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Unsupervised 3D Link Segmentation of Articulated
Objects With a Mixture of Coherent Point Drift

Jaegoo Choy , Geonho Cha , and Songhwai Oh , Member, IEEE

Abstract—In this letter, we address the 3D link segmentation
problem of articulated objects using multiple point sets with dif-
ferent configurations. We are motivated by the fact that a point set
of an object can be aligned to point sets with different configurations
by applying rigid transformations to links. Since existing 3D part
segmentation datasets do not provide motion-based annotations,
we propose a novel dataset of articulated objects, which are an-
notated based on its kinematic models. We define the point set
alignment process as a probability density estimation problem and
find the optimal decomposition of the point set and deformations
using the EM algorithm. In addition, to improve the segmentation
performance, we propose a regularization loss designed with a
physical prior of decomposition. We evaluate the proposed method
on our dataset, demonstrating that the proposed method achieves
the state-of-the-art performance compared to baseline methods.
Finally, we also propose an effective target manipulating point
proposer, which can be applied to collect multiple point sets from
an unknown object with different configurations to better solve the
3D link segmentation problem.

Index Terms—3D link segmentation, unsupervised method, 3D
link segmentation dataset.

I. INTRODUCTION

MANIPULATING articulated objects is one of the core
problems in robotics, which is hard to handle because

of its inherent high degrees of freedom. However, if we know
the kinematics model of an articulated object, it will be much
easier to manipulate the object. Hence, kinematics-model-based
manipulations have been extensively studied in robotics [1]–[3].
Here, decomposing an object into several links in kinematics, is
one of the most important steps in understanding the kinematics
of an object.

Due to its importance, extensive work on 3D part segmen-
tation has been conducted in many ways. A main approach is
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Fig. 1. A visualization of the point sets and the corresponding transformation
parameters. In this example, the source point set Y maps to two target point
sets X1:2. From the shared link decomposition information and transformation
parameters {R1

1:3, t11:3} and {R2
1:3, t21:3}, Y is aligned to X1 and X2.

utilizing massive data with 3D part annotation to learn a deep
neural network in a supervised manner [4]–[6]. These datasets
consist of extensive samples in daily categories (e.g., scissors,
chairs, and cups) with category-level or instance-level annota-
tions. However, supervised-learning-based methods could have
a generalization issue, i.e., their performances might be de-
graded in case of unseen object categories. In addition, they
need massive data with expensive annotations. To resolve this
issue, unsupervised-learning-based approaches have been pro-
posed [7]–[9].

It should be noted that existing 3D part segmentation datasets
may not be appropriate to study the kinematics model of objects
since their annotations are not based on motions of objects.
For example, in the ShapeNet dataset, a chair is divided into
a backrest, a seat, and legs, but the chair is considered a rigid
body in the aspect of its kinematics model. Hence, we need a
dataset which is suitable for kinematics studies.

In this letter, to resolve these issues, we propose a novel
unsupervised link segmentation algorithm and a novel KinArt3D
dataset.1 Our model is designed with the following intuition:
given different point sets of the same object, the target point sets
can be aligned by dividing the source point set into several links
and applying a rigid transformation to each link, as illustrated in
Fig. 1. The goal of our model is to find an optimal decomposition

1This dataset is available at https://rllab-snu.github.io/projects/mcpd/doc.
html
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of the point set and transformations as a probability density
estimation problem. We adopt the probability-based approach
as it is robust to noise, outliers, and missing points, which can
frequently occur in practical situations. The probability density
is a Gaussian mixture model weighted by a latent variable infer-
ring the decomposition of the point set. After the optimization
procedure, we can figure out the links of the object. Here, it is
the optimal decomposition which allows us to align different
configurations of point sets by applying rigid transformations to
links. However, due to the inherent high degrees of freedom of
the problem, the results might not be satisfactory. To mitigate this
issue, we propose a regularization loss designed with a physical
prior of decomposition, which can be used in the optimization
step. We demonstrate the effectiveness of the proposed method
in the experiments section by comparing the performance of the
proposed method with other state-of-the-art methods.

In addition, for practical robotic uses, we also propose a target
manipulating point proposer. In most environments, such as a
robotic manipulating problem, since an object is given rather
than point sets of the object, it is necessary to gather point sets
of various configurations of an object. In that situation, the target
manipulating point proposer enables the robotic manipulator to
obtain target points so that the proposed method can achieve
high performance. In MuJoCo simulator [10], we demonstrate
the effectiveness of the target manipulating point proposer using
the objects in the KinArt3D dataset.

In summary, the contributions of this letter can be summarized
as:
� We propose the KinArt3D dataset which can be used

as a benchmark dataset in the 3D link segmentation of
articulated objects.

� We propose a novel method of decomposing an articulated
object into several links in an unsupervised way.

� Our method shows the state-of-the-art performance on
the KinArt3D dataset. Specifically, the mean IoU of our
method on the KinArt3D dataset is improved by 41%
compared to the baseline methods.

� We also propose a target manipulating point proposer.

II. RELATED WORK

In this section, we summarize related studies in four parts: 3D
part dataset, deep-neural-network-based 3D part segmentation
algorithms, point set registration methods, and online kinematics
estimation methods.

3D part datasets: ShapeNet [11] is a large-scale 3D CAD
dataset consists of 220,000 models. In addition, its subset,
ShapeNetCore [11], covers 55 object categories with about
51,300 unique 3D models and provides detailed semantic anno-
tations. PartNet [6] is a large-scale dataset providing fine-grained
and hierarchical instance-level part semantic annotations. It
consists of 26,671 3D models covering 24 object categories, and
14 categories are selected from ShapeNet. However, they only
provide rigid 3D models, making utilization of them in robot
manipulation studies difficult. Thus, we propose the KinArt3D
dataset that provides 3D models with articulated motions to
resolve this issue.

3D part segmentation algorithms: Thanks to the increased
computation capacity and large-scale datasets, supervised learn-
ing methods using neural networks show favorable performance
in 3D part segmentation [7]–[9]. The multi-scale U-Net pro-
posed by Lyu et al. [7] maps point clouds into a 2D image
space using 2D convolutional networks. 3D Graph Convolution
Networks (3D-GCN) of Lin et al. [8] is a graph drawing algo-
rithm that projects point clouds into 2D image representations
while preserving the local information among the points in each
cloud. Thomas et al. [9] presented a deformable convolution
which is robust to varying point cloud densities. In spite of the
high performance of the supervised methods, its application
to general objects is challenging, as they require expensive
semantic annotations for the training.

Point set registration: Point set registration has been studied
since 1990 s, and there are many related studies, but we describe
only the most general methods. Iterative Closet Point (ICP) [12],
[13] alternatively finds the correspondences by searching the
nearest points and the rigid transformations which minimize the
distance between the point sets until convergence. However, it
is quite sensitive to the initial condition. To alleviate this issue,
variations of ICP have been studied to solve the shortcomings
of ICP. Specifically, Gold et al. [14] proposed a robust ICP
algorithm which is less sensitive to an initial condition. The most
popular method among probability-based point set registration
methods is coherent point drift (CPD) [15] which formulates
maximum likelihood estimation problem using a Gaussian mix-
ture model. However, the existing point set registration methods
do not handle articulated objects, which inhibits their practical
utilizations.

Online kinematics: Tzionas et al. [16] proposed an algorithm
that generates a 3D mesh from a depth image and segments
the mesh by motion tracking in animation. Nunes et al. [17]
performed unsupervised online learning of the 3D kinematic
structures of random articulated objects by introducing a simi-
larity matrix of a point cloud. However, these methods have the
limitation of requiring correspondence between point sets.

III. KINART3D DATASET

The KinArt3D dataset provides instance-level link segmenta-
tion annotation for 91,075 shapes of 92 unique models from eight
articulated object categories. Fig. 2 shows some examples of our
dataset. We first manually created a kinematic model for each ob-
ject and prepared a mesh model of each link. Fig. 3 illustrates five
links of an example arm object and its tree structure. The edge
of the tree means that there is a joint between the two connected
links and stores three pieces of information: joint type, axis, and
range. In the KinArt3D dataset, we consider 1D revolute joints
and 2D universal joints. By uniformly sampling joint angles from
its ranges, calculating the global 3D transformation of each link,
and taking the calculated 3D transformation to each link, we can
create a large number of different shapes from a single object.
The remaining task is to check collisions between different
links, and if there is no collision, merge all links and sample
points from the merged mesh. In conclusion, by elaborately
decomposing the object into a few links and generating a tree
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Fig. 2. An illustration of eight object categories in the KinArt3D dataset.

Fig. 3. A visualization of the kinematic chain of an arm object.

structure based on its kinematic model, we can get a large set of
points with precisely labeled links without human segmentation.

By using the farthest sampling method [23], we sample 2,048
points from the merged meshes and normalize them so that their
coordinates are between−1 and 1. In addition, we also voxelize
the merged meshes with 643 resolutions for the unsupervised
baseline method.

IV. PROBLEM FORMULATION

Our goal is to align the source point set Y to the S target
point sets X1:S = {X1, . . .,XS} by decomposing Y intoK links
and rigidly transforming the decomposed links, as illustrated in
Fig. 1. Each target point set consists of N points. To this end,
we find the parameters θ = {Π,R1:S,1:K , t1:S,1:K , σ2}. Π is the
conditional probability matrix with M rows and K columns of
which the (i, j)-th element πij represents the probability that the
i-th source point belongs to the j-th link, whereM is the number
of points in the source point set. Here, πij satisfies the fol-
lowing two conditions: 0 ≤ πij ≤ 1 for ∀i ∈ {1, . . .,M}, ∀j ∈
{1, . . .,K} and

∑K
j=1 πij = 1 for ∀i ∈ {1, . . .,M}.We also in-

troduce a discrete latent variable Z that determines the link from
which the source point originates. In other words, p(Zi = j|yi)
is the probability that the i-th source point belongs to the j-th
link, and it is equal toπij . Rsk and tsk are the rigid transformation
parameters, rotation and translation, respectively, of the k-th link
to the s-th target point set. And σ is the standard deviation for
generating a probability model of the source point set Y.

A. Rigid Link Registration

Similar to CPD [15], the points in Y become centroids to
define the GMM probability density function. The conditional
probability of the s-th point of then-th target point setxsn, given
the m-th point of the source point set ym and the state Zm = k,

is as follows:

p(xsn|ym,Zm = k, θ) =
exp−

1
2σ2 ‖xsn−Rskym−tsk‖2

(2πσ2)D/2

:= g(xsn,Rskym + tsk, σ
2), (1)

where g(xsn,Rskym + tsk, σ2) is a normal distribution with
mean Rskym + tsk and the standard deviation σ, and D is the
dimension of the point sets.

We optimize the parameters θ by using Expectation-
Maximization [19]. To this end, we define the expected value
of the log-likelihood probability function with respect to a con-
ditional probability distribution of the hidden variable Z given
observations and the current estimates of the parameters θ̂ as
follows:

Q(θ|θ̂) = EZ|X1:S ,Y,θ̂ [log p(X1:S ,Y,Z|θ)] . (2)

The E-step computes the value Q(θ|θ̂) and the M-step finds
parameters θ which maximizes Q given the current estimates
of the parameters θ̂. From now, to simplify equations, the
sum or product over multiple variables is replaced with a
single summation or product notation (e.g.,

∑
sm f(s,m) ≡∑S

s=1

∑M
m=1 f(s,m)).

1) E-Step: Since the conditional probability function
T̂snmk ≡ p(Zm = k|xsn, ym; θ̂) can be calculated as

π̂mkg(xsn, R̂skym + t̂sk, σ̂2)∑K
j=1 π̂mjg(xsn, R̂sjym + t̂sj , σ̂2)

, (3)

we can compute Q(θ|θ̂) as follows:

Q(θ|θ̂) =
∑
snmk

T̂snmk

[
log

1

M
+ log πmk − D

2
log(2πσ2)

− 1

2σ2
‖xsn − Rskym − tsk‖2

]
. (4)

2) M-Step: In the M-step, we fix the current estimates of
the parameters θ̂ and obtain the parameters θ which maximizes
Q(θ|θ̂). After taking a partial derivative of the objective with
respect to t, π and σ2, we obtain the parameters which make the
corresponding derivatives equal to zero.

Taking partial derivative of Q with respect to tsk and equate
it to zero, we obtain tsk = μskx − Rskμsky, where the mean
vectors μskx and μsky for the s-th target point set and the k-th
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link are defined as:

μskx =

∑
nm T̂snmkxsn∑

nm T̂snmk

, μsky =

∑
nm T̂snmkym∑
nm T̂snmk

. (5)

In the same way, the σ2 can be updated as:

σ2 =

∑
snmk T̂snmk ‖xsn − Rskym − tsk‖2∑

snmk T̂snmkD
. (6)

Substituting t into the objective function and rewriting it in a
matrix form, we obtain

Rsk = argmax
Rsk

tr
(
AT

skRsk

)
, Ask = XT

skT̂
T

skYsk, (7)

where Xsk = Xs − 1μskx, Ysk = Y− 1μsky, and T̂sk is a N ×
M matrix of which the (i, j)-th element is T̂sijk. From [20], the
optimal Rsk can be calculated as UCVT , where USVT is SVD
of Ask and C = diag(1, . . ., 1, det(UVT )).

Finally, the optimization rule for π with a constraint can be
represented as

π = argmax
π

∑
snmk

T̂snmk log πmk s.t.
∑
k

πmk = 1 for ∀m.

(8)
It can be solved by using the Lagrange multiplier theorem [21]

and we obtain πmk =
∑

sn T̂snmk∑
snk T̂snmk

.

B. Regularized Rigid Link Registration

In Section IV-A, we propose a novel method to divide the
source point set into its kinematic links without correspondences
between point sets. We further improve the method by introduc-
ing a novel regularization term which can be used in conjunction
with the objective function. We employ the KL divergence to
make the conditional probability π of neighboring points similar
during the optimization step. The regularization term is defined
and approximated as

R(Π) = −
M∑

i,j=1

wijDKL(πi||πj) ≈ −2
M∑
i=1
i�=m

wimπik log
πik

πmk
,

(9)
where the binary coefficient wij denotes whether the distance
between yi and yj is less than ε or not.

Since the regularization term is only affected by Π, the
optimization rules for the other parameters are the same as
in Section IV-A. As described in Section IV-A, we utilize the
Lagrange multiplier theorem and the optimal πmk with the
regularization loss is

πmk =

∑
sn T̂snmk + 2

∑M
i=1
i�=m

wimπik∑
snk T̂snmk + 2

∑
k

∑M
i=1
i�=m

wimπik

. (10)

When two conditions
∑M

i=1
i�=m

wimπik 	
∑

sn T̂snmk and∑
k

∑M
i=1
i�=m

wimπik 	
∑

snk T̂snmk are satisfied, the optimal

πmk can be approximated as
∑

sn T̂snmk∑
snk T̂snmk

which is identical to

the results for unregularized optimization in Section IV-A. We

Algorithm 1: Regularized Rigid Link Registration.

1: Initialize Rs
k = I, tsk = 0, for ∀k ∈ {1, . . .,K} and

∀s ∈ {1, . . ., S}
2: Initialize σ2 = 1

SMND

∑
snm ‖xsn − ym‖2

3: Initialize ΠM×K using GMM clustering method
4: Set a binary matrix W (wij = 1 if ‖yi − yj‖ < ε else 0)
5: repeat
6: Ts

nmk = πmkg(xsn,Rskym+tsk,σ2)
∑K

j=1 πmjg(xsn,Rsjym+tsj ,σ2)

7: for s← 1 to S do
8: for k← 1 to K do
9: μskx =

∑
nm Tsnmkxsn∑

nm Tsnmk
, μsky =

∑
nm Tsnmkym∑

nm Tsnmk

10: Xsk = Xs − 1μskx, Ysk = Y− 1μsky

11: Ask = XT
skTT

skYsk, and compute SVD of Ask

12: Rsk = UCVT , where
C = diag(1, . . ., 1, det(UVT ))

13: tsk = μskx − Rskμsky

14: end for
15: end for
16: σ2 =

∑
snmk Tsnmk‖xsn−Rskym−tsk‖2∑

snmk TsnmkD

17: πmk =

∑
sn Tsnmk+2

∑M
i=1
i�=m

wimπik

∑
snk Tsnmk+2

∑
k

∑M
i=1
i�=m

wimπik

18: until converge

Fig. 4. Some results of the regularized link registration process. A source point
set is used for the process with different target point sets. In the first and second
cases, the source point set is decomposed into only two links.

summarize the entire optimization steps of the regularized rigid
link registration in Algorithm 1.

V. TARGET MANIPULATING POINT PROPOSER

When running the proposed algorithm on the KinArt3D
dataset, all point sets are randomly sampled from the pool of
point sets of the same object in the dataset. However, this method
cannot be applied when facing an unknown articulated object
on the table because only one source point set is observed.
It is necessary to create new target point sets with different
configurations by manipulating the object to run our algorithm.
However, gathering target point sets by randomly manipulating
the object may not help to understand the object’s structure.
When collecting the target point sets through completely random
manipulation, sometimes not all links are detected, as shown in
Fig. 4. Only in the third case, the target point set enables the
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proposed method to find all object links. Meanwhile, in the other
two cases, the target point set X2 is not informative. As such, the
need for a method to gather informative target point sets leads
us to suggest a target manipulating point proposer.

The ultimate goal of the target manipulation point proposer is
to select some manipulation point x ∈ Xh given the target point
sets X1:h and the source point set Y. Instead of directly sampling
the target manipulating point from the last target point set Xh,
we sample the target manipulating point from the source point
set Y and manipulate the corresponding point from the last target
point set Xh. The criteria for selecting the target manipulation
point from the source point set Y and how to find the target point
x ∈ Xh corresponding to an arbitrary source point ym ∈ Y will
be explained.

After the optimization of parameters θ with the source point
Y and the target point sets X1:h, for m ∈ {1, . . .,M}, we can
infer the point x ∈ Xh which is the most closely related to the
point ym ∈ Y by using the parameters θ as follows:

x∗, k = arg max
x∈Xh,j

πmjg(x,Rhjym + thj , σ
2). (11)

For convenience, the point in the target point set Xh correspond-
ing to ym is denoted as xhm∗.

The proposer introduces M-dimensional probabilities Φ that
satisfy

∑M
m=1 φm = 1 and choices yi ∈ Y over the probabilities

Φ. At the initial state where no target point set is given, all
values of Φ are initialized to 1

M to uniformly sample point yi.
After the new target point set Xh is collected, the parameters
θ are optimized through the Algorithm 1, and the probabil-
ities Φ are updated based on the parameters θ. We employ
the Gaussian distribution with mean xhi∗ and the standard
deviation σ2 to make the target point proposal not close to
the previous manipulating point. Furthermore, we employ the
entropy of Π to focus the proposal on the unstable source
points. For example, suppose that it is learned that the point
yi belongs to the j-th link. Then πij will be close to one
while πik will be close to zero for k �= j. Hence, the entropy
of πi = [πi1 · · ·πiK ] will be small. On the other hand, the
“unstable” source points such as points near joints of the object
have relatively high entropy. The optimization rule for Φ is as
follows:

φm ← φm − α ·MINMAX
(
g(xhm∗, xhi∗, σ2)

)−
β ·MINMAX

(
K∑

k=1

πmk log πmk

)
,

φm ← MINMAX(φm), (12)

where MINMAX is min-max normalization over variable m,
i.e., MINMAX(f(m)) = f(m)−minm(f(m))

maxm(f(m))−minm(f(m)) . When the α
is high, the proposer mainly samples the target point far from the
previous manipulating points. Conversely, when the β is high,
the proposer mainly samples the target point where segmentation
is unstable, especially near joints.

Algorithm 2: Target Manipulating Point Proposer.
1: Receive the source point set Y
2: Initialize the point proposal probabilities Φ← 1

M
3: Initialize target point set buffer X̄← {}
4: for h← 1 to max _ step do
5: Sample one point yi ∈ Y over the probabilities Φ
6: Manipulate the matched point xhi∗ ∈ Xh (X1 = Y)
7: Store the new target point set Xh+1 in X̄
8: Optimize the parameters θ as illustrated in section 4.B
9: φm ← φm − α ·MINMAX(g(xhm∗, xhi∗, σ2)) - β ·

MINMAX(
∑K

k=1 πmk log πmk)
10: Normalize Φ
11: end for

VI. EVALUATION AND RESULTS

Test metrics: Evaluation metrics are mean IoU per category
following the practices in [23]. We follow the evaluation protocol
of [24], where the Hungarian method is used to find the best
allocation of segments to the ground truth. Empty segments are
introduced if the number of the estimated segments are less than
that of the ground truth.

A. Link Decomposition on KinArt3D Dataset

1) Baseline Description: We compare the performance of the
proposed method to various state-of-the-art methods [7]–[9],
[22] to demonstrate the effectiveness of the proposed method.
For comparison with the proposed method, we use three su-
pervised 3D part segmentation methods, U-Net [7], 3Dgcn [8],
and KPConv [9], and one unsupervised method BAE-Net [22].
We split our dataset into train and test sets based on the ra-
tio of 8:2. The supervised methods are trained with the sam-
pled 2048 points and its ground-truth segmentation label. On
the other hand, the unsupervised method is trained using 643

voxels.
2) Quantitative Results: In Table I, we report the mean

IoU scores per category and overall mean IoU scores. The
proposed method with regularization achieves the best perfor-
mance compared to the other methods. We use the following
setting for the evaluation: M = 2048, N = 2048, K = 7,
S = 4, and ε = 0.05. Here, we observe that the performance
of the supervised methods on our data set is not as high as
that on Shapenet-Part dataset [11]. (Note that U-Net, 3Dgcn,
and KPConv achieve 0.846, 0.821, and 0.851 in class mean
IoU and in 0.888, 0.851, and 0.864 in instance mean IoU on
Shapenet-Part dataset.) Those algorithms achieve similar per-
formance only on glasses models, where all the objects have the
same kinematics, of our dataset. According to the observation,
we argue that the supervised methods have bad generalization
performance. Since the mean IoU of the regularized method is
higher than that of the unregularized method in all the categories
except for the door as shown in Table I, we can conclude that
adding the regularization term can improve the segmentation
performance.
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TABLE I
OVERALL SEGMENTATION RESULTS ON KINART3D DATASET

Fig. 5. An illustration of segmentation results on examples in KinArt3D
dataset.

3) Qualitative Results: We also report the qualitative results
in Fig. 5. We can demonstrate that the proposed method shows
the best performance for all examples. Furthermore, the regu-
larized method generally shows better results than the unregu-
larized method. On the other hand, supervised methods show
poor performance for examples of categories other than glasses.
From this result, we can qualitatively observe that the supervised
methods have bad generalization performance. Note that our
method consistently shows satisfactory performance even if the
number of links of the model in the same category varies. While
supervised methods are vulnerable to unseen models in test data,
the proposed method can accurately infer models in test data
as our method estimates the decomposition without any prior
knowledge of the model. This result is more conspicuous in the
KinArt3D dataset, because the models in the KinArt3D dataset
contain very diverse shapes and segmentation information even
though they belong to the same category.

4) Results on Perturbed Data: Since there is a discrepancy
between the point sets collected in the real environment and the
simulated data, we test the proposed method on the KinArt3D
dataset under varying levels of missing points, noise, and out-
liers. We generate missing points by randomly removing some
points from the point set. The noise is sampled from the normal

Fig. 6. Examples of missing points, noise, and outliers.

Fig. 7. The computational time measurement results of the proposed method
in various implementation variables. (left) The number of links, K. (middle) The
number of target point sets, S. (right) The number of points (M = N).

distribution with zero mean and standard derivation considering
mdist which is the mean distance between a pair of nearest points
and added to the point set position. The outliers sampled from
the standard normal distribution are added to the point set. We
have found out that a simple outlier removal method, namely the
radius outlier removal method [25], is highly effective. Some
examples of missing points, noise, and outliers are illustrated
in Fig. 6 and the results of the proposed method are shown in
Table II. It shows that the proposed method is robust against
missing points, noises, and outliers.

5) Computation Time: To show the practicality of the pro-
posed method, we measure the computation time of the proposed
method in various implementation variables. Algorithm 1 is
implemented in Python using the CUDA accelerated library and
all results are measured on GeForce GTX 1080 Ti. The required
calculation time is 221.69± 0.45 seconds under the following
settings: M = 2048, N = 2048, K = 7, and S = 4. Fig. 7 shows
the computation times while changing one variable and fixing
the other variables. It shows that there is a linear relationship
between the computation time and the implementation variables.
A small deviation of the computation time indicates that the
computation time of the proposed method does not depend on
the complexity of objects.

6) Further Analysis for Experimental Results: Reconstruc-
tion results of the proposed method: We illustrate the process
of aligning the target point set from the source point set in
Fig. 8. At the final step, the transformed point set is closely
aligned to the target point set, and the segmentation result is
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TABLE II
RESULTS OF THE PROPOSED METHOD ON PERTURBED DATASET. THE MISSING RATIO IS THE RATIO OF THE NUMBER OF MISSING POINTS TO THE TOTAL NUMBER

OF POINTS. THE NOISE STD IS THE STANDARD DEVIATION OF THE NOISE PROPORTIONAL TO MDIST. THE OUTLIERS IS THE NUMBER OF OUTLIERS ADDED TO THE

POINT SET

Fig. 8. An illustration of segmentation and reconstruction results per step.

Fig. 9. An illustration of sample objects in lamp and glasses category.

also satisfactory. The successful aligning of two point sets, even
though no correspondence between the source point set and the
target point set is given, is a remarkable result.

The reason why the proposed method outperforms super-
vised methods except for the glasses category: The proposed
method shows higher performance than supervised methods in
all categories except the glasses category, as shown in Table I.
It is contradictory that supervised methods perform better than
unsupervised methods for most problems. The reason for this
unusual result is that the KinArt3D dataset is annotated based
on the kinematics of the object. For example, as shown in Fig. 9,
a lamp object can have a different number of links depending
on its kinematics, which negatively affects supervised methods.
However, in the glasses category, since all objects have the
same number of links and similar shapes, the supervised method
shows its strength. In fact, KPConv shows the best performance
in the glasses category.

The reason why the proposed method is robust to a varied
number of links: When usingK higher than the actual number of
links, the optimization results of the proposed method are shown
in Fig. 10. Even if K is larger than three (the actual number of
links of the object), any excessive links are compressed during
optimization, and only three links remain at the end. Because the
proposed method derives results that match the actual number of
links of the object regardless of K, the proposed method shows
robust results in categories with various numbers of links.

Negative effects of the regularization term on door category:
The unregularized method shows better results quantitatively
and qualitatively than the regularized method for doors, as shown
in Table I and Fig. 5. In Fig. 11(e), when the source point set is A,

Fig. 10. An illustration of segmentation results depending on the number of
links. Optimization results when K is (a) 5 and (b) 6.

Fig. 11. An illustration of segmentation results depending on its source point
set. Segmentation results of the proposed method when the source point set is (a)
A, (b) B, and (c) C and the target point sets are the others. (d) Segmentation results
of the unregularized method when the source point set is A. (e) Visualization of
the range of nearby points applied to regularization.

the ground-truth segmentation of the door dramatically changes
bordering on the red line, whereas the regularization term makes
the points in the yellow circle belong to the same link. These
opposing goals make the regularized method’s performance
lower than that of the unregularized method in special cases
such as a closed door.

B. Target Manipulating Point Proposer on MuJoCo

We use UR5 and Robotiq 2R-85 gripper of MuJoCo for
the data collecting task of articulated objects. For convenience,
objects in some categories, such as a lamp, are fixed to the table.
All procedures are the same as described in Algorithm 2, and
the point set is restored using its joint angles obtained from the
simulator. After the point to be manipulated is determined, the
robot gripper grabs the point, moves it randomly, and releases
it. A process of collecting data with the proposed proposer is
illustrated in Fig. 12.

To demonstrate the effectiveness of the proposed method,
we report the mean IoU scores per category of the proposed
method and random method. The random method is a method
of randomly sampling manipulating points from the source point
set by fixing the probabilities Φ to 1

M and not updating it.
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Fig. 12. An illustration of collecting data using the target manipulation point
proposer on a leg object in simulation.

TABLE III
RESULTS OF TARGET MANIPULATING POINT PROPOSER AND COMPARISON

WITH THE RANDOMIZED METHOD

TABLE IV
SEGMENTATION RESULT OF THE TARGET MANIPULATING POINT PROPOSER

WITH RESPECT TO VARIOUS SETTINGS OF α AND β

Table III, which shows the mean IoU scores per category of
the proposed and randomized methods, proves the effectiveness
of the proposed method. The results in Table III are measured at
α = 0.5 and β = 0.5 and the iterations is the number of target
point sets, h, in Algorithm 2. The target manipulating point
proposer consistently outperforms the randomized method.

Table IV shows the performance measured by changing the α
and β in (10). The performance of α = 1 is higher than the per-
formance of β = 1, indicating that sampling unvisited points is
more beneficial than sampling unstable points in understanding
the structure of an object. However, the highest performance at
α = 0.5 and β = 0.5 means it is better to mix the two sampling
strategies.

VII. CONCLUSION

We have introduced a novel 3D link segmentation algorithm
for articulated objects given a group of point sets. While we
align one point set to other point sets, we decompose the point
set into several links and find rigid transformations of each link.
We have formulated the alignment problem as a probability
density estimation where the point set is represented as a Gaus-
sian mixture model. Since the existing 3D part datasets do not
match the link annotation from the kinematics point of view,
we have also proposed a novel dataset of articulated objects
based on its kinematics model. We have solved the optimization
problem using the EM algorithm. In addition, we have proposed
a regularization term to prevent adjacent points belonging to
different links. We have evaluated the proposed method on our
dataset, where the proposed method achieves the state-of-the-art
performance compared to various baseline methods. Finally, we
have proposed a method for efficiently collecting target point
sets of an unknown object using a robotic manipulator and
demonstrated it experimentally.
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