
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SWITCHLORA: SWITCHED LOW-RANK ADAPTATION
CAN LEARN FULL-RANK INFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In the training of large language models, parameter-efficient techniques such as
LoRA optimize memory usage and reduce communication overhead during the fine-
tuning phase. However, applying such techniques directly during the pre-training
phase results in poor performance, primarily because the premature implementation
of low-rank training significantly reduces model accuracy. Existing methods like
ReLoRA and GaLore have attempted to address this challenge by updating the
low-rank subspace. However, they still fall short of achieving the accuracy of full-
rank training because they must limit the update frequency to maintain optimizer
state consistency, hindering their ability to closely approximate full-rank training
behavior. In this paper, we introduce SwitchLoRA, a parameter-efficient training
technique that frequently and smoothly replaces the trainable parameters of LoRA
adapters with alternative parameters. SwitchLoRA updates the low-rank subspace
incrementally, targeting only a few dimensions at a time to minimize the impact
on optimizer states. This allows a higher update frequency, thereby enhancing
accuracy by enabling the updated parameters to more closely mimic full-rank
behavior during the pre-training phase. Our results demonstrate that SwitchLoRA
actually surpasses full-rank training, reducing perplexity from 15.23 to 15.01 on
the LLaMA 1.3B model while reducing communication overhead by 54% on the
LLaMA 1.3B model. Furthermore, after full fine-tuning the SwitchLoRA pre-
trained model and the full-rank pre-trained model on the GLUE benchmark, the
SwitchLoRA pre-trained model showed an average accuracy gain of about 1% over
the full-rank pre-trained model. This demonstrates enhanced generalization and
reasoning capabilities of SwitchLoRA.

1 INTRODUCTION

The size of large language models (LLMs) has increased rapidly due to the advent of the transformer
architecture Vaswani et al. (2017). To support the training of large models, distributed training
techniques such as data parallelism Dean et al. (2012); Li et al. (2014), tensor parallelism Shoeybi et al.
(2019), pipeline parallelism Huang et al. (2019); Narayanan et al. (2021) and the Zero Redundancy
Optimizer Rajbhandari et al. (2020) have been employed. However, distributed training of trillion-
scale models incurs significant inter-node communication overhead from synchronizing extensive
parameter gradients across multiple nodes.

To address these challenges, various parameter-efficient strategies have been proposed. Techniques
such as model sparsification Alistarh et al. (2018); Stich et al. (2018) and progressive model pruning
during training Frankle & Carbin (2019) have shown promise. Additionally, methods leveraging
Singular Value Decomposition (SVD) to approximate full-rank matrices in low-rank spaces have
been explored Sui et al. (2024); Wang et al. (2021); Zhao et al. (2023). Beyond the entire training
process, several techniques improve adaptability and efficiency during the fine-tuning phase. For
example, methods such as the Adapter Houlsby et al. (2019); He et al. (2022) and Prefix-tuning Li &
Liang (2021) introduce additional trainable layers while freezing the remaining parameters.

Another noteworthy fine-tuning strategy is Low-Rank Adaptation (LoRA) Hu et al. (2022), which
introduces no computational overhead during inference while maintaining training accuracy. However,
previous studies Wang et al. (2021; 2023); Lialin et al. (2023) have observed that parameter-efficient
methods such as LoRA perform less efficiently during the pre-training phase because the premature
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Figure 1: SwitchLoRA: An enhanced LoRA with dynamic vector switching for pre-training. In
traditional LoRA, an adapter BA is added to the matrix W of linear layers. B and A are trained
while W is kept frozen (as depicted in the left part of the figure). SwitchLoRA enhances this by
dynamically switching vectors within B and A. The figure illustrates an example of this process:
when the third column(labeled as black 3⃝) of B is switched, the corresponding third row(labeled as
white 3⃝) of A is temporarily frozen. Similarly, when the second row(labeled as black 2⃝) of A is
switched, the corresponding second column(labeled as white 2⃝) of B is also temporarily frozen.

use of low-rank training leads to a considerable loss in model accuracy. To increase the rank of
updated parameters and benefit from low-rank training, ReLoRA Lialin et al. (2023) applies the
structure of LoRA and periodically resets LoRA adapters. Similarly, GaLore Zhao et al. (2024b)
projects gradients onto a subspace, updating this subspace periodically. These approaches update
the descent direction of trainable parameters to mimic the behavior of full-rank training, thereby
overcoming the limitations observed in existing implementations of low-rank adaptation. However,
we find that the intervals between resetting/updating steps in ReLoRA and GaLore are set to relatively
large values because too frequent changes in the updating direction can cause inconsistency in
optimizer states, which may not sufficiently approximate the behavior of full-rank training, resulting
in a loss of accuracy.

To address this challenge, as illustrated in Figure 1, we introduce SwitchLoRA, which enables
smooth and frequent adjustments to the trainable parameters of the LoRA matrices while introducing
negligible additional computational overhead. SwitchLoRA maintains a set of candidate vectors for
each matrix within the LoRA adapters. At each training step, it replaces portions of the column or
row vectors with these candidate vectors, subsequently training the LoRA adapters. This process
minimizes the impact on optimizer states, thus allowing for a higher update frequency compared to
ReLoRA and GaLore. By more closely approximating full-rank parameter updating behaviors during
the pre-training phase, this approach enhances overall accuracy.

Our contribution:

• We propose SwitchLoRA to facilitate smooth and frequent adjustments to the trainable
parameters of the LoRA matrices through low-rank adaptation, maintaining the accuracy of
full-rank training while reducing communication overhead.

• To mitigate inconsistencies in optimizer states when parameters are switched, SwitchLoRA
resets the corresponding optimizer states and temporarily freezes the affected parameters.
Additionally, SwitchLoRA employs a different initialization rule for LoRA adapter parame-
ters and their associated candidate vectors, thereby improving the overall efficiency of the
training process.

• We experimentally validate SwitchLoRA on various sizes of the LLaMA model.
SwitchLoRA shows significant perplexity improvements when compared to ReLoRA Lialin
et al. (2023) and GaLore Zhao et al. (2024b). For the 1.3B model, SwitchLoRA achieves a
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perplexity of 15.01, surpassing the 15.23 perplexity obtained with full-rank training. Fur-
thermore, by performing full fine-tuning on the resulting 1.3B model using the GLUE Wang
et al. (2019) tasks to validate the reasoning capabilities, we demonstrate that SwitchLoRA
enhances model accuracy by approximately 1% on average, compared to the full-rank
training method.

2 METHODOLOGY

A substantial body of research, such as various pruning methods Han et al. (2015); Blalock et al.
(2020), has demonstrated that neural networks tend to exhibit low-rank characteristics after certain
stages of training. Techniques for parameter-efficient fine-tuning, such as LoRA, capitalize on
this observation. Concurrently, studies like Li et al. (2020); Gunasekar et al. (2017) have revealed
that overparameterization in neural networks can lead to implicit regularization, thereby enhancing
generalization. These findings underscore the importance of training with full parameters during the
initial phase. Further empirical evidence supporting this phenomenon is provided in works like Wang
et al. (2021; 2023); Lialin et al. (2023); Zhao et al. (2024b). Based on these insights, this section
proposes a method designed to train a substantial number of parameters while selectively updating
only a portion of the parameters at any one time to reduce communication overhead.

2.1 LOW-RANK ADAPTATION (LORA)

Introduced in Hu et al. (2022), LoRA is designed specifically for the fine-tuning stage of model
training.

Consider a pre-trained model with a weight matrix W ∈ Rm×n from a specific linear layer. LoRA
proposes an innovative modification: transforming W into W + α

rBA. Here, B ∈ Rm×r and
A ∈ Rr×n are newly introduced matrices, where r is a positive integer significantly smaller than
both m and n. And α is a constant hyperparameter, set to r in the following description to clarify
the algorithm’s mechanics. Then during fine-tuning, W is kept frozen while matrices B and A are
trained. At the inference stage, BA is added to W which preserves the model’s original structure.
The matrix A is initialized using Kaiming initialization He et al. (2015), while B is initially set to a
zero matrix to ensure consistency.

2.2 SWITCHLORA

Below, we detail our proposed SwitchLoRA algorithm, the steps of which are outlined in Algorithm
1 and Algorithm 2.

Switching process Now, let us delve deeper into the linear system (W+BA)x = y. As illustrated
in Figure 1, we decompose the matrix B into its column vectors bk ∈ Rm×1 for k = 1, . . . , r,
represented as B = [b1, . . . ,br]. Similarly, we decompose matrix A into its row vectors aTk ∈ R1×n

for k = 1, . . . , r, leading to AT = [aT1 , . . . ,a
T
r ]. Hereafter, we call these vectors bk and ak as LoRA

vectors.

The product BA can be expressed using these LoRA vectors as follows:

BA =

r∑
k=1

bka
T
k . (1)

Let C(B) denote an ordered set containing min(m,n) vectors, each having the same dimensions as bk.
Furthermore, ensure that {b1, . . . ,br} ⊂ C(B). Similarly, define C(AT ) as an ordered set containing
min(m,n) vectors, each having the same dimensions as ai. Also, let {aT1 , . . . ,aTr } ⊂ C(AT ).
Moving forward, we will refer to C(B) and C(AT ) as the candidate vectors for B and A, respectively.

It is known for k matrices W1,W2, . . . ,Wk, the following inequality holds:

rank(

k∑
i=1

Wi) ≤
k∑

i=1

rank(Wi). (2)
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Algorithm 1 Switch algorithm: W,P,Q = switch(W,P,Q, i, j). C(P)[i] is i-th predefined
candidate vectors for P.
Require: W,P,Q, i, j

1: W←W +P:,iQi,:

2: P:,i, C(P)[j]← C(P)[j],P:,i

3: opt state(Qi,:)← 0
4: W←W −P:,iQi,:

5: return W,P,Q

If we adopt the strategy in LoRA to add BA to W and only update B and A from the pre-training
stage, according to equation 2, the rank of updated parameters of the local linear system through
the entire training process will be limited to 2r. This limitation can potentially impede the training
efficacy. To mitigate this issue, we alter the values of bk and ak to b′

k ∈ C(B) and a′k ∈ C(AT )
at appropriate frequencies, respectively, with these new values randomly selected from predefined
candidate vectors list C(B) and C(AT )(one of b′

k or a′k can be the same as bk or ak). To maintain
the consistency of the model’s output, we adjust W by adding the difference between the old and new
LoRA components. To be more precise, when bk and ak are updated to b′

k and a′k, we accordingly
adjust W with the equation W←W + bka

T
k − b′

ka
′T
k .

When implementing these updates, the updated parameters of both B and A are derived from
min(m,n) distinct candidate vectors, which ensures updated parameters are full-rank. Readers can
refer to Lialin et al. (2023); Zi et al. (2023); Xia et al. (2024) for more details.

When selecting candidate vectors, we have the option to choose randomly from C(B) or C(AT ).
Alternatively, we can select candidate vectors sequentially from C(B) or C(AT ), restarting from the
beginning once the end of the set is reached. We find that varying the matching orders of vectors bk

and ak yields only minor differences in outcomes. A theoretical explanation for this phenomenon is
provided in Appendix A. Additionally, to conserve GPU memory, spare candidate vectors can be
offloaded to the CPU.

Switching frequency As mentioned in Frankle & Carbin (2019); Wang et al. (2021); Lialin et al.
(2023), the model initially exhibits full internal rank during pre-training, and the internal rank of
each layer decreases progressively over time. Consequently, we have adopted an exponential decay
function for the switching frequency, namely frequency = Ce−θstep, where the coefficients are
determined empirically. Besides, the selection of LoRA rank r for BA is influenced by the final
internal rank of the layers, which has been extensively explored in Hu et al. (2022); Valipour et al.
(2023); Zhang et al. (2023b).

Optimizer states resetting Currently Large Language Models (LLMs) predominantly utilize Adam
Kingma & Ba (2015) and AdamW Loshchilov & Hutter (2019) optimizers over SGD, which rely
on optimizer states. It is crucial to note that after switching LoRA vectors, the gradients associated
with these parameters are also changed, which prevents the reuse of optimizer states. To address
this issue, when ak is switched, we reset the optimizer states of bk. And conversely, when bk is
switched, we reset optimizer states of ak. Note that we reset optimizer states of counterpart pair
rather than optimizer states of the switched parameters itself. This approach will be further explained
in Appendix A. Additionally, when the optimizer states are reset to zero, we freeze corresponding
parameters for N steps to maintain the robustness of the training. In this study, N is set to 5.

Initialization of SwitchLoRA Results in Hayou et al. (2024); Zhang et al. (2023a) have demon-
strated the importance of initialization of LoRA matrices B and A to the training effects. Unlike
these works, which are applied only during the fine-tuning stage, our method is utilized throughout
the entire training process. To achieve appropriate initialization for matrices B and A along with their
candidate vectors, we follow the idea of Xavier initialization Glorot & Bengio (2010) and Kaiming
initialization He et al. (2015). Specifically, the values of B and A are randomly initialized using a
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Algorithm 2 SwitchLoRA training process. switch num(step, r, interval0, θ) is an integer genera-
tor function which yields ⌊s⌋+X numbers sampled from 1 to r where s = r/(interval0e

θstep) and
random variable X ∼ Bernoulli(s− ⌊s⌋), i.e. P (X = 1) = 1− P (X = 0) = s− ⌊s⌋.
Require: interval0, θ,N

1: for step in all training steps do
2: Train model with Adam/AdamW optimizer for one step
3: for all linear layers do
4: Freeze W
5: for i in switch num(step, r, interval0, θ) do
6: Sample j ∼ {k}min(m,n)

k=1
7: W,B,A← switch(W,B,A, i, j)
8: Freeze Ai,: for N steps
9: end for

10: for i in switch num(step, r, interval0, θ) do
11: Sample j ∼ {k}min(m,n)

k=1

12: WT ,AT ,BT ← switch(WT ,AT ,BT , i, j)
13: Freeze B:,i for N steps
14: end for
15: end for
16: end for

uniform distribution with zero mean and the following standard variance:

std[B] = std[b] = (
r√
mn

)
1
4 gain

1
2 ∀b ∈ C(B),

std[A] = std[a] = (

√
mr√
nn

)
1
4 gain

1
2 ∀a ∈ C(AT ), (3)

where gain is a constant dependent on the type of activation function used.

A detailed analysis of the above results can be found in Appendix A.

3 RELATED WORK

Direct low-rank factorization method Numerous studies Denton et al. (2014); Tai et al. (2016);
Wen et al. (2017); Idelbayev & Carreira-Perpinán (2020) have demonstrated the effectiveness of using
low-rank factorization to approximate the weights of linear layers in deep neural networks. They
employ methods such as SVD to achieve a factorization UV that minimizes ∥W −UV∥. Later
on, Pufferfish Wang et al. (2021) and subsequent work in Cuttlefish Wang et al. (2023) employ full-
rank training prior to low-rank training to enhance efficiency. Additionally, they introduce adaptive
strategies to determine the necessary duration of full-rank training and to select the appropriate rank
for each linear layer for SVD. Further developments in this field include InRank Zhao et al. (2023),
which proposes a low-rank training approach based on greedy low-rank learning Li et al. (2021).
Additional research such as Sui et al. (2024) integrates orthogonality into the low-rank models to
enhance training accuracy, while Horváth et al. (2024) introduces low-rank ordered decomposition, a
generalization of SVD aimed at improving low-rank training efficiency.
These innovations mainly focus on convolutional neural networks (CNNs) and smaller-scale language
models.

LoRA variants After the introduction of LoRA in Hu et al. (2022), which facilitated fine-tuning
with very few trainable parameters, numerous works are proposed to improve the performance of
LoRA. Improvements include better initialization strategies for LoRA matrices as demonstrated in
Wang et al. (2024); Wang & Liang (2024); Meng et al. (2024). Additionally, Hayou et al. (2024);
Kalajdzievski (2023) have adjusted learning rates for B and A to optimize training outcomes. Other
research efforts, such as those in Kopiczko et al. (2024); Liu et al. (2024), have modified the training
process of LoRA. Moreover, some studies, such as Han et al. (2024); Zhao et al. (2024a), focus on
training models from scratch within a sparse model structure.
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Similar to our approach, various LoRA variants employ strategies to increase the rank of updated
parameters by merging parameters of adapters into W. For instance, Chain of LoRA Xia et al. (2024)
and ReLoRA Lialin et al. (2023) merge BA into W and restart training at regular intervals. ReLoRA
enables low-rank training during the early phases, yet it still requires 33% of the steps to be full-rank
training. Delta-LoRA Zi et al. (2023), another variant, targets the fine-tuning phase by updating the
matrix W using the gradients from the LoRA matrices B and A as they are updated, enhancing
accuracy for fine-tuning.

Other compression methods In addition to previously discussed techniques, there are many
other methods to compress models during training. For instance, several studies have introduced
quantization to LoRA Dettmers et al. (2023); Li et al. (2023b); Jeon et al. (2024), effectively reducing
memory overhead during fine-tuning. Other research employs iterative pruning and growth techniques
during training Frankle & Carbin (2019); You et al. (2019); Lym et al. (2019); Evci et al. (2020).
Additionally, some works focus on compressing gradients through quantization Dettmers et al. (2022);
Li et al. (2023a) or gradient projection Zhao et al. (2024b). Notably, Zhao et al. (2024b) presents
a recent method for training from scratch that utilizes SVD to project gradients into a periodically
updated subspace. This approach also enables the addition of quantization, offering enhanced memory
efficiency compared to LoRA.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our studies are carried out on the LLaMA model Touvron et al. (2023), with model sizes reduced to
130M, 250M, and 350M. We designed our experiments based on the settings described in Lialin et al.
(2023) to benefit from established hyperparameter configurations. The specific hyperparameters for
these models are detailed in Table 1. We use Adam optimizer to train the model with β1 = 0.9, β2 =
0.999. We use a cosine learning rate schedule with 100 warm-up steps and a total of 40,000 training
steps.

The pre-training experiments utilize the C4 dataset Dodge et al. (2021), with the first 46M samples of
the training dataset serving as our training data, and samples from the entire validation dataset used
for testing. The evaluation of validation loss is performed on 10M tokens for all our experiments,
with evaluations conducted every 1,000 steps. Additionally, we utilize some of tasks from the GLUE
benchmark Wang et al. (2019) to assess the reasoning capabilities of the models. All experiments are
conducted using 8xNVIDIA A100 80GB PCIe GPUs. Gradient accumulation is applied when GPU
memory reaches its limit.

We have conducted ablation studies to assess the impact of various configurations, detailed in
Appendix B.

Table 1: Model sizes and architectures used in our experiments
Params Hidden Heads Layers Batch size Batch size per GPU Seq. len.

130M 768 12 12 600 150 256
250M 768 16 24 1152 72 512
350M 1024 16 24 1152 72 512
1.3B 2048 32 24 1536 16 512

To ensure fairness across all experiments, the initialization method described in Section 2 is applied
to both LoRA and SwitchLoRA experiments. We deploy LoRA adapters across all attention layers
and fully connected layers in these experiments.

For the hyperparameters in Algorithm 2, we initiate with interval0 = 40 and set N = 5. The
parameter θ is adjusted to ensure that the switching frequency is one-third of its initial frequency at
the 1/10 of total steps.

All experiments were repeated multiple times to select the best results. The learning rates for
pre-training experiments were selected from a predefined set ∪n=2,3,4{1e-n 2e-n, 5e-n}. We have
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determined that the optimal learning rate remains consistent across different model sizes for all
methods. Specifically, the learning rate for full-rank training is set at 0.001, while the learning rate
for the LoRA method is 0.01. For SwitchLoRA, the learning rate is slightly higher at 0.02.

4.2 BASIC EXPERIMENTS

Figure 2: Loss results for 130M, 250M, and 350M models with a LoRA rank of 128.

Figures 2 displays the experimental results for the 130M, 250M, and 350M models, respectively,
with the LoRA rank set to 128. The data reveal that while LoRA alone does not yield satisfactory
training results, SwitchLoRA approaches the performance of full-rank training. The performance gap
continues to grow as model size increases. This suggests that the low-rank training approach, such as
LoRA, might cause models to become trapped in local minima, while SwitchLoRA mitigates this
issue by dynamically changing trainable parameters.

Table 2: Perplexity results at step 38,000 for 130M, 250M and 350M.
130M 250M 350M

Full-rank 27.71 20.19 18.72
LoRA(rank= 128) 34.74 29.56 31.87
SwitchLoRA(rank= 128) 30.26 20.97 19.96
SwitchLoRA(rank= 256) \ 19.82 18.70

Table 3: Perplexity results at step 38,000 for 1.3B models.
1.3B

Full-rank 15.23
SwitchLoRA(rank= 256) 15.89
SwitchLoRA(rank= 512) 15.01

As shown in Figure 3, additional experiments conducted on the 250M, 350M and 1.3B models using
higher LoRA ranks demonstrates improved performance compared to those with the rank set at 128,
achieving outcomes close to those of full-rank training. Although utilizing a higher rank yields
better outcomes, it may not be more economical to increase the LoRA rank instead of increasing
the model size for larger models for several reasons. First, the method still has potential for further
refinement. Second, a lower LoRA rank enables training on devices with limited memory capacities.
Furthermore, in the context of 3D parallelism, inter-node communication is predominantly influenced
by data parallelism, where communication overhead is proportional to trainable parameters. The
trainable parameters for each model are detailed in Table 4. For further discussions on potential
ways to enhance the SwitchLoRA strategy, refer to Section 5. Additionally, the impact of distributed
training is detailed in Appendix F.

4.3 COMPARISON WITH OTHER METHODS

Among all related methods, the works which are most close to ours are ReLoRA Lialin et al.
(2023) and GaLore Zhao et al. (2024b). We do comparison experiments on these two methods to

7
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Figure 3: Loss results for 250M, 350M and 1.3B models using higher LoRA ranks.

Table 4: Comparison of trainable parameters: full-rank models vs. LoRA and SwitchLoRA.
Full-rank 247.5M 247.5M 368.2M 368.2M 1339.5M 1339.5M

(Switch)LoRA r = 128 r = 256 r = 128 r = 256 r = 256 r = 512
98.9M 148.4M 125.6M 185.4M 370.7M 609.7M

further validate the effectiveness of our algorithm. The learning rates for all methods are tuned in
∪n=2,3,4{1e-n 2e-n, 5e-n}.

Figure 4: Comparison between ReLoRA and SwitchLoRA. In the figure, red circles denotes the steps
at which the parameters of the LoRA adapter are reset.

Comparison with ReLoRA Since ReLoRA requires full-rank pre-training as warm-up, we do
full-rank pre-training on SwitchLoRA too to do a fair comparison. We train 250M LLaMA model
specified in Section 4, with detailed settings available in Appendix C. In the Figure 4, we compare
ReLoRA and SwitchLoRA with different full-rank pre-training steps. It shows that our method can
still perform better when ReLoRA uses 5,000 steps full-rank pre-training and SwitchLoRA uses 200
steps full-rank pre-training. Furthermore, when both algorithms are subjected to the same 1,000 steps
of full-rank pre-training, SwitchLoRA shows significant improvements on ReLoRA.

The frequency for resetting the LoRA adapters in ReLoRA is set to 1/5,000, significantly lower than
the initial switching frequency of 1/40 in SwitchLoRA experiments. As illustrated in Figure 4, we
observe a rapid decrease in loss at each resetting step in the ReLoRA experiments. In contrast, the
loss reduction in SwitchLoRA experiments is steady and more rapid.

Comparison with GaLore In the comparison experiments with GaLore, we strictly follow the
setup in Galore Zhao et al. (2024b). Detailed setup can be found in Appendix C. For the 350M
LLaMA model, GaLore achieves a perplexity of 20.29, whereas SwitchLoRA performs slightly better,
with a perplexity of 19.58. In addition, we conducted additional experiments on the 350M model,
changing only one hyperparameter to assess its impact. The perplexity results are shown in Table 5.

When further reducing the rank, as shown in Table 5, our method performs significantly better.
This improvement may be because GaLore’s use of SVD focuses on the most significant directions,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

whereas SwitchLoRA covers all update directions, including less important ones that still require
training.

Table 5: Perplexity comparison for GaLore and SwitchLoRA with different experimental setup.
Standard Model size=130M Rank=128 Rank=32 Seq. len. = 512

GaLore 20.29 26.17 22.52 34.09 19.03
SwitchLoRA 19.58 25.93 20.93 25.26 18.19

The gradient projection subspace update frequency in GaLore is set at 1/200, while the initial
switching frequency for SwitchLoRA is 1/40. Additionally, since updates in GaLore are performed
via SVD, the subspace changes are less frequent compared to approaches that randomly select a new
subspace. Consequently, the subspace changes in GaLore are, in fact, less efficient.

4.4 REASONING ABILITY COMPARISON

Current works on low-rank training for LLMs, such as Lialin et al. (2023); Zhao et al. (2024b),
primarily evaluate models based on perplexity and lack validation of reasoning abilities. To validate
the reasoning abilities, we also conducted full fine-tuning using the resulting checkpoints from the
aforementioned experiments. We fine-tuned the models on GLUE tasks Wang et al. (2019). For the
checkpoints trained using SwitchLoRA, all LoRA adapters are merged into the original weights such
that W ←W +BA before the fine-tuning process. Detailed experiment settings are provided in
Appendix C.

Table 6: GLUE benchmark of the full-rank, SwitchLoRA and GaLore pre-trained 350M models. The
metric for STS-B is the Pearson correlation, while Matthew’s correlation coefficient is used for CoLA.
Accuracy is reported for the other tasks.

CoLA STS-B MRPC RTE SST2

Full-rank pre-trained 42.95±5 87.26±0.2 79.16±1 59.86±1 90.88±0.5
SwitchLoRA pre-trained 23.13±15 87.71±0.5 76.86±2 56.24±5 90.83±0.3
GaLore pre-trained 40.23±2 86.14±0.5 72.70±4 54.66±4 89.35±0.5

We first perform full fine-tuning on the pre-trained 350M models. The full-rank pre-trained model
is from Section 4.2. Similarly, the SwitchLoRA pre-trained model, with a LoRA rank of 256, is
also from Section 4.2. The GaLore pre-trained model originates from newly conducted experiments,
where the batch size, sequence length, and rank are the same as in the SwitchLoRA experiment. This
GaLore pre-training experiment resulted in a perplexity of 21.61.

The full fine-tuning results for these three models are shown in Table 6. From the results, we observe
that for the 350M models, except for the CoLA task, SwitchLoRA outperforms GaLore by an average
of around 3.6%, and outperforms the full-rank model by an average of around 1.4%.

We also conduct fine-tuning experiments on the 1.3B LLaMA models, one pre-trained using full-rank
and the other pre-trained using SwitchLoRA with a LoRA rank of 512. Both pre-trained models
are from Section 4.2. As shown in Table 7, SwitchLoRA performs slightly worse in some tasks and
better in others compared to the full-rank results. Overall, the average score of SwitchLoRA exceeds
the full-rank results by approximately 1%.

Table 7: GLUE benchmark of the full-rank and SwitchLoRA pre-trained 1.3B models. The metric for
STS-B is the Pearson correlation, while Matthew’s correlation coefficient is used for CoLA. Accuracy
is reported for the other tasks.

CoLA STS-B MRPC RTE SST2

Full-rank pre-trained 48.60±2 87.64±0.1 78.43±1 58.05±3 91.93±1
SwitchLoRA pre-trained 47.43±3 88.49±0.3 80.15±2 61.37±3 92.39±0.5
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Figure 5: Future work roadmap.

5 LIMITATIONS AND FUTURE WORK

While our results are promising, there are several areas for future exploration. In our experiments, we
have demonstrated that selecting a larger LoRA rank is necessary to achieve accuracy comparable to
full-rank training. Additionally, finely tuning the switching frequency of the LoRA vectors presents
significant challenges. To address these limitations, we propose the following directions for future
work, as illustrated in Figure 5.

• In our experiments, we simply used exponentially decreasing switching frequencies, which
may not be the optimal approach. Guidelines should be developed to help set appropriate
switching frequencies throughout the training process.

• Going further, a more detailed idea is to examine each layer of the model to adjust the
switching frequencies. For instance, LoRA-drop Zhou et al. (2024) evaluates whether the
rank is sufficient using a norm of ∆Wx. This is rational because different types of layers,
such as the Q,K, V matrices in transformer layers, exhibit significantly varied behaviors.

• In our work, we simply chose candidate vectors at random or sequentially. However, during
training, all candidates are updated separately, leading to significant differences among them.
The selection of these candidates may improve the training outcomes.

6 CONCLUSIONS

In this work, we introduce SwitchLoRA, a novel training strategy designed for parameter-efficient
pre-training. Our approach achieves comparable accuracy to full-rank training while reducing the
trainable parameters to approximately 50% to 60% of those in traditional full-rank training. Moreover,
the computational overhead and memory usage are nearly identical to those of LoRA when using
the same number of trainable parameters. We further validate the reasoning abilities of models
trained with SwitchLoRA using the GLUE benchmark. The results from the 1.3B model indicate
that SwitchLoRA not only matches but also slightly outperforms full-rank training by about 1% in
accuracy.
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A THEORETICAL ANALYSIS

In this section, we conduct a thorough discussion of our algorithm and address the following key
aspects:

1. Demonstrating that the order of LoRA vectors does not impact performance;
2. The effectiveness of our algorithm;
3. Discussion on resetting optimizer states;
4. Detailed process to deduce the values for initialization.

First, we take a closer look at the properties of the local linear system. Assume that the loss function
of the model is denoted by L. Our discussion focuses on the scenario where the input x and output y
are vectors, satisfying the equation:

y = (W +
1

r
BA)x, (4)

where the bias term is omitted for simplicity.

Next, we calculate the gradients of the column vectors of B. For a function f(x), we denote ∇xf
as the partial derivative of f with respect to x. Recall the decomposition of BA as defined in the
previous equations. For k = 1, . . . , r, the gradient of bk with respect to the loss function L is given
by:

∇bk
L = (aTk x)∇yL. (5)

Note that when the input x is a vector, aTk x becomes a scalar. Consequently, the gradients of bk are
proportional to the gradients of y.

We can also derive the gradients of the row vectors of A as follows:

∇ak
L = ((∇yL)Tbk)x. (6)

In this expression, (∇yL)Tbk is a scalar, indicating that the gradients of ak are aligned in the
direction of the input activations.

In fact, the gradients expressed in equation 5 and equation 6 and be derived as follows:

Consider the expression for yi given by yi =
∑

j,k BijAjkxk +
∑

j Wijxj for i = 1, . . . ,m. The
partial derivative of the loss function L with respect to Bij is computed as

∂L
∂Bij

=
∑
k

∂L
∂yk

∂yk

∂Bij
=

∂L
∂yi

∂yi

∂Bij
=

∂L
∂yi

∑
k

Ajkxk, (7)

where we use the fact that ∂yk

∂Bij
= 0 when k ̸= i. This derivation confirms equation 5. Similarly, the

derivative with respect to Ajk is

∂L
∂Ajk

=
∑
i

∂L
∂yi

∂yi

∂Ajk
=

∑
i

∂L
∂yi

Bijxk.

This calculation leads to equation 6.

Independence of vectors updating In our algorithm, candidate vectors are either randomly selected
or chosen sequentially to replace vectors in A and B, which alters the matching pairs of bk and ak.
A natural question arises: Does the matching order of these vector pairs influence the training effects?

In the following discussion, we will use the notation ṽ to denote trainable parameters that are
initialized with the value of v.

For the sake of clarity, we focus on one linear layer without a bias term for our discussion. We denote
L(W̃x) as the loss when the weight matrix of the linear layer under study is W, with the vector x as
input activations. This formulation intentionally omits contributions from other layers and the bias
term, as they are beyond the scope of our subsequent analysis.
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To integrate the LoRA matrices while preserving the initial loss value, we reformulate
L(W̃x) as L((W −

∑
k bka

T
k +

∑
k b̃kã

T
k )x). Further, we simplify this expression to

L(a1, . . . ,ar;b1, . . . ,bk;x). A simple observation is
L(a1, . . . ,ar;b1, . . . ,bk;x) = L(0, . . . ,0;0, . . . ,0;x). (8)

Recall that the gradient∇bk
L = (aTk x)∇yL. We derive the following expression:

∆bka
T
k = (c(aTk x)∇yL+ opt state(bk))a

T
k , (9)

where c is a negative value from optimizer and opt state(bk) is optimizer state of bk, determined by
the value of (aTk x)∇yL of previous steps. Moreover, the value of ∇yL will remain unchanged, as
indicated by equation 8. Consequently, the component ∆bka

T
k is influenced solely by ak and not

by other LoRA vectors. Similarly, the value of bk∆aTk is influenced only by bk when switching ak.
Note that the updated weight can be expressed as

(bk +∆bk)(a
T
k +∆aTk )− bka

T
k = ∆bka

T
k + bk∆aTk +∆bk∆aTk , (10)

where ∆bk∆aTk represents a minor term that can generally be disregarded. Hence, the updates
derived by bk and ak are nearly independent.

From this discussion, we can conclude that the order of vectors ak and bk does not influence
the parameter updates in the current step. For instance, for 1 ≤ i, j ≤ r, back propagation
of L(a1, . . . ,aj , . . . ,ai, . . . ,ar;b1, . . . ,bk;x) and L(a1, . . . ,ai, . . . ,aj , . . . ,ar;b1, . . . ,bk;x)
yield almost the same parameters updating to the weight matrix of the linear layer.

Effectiveness of SwitchLoRA Consider the following modification to the original model. For the
weight matrix W ∈ Rm×n of a specific linear layer in the model, replace W with the product of
matrices B0A0, where B0 ∈ Rm×min(m,n) and A0 ∈ Rmin(m,n)×n. This modification results in a
full-rank weight matrix B0A0 and introduces more parameters than the original model. Consequently,
it is anticipated to achieve results that are at least as good as those of the original model when the full
parameters of this modified model are trained.

We now compare the modified model with another model that implements the SwitchLoRA strategy.
Define B0

:,i = C(B)[i] and A0
i,: = C(AT )[i]T for i = 1, . . . ,min(m,n). It becomes apparent that

the two models are quite the same except that the model applying SwitchLoRA strategy updates only
subsets of parameters incrementally.

In optimization, it is well-established that for problems with separable objective functions, the
parameters of each separable group can be optimized independently. Although the loss function of
the SwitchLoRA model is not separable, the preceding discussion has demonstrated the independence
between the LoRA vectors. Consequently, we can infer that the inseparable components of the loss
function concerning parameters within the same linear layer are modest. Therefore, this suggests that
training subsets of parameters incrementally, as in the SwitchLoRA model, is likely more effective
than other methods, such as the layer-wise training approach Bengio et al. (2006); Allen-Zhu & Li
(2020).

Reset of optimizer states Let us discuss whether it is reasonable to zero out the optimizer states of
LoRA vectors and temporarily freezing them when switching their counterpart LoRA vectors.

Consider a scenario where bk is switched while ak is not. Note that, according to equation 8, the
forward propagation remains unaffected after the switching occurs. During the initial step after
switching bk, with ak being frozen, the only term contributing to the weight matrix update is ∆bka

T
k

according to equation 10. We previously established that this term, ∆bka
T
k in equation 9, is not

influenced by other LoRA vectors apart from ak. Consequently, changes made to bk or any other
recently switched LoRA vectors do not impact the accuracy of the optimizer states for bk. This
substantiates the rationale behind resetting the optimizer states.

If we choose not to freeze ak, we derive the following from a similar equation to equation 9:

bk∆aTk = c((∇yL)Tbk)x+ bkopt state(ak). (11)
This formula demonstrates that without resetting ak, the update direction would be completely
incorrect.

The reasoning for switching ak and its implications can be deduced in a similar manner.
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Derivation of parameters initialization The initial values of B and A were specified in Section 2.
In this section, we present the derivation process.

The main idea of Glorot & Bengio (2010) and He et al. (2015) is to maintain a balance in the variance
of the activation and gradients across layers during forward and backward propagation. In this
study, we focus on balancing the variance of activations. Furthermore, we aim to ensure the updated
parameters derived from B are of the same amount as those derived from A:

∆BA ∼ B∆A. (12)

Consider two matrices, W1 and W2, both characterized by zero mean and uniform distribution. The
standard deviation (std) of the elements of their product is given by:

std[W1W2] =
√
kstd[W1]std[W2], (13)

where k represents the output dimension of the matrix W1. To ensure the stability of forward
propagation, it is crucial that the output of each layer maintains a standard deviation of 1. However,
when the matrix W2 represents activation values, its standard deviation, denoted as std[W2] = gain,
differs from 1 due to the influence of the activation function. For ReLU activations, gain =

√
2.

Following this principle, we derive:

std[
1

r
BAx] =

√
r

r
std[B]std[A]

√
n = gain. (14)

The standard deviation of the gradients for LoRA vectors is given by:

std[∇bk
L] =

√
nstd[ak]std[x]std[∇yL],

std[∇ak
L] =

√
mstd[bk]std[x]std[∇yL]. (15)

Assuming the updated parameters are solely influenced by the gradients of the current step, to obtain
equation 12, the following condition must be met:

std[∇BLA] = std[B∇AL]. (16)

From this, we derive:

std[∇BLA] =
√
rstd[∇bk

L]std[A],

std[B∇A] =
√
rstd[B]std[∇ak

L]. (17)

By combining equation 14-equation 17, we achieve the following standard deviations:

std(A) = (

√
mr

n
√
n
)

1
4 gain

1
2 , std(B) = (

r√
mn

)
1
4 gain

1
2 . (18)

B ABLATION STUDY

In this section, we mainly use the 130M model with a LoRA rank of 128 and a batch size of 128. For
hyperparameters not explicitly mentioned, we follow the configurations detailed in Section 4.

In Figure 6, we did two experiments. In the first experiment, we evaluate the model’s performance
with varying descent rates for frequencies while maintaining a constant initial switching interval of
40. In the second experiment, we maintain a consistent descent rate for frequencies as detailed in
Section 4, but we vary the initial switching interval across different experiments. It is evident from
our results that both hyperparameters significantly impact training accuracy.

In Figure 7, we conducted a series of experiments with various frequency settings. The results indicate
that the choice of frequency settings plays a crucial role in the model’s effectiveness. Specifically, we
find that setting both the initial frequency values and the descent rates to moderate levels is essential
for achieving optimal performance. Extremely high or low frequency settings tend to degrade the
model’s performance, indicating a sensitive balance that must be maintained.

In Figure 8, we conduct experiments to investigate the impact of the number of frozen steps N .
The results indicate that the choice of N influences the loss outcomes. This phenomenon can be
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Figure 6: Loss comparison for the 130m model with different interval0 and ratio, where the
parameter ratio determines the point at which the switching frequency is reduced to one-third of its
initial value, occurring at the step total step× ratio.

Figure 7: Perplexity comparison for the 130m model with different switching frequencies. Each
point in the figure has a triple label (interval0, ratio, perplexity), with its size corresponding to
the perplexity value. The parameter ratio determines the point at which the switching frequency is
reduced to one-third of its initial value, occurring at the step total step× ratio.

explained as follows: when N is excessively large, the training parameters may become biased
towards different subsets of the data. Conversely, if N is too small, at the moment the freezing is
canceled, the gradients will have a larger contribution to the parameter updates due to the nature of
momentum-based optimizers. This leads to potentially abrupt changes in model behavior. However,
selecting an optimal value for N is relatively straightforward, as this value is robust across different
model since it simply determines how many steps are needed to warm up switched LoRA vectors.
Therefore, this hyperparameter does not require frequent adjustments across various experiments.

In Figure 9, we present the results from a focused comparative study where we evaluated our initial-
ization strategy against the traditional LoRA initialization method through two distinct experiments.
The results indicate that our initialization method outperform traditional approach for initialization.
Notably, the loss curve for LoRA initialization reveals a slower decrease in initial loss compared to
that of SwitchLoRA initialization. This phenomenon in LoRA initialization can be attributed to the
slow warm-up of matrix A and its associated candidate vectors due to equation 6. In contrast, our
method modifies the initialization values to allow for more rapid adjustments, enabling the model to
adapt more effectively to the training data.
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Figure 8: Comparison of loss for the 130m model at different values of N .

Figure 9: Loss comparison for the 130m model between traditional and our enhanced initialization
methods.

C EXPERIMENTAL SETTING DETAILS

C.1 EXPERIMENTAL SETTINGS OF RELORA

We adhere strictly to the setup described in ReLoRA Lialin et al. (2023) for our comparative
experiments with ReLoRA. Specifically, the warm-up steps for the scheduler are set to 1,000.
The learning rates are as follows: 5e-4 for full-rank pre-training, 1e-3 for ReLoRA, and 1e-2 for
SwitchLoRA. The total batch size is established at 20,000. All other settings remain consistent with
our previous experiments as detailed in Section 4.

C.2 EXPERIMENTAL SETTINGS OF GALORE

Continuing in the same vein, we also strictly adhere to the setup outlined in GaLore Zhao et al.
(2024b) for our comparison experiments with GaLore. Specifically, we set the warm-up steps for
the scheduler at 6,000. The total batch size is adjusted to 60,000. The learning rate is standardized
at 1e-2 for all GaLore experiments, while for SwitchLoRA, it is set at 2e-2. All other experimental
settings remain consistent with those detailed in our previous experiments, as described in Section 4.

C.3 EXPERIMENTAL SETTINGS OF FINE-TUNING

The hyperparameters for fine-tuning used in the experiments described in Section 4.4 are presented in
Table 8 and Table 9.
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Table 8: Hyperparameters for different GLUE tasks for the 350M models.
CoLA STS-B MRPC RTE SST2

lr (Full-rank) 8e-6 1e-5 1e-5 8e-6 3e-6
lr (SwitchLoRA) 3e-5 5e-5 5e-5 5e-5 1e-5
lr (GaLore) 2e-6 5e-6 5e-6 3e-6 8e-7
Batch size 16
Epochs 30
Sequence length 512

Table 9: Hyperparameters for different GLUE tasks for the 1.3B models.
CoLA STS-B MRPC RTE SST2

lr (Full-rank) 8e-6 1e-5 2e-5 1e-5 5e-6
lr (SwitchLoRA) 1e-5 1e-5 1e-5 2e-6 5e-6
Batch size 16
Epochs 30
Sequence length 512

D IMPLEMENTATION OF LORA VECTOR SWITCHING

We discuss the code implementation of SwitchLoRA, focusing on its efficiency and memory con-
sumption.

Implementation Adjustments in Optimizer The primary distinction in the implementation of
SwitchLoRA from conventional approaches lies in its handling of gradients and optimizer states at
the granularity of row or column vectors within matrix parameters. Consider the scenario when using
the AdamW optimizer: typically, each trainable parameter group in AdamW is associated with a
“step” state which is implemented as a float scalar value in the code. To facilitate the resetting of
specific rows or columns in matrices, we modify the type of ”step” in the optimizer to a 32-bit float
matrix with the same shape as the corresponding parameters. In fact, this modification does incur
some extra memory overhead. An alternative approach would be to implement “step” as a row vector
for A and a column vector for B. However, this would require more complex code management, and
thus, we have not adopted this strategy in our implementation. With the capability to manipulate
optimizer states and gradients at the level of rows and columns, we can now execute operations such
as resetting optimizer states and freezing specific rows or columns of parameter matrices.

Implementation of the Switching Process We can either randomly select or sequentially select
candidate vectors. However, fragmented operations on a GPU can’t fully utilize its capabilities.
Since several candidate vectors are switched at each step, this will impact training efficiency. As an
example, during the initial phase of SwitchLoRA training for the 1.3B LLaMA model with a LoRA
rank of 512, approximately 512

40 ≈ 13 candidate vectors are switched for each LoRA matrix at every
step.

By organizing a list of candidate vectors into a matrix and selecting vectors sequentially, we can
perform operations on multiple vectors simultaneously. For example, consider a scenario where we
need to set the values of candidate vectors C(B) at indices 4, 5, 6 to the values of B at indices 7, 8, 9,
respectively. Let CB be a matrix defined as CB ∈ Rm×min(m,n), where each column CB:, i = C(B)[i]
for i = 1, . . . ,min(m,n). We can then directly assign CB:,4:7 = B:,7:10. This arrangement enables us
to consolidate operations on multiple contiguous indices into a single operation, enhancing efficiency.
Consequently, we employ a sequential selection approach and apply this technique. By implementing
this approach, the switching process now occupies only about 1/40 of the training time during the
initial training phase.

Memory offloading for candidate vectors The use of candidate vectors leads to additional GPU
memory usage. This memory overhead can be reduced by offloading it to the CPU. The offloading
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process can be decoupled from other training processes. By utilizing non-blocking CPU offloading, we
can handle both offloading and other training processes in parallel, which can be readily implemented
using frameworks like PyTorch.

The amount of parameters offloaded at each step is approximately switch freq ×
lora rank/hidden dim × total param. For the 1.3B LLaMA model, using 16-bit precision for
model parameters, this translates to: 1/40× 512/2048× 1.3e9× 2 bytes ≈ 16.25MB.

E DISTRIBUTION OF SINGULAR VALUES

Figure 10: Rank distribution of LoRA on different types of linear layers.

Given that the rank distribution significantly influences the training efficacy of models Hu et al. (2022);
Frankle & Carbin (2019), we conducted experiments to examine the rank distribution of SwitchLoRA.
As outlined in Section 4, experiments were conducted on the 350M model to analyze the rank
distribution of linear layers after 40,000 training steps. Figure 10 demonstrates that the singular
values of weight matrices converge within a limited range when trained with LoRA, indicating
dominance of LoRA adapters in the linear layers. This dominance is expected, as the singular value
distribution of weight matrices during the pre-training phase exhibits a form of illness, due to updates
being limited to the low-rank adapter BA. In contrast, as illustrated in Figure 11, the rank distribution
of SwitchLoRA closely approximates that of full-rank training, suggesting a more robust and more
effective adaptation process.

F IMPACT ON DISTRIBUTED TRAINING

As demonstrated in Rajbhandari et al. (2020), for a transformer model with n layers and a hidden
dimension of h, the memory required for model parameters scales proportionally with nh2. Assuming
these parameters are stored in fp16/bf16 format occupying Ψ parameters, the memory footprint
for optimizer states would be approximately 12Ψ bytes when using the Adam optimizer as stated
in Rajbhandari et al. (2020). Additionally, when the batch size is b and the sequence length is s,
the memory consumption for activations scales with bshn. To manage memory demands for large
models, gradient accumulation can be utilized to adjust the batch size per GPU to 1. Moreover,
activation checkpointing can be implemented to reduce memory consumption, though it comes with
a trade-off: a 33% increase in computational overhead.

In this work, we primarily focus on the memory consumption associated with optimizer states, which
constitutes a significant portion of the overall memory usage for models with tens of billions of
parameters. Assuming that full-rank training requires knh2 bytes of memory, where k is a constant.
Our algorithm, as well as LoRA, reduces memory usage from knh2 to 2knhr, with r representing
the LoRA rank.

In addition to memory usage, parameter-efficient training also reduces communication overhead.
When implementing 3D parallelism to train large language models, tensor parallelism is typically
limited within a single machine due to its substantial communication demands. Pipeline parallelism
introduces some idle “bubble” time, which cannot be eliminated even with fast communication. And
its communication overhead remains relatively low. The main part of inter-node communication
stems from data parallelism, where the same amount of gradients as parameters is communicated
at every training step. Consequently, having fewer trainable parameters can significantly decrease
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Figure 11: Rank distribution of full-rank training and SwitchLoRA on different types of linear layers.
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communication overhead. Moreover, reduced memory consumption allows a larger portion of the
model to reside on a single GPU, potentially decreasing the degree of pipeline parallelism needed
and consequently reducing the associated “bubble” time.
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