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Abstract

In addition to model performance, interpretability is essential for integrating artificial
intelligence into clinical settings. In this study, we designed a chest X-ray classifier that
provides patch-level outputs while training solely on class labels. To align the patch-
level outputs with the locations of diseases, we introduced an optimal transport-based
regularization into our architecture. We present results and observations to demonstrate
the effectiveness of our approach.

Keywords: Chest X-ray Classification, Kernel Optimal Transport, Weakly Supervised
localization.

1. Introduction

We plan to focus on weakly supervised localization of chest diseases using only classification
annotations. We have designed a classifier with patch-level outputs. Instead of meticulously
designing a neural network with the most suitable receptive fields for each specific task, we
proposed encoding each patch with a sufficiently large receptive field. We will then use
neural optimal transport (Korotin et al., 2022, 2023) to align the patch output distribution
with the corresponding label distributions. As a result, rather than relying on CAM-based
approaches (Selvaraju et al., 2017; Zhou et al., 2016) to generate heatmaps, we can directly
generate heatmaps from the patch outputs, making the process more straightforward.

2. Method

Our method is illustrated in Fig. 1. As mentioned in the previous section, our goal is
to construct a neural network that produces patch-level classification outputs. We used a
DenseNet-121 backbone pre-trained on ImageNet. To ensure that each patch has a suffi-
ciently large receptive field, we concatenate each patch with a global average pooling feature.
This combined input is then passed through a linear layer to ensure that the output chan-
nel size for each patch matches the number of classes. The final output is computed as the
weighted Log-Sum-Exp (Pinheiro and Collobert, 2015) of all the channels, allowing us to
train our model using the classification labels.

To better regularize the distributions of patch outputs, we applied neural optimal trans-
port (Korotin et al., 2022, 2023) to a simulated label distribution Y . For each ground truth
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Figure 1: (a) Custom DenseNet-121 architecture. (b) Architecture of our proposed network.

label y, we drop each subtype label with a probability p, reflecting the fact that only a few
patches in each X-ray image are abnormal. This process results in a new label y′. Finally,
we interpolate y′ with a uniform noise w, resulting in ỹ = α · y′ + (1− α) · w.

Following (Korotin et al., 2022), we introduce the optimal transport map T and the
potential map f . For the network architecture and the loss function, we utilized the 1D
counterparts of the architectures described by (Korotin et al., 2022). Each output patch is
processed through T before we compute the final weighted Log-Sum-Exp outputs.

For heatmap generation, we filter the values for each subtype by retaining only those
that are larger than the tenth largest patch value. All other patch values are set to the
minimum value among all patches. After this adjustment, we rescale all patch values to a
range of [0, 255].

3. Experiments and Results

We tested our method on the ChestX-Ray14 dataset (Wang et al., 2017). All images were
resized to 224× 224 pixels. The batch size was set to 64, with parameters p and α for the
simulated distribution Y are set to 0.8 and 0.7, respectively. For comparison, we trained a
DenseNet-121 network and applied Grad-CAM on the last layer before the global average
pooling layer. All the experiements were conducted with single Nvidia V100 GPU.

The AUCs for our proposed method are presented in 1 while the visualizations of our
generated heatmaps and those based on Grad-CAM are shown in Fig. 2. Our empirical
observations indicated that both methods performed well for cardiomegaly and infiltrate
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OT-Regularized Classifier

Atelectasis Cardiomegaly Effusion Infiltrate Mass

0.8091 0.8757 0.8891 0.7033 0.8120
Nodule Pneumonia Pneumothorax Consolidation Edema

0.7539 0.7697 0.8620 0.7855 0.8820
Emphysema Fibrosis Pleural Thickening Hernia

0.8975 0.7510 0.7857 0.7902

Table 1: AUCs of our proposed network on ChestX-ray14 dataset (Wang et al., 2017).
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Figure 2: Heatmap generations of our method and Grad-CAM based method.

cases. we noted instances where Grad-CAM produced highly precise heatmaps, while our
method did not perform as effectively, as illustrated in Fig. 2 (c). However, there were times
when the heatmaps generated based on Grad-CAM focused on completely irrelevant areas,
as seen in Fig. 2 (d). For tiny subtype diseases, they are usually found in the high-intensity
areas of our heatmaps; however, our method has not yet been able to accurately pinpoint
these locations, as demonstrated in Fig. 2 (e).

4. Conclusion

In this study, we propose a novel approach to predict patch outputs using only classification
annotations. Our empirical analysis shows that our method can generate reliable heatmaps
for certain subtype diseases, such as cardiomegaly and infiltrates. However, it still struggles
to accurately locate small abnormal areas, like masses and nodules. In future work, we plan
to enhance our methods and deliver more qualitative results.

3



Chen Kuo

Acknowledgments

Both authors acknowledge funding from the Center for Artificial Intelligence in Medicine
at Chang Gung Memorial Hospital, via grant agreement no. CLRPG3H0016.

References

Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Kernel neural optimal
transport. The Eleventh International Conference on Learning Representations, 2022.

Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal transport.
The Eleventh International Conference on Learning Representations, 2023.

Pedro O Pinheiro and Ronan Collobert. From image-level to pixel-level labeling with convo-
lutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1713–1721, 2015.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on com-
puter vision, pages 618–626, 2017.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and R Summers.
Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification
and localization of common thorax diseases. In IEEE CVPR, volume 7, page 46. sn, 2017.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929, 2016.

4


	Introduction
	Method
	Experiments and Results
	Conclusion

