
Under review as a conference paper at ICLR 2023

EMB-GAM: AN INTERPRETABLE AND EFFICIENT PRE-
DICTOR USING PRE-TRAINED LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep learning models have achieved impressive prediction performance but often
sacrifice interpretability and speed, critical considerations in high-stakes domains
and compute-limited settings. In contrast, generalized additive models (GAMs)
can maintain interpretability and speed but often suffer from poor prediction per-
formance due to their inability to effectively capture feature interactions. This
work aims to bridge this gap by using pre-trained neural language models to ex-
tract embeddings from each input before aggregating them and learning a linear
model in the embedding space. The final model (which we call Emb-GAM) is a
transparent, linear function of its input features and feature interactions. Leverag-
ing the language model allows Emb-GAM to learn far fewer linear coefficients,
model larger interactions, dramatically speed up inference, and generalize well to
novel inputs (e.g. unseen ngrams in text). Across a variety of natural-language-
processing datasets, Emb-GAM achieves strong prediction performance without
sacrificing interpretability or speed. All code is made available on Github.

1 INTRODUCTION

Large neural language models (LLMs) have demonstrated impressive predictive performance due
to their ability to learn complex, non-linear, relationships between variables. However, the inabil-
ity of humans to understand these relationships has led LLMs to be characterized as black boxes,
often limiting their use in high-stakes applications such as science (Angermueller et al., 2016),
medicine (Kornblith et al., 2022), and policy-making (Brennan & Oliver, 2013). Moreover, the use
of black-box models such as LLMs has come under increasing scrutiny in settings where users re-
quire explanations or where models struggle with issues such as fairness (Dwork et al., 2012) and
regulatory pressure (Goodman & Flaxman, 2016). Simultaneously, recent black-box models have
grown to massive sizes, making them costly and difficult to deploy, particularly for edge devices
such as mobile phones.

As an alternative to large black-box models, transparent models, such as generalized additive mod-
els (Hastie & Tibshirani, 1986) and rule-based models (Breiman et al., 1984) can maintain inter-
pretability. Additionally, transparent models tend to be faster and more computationally efficient
than black-box models. While transparent models can sometimes perform as well as black-box
models (e.g. Rudin et al. (2021); Ha et al. (2021); Mignan & Broccardo (2019); Tan et al. (2022)),
in many settings such as natural-language processing (NLP), there is often a large gap in the perfor-
mance between transparent models and black-box models.

This work aims to minimize this gap by leveraging a pre-trained LLM to learn a more effective
transparent model. Specifically, we extract LLM embeddings for different feature interactions (e.g.
ngrams in text) and then learn a generalized additive model on top of these embeddings. The final
learned model (which we call Emb-GAM) is a transparent, linear function of its input features and
feature interactions, but the use of the LLM allows Emb-GAM to intelligently reduce its number
of learned parameters (see Fig 1). Rather than learning a linear model over all possible feature
interactions (which scales exponentially with the order of the interaction and the feature dimen-
sion), Emb-GAM requires learning only a fixed set of linear coefficients (the size of the embedding
extracted by the LLM).

As a result, Emb-GAM can efficiently model high-order interactions, generalize well to novel inter-
actions, and even vary the number of features used at test-time for prediction. Moreover, inference

1



Under review as a conference paper at ICLR 2023

with Emb-GAM is extremely fast, requiring only looking up coefficients from a dictionary and then
summing them. Experiments on a variety of NLP classification datasets show that Emb-GAM can
achieve better generalization accuracy than transparent baseline methods. Moreover, learned Emb-
GAM models are easily interpretable, both for individual predictions and at the level of an entire
dataset, enabling use cases in high-stakes settings. In what follows, Sec 2 covers the background
and related work, Sec 3 explains the Emb-GAM pipeline, Sec 4 shows the results, and Sec 5 con-
cludes with a discussion.

“not good 
movie”

not
good
movie
not good
good movie

(i) Extract 
ngrams (iii) Sum (iv) Linear

model
negative 
prediction

(ii) Fixed-size
embeddings z1

z2

z5

… w
Each ngram gets

linear coefficient zi
Tw

LLM

Figure 1: Overview of Emb-GAM. A pretrained neural network is used to extract fixed-size em-
beddings for ngrams in a given sequence. Then, these embeddings are summed and used to train a
supervised linear model. At test time, the model can be interpreted exactly as a generalized additive
model, with a linear coefficient for each ngram in the input.

2 BACKGROUND AND RELATED WORK

GAMs There is a large literature on additive models being used for interpretable modeling. This
includes generalized additive models (GAMs) (Hastie & Tibshirani, 1986) that have evolved to
achieve strong performance by modeling individual component functions/interactions using regular-
ized boosted decision trees (Caruana et al., 2015) and more recently using neural networks (Agarwal
et al., 2021). While GAMs have been successful in a variety of domains, existing GAM methodol-
ogy is limited in its ability to model the high-order feature interactions that arise in NLP.

Meanwhile, NLP has seen great success in models which build strong word-level representations,
e.g. word2vec (Mikolov et al., 2013a;b), GloVe (Pennington et al., 2014), and ELMo (Peters et al.,
2018). By replacing such models with LLM embeddings, Emb-GAM enables easily modeling
ngrams of different lengths without training a new model. Moreover, LLMs can incorporate in-
formation about labels into the embeddings (e.g. by first finetuning an LLM on a downstream
prediction task).

Other transparent models Rule-based methods, such as trees (Breiman et al., 1984; Lin et al.,
2020), regularized trees (Agarwal et al., 2022), rule sets (Friedman & Popescu, 2008), lists (An-
gelino et al., 2017; Singh et al., 2021), and tree sums (Tan et al., 2022) perform well for a variety
of tasks, but are often less effective in NLP tasks, where the number of required rules tends to grow
with the size of the vocabulary.

An alternative line of work aims to make neural networks more interpretable. For example, models
can make predictions by comparing inputs to prototypes (Li et al., 2018; Chen et al., 2019) or by
predicting intermediate interpretable concepts (Koh et al., 2020). Alternatively, the entire model can
be distilled into a transparent model (e.g. adaptive wavelets (Ha et al., 2021)). However, these works
have been largely been restricted to computer vision.

Feature and feature-interaction importances Loosely related to this work are post hoc methods
that aim to help understand a black-box model, i.e. by providing feature importances using methods
such as LIME (Ribeiro et al., 2016), SHAP (Lundberg et al., 2019), and others (Friedman, 2001;
Devlin et al., 2019). However, these post-hoc methods lose some information by summarizing the
model and suffer from issues with summarizing interactions (Rudin, 2018; Murdoch et al., 2019).
Slightly more related are works which aim to explain feature interactions or transformations in

2



Under review as a conference paper at ICLR 2023

neural networks (Janizek et al., 2021; Singh et al., 2019; 2020), but these works fail to explain the
model as a whole and are again less reliable than having a fully transparent model.

3 METHODS: EMB-GAM PIPELINE DESCRIPTION

3.1 PRELIMINARIES: GAMS

Generalized additive models, or GAMs (Hastie & Tibshirani, 1986) take the form:

g(E[y]) = � + f1 (x1) + f2 (x2) + · · ·+ fK (xK) , (1)

where x = (x1, x2, . . . , xK) is the input with K features. y is the target variable, g(.) is the link
function (e.g., logistic function) and each fi is a univariate shape function with E [fi] = 0. Due to
the function’s additivity, each component function fi can be interpreted independently. Generalized
linear models, such as logistic regression, are a special form of GAMs where each fi is restricted to
be linear.

GAMs fail to effectively capture interactions in NLP In natural-language processing, GAMs
usually take the form of a bag-of-words model, in which each feature xi is a binary indicator (or
count) of the presence of a single token (e.g. the word good). However, this model fails to capture
interactions between features (e.g. not good is different than the sum of not and good), which is
crucial in NLP tasks.

The most common way to deal with interactions is including ngrams as features (a bag-of-ngrams
model); in this case, each feature is formed by concatenating n tokens, e.g. not good would be a
2-gram, also known as a bigram. However, the number of ngrams in a dataset grows exponentially
with n and the vocab-size. Even for a modest vocab-size of 10,000 tokens, the number of possible
trigrams is already 1012. This makes it exceedingly difficult to learn accurate coefficients for linear
models on ngrams in the training set and impossible to learn coefficients for ngrams not seen in the
training set.

3.2 THE EMB-GAM PIPELINE

To remedy the issues with the bag-of-ngrams model, we propose Emb-GAM, an intuitive model
which leverages a pre-trained language model � to extract a better feature representation zi = �(xi)
for each input ngram xi (see Fig 1). This allows learning only a single linear weight vector w that
has the same dimension as zi, regardless of the number of ngrams. The learned model is still a
GAM, ensuring that the model can be cleanly interpreted as a linear function of its inputs:

g(E[y]) = � + wT
X

i

�(xi) (2)

Emb-GAM consists of four steps, each of which can be modified slightly:

(i) Extracting ngrams. To begin, a user specifies a procedure to extract a set of ngram features
from an input text sequence. It is important that the extracted ngrams be semantically meaningful.
For NLP, a word-level tokenizer can extract meaningful unigrams from the text; all experiments
here use the spaCy tokenizer (Honnibal & Montani, 2017). The order of interaction to be used
(i.e. the length of an ngram) can be pre-specified or selected via cross-validation. Note that the
longer the included interactions become, the less interpretable the resulting model will be. Domain
knowledge can be used to improve the ngram extraction process: for example, common stopwords
can be removed as features or language-specific parse trees can be used to extract out key ngrams.

(ii) Extracting embeddings. In the embedding step, each input (i.e. ngram) is fed through the
model to retrieve a fixed-size embedding. If a transformer returns a variable-length embedding (e.g.
the embedding is the size of the sequence length), we average over its variable-length dimension1.

1A common alternative for bi-directional (masked) language models is to use the embedding for a special
token (i.e. [CLS]), but we aim to keep the approach here more general.

3



Under review as a conference paper at ICLR 2023

For Emb-GAM to work well, it is important that the pre-training task (e.g. next-word prediction)
contains useful information about the interactions which are used in a downstream task (e.g. senti-
ment classification).

(iii) Summing embeddings. In the summation step, the embeddings of each ngram in the input are
summed to yield a single fixed-size vector, ensuring additivity of the final model. While we conduct
a naive sum here, the sum could be adjusted with weights (e.g. weighting ngrams of different orders
differently).

(iv) Fitting the final linear model to make predictions. Finally, we obtain a prediction by train-
ing a linear model on the summed embedding vector. Importantly, the fitted model in Eq. (2) can
still be exactly decomposed into an additive combination of terms: for each ngram xi, its linear
contribution to the final prediction is simply wT�(xi). In the classification experiments performed
here, we choose the link function g to be the logit function (or the softmax for multi-class) and also
add `2 regularization over the parameters w in Eq. (2).

Computational considerations Emb-GAM is inexpensive to fit as (i) the pre-trained language
model is used only for inference and (ii) it only requires fitting a linear model to relatively few
features. After training, the model can be converted to a dictionary of linear coefficients for each
ngram, making inference extremely fast. Making a prediction requires simply looking up the scalar
coefficient for each ngram in a sample, where the coefficient is the dot product between the ngram’s
embedding and the learned linear weight w, which is cached during training. Nevertheless, it may
still be useful to retain the embedding model at test-time to infer coefficients for previously unseen
ngrams.

4 RESULTS: EMB-GAM PREDICTS WELL WHILE MAINTAINING
INTERPRETABILITY

4.1 DATA OVERVIEW

In this work, we study four widely used NLP classification datasets spanning different domains
including classifying the emotion of tweets (Saravia et al., 2018), the sentiment of financial news
sentences (Malo et al., 2014), or the sentiment of movie reviews (Pang & Lee, 2005; Socher et al.,
2013) (see Table 1 for an overview).

Table 1: Overview of datasets used here. The number of ngrams explodes with the size of the ngram.
Financial phrasebank Rotten tomatoes SST2 Emotion

Samples (train) 2,313 8,530 67,349 16,000
Samples (val) 1,140 1,066 872 2,000
Classes 3 2 2 6
Majority class fraction 0.62 0.5 0.56 0.34
Unigrams 7,169 16,631 13,887 15,165
Bigrams 28,481 93,921 72,501 106,201
Trigrams 39,597 147,426 108,800 201,404
Fraction of trigrams
appearing only once

0.91 0.93 0.13 0.89

Across datasets, the number of bigrams and trigams quickly explodes, making it difficult to fit an
accurate bag-of-ngrams model. Moreover, many ngrams appear very rarely; for example, in the
rotten tomatoes datasets, 93% of trigrams appear only once in the training dataset.

4



Under review as a conference paper at ICLR 2023

4.2 PREDICTION RESULTS

For each dataset, we fit Emb-GAM along with two baselines: a bag-of-ngrams model and the popular
TF-IDF model (Jones, 1972).2 In each case, a model is fit via cross-validation on the training set (to
tune the amount of `2 regularization added) and its accuracy is evaluated on the validation set.

Generalization as a function of ngram size Fig 2 shows the generalization accuracy of the dif-
ferent models across different datasets as a function of the included ngram size. In this plot, the
language model used to extract embeddings � is a BERT model (Devlin et al., 2018), finetuned on
each individual dataset.3 Emb-GAM performs well compared to the baselines, achieving a consid-
erable increase in accuracy across three of the four datasets. Notably, Emb-GAM performance tends
to increase as higher-order ngrams are added, whereas the baseline methods do not.

Figure 2: Generalization accuracy as a function of ngram size. As the size of the included ngram
increases, the gap between the BERT finetuned model and the original models grows. Averaged over
three random cross-validation splits; error bars are standard errors of the mean (many are within the
points).

Best generalization results Table 2 shows the best results when choosing the order of ngrams
via cross-validation (again using a finetuned BERT model to extract embeddings for Emb-GAM).
When comparing to the interpretable baselines (GloVE (Pennington et al., 2014)4 in addition to Bag
of ngrams and TF-IDF), Emb-GAM shows considerable gains on three of the datasets (Financial
phrasebank, Rotten tomatoes, and SST2) and only a minor gain on the tweet dataset (Emotion), likely
because this dataset requires learning less high-order interactions. When restricting Emb-GAM to
only use unigrams, performance no longer improves over interpretable baseline methods.

2The TF-IDF (“Term frequency–inverse document frequency”) model is an additive model of ngrams which
represents each ngram by its count rescaled by its frequency across the training dataset.

3Pre-trained language models are retrieved from HuggingFace (Wolf et al., 2019) (see Table A1 for details
on all models and downloadable checkpoints).

4We use the pre-trained Glove embeddings trained on Common Crawl (840 billion tokens, 2.2 million
vocab-size, cased, 300-dimensional vectors).

5



Under review as a conference paper at ICLR 2023

Table 2: Emb-GAM yields strong gains in validation accuracy for three datasets and is competitive
for the two others. When restricted to only unigrams, the performance of Emb-GAM drops consid-
erably.

Financial phrasebank Rotten tomatoes SST2 Emotion

Emb-GAM
Emb-GAM 92.8% ± 0.37% 81.6% ± 0.05% 86.9% ± 0.1% 89.5% ± 0.03%
Emb-GAM
(unigrams only) 86.4% ± 0.13% 76.8% ± 0.19% 81.7% ± 0.07% 87.2% ± 0.06%

Interpretable
baselines

Bag of ngrams 85.0% ± 0.11% 75.0% ± 0.09% 82.8% ± 0.0% 89.0% ± 0.09%
TF-IDF 84.9% ± 0.16% 75.9% ± 0.06% 83.4% ± 0.11% 89.2% ± 0.04%
GloVe 80.5% ± 0.06% 78.7% ± 0.03% 80.1% ± 0.1% 73.1% ± 0.09%

Black-box baseline BERT finetuned 98.0% 87.5% 92.4% 93.6%

Comparing Emb-GAM performance with a black-box baseline In the studied data sets, the
black-box baseline (a BERT finetuned model) outperforms Emb-GAM by 4%-6% accuracy. This is
potentially a reasonable tradeoff in settings where interpretability, memory, or speed are critical. In
cases involving inference memory/speed, Emb-GAM can be converted to a dictionary of coefficients
roughly the size of the number of ngrams that appeared in training (see Table 1); for a trigram
model, this yields roughly a 1,000-fold reduction in model size (compared to the ⇠110 million
trainable parameters in BERT), with much room for further size reduction (e.g. simply removing
coefficients for trigrams that appear only once yields another 10-fold size reduction). Inference is
nearly instantaneous, as it simply requires looking up coefficients in a dictionary and then a single
sum (and does not require a GPU).

Using Emb-GAM together with a black-box baseline In some situations, it may be useful to
use Emb-GAM on some fraction of samples (for interpretability/memory/speed) but relegate the
remaining samples to a black-box model. Here, we first predict each sample with Emb-GAM, then
assess its confidence (how close its predicted probability for the top class is to 1). If it is above a
pre-specified probability threshold, we use the Emb-GAM prediction. Otherwise, we compute the
sample’s prediction using a finetuned BERT model. Fig 3 shows the validation accuracy for the
entire dataset as we vary the percentage of samples predicted with Emb-GAM. Since Emb-GAM
yields probabilities which are reasonably calibrated (see Fig A2), rather than the accuracy linearly
interpolating between Emb-GAM and BERT, a large percentage of samples can be predicted with
Emb-GAM while incurring little to no drop in accuracy. For example, when using Emb-GAM on
50% of samples, the average drop in validation accuracy is only 0.0053.

Figure 3: Accuracy when using Emb-GAM in combination with BERT. A large percentage of sam-
ples can be accurately predicted with Emb-GAM.

Varying Emb-GAM model settings Table 3 shows how generalization accuracy changes when
the LLM used to extract embeddings is varied between BERT, DistilBERT (Sanh et al., 2019) and
RoBERTa (Liu et al., 2019). Across the variations, embeddings from finetuned models yield con-
siderably better results than embeddings from non-finetuned models. We also investigate using
different layers and ngram selection techniques in Table A2.

6



Under review as a conference paper at ICLR 2023

Table 3: Generalization accuracy varies depending on the model used to extract embeddings. Fine-
tuning the embedding model improves Emb-GAM performance, and using DistilBERT lowers per-
formance. Top two methods in each column are bolded.

Financial phrasebank Rotten tomatoes SST2 Emotion

BERT finetuned 92.8% ± 0.37% 81.6% ± 0.05% 86.9% ± 0.1% 89.5% ± 0.03%

BERT 84.1% ± 0.08% 78.1% ± 0.16% 82.8% ± 0.27% 67.1% ± 0.06%

DistilBERT finetuned 85.8% ± 0.34% 78.5% ± 0.34% 81.7% ± 0.07% 68.8% ± 0.11%

DistilBERT 81.7% ± 0.34% 79.8% ± 0.08% 86.8% ± 0.1% 87.5% ± 0.11%

RoBERTa finetuned 77.8% ± 0.31% 83.6% ± 0.03% 89.1% ± 0.24% 88.5% ± 0.19%

4.3 INTERPRETING A LEARNED MODEL

In this section, we investigate how to interpret a fitted Emb-GAM model, focusing on the SST2
dataset, where the task is to classify whether a movie review’s sentiment is positive or negative. We
inspect an Emb-GAM model fitted using unigram and bigram features extracted from the BERT
finetuned model; this model achieves 84% validation accuracy.

Learned coefficients match human sentiment scores A trained Emb-GAM model can be inter-
preted for a single prediction (i.e. getting a score for each ngram in a single input, as in Fig 1) or
for an entire dataset (i.e. by inspecting its learned coefficients). Fig 4A visualizes the learned Emb-
GAM coefficients (i.e. the contribution to the prediction wT�(xi)) with the largest absolute values
across the SST2 dataset. To show a diversity of ngrams, we show every fifth ngram rather than
just the top ngrams. The learned coefficients are semantically reasonable and many contain strong
interactions (e.g. not very is assigned to be very negative whereas without resorting is assigned to
be very positive). Note that this form of model visualization easily allows a user to audit and edit
the model with prior knowledge, e.g. by altering a coefficient.

Fig 4B shows how well the learned Emb-GAM coefficients match human-labeled sentiment phrase
scores for unigrams/bigrams in SST (note: these continuous scores are separate from the binary
sentence labels used for training in the SST2 dataset). Both are centered, so that 0 is neutral senti-
ment and positive/negative values correspond to positive/negative sentiment, respectively. There is
a strong positive correlation between the coefficients and the human-labeled scores.

(A) (B)

Figure 4: Top and bottom contributing ngrams to an Emb-GAM model trained on SST2 are (A)
qualitatively semantically accurate and (B) match human-labeled phrase sentiment scores.

Inferred coefficients for unseen ngrams match human sentiment scores One strength of Emb-
GAM is its ability to infer linear coefficients for ngrams that were not seen during training. Whereas

7



Under review as a conference paper at ICLR 2023

baseline models generally assign each unknown ngram the same coefficient (e.g. 0), Emb-GAM
can effectively assign these new ngrams accurate coefficients (as long as the new ngram consists of
tokens in the vocabulary of the LLM being used).

As one example, Fig 5A shows that the Emb-GAM model trained only on bigrams in Fig 4 can
automatically infer coefficients for trigrams (none of which were explicitly learned during training).
The learned coefficients are semantically meaningful, even capturing three-way interactions, such as
not very amusing. To show a diversity of ngrams, we show every 20th ngram rather than just the top
ngrams. Fig 5B shows the learned trigram coefficients compared to the human-labeled SST phrase
sentiment for all trigrams in SST. Again, there is a strong correlation, suggesting that the coefficients
are semantically accurate.

(A) (B)

Figure 5: Inferred trigrams coefficients for a Emb-GAM model trained only on bigrams (A) quali-
tatively semantically accurate and (B) match human-labeled phrase sentiment scores.

Test-time accuracy-interpretability tradeoff The ability to effectively generalize to unseen to-
kens in Fig 5 raises the question of whether one can vary the order of ngrams used at test-time,
to get a tradeoff between accuracy and interpretability (i.e. how many features are used to make a
prediction). Fig 6A suggests this may be feasible; it shows the accuracy of an Emb-GAM model
(using finetuned BERT) fitted using 4-grams as the order of ngrams used only for testing is varied.
As the number of features used for testing increases, the performance tends to increase but interpre-
tations become more difficult. Depending on the relative importance of accuracy and interpretability
context, one may select to use a different number of features for testing.

Fig 6B characterizes the full tradeoff between the number of ngrams used for fitting and for testing
for SST2. Generally, the best performance is achieved when the same number of ngrams is used for
training and testing (the diagonal). Performance tends to degrade significantly when fewer ngrams
are used for testing than training (lower-left). Results for all datasets show similar patterns (see
Fig A1).

Comparison with post-hoc feature importance The coefficients learned by Emb-GAM often
differ from importances assigned by post-hoc feature-importance methods. Emb-GAM learns a
single coefficient for each ngram across the dataset, allowing for auditing/editing the model with
visualizations such as Fig 4. In contrast, popular methods for post-hoc feature importance, such as
LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2016) yield importance scores that vary
based on the context in each input. This can be useful for debugging complex nonlinear models,
but these scores (i) are approximations, (ii) must summarize nonlinear feature interactions, and (iii)
vary across predictions, making transparent models preferable whenever possible.

Fig 7 shows an example of the Emb-GAM coefficients for the SST2 model from Fig 4 for different
ngrams when making a prediction for the phrase not very good. While Emb-GAM yields scores
for each subphrase that match human judgement (as seen in Fig 4B and Fig 5B), posthoc feature
importance methods summarize the interactions between different ngrams into individual words,
potentially making interpretation difficult. Scores are rescaled to be between -1 and 1 to make them
comparable. See Emb-GAM scores for many top-interacting phrases in Fig A3.

8



Under review as a conference paper at ICLR 2023

(A) (B)

Figure 6: Emb-GAM performance when varying the number of ngrams used for testing. (A) Per-
formance for a model fitted using 4-grams. (B) Full breakdown when varying the ngrams used for
training and testing.

very good

not very good

not very good

not very

not very good

not very goodLIME

SHAP

Emb-GAM

Positive

Negative

0

1

-1

Figure 7: Comparing Emb-GAM ngram coefficients (left) to word-level feature importances from
posthoc methods (right): LIME and SHAP.

5 DISCUSSION

Emb-GAM helps bridge the gap between black-box models and transparent models in NLP in terms
of accuracy and speed. This potentially opens the door for introducing NLP in high-stakes domains,
such as medical decision-making and on compute-limited hardware. While the work here focuses
on NLP, the same pipeline could be applied to other domains wherever effective language models
are available to extract meaningful embeddings (e.g. computer vision).

One limitation of this work is that performance does not improve unless using an LLM finetuned
on a downstream dataset. Future work could train the entire Emb-GAM pipeline end-to-end, po-
tentially improving the embedding representation. Such a representation could allow Emb-GAM to
outperform even a black-box finetuned neural network, as the GAM inductive bias may help prevent
overfitting in data-limited settings.

There are many potentially useful extensions of Emb-GAM. One notable extension would build on
the nonlinearity present in GAMs such as the explainable boosting machine (Caruana et al., 2015),
to nonlinearly transform the embedding for each ngram with a model before summing to obtain the
final prediction.

Finally, there are many ways Emb-GAM can be improved and used in the real-world. When domain
knowledge is available, more meaningful inputs can be used to extract ngrams or to make a sparser
model. Additionally, compression techniques can be applied to the Emb-GAM model after con-
verting to a dictionary of coefficients to reduce memory requirements. Finally, Emb-GAM can also
be used for tasks beyond classification, such as sequence prediction or outlier detection. We hope
that the introduction of Emb-GAM can help push improved performance prediction into high-stakes
applications in the real world and reduce unnecessary energy/compute usage.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Abhineet Agarwal, Yan Shuo Tan, Omer Ronen, Chandan Singh, and Bin Yu. Hierarchical shrinkage: im-
proving the accuracy and interpretability of tree-based methods. arXiv:2202.00858 [cs, stat], 2 2022. URL
http://arxiv.org/abs/2202.00858. arXiv: 2202.00858.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana, and Geof-
frey E Hinton. Neural additive models: Interpretable machine learning with neural nets. Advances in Neural
Information Processing Systems, 34:4699–4711, 2021.

Hanna Abi Akl, Dominique Mariko, and Hugues De Mazancourt. Yseop at finsim-3 shared task 2021: Spe-
cializing financial domain learning with phrase representations. arXiv preprint arXiv:2108.09485, 2021.

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning certifiably
optimal rule lists for categorical data. arXiv preprint arXiv:1704.01701, 2017.

Christof Angermueller, Tanel Pärnamaa, Leopold Parts, and Oliver Stegle. Deep learning for computational
biology. Molecular systems biology, 12(7):878, 2016.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984. URL https://www.routledge.com/

Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/

book/9780412048418.

Tim Brennan and William L Oliver. The emergence of machine learning techniques in criminology. Criminol-
ogy & Public Policy, 12(3):551–562, 2013.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible models
for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1721–1730, 2015.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks like that:
deep learning for interpretable image recognition. Advances in neural information processing systems, 32,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Summer Devlin, Chandan Singh, W James Murdoch, and Bin Yu. Disentangled attribution curves for interpret-
ing random forests and boosted trees. arXiv preprint arXiv:1905.07631, 2019.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through aware-
ness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214–226. ACM,
2012.

J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The Annals of Applied Statistics, 2
(3):916–954, 2008. doi: 10.1214/07-aoas148.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pp.
1189–1232, 2001.

Bryce Goodman and Seth Flaxman. European union regulations on algorithmic decision-making and a” right
to explanation”. arXiv preprint arXiv:1606.08813, 2016.

Wooseok Ha, Chandan Singh, Francois Lanusse, Srigokul Upadhyayula, and Bin Yu. Adaptive wavelet distil-
lation from neural networks through interpretations. Advances in Neural Information Processing Systems,
34, 2021.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical Science, 1(3):297–318, 1986.

Ahmed Hazourli. Financialbert - a pretrained language model for financial text mining. 02 2022. doi: 10.
13140/RG.2.2.34032.12803.

Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with Bloom embeddings,
convolutional neural networks and incremental parsing. To appear, 2017.

Joseph D Janizek, Pascal Sturmfels, and Su-In Lee. Explaining explanations: Axiomatic feature interactions
for deep networks. J. Mach. Learn. Res., 22:104–1, 2021.

10

http://arxiv.org/abs/2202.00858
https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418
https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418
https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418


Under review as a conference paper at ICLR 2023

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of
documentation, 1972.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy
Liang. Concept bottleneck models. In International Conference on Machine Learning, pp. 5338–5348.
PMLR, 2020.

Aaron E. Kornblith, Chandan Singh, Gabriel Devlin, Newton Addo, Christian J. Streck, James F. Holmes,
Nathan Kuppermann, Jacqueline Grupp-Phelan, Jeffrey Fineman, Atul J. Butte, and Bin Yu. Predictabil-
ity and stability testing to assess clinical decision instrument performance for children after blunt torso
trauma. PLOS Digital Health, 2022. doi: https://doi.org/10.1371/journal.pdig.0000076. URL https://

journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000076.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning through proto-
types: A neural network that explains its predictions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable optimal
sparse decision trees. In International Conference on Machine Learning, pp. 6150–6160. PMLR, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Scott Lundberg and Su-In Lee. An unexpected unity among methods for interpreting model predictions. arXiv
preprint arXiv:1611.07478, 2016.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz,
Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. Explainable ai for trees: From local explanations
to global understanding. arXiv preprint arXiv:1905.04610, 2019.

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala. Good debt or bad debt: Detecting semantic
orientations in economic texts. Journal of the Association for Information Science and Technology, 65,
2014.

Arnaud Mignan and Marco Broccardo. One neuron versus deep learning in aftershock prediction. Nature, 574
(7776):E1–E3, 2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words
and phrases and their compositionality. Advances in neural information processing systems, 26, 2013b.

John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A framework for
adversarial attacks, data augmentation, and adversarial training in nlp. arXiv preprint arXiv:2005.05909,
2020.

W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions, methods, and
applications in interpretable machine learning. Proceedings of the National Academy of Sciences of the
United States of America, 116(44):22071–22080, 2019. doi: 10.1073/pnas.1900654116.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect
to rating scales. In Proceedings of the ACL, 2005.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Fabian Pedregosa, Ga ë l Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12(Oct):2825–2830, 2011. URL http://jmlr.

org/papers/v12/pedregosa11a.html.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pp. 1532–1543, 2014.

11

https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000076
https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000076
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html


Under review as a conference paper at ICLR 2023

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1202. URL https://aclanthology.org/N18-1202.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the predic-
tions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1135–1144. ACM, 2016.

Cynthia Rudin. Please stop explaining black box models for high stakes decisions. arXiv preprint
arXiv:1811.10154, 2018.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong. Interpretable
machine learning: Fundamental principles and 10 grand challenges. arXiv preprint arXiv:2103.11251, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. Carer: Contextualized
affect representations for emotion recognition. In Proceedings of the 2018 conference on empirical methods
in natural language processing, pp. 3687–3697, 2018.

Chandan Singh, W James Murdoch, and Bin Yu. Hierarchical interpretations for neural network predictions.
International Conference on Learning Representations, pp. 26, 2019. URL https://openreview.

net/forum?id=SkEqro0ctQ.

Chandan Singh, Wooseok Ha, Francois Lanusse, Vanessa Boehm, Jia Liu, and Bin Yu. Transformation impor-
tance with applications to cosmology, 2020.

Chandan Singh, Keyan Nasseri, Yan Shuo Tan, Tiffany Tang, and Bin Yu. imodels: a python package for fitting
interpretable models. Journal of Open Source Software, 6(61):3192, 2021. doi: 10.21105/joss.03192. URL
https://doi.org/10.21105/joss.03192.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and Christopher
Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of
the 2013 conference on empirical methods in natural language processing, pp. 1631–1642, 2013.

Yan Shuo Tan, Chandan Singh, Keyan Nasseri, Abhineet Agarwal, and Bin Yu. Fast interpretable greedy-
tree sums (figs). arXiv:2201.11931 [cs, stat], 1 2022. URL http://arxiv.org/abs/2201.11931.
arXiv: 2201.11931.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cis-
tac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771, 2019.

12

https://aclanthology.org/N18-1202
https://openreview.net/forum?id=SkEqro0ctQ
https://openreview.net/forum?id=SkEqro0ctQ
https://doi.org/10.21105/joss.03192
http://arxiv.org/abs/2201.11931

