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ABSTRACT

The recent integration of spiking neurons into graph neural networks has been
gaining much attraction due to its superior energy efficiency. Especially because
the sparse connection among graph nodes fits the nature of the spiking neural net-
works, spiking graph neural networks are considered strong alternatives to vanilla
graph neural networks. However, there is still a large performance gap for graph
tasks between the spiking neural networks and artificial neural networks. The gaps
are especially large when they are adapted to graph classification tasks, where
none of the nodes in the test set graphs are connected to the training set graphs.
We diagnose the problem as the existence of neurons under starvation, caused by
the sparse connections among the nodes and the neurons. To alleviate the prob-
lem, we propose DAS-GNN. Based on a set of observations on spiking neurons on
graph classification tasks, we devise several techniques to utilize more neurons to
deliver meaningful information to the connected neurons. Experiments on diverse
datasets show significant improvements compared to the baselines, demonstrating
the effectiveness of the DAS-GNN.

1 INTRODUCTION

Graph neural networks (GNN5s) are popular neural networks that learn representations from graphs,
which comprise multiple nodes and edges between them. Because of their flexibility to model any
kind of connection that exists in nature, they have various applications ranging from drug discov-
ery (Borgwardt et al.| [2005; |Wale et al., 2008} [Debnath et al.||1991)), social influence prediction (Qiu
et al., [2018; |Arazzi et al) [2023), traffic forecasting (Bai et al., [2020; |Cao et al., 2020), and recom-
mendation systems (Pal et al.| [2020; [Fan et al., [2019; |[Zhang et al., [2023)). One known challenge
of GNN:ss is their sparse memory and computational pattern. Because many messages are passed
between randomly connected nodes, there is a significant inefficiency in processing them with con-
ventional systems (Yan et al.,|2020;|Yoo et al., [2022; |2023} |Geng et al., 2020).

To address the inefficiency, spiking neural networks (SNNs) are considered strong alternatives. In-
spired by the biological behavior of brains, SNNs process information by communicating binary
spikes between the neurons. Because SNNs utilize intermittently occurring spikes, they have supe-
rior energy efficiency, especially in the domain of GNNs (Aimone et al., 2021}

Although the spiking graph neural network (SGNN) has been recently studied by many re-
searchers (L1 et al, 2023} Zhu et al.l 2022; Wang & Jiang, [2022), we observe huge performance
drops when adapted to graph classification, compared to that of the conventional GNNs implemented
with artificial neural networks (ANNs). Upon closer analysis of the performance degradation, we
identify spike frequency deviation of the neurons within the model. In our investigation, many neu-
rons experience starvation, which does not emit any spike during the inference. This leads to severe
information loss, due to being unable to deliver signals to the subsequent neurons.

Such a problem was less exposed in previous studies on spiking GNNs. This is because the test set
nodes are available during the training time (transductive learning (Kipf & Welling} |2016)) or they
are part of the training graph (inductive learning (Hamilton et al.,[2017))). In such settings, the model
could be trained on the nodes to mitigate the performance drop. However, in graph classification
tasks, the graphs are independent of each other, and the test set comprises multiple unseen graphs,
aggravating the problem.



Fortunately, our further analysis reveals that such phenomena are related to the degree of the vertices
in input graphs. We discover that a strong pattern exists among the neurons in the GNN, where 1)
neurons in a node have similar behaviors, 2) each feature dimension presents different behaviors,
and 3) neurons in high-degree nodes tend to emit more spikes.

Motivated by the observations, we propose to group the neurons according to the degree of the node
(degree-aware group-adaptive neurons). The neurons in each group adapt the threshold voltage
together to steer the firing rate toward ideal rates. To further improve the neuron groups being
sensitive to the base threshold value at the first inference step, we further propose to learn the base
threshold voltage values (learnable inference base threshold).

We evaluate DAS-GNN over multiple GNN models and datasets. Experiments reveal that DAS-
GNN achieves superior performance over the SNN baselines, setting a new state-of-the-art method
for SNN-based graph classification. Compared to the ANN counterparts, we demonstrate that DAS-
GNN has advantages in energy efficiency, similar to what has been reported in many SNN-based
approaches. Notably, contrary to the usual studies where ANNs serve as performance upper bounds
for SNNs, we observe several cases where DAS-GNN significantly outperforms the ANN counter-
parts. This suggests that GNN-based graph classification might be a field where SNNs could excel.

Our contributions are summarized as the following:

* We identify the starvation problem of spiking neurons in GNNs for graph classification
tasks that harms the performance. We further observe that the spike frequency patterns
have a strong correlation with the vertex degree.

» Based on the observations, we propose degree-aware group-adaptive neurons, which dy-
namically adjusts the threshold voltage together with the other neurons in the group to
address the spike frequency deviations.

* We propose techniques to reduce the sensitivity of the neuron groups to the inference base
threshold at the first step, by learning the base threshold for each group.

* We evaluate DAS-GNN on several public graph classification datasets, and the experimen-
tal results show that DAS-GNN achieves superior performance over existing techniques.

2 BACKGROUND

2.1 SPIKING NEURAL NETWORKS AND SPIKE TRAINING

Spiking neural networks (SNNs) are third-generation neural network designs that mimic human bio-
logical neural systems (Maass, |1997). They use spike-based communication and adopt event-driven
characteristics that promote better energy efficiency than current ANNs. Similar to human neural
systems, SNNs consist of spiking neurons that can model spatio-temporal dynamics of the actual
biological neurons. The early forms of such neuron models are Hodgkin-Huxley neurons (Hodgkin
& Huxley| |1952), which accurately model the biophysical characteristics of the membrane through
differential equations. However, its mathematical complexity prohibits its practical use and scalabil-
ity. Instead, the Leaky Integrated-and-Fire (LIF) model finds a middle ground between mathematical
simplicity and biological plausibility, and is popularly adopted as the baseline architecture (Hodgkin
& Huxley, [1952)). In the LIF neuron, the weighted sum of input spikes is accumulated over time
within the neuron as membrane potential, and the output spike is generated only when the mem-
brane potential exceeds a threshold value. This process is represented as a differential function:

dU(t)
dt
where U (t) denotes the membrane potential value at time ¢, 7 is a time constant of the membrane,

and I(¢) is the input at time ¢ from connected synapses. To make this time-varying function compu-
tationally feasible, we discretize and rewrite it in an iterative form for a sequential simulation:
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where (3 is a decay rate constant, R is the reset value and V;, is the threshold for the membrane
potential. Note that I(¢) is simplified as weighted input (W X (¢)), which can be obtained through
any operations with learnable weights including convolution, self-attention, or a simple MLP. We
will denote this process of forwarding through LIF neurons as SN (-) in this paper.

Direct SNN Training. Since SNNs were first implemented through ANN-SNN conversion (Cao
et al.l 2015), various studies have aimed to address the accuracy degradation that occurs during the
conversion from ANNS to SNNs (Han et al.| [2020; Rueckauer et al.,|2017; Hunsberger & Eliasmith),
2015} |Sengupta et al., [2019). However, due to the non-differentiable step function in Equation (4),
direct SNN training with backpropagation is prohibited.

To enable direct SNN training, many approaches have been proposed (Shrestha & Orchard, 2018;
Bohte et al.l 2002} Esser et al. [2015}; 2016} |Che et al.| 2022} [Wu et al., 2018} |Deng et al.| 2022)) to
bypass the step function. Recent research has demonstrated that directly training SNNs can yield
competitive results by addressing the challenges posed by non-differentiability. To this end, our
work focuses on directly training Graph SNNs. While exploring ANN-SNN conversion methods
would be an interesting scenario, they target a different dimension from ours.

2.2 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) take graph-represented data as input, which consist of nodes and
their connected edges G = (V, E), with node features X € RIVI*¥ and optionally edge features
E € RIEIXD The common GNN architectures follow a message passing paradigm (Gilmer et al.|
2017), which learns node or edge representations by aggregating information from its neighboring
nodes and updating the node features iteratively. Thus, a single forward of GNN layer consists of

message passing and combination: hz(.H'l) = gb(hgl), ®jeN(i) 1/;(hl(.l), hgl), eij)), where [ and i are
indices for layer and node, respectively, and () denotes the message passing function. After the

features in the message are aggregated, the combination phase uses ¢(-) for feature updates. For
graph convolutional network (Kipf & Welling} 2016), the overall process can be simplified as:

XD = ReLU(AXOWw W), (5)
where the feature matrix is a concatenation of node features X (V) = [hgl) | |h§l) [.-] |hgﬂ/‘ _1)]T, which
is updated through iterations of message passing (AX) and combination (X W). After iterative up-
dates of X through the layers, the learned node or edge embeddings are passed through an additional
classification layer for node-level or edge-level predictions.

Graph Classification follows the same node-wise message-passing framework to obtain node
embeddings but appends a readout layer to turn them into a single graph embedding:

he = R(ly"|Vi € ), (©)
where R denotes the readout function. The readout function reduces the node features to a single
embedding regardless of the number of nodes. This is due to the inductive nature of graph clas-
sification tasks where the number of nodes is not known in advance. While GNN layers focus on
communicating features only from a local neighbor of a vertex, the readout layer considers the entire
graph to generate global features. The obtained graph embedding is passed through a classification
layer for predictions. Graph classification tasks usually hold more difficulty than node-level classi-
fication due to its inductive nature, where inference is done on unseen graphs and thus cannot utilize
any graph-specific statistics from the train set. In this paper, we mainly focus on graph classification.

2.3 SPIKING GRAPH NEURAL NETWORKS

In this paper, we adopt conventional SNN designs where LIF neurons are connected through learn-
able weights, and apply them to the GNN framework (Zhu et al.,2022). As mentioned in Section 2.2,
each GNN layer outputs an updated feature matrix X (‘+1) ¢ RIVIXF_ This is converted to spike
representation through the spiking neurons SN ():

XHD = SN(AXOWw D), @)

As the input X and the output X “*1) are in spike format, spike representation is maintained
throughout the model.
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(a) Histogram plotting distribution of total spikes counted over time for each node. X-axis denotes spike counts
from each node, while y-axis denotes density of each bin.
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(b) Spike frequency visualization using each layer output. X-axis denotes feature dimension, while y-axis
denotes nodes grouped and sorted by degree in descending order, top to bottom. Brighter spots denote higher
spike frequency.

Figure 1: Analysis on spike frequency variation of GCN using IMDB-BINARY (Yanardag & Vish-
wanathan| [2015b)) dataset.

3 ANALYSIS ON SPIKE FREQUENCY VARIATION OF GNNS

To analyze the cause of the accuracy drop, we plot the behavior of the neurons during inference in
Figure 1a, on an IMDB-BINARY dataset over five timesteps (1" = 5). We create a histogram of
spike counts created from each node, which is associated with 128 neurons. As depicted in the plot,
it is clear that most of the neurons are under starvation. This is caused by the inputs of those neurons
being insufficient to reach the threshold, and this leads to severe information loss between the layers.
While unveiling the exact dynamics would require more research, we hypothesize that this is caused
by the varying degrees of vertices in real-world graphs.

To validate the hypothesis and further investigate the phenomena, we display the spike frequency
heatmap of the neurons sorted by the degree of the nodes in Figure 1b. From the heatmap, we make
three observations:

(D (Brighter on the top and darker at the bottom) High-degree nodes tend to exhibit higher spike
frequencies.

@ (The horizontal strips) The spike frequencies are associated with the corresponding nodes.

(@ (The vertical strips) The feature neurons within a node behave differently according to their
positions.

We believe such patterns come from the connectivity of the nodes and the distinct role of the neurons
assigned to each node. The connectivity affects the number of receiving spikes of neurons associated
with each node. It is known that most of the real-world graphs exhibit an extremely skewed distri-
bution of degrees (i.e., power-law distribution (Leskovec et al.,2007)). Due to such a characteristic,
there are a few nodes with a very high degree, while a majority of nodes have a low degree. Because
a GNN layer communicates signals between the neighbors through messages, a high-degree node
will likely receive a lot of spikes, while a low-degree node will receive only a few.

These three observations shed light on how to close the performance gap between spiking GNNs and
ANN-based GNNs. In the next section, we describe how the observations are used to build better
spiking GNNs for graph classification.
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4 PROPOSED METHOD

4.1 OVERALL GRAPH CLASSIFICATION ARCHITECTURE

Many recent studies have tried to adapt SNN architectures into GNN tasks, however, they simply try
to contact with only node classification tasks (Zhu et al, 2022} Wang & Jiang, [2022). In this work,
we propose a spiking neural network specifically designed for graph classification tasks and show
that it can be trained using spikes. We demonstrate the overall architecture of DAS-GNN in Figure 2.
For each timestep, the input graphs are first translated into spike representations through the Poisson
encoder, then the message passing is done in spike format. After the combination operation in the
SNN layer, the node features are transformed into a spike format by passing the neurons. In the
classification layer, we perform an extra message passing on the spike features before passing the
readout layer. The readout operation reduces the multiple rows of node embedding by computing
feature-wise averages, thus representing them into a single row to represent the entire graph. A batch
of graph embeddings is passed through a classification head that outputs logits for each timestep.
To make the final prediction, we simply take the sum of logits from all inference timesteps and use
softmax to obtain the class probabilities.

4.2 DEGREE-AWARE GROUP-ADAPTIVE NEURONS

As discussed in Section 3, GNNs suffer from a huge gap in spike frequencies between neurons.
As observed, there exists some patterns (Figure 1) that we can utilize to address the issue. One
naive way of addressing the issue is to use learnable (Wang et all [2022), or adaptive
threshold for each neuron. By adjusting the threshold, one can expect the neurons to naturally
change, such that neurons under starvation will have lower thresholds to fire more often, and a few
neurons with high firing rates will have higher thresholds to shift toward an ideal distribution.

Unfortunately, such an idea cannot be directly applied unless all the testset nodes are available at
training time (i.e., transductive task). However, such a setting would be considered a data leak
for graph classification and would also lose the advantage SNNs have on lightweight inference.
Moreover, the number of nodes in a real-world dataset often ranges from at least thousands to several
billions. Considering that GNNs often involve only a sub-million number of learnable parameters,
storing such a large number of thresholds is considered too much overhead.

To address the aforementioned issues, we propose degree-aware group adaptive neurons (DAG),
which groups the neurons by their degrees and lets each group adapt its threshold. The neurons are
split according to the degree of the associated vertex and further split along the feature dimensions.
In Figure 1, we illustrate each group as vertical bars as depicted by the green boxes. Thus, we
reformulate Equation (4) as below. In the equations, we focus on a single feature position, and use
N, to denote the set of neurons in group g. Each neuron’s S%(t) and U () represent the output spike



and membrane potential of the ¢-th neuron in group g at time ¢.

; 1, ifU(t)>V5(t—1) |
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As depicted above, all neurons in group N, share the same threshold voltage V;}(¢) that is ad-
justed in each inference timestep. In the first timestep (! = 0), they are set to a hyperparameter
inference base threshold Vy.. For each timestep ¢, the threshold for each group V,7 (¢) is updated
using the average spikes from previous timestep S7, , adjusted with  which is a hyperparameter
denoting adaptive threshold size. Based on the observation (D) from Section 3 that the neuron behav-

ior is related to the node degree, this will let neurons in the group collaboratively find an adequate
threshold.

The intuition behind the decision is that the spike frequencies of the neurons are closely related to the
degree of the associated vertices. By reformulating Equation (7) from a single-neuron perspective,
the membrane potential of neuron ¢ can be written as U; = 3 jeactve(i) Wi,j» Where active(7) denotes
firing neighbors of i. Assuming W; ; ~ N (0, o), this gives U; ~ N (0, o - |active()]). As |active(i)]
scales with the degree of vertex associated with neuron ¢, grouping neurons by degree clusters those
with similar membrane potential variance, which aligns with the observations from Section 3.

The major advantage of this scheme is that it is straightforward to put an unseen node or an unseen
graph into a group at inference because only the degree information is required to assign a vertex into
a group. To further consider intra-node deviation, we split the group into F' (number of features)
neurons, which is a fixed parameter determined by the model architecture. For any unseen node,
finding out its degree is trivial because visiting its neighbors is one of the fundamental requirements
of graph data structures (Khorasani et al., | 2014; |Wang et al.l 2016} Lee et al.,[2017).

4.3 LEARNABLE INFERENCE BASE THRESHOLD

The proposed group-adaptive threshold scheme effectively

reduces the spike frequency variation issue. However, we GCN(DAG) — GAT(DAG) — GIN(DAG)
find that the adaptive neurons in the proposed DAG are sen- YN
sitive to their inference base threshold (Vj,se), Which is a N\/\/\/\M_/v\/\/
carefully tuned, which aligns with the findings from (Bel-

lec et al,[2018). Moreover, manually tuning the inference

hyperparameter. As depicted in Figure 3, the performance
of the adaptive neurons can severely drop when Vs, 1S not
base thresholds individually for the groups would be diffi- 2 4 6 8 10
cult because there are thousands of neuron groups. Vbase
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To address the problem, We propose learnable inference Figure 3. Sensitivity of neurons to its
base threshold (LIBT), which makes the inference base inference base threshold.

thresholds per group (V;?..) and the decay rate (/) learn-

able. Even though the base thresholds of all groups are initialized to the same value V;,,;; at epoch
0, they will be updated differently during training to reflect the characteristics of each neuron group.

Considering this, Equation (10) can be rewritten to:

Vin () =59() + (1 =)Vt = 1), Vi3 (0) = Vi (1)
For the inference phase, we use the V7 values learned during the training phase, which are adjusted
for each group. The algorithm for overall training procedure is presented in Appendix C.

5 EVALUATION

5.1 EXPERIMENTAL SETTINGS

We use a total of five graph datasets commonly used for benchmarking GNNs: MUTAG (Debnath
et al.,|{1991)), PROTEINS (Borgwardt et al., 2005), ENZYMES (Borgwardt et al., 2005), NCI1 (Wale



Table 1: Performance comparison against baseline methods.

Model Method MUTAG PROTEINS ENZYMES NCI1 IMDB-BINARY
ANN|Kipf & Welling|(2016)  90.47 £ 6.60 77.81 +3.46 69.50 +5.33 78.93 +2.98 56.80 + 4.80
Vanilla LIF - SpikingGNN 90.96 + 3.99 74.39 4+ 2.68 55.33 £4.31 73.41 £+ 1.60 68.40 +2.96

GCN Adaptive LIF - SpikeNet 87.81 + 5.60 74.75 +3.20 56.33 +4.08 73.92 £ 1.54 70.30 +2.17
PLIF - PGNN 87.28 +5.87 77.36 + 2.68 60.50 £ 3.60 76.52 + 1.46 71.60 + 2.17
Gated LIF - GGNN 89.39 £5.21 77.00 £+ 3.02 60.87 + 3.47 75.52 £ 1.77 70.10 £+ 3.30
DAS-GNN 9737 £3.20 (+6.41)  77.72 £ 2.64 (+0.36) 60.17 £ 3.20 (-0.70)  77.25 + 1.66 (+0.73)  80.60 =+ 2.51 (+9.00)
ANN/|Velickovi¢ et al.|(2018)  91.02 + 5.62 77.54 +£3.22 61.83 +4.37 7375 £ 1.21 54.80 £ 2.14
Vanilla LIF - SpikingGNN 78.71 £5.34 59.66 +0.21 27.67 +3.65 66.25 + 1.77 50.00 £+ 0.00

GAT Adaptive LIF - SpikeNet 78.22 £ 3.67 64.60 + 3.22 58.17 +£3.39 66.84 £+ 1.60 50.00 £ 0.00
PLIF - PGNN 82.49 +4.98 64.06 + 2.37 38.50 £ 3.79 68.32 + 1.49 50.00 £ 0.00
Gated LIF - GGNN 83.07 +5.16 69.89 + 3.32 60.33 +£3.11 67.79 +2.01 50.00 £ 0.00
DAS-GNN 94.21 £ 4.14 (+11.14)  72.14 £ 2.99 (+2.25) 61.00 &+ 3.38 (+0.67) 73.82 + 1.67 (+5.50) 77.80 = 1.69 (+27.80)
ANN/|Xu et al.|(2019} 96.32 + 3.10 78.79 +3.74 69.17 £ 3.90 79.17 £ 3.07 73.30 +2.80
Vanilla LIF - SpikingGNN 92.60 + 4.41 77.81 +2.71 47.33 +3.14 70.29 £+ 2.01 74.30 + 1.47

GIN Adaptive LIF - SpikeNet 93.66 + 4.62 78.43 £2.63 50.67 £+ 3.61 7477 £ 1.63 74.80 +2.74
PLIF - PGNN 94.18 +4.834 79.16 + 2.61 50.17 £3.71 75.38 + 1.41 72.80 + 4.63
Gated LIF - GGNN 93.66 + 3.74 79.13 +2.28 49.50 +3.20 76.13 £+ 1.40 76.80 + 1.25
DAS-GNN 96.32 + 3.46 (+2.13) 80.02 £ 2.49 (+0.86) 57.83 +3.08 (+7.17) 77.45+ 1.30 (+1.31) 79.40 £ 2.41 (+2.60)

GCN(DAG) - GAT(DAG) -~ GIN(DAG) Table 2: Sensitivity analysis of learning rate.

GCN(DAGHLIBT) — GAT(DAG+LIBT) — GIN(DAG+LIBT)

learning rate (1)
s, Model 0.001 0.005 0.01 0.05 0.1 0.5

80 NN GCN 8778 9737 9737 9684 9579 8301
GAT 8573 9368 9421 9471 9526 90.99
GIN 9254 9579 9632 92.60 92.08 89.42

Accuracy (%)
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Vbase » Vinit Table 3: Sensitivity analysis of adaptive threshold size.

. e . adaptive threshold size ()
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Vibase for DAG, V;,,;; for DAG+LIBT. GIN 9684 9526 9579 9632 9526 9526 9526 9579

et al., 2008)), and IMDB-Binary (Yanardag & Vishwanathan, 2015b). We use three different GNN
layers: GCN (Kipf & Welling, 2016), GAT (Velickovic et al.,|2018), and GIN (Xu et al., 2019). We
choose four SNN baselines that are applicable to graph datasets: SpikingGNN (Zhu et al., [2022),
SpikeNet (Li et al., 2023), PGNN (Fang et al.,[2021) and GGNN (Yao et al.,[2022). Since this is the
first SNN design to target graph classification, we apply minor modifications to each architecture,
such as appending a readout layer. Note that SpikingGNN (Zhu et al., 2022)) was originally proposed
for GCN, but we extend it to both GAT and GIN. For the GCN architectures, we use 3 layers with 128
hidden dimensions. For the GIN architectures, we use 2 layers with 128 hidden dimensions where
each layer comprises 2 sublayers of MLP in their combination stages. Lastly, GAT architectures
have 2 layers with 4-multi head attentions with 64 dimensions. More details are in Appendix B.

5.2 RESULTS ON GRAPH CLASSIFICATION

We compare DAS-GNN against prior works that adopt a spiking neural network to graph datasets,
as shown in Table 1. We also report the performance of conventional ANN for comparison. In all
but a single case, DAS-GNN outperforms the baselines by a noticeable margin. In the case where
DAS-GNN underperforms, the gap is only 0.70%p, smaller than the error bounds. In the opposite
cases, the improvement is up to 27.80%p, showing a great amount of improvement.

An intriguing result is that DAS-GNN performs better than ANN-based GNNs in several cases,
contrary to usual cases where ANNSs serve as an upper performance bound of SNNs. Improvements
beyond the error bounds are found in MUTAG (GCN and GAT), NCI1 (GAT), and IMDB-BINARY
(GCN, GAT, and GIN). Note that the model architecture and the number of learnable parameters are
the same in all methods. We believe this could come from the spiking neurons efficiently capturing
the irregular connections over several timesteps, thereby showing an advantage over ANNs.

5.3 SENSITIVITY STUDY

In the proposed DAG and LIBT techniques, there are hyperparameters associated with the threshold
voltage values. For DAG, Vj,s. determines the thresholds at the first inference step, and for LIBT,



Table 4: Ablation study on the proposed method.

Model DAG LIBT MUTAG PROTEINS ENZYMES NCI1 IMDB-BINARY
X X 9096 74.39 55.33 73.41 68.40
GeN Y X 93.66(+2.70)  75.65 (+1.26)  56.83 (+1.50)  73.65 (+0.24) 71.90 (+3.50)
X v 9526(+4.30)  75.83 (+1.44)  59.00 (+3.67)  74.14 (+0.73) 80.10 (+11.70)
v v 9737(+641)  77.72(+3.33)  60.17 (+4.84)  77.25(+3.84) 80.60 (+12.20)
X X 7871 59.66 27.67 66.25 50.00
GAT X 8035(+1.64) 6648 (+6.82)  57.83 (+30.16) 67.98 (+1.73) 50.00 (+0.00)
X v 93.68(+14.97) 64.96(+5.30)  52.17 (+24.50) 69.61 (+3.36) 75.80 (+25.80)
v v 9421 (+1550) 72.14 (+12.48) 61.00 (+33.33) 73.82(+7.57) 77.80 (+27.80)
X X 9260 77.81 47.33 70.29 74.30
GIN Y X 9366 (+1.06) 7835 (+0.54)  50.83 (+3.50)  73.67 (+3.38) 75.20 (+0.90)
X V9471 (+2.11) 7933 (+1.52) 4850 (+1.17)  71.14 (+0.85) 74.00 (-0.30)
v v 9632(+3.72)  80.02(+2.21)  57.83(+10.50) 77.45(+7.16) 79.40 (+5.10)

Vinit determines the threshold initialization value at epoch 0. To see if the LIBT addresses the
sensitivity issue of DAG mentioned in Section 4.3, we varied those hyperparameters from 0.0 to
10.0 and measured the accuracy. Figure 4 depicts the results of the sensitivity study. As opposed to
the DAG, which is very sensitive to V}4s. (dashed lines), DAG +LIBT makes the accuracy stable to
Vinie (solid lines). Moreover, the peak accuracies are significantly higher for DAG +LIBT.

Since our scheme uses a learnable inference base threshold, we also study its sensitivity for the
learning rate, shown in Table 2. As shown in the table, DAS-GNN is relatively insensitive to learning
rate, except for the extreme values (0.001 or 0.5). As denoted in the experimental setting, we use
1 = 0.01 as the default value based on the results. In addition, we conduct sensitivity study of -,
which adjusts the amount of how much thresholds change in our DAG method, shown in Table 3. We
find that DAG is generally insensitive to -y, with minimal degradation within the given range. We use
0.2 as the default value of v, which is generally the best setting across different model architectures.

5.4 ABLATION STUDY

In this section, we break down individual components of DAS-GNN and perform an ablation study,
which is reported in Table 4. Starting from baseline implementation, which does not differentiate
neurons used by each node, we apply DAG to show the effect of degree-aware group-adaptive neu-
rons. Then, we experimented with our LIBT scheme to degree-divided groups without DAG. Lastly,
we applied both of our DAG and LIBT to compose DAS-GNN.

The results show that DAG alone can improve the performance across all datasets and models. This
means that uneven spike distribution caused by indegree variance is a general problem shared across
different graph datasets, and simply grouping the nodes with similar indegree to share the same
threshold helps alleviate this problem. In addition, adding a LIBT scheme not only makes it less
sensitive for inference base threshold values but also further boosts the accuracy in almost all cases,
demonstrating its efficacy and stability.

5.5 SPIKE FREQUENCY DISTRIBUTION ANALYSIS
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(a) Spike frequency distribution histogram of PGNN (b) Spike frequency distribution histogram of PGNN
and DAS-GNN on the IMDB-BINARY dataset. and DAS-GNN on the ENZYMES dataset.

Figure 5: Spike distribution histogram for PGNN and DAS-GNN (ours)



Table 5: Energy consumption comparison against baseline methods.

Model Method MUTAG PROTEINS ENZYMES NCI1 IMDB-BINARY
ANN (Kipf & Welling;2016) 0.53mJ 6.92m]J 3.29mJ 21.41mJ 3.16mJ
SpikingGNN (Zhu et al.||2022})  0.02mJ 1.28mJ 0.36mJ 3.92mJ 0.10mJ

GCN  SpikeNet (Li et al.[|2023) 0.06mJ 0.13mJ 0.25mJ 2.64mJ 0.35mJ
PGNN (Fang et al.|[2021) 0.10mJ 0.79mJ 0.84mJ 6.54m]J 0.28mJ
GGNN (Yao et al.[[2022) 0.08mJ 0.91mJ 0.48mJ 3.37mJ 0.21mJ
+Additional cost 0.02 puJ 0.08:J 0.051d 0.02uJ 0.30uJ
DAS-GNN 0.10mJ (-82.16%) 0.94mJ (-86.36%) 0.52mJ (-84.29%) 5.28mJ (-75.35%) 0.70mJ (-77.71%)

In this section, we perform additional analyses on DAS-GNN by studying its spike frequency distri-
bution. In Figure 6, we provide the same spike frequency visualization as done in Section 3, but us-
ing DAS-GNN and the best-performing baseline PGNN (Fang et al., 2021). Unlike Figure 1, which
showed severe starvation with most nodes not generating spikes, Figure 5 reveals that most nodes in
DAS-GNN fire a meaningful number of spikes, significantly alleviating the starvation problem. This
is further illustrated in Figure 6, where most neurons have non-zero spike values and successfully
reflect the topology of the graph. For nodes with higher degrees, the spikes are more frequent (close
to 5) due to having more incoming spikes from their neighbors.

In addition, we observed some correlation between the spike diversity, especially in the last layer,
and model performance as shown in Figure 5. In the ENZYMES dataset, both DAS-GNN and
PGNN show highly diversified spike distributions, which lead to similar performance. However, in
the IMDB-BINARY dataset, PGNN fails to achieve the same level of spike diversity, which does not
perform well enough compared with DAS-GNN. Our DAS-GNN design effectively integrates node
degree information and propagates it through spikes, thus reflecting graphs’ topology well.

5.6 ENERGY CONSUMPTION ANALYSIS

To determine whether DAS-GNN attains similar energy consumption benefits that are typically seen
in SNN, we calculated the theoretical energy consumption as shown in Table 5. These calculations
are based on/Horowitz|(2014); Yao et al.|(2023)), which are widely used for SNN energy consumption
analysis. We calculated energy consumption based on each layer’s spike sparsity p and FLOPs
(floating point operations). Assuming MAC and AC operations are implemented on 45nm hardware,
we used Fprac = 4.6pJ and E4c = 0.9pJ. The theoretical energy consumption for the SNN was
calculated with F4¢ x u x FLOP:s.

In the table, the ‘Additional Cost’ row represents the overhead caused by updating the per-group
threshold as in Equation (11). The additional cost calculated by 2 X E ¢ X (number of unique
degrees) x (hidden dimension) based on Equation (10). To share the per-group threshold among
neurons without communication, we assume that neurons within a group are mapped to the same
processing element. This way, the shared threshold value is stored in the local memory of the
processing element of neuromorphic hardwares (Merolla et al., 2014} |Davies et al., 2018} |Akopyan
et al.L 2015)), and the firing rate can be updated simply by counting.

As shown in Table 5, DAS-GNN achieves superior energy efficiency compared to the ANN coun-
terparts of around 80% improvements in all datasets. In addition, DAS-GNN maintains energy
consumption comparable to other baseline SNN models despite diversifying the spike frequency
distributions. It is worth noting that the additional cost for adaptively updating the thresholds is
almost negligible. This is because the update operations happen only once per group, whereas the
base computation requires operations per every connection for individual neurons. Because a group
typically has a few thousands of neurons and each neuron has multiple connections, the overhead
becomes an order of magnitude smaller compared to that of the main computation. For more energy
consumption results, please refer to Table 14 in the Appendix J.

6 RELATED WORKS

Graph Classification Graph classification requires identifying the global characteristics of each
graph and is commonly applied to domains such as bioinformatics (Borgwardt et al., |2005),
chemoinformatics (Zhu et al.| 2012), or social network analysis (Hamilton et al., 2017; [McCal-



Feature dim. Feature dim. Feature dim.

Figure 6: Analysis on spike frequency variation of GCN on IMDB-BINARY dataset using DAS-
GNN. X-axis denotes feature dimension, while Y-axis denotes nodes grouped and sorted by degree
in descending order, top to bottom. Brighter spots denote higher frequency.

2000). Popular examples include the molecular classification of chemical compounds,
proteins, or RNAs, where identifying the graph structural information is crucial. Many GNNs

[& Welling, 2016} [Veli¢kovi¢ et al, 2018}, [Xu et al.l 2019} [Yoo et al.| 2023)) use a message-passing
paradigm (Gilmer et al., 2017)) to aggregate local features. Thus, to obtain global features represent-

ing the entire graph, graph pooling 2018) is often used. Global pooling summarizes the
entire graph into a fixed-size graph embedding, which can be done by simply averaging or taking
minimum or maximum values of the node embeddings. Other variations replace such simple oper-
ations with neural networks (Vinyals et all, 2015}, [Li et al., 2016) or integrate sorting to selectively
choose which node embeddings to include |Zhang et al.[(2018). More advanced techniques such as
hierarchical pooling utilize hierarchical information of graphs (Ranjan et all, 2020} [Lee et al, 2019}

Gao & Ji,[2019; [Diehl, 2019) and usually show better representation learning (Zhang et al., [2018).

Spiking Neural Networks SNNs are a type of neural network where information is transmitted
via spikes, similar to how biological neurons work. They use different neuron models for capturing
spike signals effectively (Hodgkin & Huxleyl, [1952; [Hunsberger & Eliasmith| 2015)) or adjusting
parameters dynamically to complement the accuracy (Fang et al., 2021} [Wang et al., 2022} [Bellec
let al| 2018} [Lian et al} [2024). One major research area is converting traditional ANNs into SNNs
by mapping ANN activation functions into spike signals (Han et al., 2020} [Rueckauer et al., 2017}
[Hunsberger & Eliasmithl 2015}, [Sengupta et all 2019; [Fang et al., [2023). Another focus is directly
training SNNs using backpropagation, which involves using various techniques such as surrogate
functions for backpropagation (Shrestha & Orchard, Che et al, [2022)) and adapting normal-
ization techniques (Sengupta et al.,2019; Duan et al., 2022} Jiang et al., 2024} [Zhu et all, 2024).

SNN for Graphs Previous attempts to apply SNNs to graph datasets have primarily focused on
node-level classification tasks (Zhang et all 2024} [Sun et al. 2024} [Zhu et al 2022} Xu et all}
and have not yet been extended to graph-level tasks. While [Wang & Jiang| (2022) explored
the application of spike training to Graph Attention Networks (GAT), it implemented the message
passing phase after the spiking phase, which deviates from previous structures. Additionally, recent
efforts have begun to integrate SNNs with other techniques for contrastive learning 2024),
particularly in dynamic graphs 2024), to adopt collaboration between GNNs and SNN.

7 CONCLUSION

In this paper, we explore the application of SNNs to graph neural networks for graph classification
for the first time. After thoroughly analyzing the graph’s uneven spike distribution, we identify that
the degree of each node correlates to this phenomenon. To better accommodate such characteristics
of graphs, we propose degree-aware group-adaptive neurons, where we place neurons from vertices
sharing the same degree into groups. In addition, we propose to learn the inference base threshold
and adaptively adjust the threshold simultaneously to reduce its sensitivity and facilitate training
using spikes. Combined with the modified architecture for graph classification, the proposed DAS-
GNN outperforms existing works by a noticeable margin.
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A CODE

The code implementing our work is provided in a zip archive as part of the supplementary material.
The code is under Nvidia Source Code License-NC and GNU General Public License v3.0. We have
made significant efforts to ensure the reproducibility of our work for other researchers. Detailed
information on the experimental setup can be found in Appendix B.

B DETAILED EXPERIMENT SETTINGS

Dataset Details Given the diverse characteristics of graph datasets, we selected five well-known
datasets from TUDatasets, which are commonly used for graph classification. We also compiled
statistics for these datasets to briefly summarize their key properties.

Table 6: Summary of datasets used in the study.

Avg. # Nodes Avg. # Edges

Dataset # Graphs Nodes (I°tgraph) Edges (1*graph) # Classes
MUTAG Debnath et al.|(1991) 188 17.93 17 19.79 38 2
PROTEINS |Borgwardt et al.|(2005) 1113 39.06 42 72.82 162 2
ENZYMES |Borgwardt et al.|(2005) 600 32.6 37 62.1 168 6
NCI1 Wale et al.|(2008) 4110 29.87 21 32.30 42 2
IMDB-BINAKY |Yanardag & Vishwanathan|(2015b) 1000 19.77 20 96.53 146 2

Network Architecture In this work, we consider the following three GNN architectures where
the distinctions lie in their update rules:

* Graph Convolution Network (Kipf & Welling, |2016) (GCN):
(+1) _ Wh;.” . .
h; = 0(Xjeni) Utir m) where ¢(+) is replaced by affine transformation
W followed by nonlinearity o.

* Graph Attention Network (Velickovic et al., [2018)) (GAT):
hz(.lﬂ) = ai’iWhgl) + Zje/\/(i) aijWh;l), where «;; is the normalized attention score
between node ¢ and j.

* Graph Isomorphism Network (Xu et al.,|2019) (GIN):
hEHl) =MLP((1+ e)hgl) + 2 jene) hgl)), where ¢ is a learnable constant.

For the GCN architectures, we used 128 dimensions for hidden dimension size, and 3 layers were
composed of our network. For the GAT architectures, we used 2 layers, 64 dimensions for hidden
dimension size with 4 multi-head attentions. For the GIN architectures, our network is composed of
2-MLP layers with a hidden dimension size of 128 for the above equation. We extended Spiking-
GCN into GAT and GIN architectures as it was not introduced in the original paper.

The baseline settings, SpikeNet, PGNN, GGNN are the neuron-variant models that replace each
SNN layer with different types of neurons. SpikeNet successfully adopted SNN into temporal GNN
domains by proposing adaptive LIF neuron models. We adopted adaptive LIF into the static graph
datasets since it shows state-of-arts performance in the SGNN area. Another effective neuron model
is the parametric leaky integrate-and-fire (PLIF), widely adopted to other SNN tasks such as com-
puter vision and etc. They make the neuron’s membrane time constant into a learnable parameter
which makes it robust on the initial values. GLIF is another effective neuron model that enhances the
idea of PLIF neuron models by adopting linear leakage, introduced to fully parameterized neuron.
These three neuron models were selected to compare with our DAS-GNN which showed compet-
itive performance for the neuron-variant models. For all experiments including both baselines and
ours, we kept the GNN architecture unchanged (GCN, GAT, GIN), and only replaced the neurons
with the ones proposed in each method.

Experimental Settings We trained and evaluated our models using 10-fold cross-validation across
all datasets. For the IMDB-BINARY dataset, which lacks inherent features, we generated features
to 1 to use node degrees for the GNN layer. Additionally, we did not apply any multiplier to adjust
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the width of the sigmoid function. The details of our evaluation procedure are outlined below. All
experiments were conducted on a single RTX 4090 GPU for full-batch GNN training.

* Epochs: 1000

* Surrogate function: o(z) = 1-&-%

* Learning rate (n): 0.01 (for main table)
* Optimizer: Adamw

* Loss function: Cross-entropy

* Adaptive threshold size (y): 0.2

C OVERALL TRAINING PROCEDURE

As referred to in Section 4 our DAG method and overall updating initial values of group threshold
are referred to in Algorithm 1. Note that our initial group values are updated after timestep T.

Algorithm 1 Updataing inference base threshold V9 (0) procedure

1: Inputs: Initial start points of training threshold Vi, graph’s vertex feature X € RMXF | learning
rate for training 7, total time step 7', [-th layer’s threshold V;%), [-th layer’s message passing operation
MSGWY, true label Y,

2: Initialize: Vﬁl(O) = [Vinits - Vinit | > Initialize all of the g threshold groups with initial values
3: for ep = 1 to epochs do

4: fort=1toT do

5: X = PoissonEncoder(X) > Generate spikes for the input layer with Poisson encoder
6: for! =1to L do

7: for g in group G do

8: xX9W = prsg®(x9:0) > Operate by GCN, GAT, GIN architectures
9: for i = 1to |Ny| do
10: X900 = g9 (1) = SN (X901 > X9 represents i-th row of X 9"
11: 59U (1) = N7 Zien, S% (1)
12: end for
13: V2Ot) = V2Pt —1) + (1 — )59 O () > Update threshold through DAG Equation (10)
14: end for
15: end for
16: O « FC(POOL(GNN(X®))) 4+ 0t

17:  end for

18: Vin(0) = Vin(0) = 1V, 0 L(O71,Y)

19: end for

D ADDITIONAL RESULTS ON THE LARGE SCALE DATASETS

We show additional experiment results on two large graph datasets used for graph classification:
REDDIT-BINARY and COLLAB (Yanardag & Vishwanathan, 2015a), in Table 7. We could find
that our DAS-GNN still outperforms other baselines in large graphs with skewed degree distribu-
tion. In addition, we also run large graph datasets (ogbn-arxiv, ogbn-mag (Hu et al.||2020)) on node
classification tasks, where the results further show that DAS-GNN maintains its competitive perfor-
mance. DAS-GNN still performs the best, but the gap is smaller compared to the graph classification
tasks. We believe this is because the node classification depends more on per-node properties rather
than the graph structures, benefitting less from the proposed techniques.

E SENSITIVITY STUDY ON NUMBER OF GROUPS

When using the proposed degree-aware group-adaptive neurons, we create an individual group for
each unique degree (per each feature position). While this works well in general, there might be
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Table 7: Performance comparison against baseline methods in large scale graphs

Model Method REDDIT-BINARY COLLAB OGBN-ARXIV OGBN-MAG

ANN Kipf & Welling|(2016)  90.45 80.60 71.55 35.10

Vanilla LIF - SpikingGNN 81.10 67.24 53.52 27.78

GeN  Adaptive LIF - SpikeNet 82.60 68.78 60.18 28.82

PLIF - PGNN 82.35 68.46 58.45 27.52

Gated LIF - GGNN 83.10 67.92 58.23 28.75
DAS-GNN 83.50 (+0.40) 83.52 (+14.74)  60.84 (+0.66) 29.73 (+0.91)

ANN |Velickovic€ et al.|(2018)  76.30 55.60 71.06 29.60

Vanilla LIF - SpikingGNN 50.00 52.00 52.21 14.05

GaT  Adaptive LIF - SpikeNet 50.05 52.00 53.67 17.30

PLIF - PGNN 52.05 52.04 53.77 16.97

Gated LIF - GGNN 53.05 52.00 53.26 16.54
DAS-GNN 76.25 (+23.20) 75.58 (+23.54) 53.94 (+0.17) 17.37 (+0.07)

ANN Xu et al.|(2019) 80.75 75.11 61.01 27.55

Vanilla LIF - SpikingGNN 79.75 52.04 56.72 23.31

GIN  Adaptive LIF - SpikeNet 79.70 53.66 55.79 23.37

PLIF - PGNN 83.30 53.02 50.88 21.64

Gated LIF - GGNN 83.70 58.94 54.88 22.39
DAS-GNN 84.20 (+0.50) 70.38 (+11.44) 59.91 (+3.19) 23.98 (+0.61)

situations where we want fewer number of such groups. For such scenarios, we conducted experi-
ments where we limited the number of such groups. When the desired number of groups is lower
than the number of unique degrees (i.e., maximum degree), we merge the groups such that each

merged group covers an equal range of degrees.

Table 8 shows the results. As expected, using more groups is beneficial for performance in general.
Although the best point varies a little, the best performance for each dataset and architecture is
usually achieved when the near-maximum number of groups is used. One exception is PROTEINS

dataset on GCN, but the differences are small in this case.

Table 8: Comparison on using different number of groups

Dataset #Groups GCN GAT GIN
1 87.81 80.88 9471
2 96.84 8778 9632
MUTAG 3 9310 9579 95.79
Amax) 9737 9421 9632
1 7889 6433 78.89
2 78198 63.88 78.98
5 75.83 6739 75.83
PROTEINS 7, 7745 6955 7745
15 77.99  70.54 77.99
17(max) 7772 7214 80.02
1 5833 4133 45.17
2 5650 4050 4433
ENZYMES  § 5200 4500 4150
10(max) 60.17 61.00 57.83
1 7574 6786 73.82
2 7577 68.08 75.06
NCII 3 77.86 7248 76.86
4 7781 7426 7674
Smax) 7725 7382 7745
1 7170 50.00 74.60
2 7040 5030 72.90
5 6930 56.80 71.00
IMDB-BINARY 10 66.70 5640 6670
20 64.00 6130 6620
50 6599 6451 6555
65(max) 80.60 77.80 79.40
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F SENSITIVITY STUDY ON HYPERPARAMETERS ASSOCIATED WITH THE
THRESHOLD VOLTAGE VALUE

In Figure 4, our experiments were conducted using various inference base thresholds to demonstrate
the sensitivity of our DAG and LIBT schemes. Table 9 provides the numerical values used to gener-
ate Figure 4. We observed that the DAG GIN architecture shows high sensitivity to changes in the
Vpase 19.8%p change around the threshold (V}4s. for DAG).

Table 9: Sensitivity study of hyperparameters associated with the threshold voltage value.

‘/init
0.50 1.50  2.50 5.00 7.00 10.00

GCN DAG 87.84 86.75 88.33 8991 8830 68.16
Ours 95779 9737 9737 9579 9523 90.99

DAG 85.70 8196 8035 80.85 77.72 77.19
Ours 94.18 93.65 9421 93.68 91.58 92.60

GIN DAG 92.08 93.13 92.57 9421 92.08 93.68
Ours 94.18 9474 9632 93.68 94.71 89.94

Model Method

GAT

G SENSITIVITY STUDY ON LEARNING RATE

Our experiments were conducted under various learning rate conditions n € [0.001, 0.5] to assess
their impact. As reported in Table 2 for the MUTAG dataset, we also present results for the PRO-
TEINS, ENZYMES, NCI1, and IMDB-BINARY datasets across GCN, GAT, and GIN architectures.
Our model’s ability to learn V;,,;; demonstrates a sensitivity to learning rate similar to other ANN
models. We found that the optimal performance was achieved at a learning rate of = 0.01.

H SENSITIVITY STUDY ON ADAPTIVE THRESHOLD SIZE =y

We perform a sensitivity study by varying v within the range [0.05, 0.40] to evaluate its impact.
As reported in Table 11 for the MUTAG dataset, we present additional results for the PROTEINS,
ENZYMES, NCI1, and IMDB-BINARY datasets using GCN, GAT, and GIN architectures. The
total results are reported in Table 11.

I SENSITIVITY STUDY ON HIDDEN DIMENSION SIZE

We perform a sensitivity study with varying hidden dimension between [64,256] to study its impact
on the GNN performance. The results are presented in Table 12, where we could observe that
DAS-GNN maintains its performance across varying hidden dimension sizes. Further, we compare
this result with PLIF sensitivity study (Table 13), where ours consistently outperform PLIF neurons
across different hidden dimension sizes.

J ENERGY CONSUMPTION FOR OTHER ARCHITECTURES

As mentioned in Section 5.6, we calculated DAS-GNN energy consumption based on each layer’s
spike sparsity p and FLOPs (floating point operations). Assuming MAC and AC operations are
implemented on 45nm hardware, we used Eyrac =4.6pJ and E4¢c = 0.9p]. The theoretical energy
consumption for the SNN was calculated with E4¢c x p x FLOPs.

Our DAS-GNN proposed an additional operation related to adaptively adjusting the threshold. The
additional cost for the adaptive threshold operation would be 2 X E 4 x (number of unique degrees)
x (hidden dimension). However, it does not take a lot of portion, as the number of unique degrees
is very small compared to the number of vertices and edges.
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Table 10: Extended sensitivity study on learning rate.

learning rate (1)
Dataset Model 0.001 0.005 0.01 0.05 0.1 0.5

GCN  87.78 97.37 9737 96.84 95.79 83.01
MUTAG GAT 85.73 93.68 9421 9471 9526 90.99
GIN 9254 9579 9632 92.60 92.08 89.42

GCN 7511 76.82 7772 7736 7682 65.67
PROTEINS  GAT 64.14 7035 72.14 7323 7493 70.53
GIN 7772 79.07 80.02 78.17 76.55 75.65

GCN  45.00 51.17 60.17 56.83 54.67 29.17
ENZYMES  GAT 32.00 45.00 61.00 55.83 42.67 3433
GIN 3733 4433 57.83 3517 3133 2933

GCN  73.87 7737 7725 80.07 7881 66.95
NCI1 GAT 6693 7331 7382 76.06 7348 66.69
GIN 72.80 76.57 7745 70.54 69.05 64.94

GCN 7890 79.90 80.60 80.50 80.60 73.60
IMDB-Binary GAT 74.80 75.80 77.80 75.60 75.90 75.30
GIN 74.10 73.00 79.40 7540 74.70 73.60

Table 11: Sensitivity study on adaptive threshold size for DAS-GNN.

adaptive threshold size ()
Dataset Model 0.05 0.10 015 020 025 030 035 040

GCN 9579 96.84 9632 9737 93.13 96.32 9629 95.76
MUTAG GAT 95.23 93.66 92.60 9421 9474 9260 92.60 92.08
GIN 96.84 9526 9579 9632 9526 9526 9526 95.79

GCN  76.64 77.09 7736 7772 7691 77.18 7736 77.09
PROTEINS  GAT 70.62 70.53 7170 72.14 71.70 7440 72.60 71.34
GIN 79.51 79.78 79.52 80.02 79.78 79.15 79.42 78.98

GCN  63.17 61.50 6133 60.17 61.67 60.83 61.17 62.33
ENZYMES  GAT 60.67 61.67 6133 61.00 62.83 60.83 62.83 63.33
GIN 5550 54.50 54.00 57.83 56.50 57.00 51.83 50.83

GCN 7691 76.62 7659 7725 7652 7650 7501 74.60
NCI1 GAT 74770 7496 74.14 7382 7431 7382 73.09 73.33
GIN 78.61 7747 7125 7745 75.64 7513 7504 7341

GCN  80.70 80.10 80.40 80.60 80.40 80.80 81.00 80.50
IMDB-Binary =~ GAT 7540 75.80 76.60 77.80 7820 77.10 77.10 78.10
GIN 76.70 78.00 77.70 79.40 7870 79.00 78.40 78.10

In Table 5, we reported only the results for the GCN architectures in the main text. Additionally, for
Table 14, we provide the energy consumption data for other architectures, such as GAT and GIN.
Note that all values are measured in mJ, and the values in parentheses represent the energy reduction
ratio compared to the ANN baselines.
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Table 12: Sensitivity study on hidden dimension size for DAS-GNN.

hidden dimension size
Dataset Model 32 64 128 256

GCN 9474 9579 9737 96.84
MUTAG GAT 9474 9421 93.68 93.68
GIN 95779 9576 96.32 93.65

GCN  76.64 7799 7772 717.99
PROTEINS  GAT 73.58 72.14 6991 70.23
GIN 80.14 79.33 80.02 79.70

GCN 5333 5650 60.17 64.00
ENZYMES  GAT 5833 61.00 54.83 55.83
GIN 53.67 5733 57.83 5733

GCN 7219 74.09 7725 78.13
NCI1 GAT 75.88 73.82 75.16 75.72
GIN 76.81 76.11 7745 75.67

GCN  80.30 80.30 80.60 80.90
IMDB-Binary GAT 77.00 77.80 76.70 77.30
GIN 80.00 7890 79.40 76.20

Table 13: Sensitivity study on hidden dimension size for PLIF.

Hidden dimension size
Dataset Model 32 64 128 256

GCN  87.81 86.75 87.28 88.33
MUTAG GAT 83.01 8249 83.01 83.01
GIN 93.13 93.13 94.18 94.18

GCN 7511 76.82 7172 7646
PROTEINS  GAT 68.73 64.06 67.29 66.93
GIN 79.07 78.44 79.16 77.81

GCN  53.00 57.17 6050 59.83
ENZYMES  GAT 37.17 3850 37.83 36.67
GIN 51.83 51.50 50.17 48.67

GCN 7039 7260 76.52 77.69
NCII GAT 60.40 6832 6042 58.52
GIN 73,70 7333 7538 72.02

GCN  66.80 68.80 71.60 71.30
IMDB-Binary GAT 50.00 50.00 50.00 50.00
GIN 7490 7630 72.80 69.80

K ADOPTING DIFFERENT SPIKING GRAPH NEURAL NETWORK
TECHNIQUES

To show the effectiveness of DAS-GNN, we conducted experiments using three techniques from
et all 2024} [Xu et all 2021) (SpikeGCL, GC-SNN, GA-SNN), with and without our proposed
method in Table 15. The results show that DAS-GNN is orthogonal to these techniques and can be
additionally applied to further enhance the performance in all the tested cases.

Another dimension of technique we can explore is the temporal encoding of spikes. Although our
work focuses on the spike rate, we believe it could be adapted to temporal encoding schemes such

as (2024)), by integrating degrees to synaptic delays or encoding community information
as a temporal property. These opportunities are orthogonal to this work, and we leave them as our

future work.
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Table 14: Energy consumption comparison against baseline methods for all architectures.

Model Method MUTAG PROTEINS ENZYMES NCI1 IMDB-BINARY
ANN (Kipf & Welling/[2016) 0.53mJ 6.92mJ 3.29mJ 21.41mJ 3.16mJ
SpikingGNN (Zhu et al.||2022}  0.02mJ 1.28mJ 0.36mJ 3.92mJ 0.10mJ

GCN  SpikeNet (Li et al.][2023) 0.06mJ 0.13mJ 0.25mJ 2.64mJ 0.35mJ
PGNN (Fang et al.j|Z02Z1) 0.10mJ 0.79mJ 0.84mJ 6.54mJ 0.28mJ
GGNN/Yao et al.|(2022Z] 0.08mJ 0.91mJ 0.48mJ 3.37mJ 0.21mJ
DAS-GNN 0.10mJ (-82.16%)  0.94mJ (-86.36%) 0.52mJ (-84.29%) 5.28mJ (-75.35%) 0.70mJ (-77.71%)
ANN|Velickovic et al.|(2018) 0.33mJ 4.59mJ 2.42mJ 15.55mJ 2.20mJ
SpikingGNN [Zhu et al.|(2022)  0.01mJ 0.00mJ 0.11mJ 2.26mJ 0.00mJ

GAT  SpikeNet|Li et al.|[(2023) 0.00mJ 0.09mJ 0.28mJ 5.0ImJ 0.00mJ
PGNN/|Fang et al. [(ZU2T1) 0.09mJ 0.67mJ 0.21mJ 5.04mJ 0.00mJ
GGNN/Yao et al. (2022} 0.01mJ 0.85mJ 0.41mJ 2.78mJ 0.05mJ
DAS-GNN 0.07mJ (-79.96%)  0.05mJ (-98.82%) 0.34mJ (-85.83%) 4.75mJ (-69.44%) 0.55mJ (-74.89%)
ANN/|Xu et al.|(2019) 0.39mJ 4.96mJ 2.33mJ 15.26mJ 2.24mJ
SpikingGNN Zhu et al.|(2022)  0.05m]J 0.06mJ 0.19mJ 0.47mJ 0.07mJ

GIN  SpikeNet|Li et al.|[(2023) 0.01mJ 0.14m]J 0.13mJ 0.95mJ 0.07mJ
PGNN/|Fang et al. [(Z021) 0.04mJ 0.08mJ 0.17mJ 1.23mJ) 0.12mJ
GGNN|Yao et al.|(2022Z) 0.03mJ 0.09mJ 0.22mJ 2.51mJ 0.06mJ
DAS-GNN 0.05mJ (-87.14%)  0.02mJ (-99.64%) 0.14mJ (-96.14%) 1.67mJ (-89.04%) 0.06mJ (-97.48%)

Model MUTAG PROTEINS ENZYMES NCI1 IMDB-BINARY

Orig. DAS-GNN Orig. DAS-GNN Orig. DAS-GNN Orig. DAS-GNN Orig. DAS-GNN

SpikeGCL  91.49 97.34 77.87 79.15 28.17 32.17 65.69 67.76 71.70 73.30
GC-SNN  88.33 93.13 72.33 73.32 43.50 53.00 63.36 65.38 69.90 77.20
GA-SNN  66.49 92.05 59.57 65.85 33.17 51.83 52.21 66.13 50.00 78.60

Table 15: DAS-GNN results across different datasets and models.

L ANALYSIS ON SPIKE FREQUENCY

We provide additional figures referenced in Section 3. Figure 7 to Figure 28 presents the total
spike distribution histogram for the MUTAG, PROTEINS, ENZYMES, NCI1 and IMDB-BINARY
datasets. Moreover, we include baselines such as SpikingGNN, SpikeNet, and PGNN to help
illustrate the tendencies in spike distribution.
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Figure 7: MUTAG-SpikingGNN spike frequency distribution histogram.
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Figure 8: MUTAG-SpikeNet spike frequency distribution histogram.
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Figure 9: MUTAG-PGNN spike frequency distribution histogram.
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Figure 10: MUTAG-DASGNN spike frequency distribution histogram.
12k Layer 1 12k Layer 2 17k Layer 3
2 8k 2 8k 2 sk
g g g
A 4k A 4k A 4k
)
0 200 0 200 0 200
Spikes per node Spikes per node Spikes per node

Figure 11: PROTEINS-SpikingGNN spike frequency distribution histogram.
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Figure 12: PROTEINS-SpikeNet spike frequency distribution histogram.
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Figure 13: PROTEINS-PGNN spike frequency distribution histogram.
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Figure 14: PROTEINS-DASGNN spike frequency distribution histogram.
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Figure 15: ENZYMES-SpikingGNN spike frequency distribution histogram.
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Figure 16: ENZYMES-SpikeNet spike frequency distribution histogram.




3k Layer 1 3k Layer 2 3k Layer 3
22k 22k 22k
Z z g
A 1k A 1k A 1k
0 200 0 200 0 200
Spikes per node Spikes per node Spikes per node
Figure 17: ENZYMES-PGNN spike frequency distribution histogram.
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Figure 18: ENZYEMS-DASGNN spike frequency distribution histogram.
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Figure 19: NCI1-SpikingGNN spike frequency distribution histogram.
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Figure 20: NCI1-SpikeNet spike frequency distribution histogram.
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Figure 21: NCI1-PGNN spike frequency distribution histogram.
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Figure 22: NCI1-DASGNN spike frequency distribution histogram.
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Figure 23: IMDB-BINARY-SpikingGNN spike frequency distribution histogram.
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Figure 24: IMDB-BINARY-SpikeNet spike frequency distribution histogram.
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Figure 25: IMDB-BINARY-PGNN spike frequency distribution histogram.
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Figure 26: IMDB-BINARY-DASGNN spike frequency distribution histogram.
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Figure 27: ENZYMES-PGNN-GAT spike frequency distribution histogram
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Figure 28: ENZYMES-DASGNN-GAT spike frequency distribution histogram.
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