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Abstract

Liver tumors, as one of the most common malignant tumor types, represent a significant
clinical challenge, with the detection of small tumors being particularly problematic. De-
spite the rapid advances in deep learning (DL) offering significant support in reducing
the workload of radiologists, current detection models still struggle with the detection of
small tumors. This is particularly troubling as these are the cases where even experienced
radiologists are more prone to errors, underscoring the critical need for improved accu-
racy of detection methods in this area. Addressing this critical gap, this article introduces
patch-contrastive attention YOLO (PCA-YOLO), an innovative adaptation of the YOLO
framework, incorporating a patch-based attention module to specifically target the detec-
tion of small liver tumors. Furthermore, we collected a specialized CT dataset focusing
exclusively on small liver tumors, complemented with meticulously annotated bounding
boxes, to facilitate this study. Our experimental findings demonstrate that our approach
achieves a leading mean Average Precision (mAP) score of 77.2% at a 50% Intersection Over
Union (IoU) threshold, surpassing all current leading detection methods tested against our
specialized dataset.
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1. Introduction

Liver cancer ranks as the second most deadly form of tumor, with Hepatocellular Carcinoma
(HCC) being its most prevalent type, constituting approximately 85% of all liver cancer
cases (Villanueva, 2019). Computed tomography (CT) scanning is a fundamental tool
for diagnosing HCC, but the manual evaluation of these scans is notably time-consuming.
This is especially true for small liver tumors, on which the task of interpretation demands
radiologists to have substantial experience and specialized knowledge.

On the other hand, advances in artificial intelligence have provided deep learning (DL)
based approaches for liver tumor analysis using CT scans. Based on the widely recognized
BCLC guideline and RECIST standard, the number of tumors is a critical parameter for
staging HCC, and the maximum tumor diameter is a pivotal factor influencing patient prog-
nosis (Eisenhauer et al., 2009; Reig et al., 2022). Given their capacity to efficiently derive

© 2025 CC-BY 4.0, X. Li, H. Xiao, Z. Weng, X. Hu, D. Chen & Y. Shi.

https://creativecommons.org/licenses/by/4.0/


Li Xiao Weng Hu Chen Shi

such critical information and the significantly reduced human effort needed for labeling,
detection models stand out as more suitable alternatives for DL-aided HCC diagnosis, in
comparison to segmentation models.

While liver tumor segmentation has garnered significant attention, the task of liver tu-
mor detection remains relatively under-explored. Current approaches predominantly adapt
modified U-Net (Ronneberger et al., 2015) structures (e.g., RA-Net (Kalsoom et al., 2022)
and CLIP (Liu et al., 2023)) for this purpose. In addition to this, state-of-the-art detec-
tion models originally designed for natural images, like DETR (Carion et al., 2020) and
YOLO (Redmon et al., 2016), show promise for medical imaging applications following cer-
tain adaptations, as evidenced by RCS-YOLO in brain tumor detection (Kang et al., 2023)
and SPN-TS in breast tumor detection (He et al., 2023). However, a notable barrier to
adapting these natural image detection models for medical settings is their performance
with small objects. In natural scenes, objects typically occupy larger portions of the images
and have more distinct features compared to tumors in medical scans. This issue becomes
particularly acute when identifying small-sized tumors, demanding the model to further
detect subtle, less pronounced features amidst the complex background of CT slices (Ab-
dusalomov et al., 2023; He et al., 2023). Further, accurate detection of such small tumors
is crucial, surpassing the importance of identifying larger, more noticeable tumors. This
is because even experienced radiologists are more susceptible to mistakes when evaluating
small tumors, and they may not be able to easily rectify the inaccuracies incurred by DL
models, as they might with more conspicuous tumors.

Inspired by the successes of attention mechanism (Vaswani et al., 2017) and the con-
trastive learning strategy in the Siamese network (Koch et al., 2015), this paper synthesizes
these methodologies to introduce a novel YOLO framework called patch-contrastive atten-
tion YOLO (PCA-YOLO), aiming to address the challenge of detecting small tumors. The
rationale for this design is clear: While small tumors may be less conspicuous due to lim-
ited information, they should still be more distinguishable and tumor-like in appearance
compared to other regions within the same slice. Additionally, we introduce to the public
via this study our Small Liver Tumor Detection (SLTD) CT dataset, a pioneering resource
specifically designed for detecting small liver tumors, to further promote research along this
direction. Our PCA-YOLO approach attains an mAP@50% score of 77.2% on this dataset,
surpassing the performance of all existing state-of-the-art detection models.

2. The SLTD Dataset

The liver tumor segmentation benchmark (LiTS) dataset (Bilic et al., 2023), primarily
designed for segmentation, is commonly used when performing liver tumor detection (Liu
et al., 2023). But, it poses challenges in converting segmentation masks to bounding boxes,
especially in complex scenarios involving tumor clusters or adjacent tumors, where domain
expertise is crucial. This is pivotal as tumor count directly influences HCC staging (Reig
et al., 2022). To address this gap and provide a more dedicated and realistic dataset for the
small liver tumor detection task, we introduce our Small Liver Tumor Detection (SLTD)
dataset. The SLTD dataset comprises 208 3D CT volumes, totaling 41,587 2D slices. The
CT scans are acquired during the portal venous phase, as it is more commonly used and
clinically effective for tumor diagnosis compared to the arterial and unenhanced plain scan
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Figure 1: Representative CT slices from the SLTD dataset: (a) A tumor with a bounding
box size of 0.8 cm; (b) a tumor with a bounding box size of 2.2 cm; (c) the largest
tumor with a bounding box size of 5.0 cm.

phases. The images have a resolution of 512×512 and were acquired from the same CT
machine, with a window width of 150, window level of 50, radiation dose 120kV, slice
thickness of 1 mm, and slice gap of 0.8 mm. The images underwent manual quality control
to exclude any scans with noticeable artifacts or blurriness and to verify the completeness
of all slices. From this collection, our team of radiologists with at least five years of clinical
expertise meticulously selected and annotated 452 2D slices. These slices were chosen
based on their proximity to the initial and final slices where a tumor is visible within each
3D volume. To ensure annotation reliability, only slices with bounding boxes size of at
least 0.4 cm were included. In summary, our dataset contains bounding boxes with sizes
ranging from 0.4 cm to 5.0 cm, while the tumor maximum diameters range from 1.0 cm
to 6.5 cm. Each slice contains between 1 to 4 tumors, averaging 1.49 tumors per slice,
providing a diverse and comprehensive representation of small tumor cases. Representative
images from the selected slices are shown in Fig. 1. The dataset is publicly available at
https://github.com/XLIAaron/Small_LiverTumor.

3. Methodology

The overall architecture of PCA-YOLO is depicted in Fig. 2(a), featuring a patch-contrastive
attention (PCA) module at its core. Within this module, a Siamese network (Koch et al.,
2015) is utilized to assess whether a given patch is similar to the original image, i.e., whether
the patch contains a tumor. Following the PCA module, the architecture is integrated with
a detection head, employing the YOLOv8x (Jocher et al., 2023) model for this purpose.
The details are given below.
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Figure 2: (a) The general structure of PCA-YOLO. X is an original input image, and X ′

denotes the attention-augmented input. (b) The detailed structure of the atten-
tion module. xi denotes the patches extracted using non-overlapping cropping
of the original image X. The Siamese network is trained using each up-sampled
patch and X as a paired input, and the ground truth similarity is 1 if a patch
contains any tumor and 0 otherwise. Y is the collection of outputs from the
Siamese network for all the patches of X, which is used to generate the attention
map Y ′. Y ′ is concatenated with X to form an attention-augmented input X ′ for
YOLOv8x.

3.1. Patch-Contrastive Attention Module:

Fig. 2(b) illustrates the design of the PCA module. The process begins with an input image
X of dimensions 512× 512, which is cropped into n smaller patches using a sliding window
technique with no overlap, each patch xi being m × m in size, in which m is a hyper-
parameter and its impact will be studied in our ablation study. Subsequently, these patches
are upscaled back to the original dimensions of 512× 512 with Bicubic Interpolation. Each
upscaled patch and the initial image X are then used as an input pair to train a Siamese
network using the default cross-entropy loss function augmented with regularization (Koch
et al., 2015), with the ground truth similarity set to one when the patch contains any tumor
(and thus similar to the original image) and zero otherwise. The trained Siamese network’s
output, yi, then reflects the likelihood that patch xi contains any tumor. After this, the
attention map of the patch xi, yi

′, is calculated, as:

yi
′ = g(yi) · c · J, (1)

g(yi) =
yi − min(Y )

max(Y ) − min(Y )
, (2)

where g(yi) is a normalization function, with yi reflecting the predicted similarity score
relative to the original image, c is a constant for attention intensity, J is an m × m ma-
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trix filled exclusively with ones that reconstruct the attention maps to patch size, and
Y = {y1, y2, . . . , yn} is the set of predicted similarity scores for all the small patches cropped
from the input image X. The normalization function g(yi) is a key, as the Siamese network
may miss tiny tumors, causing many of the yi scores in Y to approach 0. Thus, directly using
these unnormalized scores for attention would be quite ineffective. Nevertheless, small tu-
mors typically stand out more than the adjacent areas, resulting in slightly higher yi scores.
Normalizing these scores with g(yi) to the range [0, 1] enhances attention to the areas with
small tumors. The subsequent multiplication by the attention intensity c is for accom-
modating the input normalization used in YOLO. Afterwards, these maps yi

′ are stitched
together based on the locations of the corresponding patches in the original image X, to
form a size 512×512 attention map, Y ′, matching the original image’s dimensions. Finally,
Y ′ is concatenated alongside the input image X with the matrix concatenation function σ
as an additional channel, forming the attention-augmented input, X ′, for YOLOv8x (see
Fig. 2(b)).

An alternative design to Eqs. (1) and (2) is, instead of using the normalized scores
yi and the attention intensity constant c, to directly combine the Class Activation Map
(CAM) (Zhou et al., 2016) from the small patches into a large 512× 512 CAM matrix, and
use it as the attention map Y ′. However, our experiments revealed that this strategy does
not significantly enhance the performance of the baseline detection models. The details and
implications of this finding will be further explored and elucidated in the ablation study
section.

3.2. Detection Head:

YOLO (You Only Look Once) (Redmon et al., 2016), standing out as a leading model
in the realm of object detection, has undergone significant advancements through various
versions. Despite their original design for natural images, YOLO models from YOLOv5 on-
wards have integrated auto-anchor algorithms, improving their detection of smaller objects
beyond the capabilities of many traditional detection models (Jocher, 2020). The efficacy of
YOLO in detecting brain and bone tumors has been demonstrated in studies such as RCS-
YOLO (Kang et al., 2023) and YOLO-DL (Li et al., 2023). Given the similarities in the
challenges posed by liver tumor detection, YOLO is selected as the preferred model for our
detection head. Further, we opt for YOLOv8x (Jocher et al., 2023), the most recent version
known for its state-of-the-art capabilities, and train it utilizing our attention-augmented
input X ′.

4. Experiments

4.1. Experimental Setup:

In the attention module, we choose a patch-cropping size m of 64, tailored to the typical
tumor sizes observed on our dataset. We adjust the attention intensity constant c to 255,
complementing the subsequent image normalization by YOLOv8x. For the Siamese net-
work (Koch et al., 2015), we employ the Adam optimizer (Kingma and Ba, 2014) combined
with a Binary Cross Entropy loss function (Ba and Caruana, 2014), setting the batch size
to 16 and the learning rate to 1e− 4, with an input image size of 512× 512. To address the
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imbalance in the patch dataset fed to the Siamese network, Standard Scale Jittering (Ghiasi
et al., 2021) is utilized to augment 100% of the positive patches and 20% of the negative
patches. The training is conducted in 200 epochs, with an early stopping mechanism trig-
gered after 50 epochs of no performance improvement. For the YOLOv8x detection head,
we enhance the default data augmentation strategies by setting the mixup augmentation
rate to 0.1 and the mosaic augmentation rate to 0.3, aiming to prevent overfitting and
improve model robustness. The learning rate for YOLOv8x is 5e − 5, with the training
duration extended to 2,000 epochs and an early stopping criterion of 100 epochs. All the
remaining settings are maintained with their default values.

4.2. Baseline Selection:

For baseline comparisons, we select leading models across various categories: nnU-Net (Isensee
et al., 2021) as a superior version of U-Net (Ronneberger et al., 2015), SPN-TS (He et al.,
2023) which utilizes an FPN (Lin et al., 2017) architecture for detecting small breast tu-
mors, and Transformer-based models Swin-Unet (Cao et al., 2022) and RT-DETR (Lv et al.,
2023). Additionally, RCS-YOLO (Kang et al., 2023), designed for brain tumor detection,
and the latest YOLO version, YOLOv8x (Jocher et al., 2023), are also included to showcase
the cutting-edge in YOLO advancements. Moreover, we conduct further assessments of our
PCA module’s effectiveness by substituting it with other state-of-the-art attention mecha-
nisms. These include the self-attention mechanism from ViT-YOLO (Zhang et al., 2021),
the multi-attention mechanism from Multi-attention Tri-branch Network (MTNet) (Zhong
et al., 2023), and channel-wise attention (Li et al., 2020). Each of them is integrated with
the same detection head, YOLOv8x, under identical hyper-parameter configurations. Nev-
ertheless, certain attention methods published recently are incompatible with our dataset,
such as the slice-wise attention tailored for 3D datasets (Lu et al., 2023) and the cross-
attention designed for multi-modal datasets (Lin et al., 2023), and thus are not included in
the comparisons.

All the experiments are run on 3 NVIDIA A100 GPUs with 40GB memory each, and
5-fold cross-validation is performed to ensure generalizability. As this is a detection task,
we use the mAP@50% score, Precision, and Recall as the evaluation metrics.

5. Results and Discussions

Table 1 presents the mAP@50%, Precision, and Recall scores for all the evaluated models.
As one can see from Table 1, our PCA-YOLO outperforms all the other models in all of
the mAP@50%, Precision, and Recall metrics, and it also demonstrates the lowest standard
deviations across these metrics, which validate its better stability. PCA-YOLO surpasses
the top-performing baseline, MTNet (Zhong et al., 2023) combined with YOLOv8x, by
an average mAP@50% score of 2.3%, indicating that our proposed PCA module is more
effective than other attention mechanisms. A comparative analysis between the original
YOLOv8x and its attention-augmented variants reveals that on our dataset, different at-
tention mechanisms improve YOLOv8x’s detection capabilities to varying degrees: Channel
Attention by 0.2%, Self Attention by 1.1%, MTNet by 1.2%, and our PCA module by 3.5%.

It is also interesting to note that YOLO-based models generally outshine those in the
other categories on our dataset, including SPN-TS (He et al., 2023), tailored for small breast
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Table 1: mAP@50%, Precision, and Recall scores of different models on the SLTD dataset.
Four types of models, including U-Net, Feature Pyramid Network (FPN), Trans-
formers (XFMR), and YOLO, are included for comparison. The last column
presents the paired t-test p-value for the mAP@50% results of each baseline model
compared to our PCA-YOLO model.

Type Model mAP50 (%) Precision (%) Recall (%) p-value

U-Net nnU-Net 36.1 ± 4.7 56.2 ± 6.5 33.5 ± 5.8 0.000

FPN SPN-TS 70.8 ± 4.6 80.9 ± 6.3 63.8 ± 7.7 0.018

XFMR
Swin-Unet 55.8 ± 6.5 67.5 ± 10.1 52.0 ± 10.4 0.002
RT-DETR 66.5 ± 3.6 77.0 ± 5.1 61.8 ± 6.2 0.001

YOLO

RCS-YOLO 72.5 ± 5.0 74.1 ± 8.4 64.7 ± 6.7 0.012
YOLOv8x 73.7 ± 3.4 80.8 ± 5.5 66.3 ± 4.9 0.035

Channel-Attention + YOLOv8x 73.9 ± 3.3 80.5 ± 5.7 68.9 ± 4.8 0.031
Self-Attention + YOLOv8x 74.8 ± 3.4 79.6 ± 5.5 69.1 ± 4.7 0.052

MTNet + YOLOv8x 74.9 ± 2.9 81.9 ± 5.3 69.2 ± 4.7 0.064
PCA-YOLO (ours) 77.2 ± 2.1 82.5 ± 3.0 71.0 ± 2.4 /

Table 2: Ablation study on the proposed PCA module.
Model Structure mAP50 (%) Precision (%) Recall (%)

YOLOv8x 73.7 ± 3.4 80.8 ± 5.5 66.3 ± 4.9

YOLOv8x w/ CAM attention 74.5 ± 3.6 80.6 ± 4.1 67.7 ± 4.5

PCA-YOLO w/o g(yi) 75.6 ± 3.9 81.6 ± 4.8 70.5 ± 3.7

PCA-YOLO w/ 128 × 128 patches 75.9 ± 2.3 81.6 ± 3.0 70.8 ± 2.8

PCA-YOLO w/ 256 × 256 patches 76.7 ± 2.5 81.4 ± 3.6 70.4 ± 2.1

PCA-YOLO w/ 64 × 64 patches 77.2 ± 2.1 82.5 ± 3.0 71.0 ± 2.4

tumor detection, and RT-DETR (Lv et al., 2023), which outdoes YOLO in natural image
detection. This underscores YOLOv8’s adeptness in small liver tumor detection.

Furthermore, Table 1 reveals that all the evaluated models exhibit lower Recall scores rel-
ative to Precision, a trend attributable to the dataset’s exclusive composition of small-sized
tumors, which are inherently more challenging to detect than their normal-sized counter-
parts. This discrepancy underscores the significant difficulties in identifying small liver
tumors. Nevertheless, our model stands out as the only one achieving a Recall score
above 70.0%, outperforming the second-best model by 1.8%. This distinction highlights
our model’s effectiveness in addressing the task of small liver tumor detection compared
to the other models. Fig. 3 visualizes PCA-YOLO’s successful detection examples. The
siamese network’s accuracy and more visual comparison results with the other methods are
provided in the Appendix A, Supplementary Material.

We also conducted a paired t-test comparing PCA-YOLO against all baseline models,
with p-values reported in Table 1, using α = 0.05. As shown, our model demonstrates
statistically significant improvements over the majority of baselines. These findings indi-
cate that PCA-YOLO consistently outperforms existing methods, with strong statistical
evidence supporting its effectiveness.
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Figure 3: Visualization examples of our detection results with (a) a tumor of bounding box
size d = 0.9 cm and (b) a tumor of maximum bounding box size d = 2.4 cm.

5.1. Ablation Study of the PCA Module:

As previously discussed, we explored an alternative approach by directly applying the Class
Activation Map (CAM) (Zhou et al., 2016) from the Siamese network as attention maps,
rather than using normalized patch attention. However, as indicated by Table 2, this method
results in only a 0.8% increase in the mAP@50% score, significantly less than the 3.5% en-
hancement achieved by PCA-YOLO. This suggests the superiority of our proposed PCA
module over CAM-based attention, possibly due to the patch-based attention’s compatibil-
ity with YOLO’s anchor box mechanism. Further, an ablation study on the PCA module’s
normalization function, g(yi), highlights its critical role. As shown in Table 2, omitting this
normalization step leads to reductions in the mAP@50%, Precision, and Recall scores by
1.6%, 0.9%, and 0.5%, respectively, compared to the original PCA-YOLO model, underscor-
ing the significance of the normalization process in our PCA module. Lastly, an ablation
study is conducted to evaluate the impact of varying patch sizes. As demonstrated in Ta-
ble 2, a patch size of 64 × 64 attains superior performance compared to the configurations
with the other two patch sizes.

5.2. Error Analysis

Examples of detection errors are presented in Fig. 4. In Case (a), a small tumor was incor-
rectly merged with an adjacent larger tumor, despite medical annotations indicating them
as separate entities. This may be due to the small tumor containing too few distinguishable
features, making differentiation inherently challenging for the model. Although our model
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Figure 4: Examples of detection errors.

successfully detects most small tumors, rare cases like this suggest that further refinement
in feature extraction could enhance robustness. Conversely, in Case (b), a single tumor
was mistakenly detected as two distinct tumors, despite the model correctly capturing its
location. This misclassification may be attributed to inconsistencies in texture or intensity
variations within the tumor, leading to over-segmentation. While our model demonstrates
strong overall detection performance, incorporating improved spatial feature aggregation in
future iterations could further mitigate such segmentation inconsistencies.

6. Conclusions

In this paper, we proposed PCA-YOLO, a novel detection framework developed upon
YOLOv8x, dedicated to addressing the challenges of detecting small-sized liver tumors — a
task that, besides being more challenging than identifying liver tumors of normal sizes, holds
significant clinical importance. Our new PCA-YOLO model surpasses existing state-of-the-
art detection methods in the realm of small liver tumor detection with an mAP@50% score
of 77.2%. Furthermore, the PCA module we developed demonstrated superior performance
over alternative attention mechanisms when integrated with the same detection architec-
ture. To support this specialized detection task and for future follow-up research from the
medical imaging community, we have compiled the SLTD dataset, which consists of 208 3D
CT volumes, encompassing 41,587 2D slices, with 452 slices annotated with bounding boxes
by our team of skilled radiologists.
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Appendix A. Supplementary Material

Table 3: Accuracy of the Siamese network using patch xi and original image X as inputs
with patch size of 64 × 64.

Model Accuracy(%)

Siamese (Koch et al.,
2015)

93.4 ±2.5
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PCA-YOLO

Figure 5: Visual comparisons of PCA-YOLO (ours) with RT-DETR (Lv et al., 2023), SPN-
TS (He et al., 2023), and RCS-YOLO (Kang et al., 2023) for: (a) a small-sized
tumor with bounding box size d = 0.8 cm, (b) a median-sized tumor in our
dataset with bounding box size d = 2.2 cm, and (c) the largest tumor in our
dataset with bounding box size d = 5.0 cm.

Figure 6: Example of an input image augmented by crop attention map.
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Figure 7: Example of an image from the LiTS dataset. Automatic bounding box extraction
from segmentation masks may lead to ambiguities. For example, tumor A and
B could potentially be encompassed within a single bounding box while they are
different tumors. Moreover, determining whether adjacent tumors in the cluster
C should be treated as a single large tumor or as separate tumors requires expert
medical judgment. This distinction is crucial, as tumor count is a key parameter
in HCC staging according to the RECIST standard and BCLC guidelines.
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