9 98.2 0.12 0.16 4.90 98.1 98.8 0.10 0.08 1.79

Sparse-RS

I7

58.20 60.60 0.95 5.21 17.43

I8

49.20 52.10 1.13 3.28 7.89
sPGDp 67.50 75.50 0.70 4.85 17.80 65.10 75.20 0.75 3.56 8.24
sPGDu 65.70 75.10 0.73 5.37 17.82 65.10 75.20 0.73 5.68 8.23
σ-zero 82.10 87.00 0.43 1.87 19.03 78.00 86.20 0.50 1.67 9.46

Table 12: Fixed-budget comparison results with N = 5000 on MNIST. See the caption of Table 10
for further details.

Attack M ASR24 ASR50 ASR100 q24 s24 VRAM M ASR24 ASR50 ASR100 q24 s24 VRAM
MNIST

Sparse-RS

M1

88.13 99.26 99.99 2.45 1.86 0.04

M2

99.88 99.97 100.0 0.31 0.17 0.04
sPGDp 81.22 99.30 100.0 2.83 1.50 0.05 83.88 99.88 99.97 2.33 0.9 0.05
sPGDu 87.30 99.85 100.0 1.60 1.44 0.05 74.38 99.46 99.99 3.47 0.96 0.05
σ-zero 88.63 100.0 100.0 1.38 0.20 0.08 99.67 100.0 100.0 0.24 0.02 0.08
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Table 13: Fixed-budget comparison results with N = 5000 on CIFAR10. See the caption of Table 10
for further details.

Attack M ASR24 ASR50 ASR100 q24 s24 VRAM M ASR24 ASR50 ASR100 q24 s24 VRAM
CIFAR-10

Sparse-RS

C1

82.94 94.77 98.68 2.55 1.81 1.92

C5

99.93 99.98 99.99 0.15 0.14 1.91
sPGDp 71.88 93.17 99.75 3.21 2.78 2.06 99.93 100.0 100.0 0.17 0.18 2.05
sPGDu 69.73 92.86 99.79 3.34 2.98 2.06 99.73 100.0 100.0 0.26 1.31 2.05
σ-zero 80.91 96.81 99.98 3.23 1.35 2.09 99.81 100.0 100.0 0.61 0.18 2.05

Sparse-RS

C2

71.21 90.28 97.69 3.89 2.49 2.46

C7

77.06 94.33 99.25 3.38 2.15 2.46
sPGDp 64.88 92.03 99.85 3.97 3.69 2.57 78.41 98.36 100.0 2.59 5.87 2.57
sPGDu 68.61 94.99 99.96 3.49 3.46 2.57 84.17 99.41 100.0 1.85 6.26 2.57
σ-zero 78.14 98.39 100.0 3.16 1.02 2.70 83.99 99.49 100.0 1.82 0.69 2.70

Sparse-RS

C3

38.43 58.27 79.59 6.77 2.61 0.69

C9

79.69 89.98 95.3 2.81 1.95 2.89
sPGDp 34.62 65.54 96.55 6.70 2.52 0.73 66.39 87.65 98.19 3.73 2.75 3.03
sPGDu 37.29 72.03 98.49 6.48 2.96 0.73 68.03 90.7 99.23 3.56 2.64 3.04
σ-zero 40.99 76.00 98.98 6.32 1.42 0.77 83.92 98.39 99.99 2.19 0.99 3.09

Sparse-RS

C4

54.85 71.95 86.25 5.03 2.37 0.69

C10

76.62 91.5 97.89 3.20 1.46 0.50
sPGDp 53.36 80.97 99.13 4.94 2.24 0.73 65.92 90.38 99.72 3.86 1.63 0.55
sPGDu 57.31 86.11 99.72 4.46 2.36 0.73 68.59 92.93 99.91 3.71 1.62 0.55
σ-zero 57.11 84.54 99.34 4.47 1.04 0.77 77.74 95.86 99.92 2.75 0.57 0.59

Table 14: Fixed-budget comparison results with N = 5000 on ImageNet. See the caption of Table 11
for further details.

Attack M ASR100 ASR150 q100 s100 VRAM M ASR100 ASR150 q100 s100 VRAM
ImageNet

Sparse-RS

I1

94.2 95.1 1.39 7.73 1.29

I4

48.8 51.7 5.68 13.51 5.73
sPGDp 97.3 99.6 0.45 1.95 1.41 66.2 78.4 3.68 21.65 5.84
sPGDu 93.6 98.5 0.71 2.48 1.40 64.1 78.5 3.78 20.71 5.84
σ-zero 100.0 100.0 0.72 0.31 1.83 77.3 87.8 2.42 4.17 6.33

Sparse-RS

I2

85.1 86.8 2.06 11.0 4.39

I5

89.6 91.3 1.54 3.35 4.39
sPGDp 85.9 92.8 1.63 8.33 4.49 92.0 95.9 0.94 3.35 4.39
sPGDu 81.3 90.5 2.00 6.88 4.49 88.0 93.1 1.28 5.89 4.48
σ-zero 94.6 97.3 0.63 0.61 4.94 96.9 98.4 0.41 0.34 4.94

Sparse-RS

I3

74.8 76.6 3.54 6.38 4.39

I6

87.5 92.7 1.36 2.05 1.29
sPGDp 87.6 95.4 1.61 6.29 4.49 96.5 97.0 0.83 1.39 1.33
sPGDu 81.4 93.7 2.04 6.54 4.49 90.4 94.7 2.04 2.35 1.33
σ-zero 98.2 99.7 1.68 1.44 4.94 97.2 99.1 0.35 0.12 1.83

Table 15: Fixed-budget comparison results with N = 10000 on CIFAR-10 and ImageNet. See the
caption of Tables 10-11 for further details.

Attack M ASR24 ASR50 ASR100 q24 s24 VRAM M ASR100 ASR150 q100 s100 VRAM
Sparse-RS

C3

41.12 63 83.99 3.44 12.82 0.60

I2

87.2 88.3 9.66 3.67 0.14
sPGDu 37.95 72.6 98.59 1.99 12.56 0.65 86.9 91.6 7.84 1.95 0.15
sPGDp 35.89 67.92 97.42 2.12 13.2 0.65 81.8 88.9 8.4 3.85 0.15
σ-zero 41.67 76.38 99.01 0.33 3.07 2.41 95.1 97.2 1.31 0.23 0.21
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C VISUAL COMPARISON

In Figures 8-10, we show adversarial examples generated with competing ℓ0-attacks, and our σ-zero.
First, we can see that ℓ0 adversarial perturbations are clearly visually distinguishable Carlini & Wagner
(2017a); Brendel et al. (2019a); Pintor et al. (2021). Their goal, indeed, is not to be indistinguishable
to the human eye – a common misconception related to adversarial examples (Biggio & Roli, 2018;
Gilmer et al., 2018) – but rather to show whether and to what extent models can be fooled by just
changing a few input values.
A second observation derived from Figures 8-10 is that the various attacks presented in the state of
the art can identify distinct regions of vulnerability. For example, note how FMN and VFGA find
similar perturbations, as they mostly target overlapping regions of interest. Conversely, EAD finds
sparse perturbations scattered throughout the image but with a lower magnitude. This divergence
is attributed to EAD’s reliance on an ℓ1 regularizer, which promotes sparsity, thus diminishing
perturbation magnitude without necessarily reducing the number of perturbed features. Conversely,
our attack does not focus on specific areas or patterns within the images but identifies diverse critical
features, whose manipulation is sufficient to mislead the target models. Given the diverse solutions
offered by the attacks, we argue that their combined usage may still improve adversarial robustness
evaluation to sparse attacks.

EAD ‖δ0‖: 57.0 VFGA ‖δ0‖: 74.0 SPARSEFOOL ‖δ0‖: 316.0 PDPGD ‖δ0‖: 57.0 BB ‖δ0‖: 37.0 BBadv ‖δ0‖: 65.0 PGD0 ‖δ0‖: 43.0 Sparse-RS ‖δ0‖: 53.0 FMN ‖δ0‖: 20.0 σ-zero ‖δ0‖: 16.0

EAD ‖δ0‖: 42.0 VFGA ‖δ0‖: 66.0 SPARSEFOOL ‖δ0‖: 275.0 PDPGD ‖δ0‖: 64.0 BB ‖δ0‖: 6.0 BBadv ‖δ0‖: 172.0 PGD0 ‖δ0‖: 19.0 Sparse-RS ‖δ0‖: 5.0 FMN ‖δ0‖: 36.0 σ-zero ‖δ0‖: 5.0

EAD ‖δ0‖: 26.0 VFGA ‖δ0‖: 40.0 SPARSEFOOL ‖δ0‖: 168.0 PDPGD ‖δ0‖: 30.0 BB ‖δ0‖: 12.0 BBadv ‖δ0‖: 125.0 PGD0 ‖δ0‖: 11.0 Sparse-RS ‖δ0‖: 4.0 FMN ‖δ0‖: 25.0 σ-zero ‖δ0‖: 7.0

EAD ‖δ0‖: 34.0 VFGA ‖δ0‖: 40.0 SPARSEFOOL ‖δ0‖: 254.0 PDPGD ‖δ0‖: 14.0 BB ‖δ0‖: 4.0 BBadv ‖δ0‖: 177.0 PGD0 ‖δ0‖: 11.0 Sparse-RS ‖δ0‖: 4.0 FMN ‖δ0‖: 30.0 σ-zero ‖δ0‖: 4.0

Figure 8: Randomly chosen adversarial examples from MNIST M2.

EAD ‖δ0‖: 107.0 VFGA ‖δ0‖: 13.0 SPARSEFOOL ‖δ0‖: 12.0 PDPGD ‖δ0‖: 39.0 BB ‖δ0‖: 0.0 BBadv ‖δ0‖: 11.0 PGD0 ‖δ0‖: 30.0 Sparse-RS ‖δ0‖: 15.0 FMN ‖δ0‖: 14.0 σ-zero ‖δ0‖: 9.0

EAD ‖δ0‖: 48.0 VFGA ‖δ0‖: 10.0 SPARSEFOOL ‖δ0‖: 6.0 PDPGD ‖δ0‖: 18.0 BB ‖δ0‖: 0.0 BBadv ‖δ0‖: 8.0 PGD0 ‖δ0‖: 15.0 Sparse-RS ‖δ0‖: 5.0 FMN ‖δ0‖: 7.0 σ-zero ‖δ0‖: 5.0

EAD ‖δ0‖: 2.0 VFGA ‖δ0‖: 1.0 SPARSEFOOL ‖δ0‖: 3.0 PDPGD ‖δ0‖: 45.0 BB ‖δ0‖: 0.0 BBadv ‖δ0‖: 1.0 PGD0 ‖δ0‖: 3.0 Sparse-RS ‖δ0‖: 2.0 FMN ‖δ0‖: 1.0 σ-zero ‖δ0‖: 1.0

EAD ‖δ0‖: 145.0 VFGA ‖δ0‖: 9.0 SPARSEFOOL ‖δ0‖: 13.0 PDPGD ‖δ0‖: 27.0 BB ‖δ0‖: 0.0 BBadv ‖δ0‖: 9.0 PGD0 ‖δ0‖: 21.0 Sparse-RS ‖δ0‖: 8.0 FMN ‖δ0‖: 13.0 σ-zero ‖δ0‖: 4.0

Figure 9: Randomly chosen adversarial examples from CIFAR-10 C1.
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EAD ‖δ0‖: 4129.0 VFGA ‖δ0‖: 68.0 BBadv ‖δ0‖: 24.0 FMN ‖δ0‖: 38.0 σ-zero ‖δ0‖: 17.0

EAD ‖δ0‖: 1267.0 VFGA ‖δ0‖: 65.0 BBadv ‖δ0‖: 22.0 FMN ‖δ0‖: 48.0 σ-zero ‖δ0‖: 22.0

EAD ‖δ0‖: 482.0 VFGA ‖δ0‖: 104.0 BBadv ‖δ0‖: 24.0 FMN ‖δ0‖: 42.0 σ-zero ‖δ0‖: 17.0

EAD ‖δ0‖: 1486.0 VFGA ‖δ0‖: 47.0 BBadv ‖δ0‖: 11.0 FMN ‖δ0‖: 17.0 σ-zero ‖δ0‖: 9.0

EAD ‖δ0‖: 906.0 VFGA ‖δ0‖: 14.0 BBadv ‖δ0‖: 13.0 FMN ‖δ0‖: 54.0 σ-zero ‖δ0‖: 9.0

EAD ‖δ0‖: 50.0 VFGA ‖δ0‖: 22.0 BBadv ‖δ0‖: 13.0 FMN ‖δ0‖: 23.0 σ-zero ‖δ0‖: 9.0

Figure 10: Randomly chosen adversarial examples from ImageNet I1.

23


