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ABSTRACT

Scaling up inference-time compute has proven to be a valuable strategy in improv-
ing the performance of Large Language Models (LLMs) without fine-tuning. A
task that can benefit from such additional inference-time compute is self-repair:
given an initial flawed response, the LLM has to correct its own mistake and pro-
duce an improved response. We propose leveraging the in-context learning ability
of LLMs to perform self-repair. The key contribution of this paper is an approach
to synthesise and select a golden set of pairs, each of which contains a problem
with an initial guess, and a consequent fix, both generated by the LLM. Each
golden example pair, or AuPair1, is then provided as an in-context example at in-
ference time to generate a candidate repaired solution with 1-shot prompting; in
line with best-of-N the highest-scoring response is selected. Given an inference-
time compute budget of N LLM calls, our algorithm selects N AuPairs in a man-
ner that maximises complementarity and usefulness. We demonstrate the results
of our algorithm on the coding domain for code repair on 4 LLMs across 7 com-
petitive programming datasets. The AuPairs produced by our approach provide a
significant boost in performance compared to best-of-N , and also exhibit strong
generalisation across datasets and models. Moreover, our approach shows strong
scaling with the inference-time compute budget.

1 INTRODUCTION

Recent progress in the field of Large Language Models (LLMs) has resulted in models that keep get-
ting better at generating responses to user queries. When providing these already powerful models
with more inference-time compute—increasing number of LLM calls—methods that sample dif-
ferent responses and then select the best among them, such as best-of-N (Stiennon et al., 2020)
or self-consistency (Wang et al., 2023b), have shown clear benefits. While these approaches are
more breadth-focused, another way to leverage inference time compute is to improve or repair the
LLM’s initial guesses by generating better fixes. We propose combining the benefits of both these
approaches to generate a wide set of repaired solutions for poor initial LLM responses, and then
select the best as final answer.

To generate a wide range of repaired solutions for each initial LLM response, we exploit the in-
context learning capability exhibited by LLMs. The main contribution of this paper is an algorithm
that produces a golden sequence of pairs of guesses and fixes, which can each be provided as in-
context example for generating repaired solutions. Each such AuPair consists of the problem de-
scription, the initial guess, and the consequent fix, along with their respective scores. An example
AuPair is illustrated in Fig. 2. Given an inference-time compute budget of N LLM calls, our al-
gorithm provides an ordered set of N golden example pairs or AuPairs. These AuPairs are used
to generate N fixes at inference time, out of which the highest scoring one is selected as the final
output response.

A core ingredient of our proposed algorithm is the selection of these AuPairs. We propose a submod-
ular approach based on the ability of each pair to solve different problems in a held-out validation
set. Since the list of AuPairs is constructed by taking the greedy pair at each step, only those pairs
that increase the score of the fix on a subset of problems are selected, resulting in useful AuPairs.

1The name AuPair is a coupling of Au, the chemical symbol for gold, and Pair, jointly referring to golden
pairs that are produced by our algorithm. The high-level interpretation is that like an "au pair", the approach
guides the LLM towards better behaviour.
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Figure 1: Pair Generation: This phase includes collecting a large set C of guesses and their fixes
giving pairs . At each step, a problem with its guess is sampled from the training dataset

"train"[left], and used in conjunction with k randomly sampled pairs from the candidate pair buffer
to compose a k-shot prompt. This prompt is then passed through an LLM to generate a fix. The fix
is evaluated on the unit tests by running the Python interpreter and computing its test pass rate. If
this fix is better than the guess, this (guess, fix) pair is added to "train". Any improved but imperfect
fix is also added as a new guess to the "train" set of guesses. See §2.1 for more details.

Also, as the AuPairs are selected in a submodular manner to solve different sets of problems, by
design, we get complementary AuPairs. In a nutshell:

AuPair is a simple and general-purpose selection algorithm, which builds a diverse and useful
set of examples that can be provided in context at inference time. It can be used to solve tasks in
which the model can repair its own solution to improve performance, provided a grounded source
of verification, such as a set of correctness tests.

In this paper, we focus on the code repair task: given a coding problem, an initial guess which is
LLM-generated code, and a set of test cases that are used only to evaluate the correctness of the
generated code, can the LLM generate an improved fix for the problem? We show that the fixes
generated with AuPairs provided as in-context examples are significantly more useful and diverse
than those generated using best-of-N (§3) for the same inference-time compute budget.

The key contributions of this paper are the following:

• An inference-time algorithm, AuPair, which constructs a golden set of code repair exam-
ples that boost performance significantly when used as in-context examples (§2).

• Reliably outperforming best-of-N across 4 different model sizes: Gemma-9B, Gemma-
27B, Gemini-1.5-Flash, Gemini-1.5-Pro, and 7 competitive programming datasets (§3.1).

• Strong scaling performance with inference time compute, with far less diminishing returns
than best-of-N (§3.3).

• Robust out-of-distribution generalisation, w.r.t. both model size and dataset (§3.4).

• Demonstrably higher diversity of solutions, without performance trade-off (§3.6).

2 APPROACH

The goal of our algorithm is to improve code repair performance on unit tests at inference time, by
building a list of pairs that can be provided as in context examples. The code repair prompt includes
an optional set of examples, followed by a text description of the problem to solve and the initial
guess generated by the LLM. The LLM generates a revision, or a fix that improves performance on
the unit tests for that problem, see Fig. 2. In the prompt, we also include the scores achieved by the
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def solve(x: int):
  x = str(x)
  count = 0
  for i in range(1, x + 1):
    if x[0] in str(i) or str(i)[0] in x:
      count += 1
  print(count)

def solve(x: int):
  x = str(x)
  count = 0
  for i in range(1, int(x) + 1):
    if int(x) % i == 0:
      i = str(i)
      for digit in x:
        if digit in i:
          count += 1
          break
  print(count)

G
ue
ss Fix

score: 0.0

score: 1.0

Problem: The Little Elephant loves numbers. 
He has a positive integer x. The Little Elephant wants to find the number of positive integers d, such that d is 
the divisor of x, and x and d have at least one common (the same) digit in their decimal representations. 
Help the Little Elephant to find the described number.

Input
A single line contains a single integer x (1 ≤ x ≤ 10^9).

Output
In a single line print an integer — the answer to the problem.

Examples

Input
1
Output
1

Input
10
Output
2

Figure 2: An example AuPair : guess/fix from CodeForces and their respective test pass rates
[above], and the problem description [below]. The guess checks only the first digit for every single
number leading up to the input. The fix corrects the logic by iterating over the divisors of the input,
and checking for an intersection over all digits with the input.

guess and fix on the unit tests, but no additional execution feedback.2 Our approach consists of two
main phases: 1) Pair Generation §2.1, and 2) AuPair Extraction §2.2.

In order to disentangle repair performance from the quality of initial guesses, we first curate com-
posite datasets consisting of initial guesses for all the coding problems. Given a dataset consisting
of problems and their corresponding tests, we first generate an initial guess for each problem and
compute its score on the unit tests. If the guess passes all the unit tests for that problem correctly,
no further improvement is required and we discard that problem. If not, we add this guess along
with its corresponding score and problem as a datapoint to our curated dataset. This dataset is then
divided into training, validation, and test datasets. We use the training dataset Dtrain ≡ D for pair
generation (Fig. 1), and the validation dataset Dval for AuPair extraction. The test dataset is used in
the final testing phase only Dtest.

2.1 PHASE 1: PAIR GENERATION

In this phase, we generate a set C of candidate (guess, fix) pairs using the approach illustrated in
Fig. 1. These pairs will then be used to select the AuPairs in the next phase. For each problem
sampled from the training dataset D, we have an initial guess. Next, the LLM has to generate a
fix for this guess. To collect a wide variety of fixes, we randomly sample k pairs from the existing
set of candidate pairs C and provide them as in-context examples of code repair. Note that initially
the candidate pair buffer is empty so there will be no in-context examples. However, this candidate
pair set C gradually gets populated as more fixes are generated by the LLM. These k example pairs,
along with the problem and its initial guess, are used to compose a k-shot repair prompt. This
repair prompt is then provided as input to the LLM, which generates a fix that is scored on the unit
tests. If this score is an improvement over the guess score, this (guess, fix) pair is added to the
set of candidate pairs. Furthermore, if this fix is imperfect, i.e., it does not pass all the test cases, it

2The repair prompt is composed using the prompting strategy shown in Fig. A.3.
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 val
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Figure 3: AuPair Extraction: given a large set C of "candidate pairs" , each pair is provided
as a 1-shot in-context example in the prompt for each problem and its guess from the validation
set "val". These prompts are passed to the LLM which generates one fix at a time to all the guesses
in the validation set "val". These fixes are evaluated on the corresponding unit tests to populate a
"fix-quality matrix" M ∈ R|C|×|Dval|, as described in Algorithm 1. Then, a submodular selection
mechanism is applied to obtain the list of AuPairs, in Algorithm 2, see §2.2 for details.

becomes a potential guess with further scope for improvement, so we add it as a guess to our training
dataset D. This process is repeated several times to collect a large set of such candidate pairs. 3

2.2 PHASE 2: AUPAIR EXTRACTION

Now that we have a large set C of candidate pairs, the next step is to determine which of these
will actually help boost performance, i.e., which of these are AuPairs. We do this in a submodular
fashion by making use of the validation dataset Dval. For every single pair-problem combination
(ci,xj) ∈ C × Dval, we build a 1-shot prompt p using the prompting strategy described in A.3 to
query the LLM to generate a fix for the given problem xj ∈ Dval. The fix generated by the LLM is
then evaluated on the unit tests and stored in the fix quality matrix M ∈ R|C|×|Dval| at index (i, j).
This first step of AuPair extraction is outlined in Algorithm 1.

Algorithm 1 Fix quality matrix computation

Require:


LLM large language model
C candidate pairs
Dval validation dataset
score code eval function

1: init fix quality matrix M ← 0|C|×|Dval|

2: for pair ci, problem xj ∈ C × Dval do
3: build 1-shot prompt: p← ci ∥ xj

4: generate fix: ŷ ← LLM(p)
5: evaluate fix: Mi,j ← score(ŷ)
6: end for

return M

Algorithm 2 Submodular AuPair extraction

Require:

{
M fix quality matrix
C candidate pairs
ϵ tolerance

1: initialise AuPairs A ← ()
2: repeat
3: per-pair scores: m̄← row-mean(M)
4: get best pair: ck ← argmaxCm̄
5: append to AuPairs: A ← A∪ ck
6: update M ← clip(M −Mk, 0, 1)
7: until max(m̄) < ϵ

return A

Next, we use this fix quality matrix M to extract the AuPairs by taking the following steps: 1) Select
the pair that gets the highest mean score across all problems in Dval, say ck, and add it to the list
of AuPairs A : A ← A ∪ ck. This is a greedy way of selecting the best pair given all previous
AuPairs and produces an ordered set of AuPairs. 2) Subtract the row score Mk (i.e. score on all the
problems in Dval) of this newly added pair from all the rows in the fix quality matrix with an update:
M −Mk. This ensures that redundant AuPairs are not produced by the approach. The updated

3Please refer to Table 2 for initial candidate pair buffer details.
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fix quality matrix is clipped to (0, 1) since any negative value in the matrix M , say Mi,j , implies
that the problem xj cannot be improved further by pair ci. Without clipping, we would not get an
accurate estimate of the improvement in the next step of submodular extraction. 3) this process is
repeated till the improvement falls beyond a tolerance ϵ. This submodular extraction of AuPairs
is shown in Algorithm 2. Fig. 3 has a joint diagram depicting fix quality matrix computation and
submodular AuPair extraction.

This process of iteratively constructing the set of AuPairs ensures that they improve performance
on disjoint parts of the problem space. The AuPairs that we obtain from this phase are then used in
the same manner at inference time, as 1-shot examples, to improve code repair performance. The
compute budget N at inference time determines the number of AuPairs that we can use at inference
time. Since the AuPairs form an ordered set, the first N AuPairs are used at inference time for
budget N . The final solution for each problem is the best among all generated solutions, i.e., the one
that passes the most test cases.

3 EXPERIMENTS

Datasets: We use 7 datasets that contain problems and test cases from competitive program-
ming contests: 1) CodeForces (8.8k problems), 2) AtCoder (1.3k problems), 3) HackerEarth (1.2k
problems), 4) CodeChef (768 problems), 5) LiveCodeBench (400 problems), 6) CodeJam (180
problems), and 7) Aizu (2.2k problems) (Li et al., 2022a; Jain et al., 2024). We choose Code-
Forces and AtCoder, separately, for in-distribution testing, and use the rest exclusively for out-of-
distribution testing. Our train / val / test split proportions for the CodeForces and AtCoder datasets
are 37.5/12.5/50%. Some datasets have difficulty levels as part of the problem; for those datasets
we maintain the same stratified distribution of questions in the training, validation, and test datasets.

Models: We use 4 models of different sizes: Gemma-9B, Gemma-27B, Gemini-1.5-Flash and
Gemini-1.5-Pro. In addition to using these models for dataset curation and pair generation, we
look at the transfer capabilities of our method with respect to different models in Section 3.5.

Evaluation: We use each AuPair as 1-shot example, in context with the problem text and initial
guess in the repair prompt. The structure of the prompt is the same as the one used earlier (A.3).
We perform two types of evaluation: in-distribution and out-of-distribution. For in-distribution
evaluation, we use the test split from the same dataset as the one used for pair generation and AuPair
extraction. This ensures that the format of questions and test cases in the test questions matches
that of the AuPairs. Out-of-distribution evaluation uses a different coding dataset; this means that
the test samples have different format of questions, difficulty, types of problems and test cases than
the AuPairs. Another axis of out-of-distribution evaluation that we look at is the model axis: we
report the performance obtained using AuPairs produced by a different model than the one used at
inference time.

Metrics: Our primary metric is the best-of-N accuracy, which we calculate as the average of the
best response across N LLM calls for all points in the test dataset. In our case, we have grounded
feedback available in the form of the number of unit tests passed by each LLM response, when
executed using the Python interpreter. We use this feedback to compute the maximum score out
of the N generated outputs for our approach and baselines, all of which involve N LLM calls at
inference time for fair comparison. For our approach we pick the first N AuPairs from A.

Baselines: We compare the effectiveness of our proposed approach with best-of-N (Stiennon et al.,
2020) and self-repair (Olausson et al., 2024). Best-of-N is currently the strongest baseline to im-
prove model performance by allowing multiple (N ) LLM calls at inference time. To have a strong
best-of-N baseline, we set the temperature to 1.0, to ensure sampling of diverse responses while
preserving good quality responses (Renze & Guven, 2024) Self-repair uses the N LLM calls to ei-
ther generate verbal feedback or repaired code. In our experiments, for a budget of N = 32 LLM
calls, we use 4 LLM calls to generate verbal feedback and 7 LLM calls to generate repaired code for
each verbal feedback.

The remainder of this section will discuss a plethora of empirical results, on overall and ablated
performance (§3.1 and 3.2), scalability and generalisation (§3.3 to 3.5), and diversity (§3.6 to 3.8).
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Figure 4: In-distribution code repair performance: with N = 32 LLM calls at inference time and
the same train / val / test data distribution, we compute the average pass rate on test cases. The same
model is used for generating the initial guesses and fixes and the AuPair extraction. CodeForces
(left, 8.8k problems) and AtCoder (right, 1.3k problems), see §3.1 for more details.

3.1 SIGNIFICANTLY BOOSTED CODE REPAIR PERFORMANCE

The first step to assess code repair performance is to measure in-distribution performance; namely
generate and selecting AuPairs on the training and validation sets that match the test dataset, and
using the same model at evaluation as for construction. We do this for 2 datasets (CodeForces
and AtCoder) and all 4 models. Fig. 4 shows the resulting comparison between the best-of-N
baseline and our AuPair approach, for a budget of N = 32 LLM calls at inference time.4 AuPair is
clearly superior to best-of-N on all models and datasets, sometimes by wide margins. This clearly
establishes that our proposal of providing a different in-context example of code repair in each LLM
call can significantly boost performance.

An interesting side-result is visible in initial performance, i.e., the performance of the initial re-
sponses of the LLMs to the problems, which have to then be repaired. Gemini-1.5-Pro, despite
being a superior model to Gemini-1.5-Flash, shows worse initial performance. Since the code gen-
erated has certain conditions that allow successful execution, we observe that many initial guesses of
generated code fail because they do not obey these conditions (see Appendix §A.4). In such cases,
code repair with best-of-N is unlikely to give us high boost in performance since the initial solution
is badly formatted. This is one clear case where having an AuPair in context significantly improves
performance. As a result, using AuPairs in conjunction with high performing models leads to large
performance improvements despite poor initial performance, as we can see for both CodeForces and
AtCoder with the Gemini-1.5-Pro model in Fig. 4.

3.2 SELECTION MATTERS: AUPAIRS ARE MORE EFFECTIVE THAN RANDOM PAIRS

We design an ablation to disentangle the two possible sources of improvement that our approach
demonstrates, namely 1) in-context learning and 2) the choice of AuPairs. It is not implausible for
the boost in performance to result from the LLMs’ in-context learning ability, and that the same
result could be achieved by including any set of pairs. On the other hand, our approach specifically
targets complementarity during construction of AuPairs in that subsequent AuPairs are selected
based on their ability to solve problems that previous AuPairs were unable to solve. To resolve
this, we compare the full method to a random-pair baseline that randomly selects pairs from the full
candidate set (the result of Phase 1), deduplicating the problems that the random pairs solve (which
makes it a stronger baseline). Fig. 5 shows that AuPair significantly outperforms the random-pair
baseline for N = 1, ..., 32. Note that for any fixed candidate set, as N grows toward the size of the
full set of pairs, the performance of the random-pair baseline will equal that of AuPair.

4Since our algorithm yields a variable number of AuPairs, for smaller datasets with fewer generated pairs,
the total number of AuPairs can be less than 32. To have a fair comparison in that case, we set the same compute
budget N for the best-of-N baseline. This is the case for AtCoder (Fig. 4, right), where our algorithm yields 14
and 27 AuPairs for Gemma-9B and Gemma-27B respectively. So the corresponding best-of-N baseline results
also use a matching compute budget of 14 and 27 LLM calls respectively.
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Figure 5: (a) AuPairs vs. random pairs: AuPairs (green) are significantly (about 3×) more com-
pute efficient than random pairs (red); it takes only 11 AuPairs to reach the same performance as 32
random pairs (CodeForces dataset, Gemini-1.5-Pro); (b) Scaling inference-time compute: using
AuPairs the score increases with compute budget at a much steeper rate compared to best-of-N .

Figure 6: Out-of-distribution code repair performance: AuPairs extracted on the CodeForces
dataset show strong generalisation performance across the other six datasets with Gemini-1.5-Pro.

3.3 BETTER SCALING WITH INFERENCE-TIME COMPUTE

At a fixed budget of N = 32 LLM calls, our results look promising. In this section, we investigate
whether and how performance scales with N . Fig. 5(b) plots the score as a function of the inference
compute budget N using Gemini-1.5-Pro (additional scaling curves in the Appendix, see Fig. 9).
For each additional LLM call, we use the next best AuPair produced by the algorithm and provide it
in context to generate the LLM response. The results shows a clear scaling trend with a consistent
log-linear performance increase as a function of compute, without any sign of a plateau. More
importantly, the increase is substantially steeper than for the best-of-N baseline; in other words,
our prompting with complementary AuPairs makes more efficient use of compute than repeated
sampling given a fixed prompt.

3.4 STRONG GENERALISATION TO OUT-OF-DISTRIBUTION DATASETS

The aim of this set of experiments is to determine whether our approach exhibits out-of-distribution
generalisation, i.e., given AuPairs collected on a different dataset, see if we can retain the perfor-
mance improvements that we obtain in-distribution. We evaluate the AuPairs collected using the
Gemini-1.5-Pro model on the CodeForces dataset on the other 6 datasets and compare them with the
corresponding best-of-N baselines. Fig. 6 shows that for all 6 datasets, our approach outperforms
best-of-N by a large margin, in spite of having out-of-distribution AuPairs. This in turn implies that
the process of collecting AuPairs may only be needed on one dataset, and its benefits can be reaped
across a wide range of problems (from other datasets, or users) at inference time.
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Figure 7: (a) Cross-model transfer: AuPair shows good cross-model transfer capabilities for all
four models on CodeForces; (b) Diversity-Score plot: we calculate diversity as the percentage
of unique subtrees present in Abstract Syntactic Trees of the N generated fixes (higher is better).
AuPair (⋆) with Gemini-1.5-Flash and Gemini-1.5-Pro generates more diverse responses than best-
of-N (□) while this diversity trend is reversed for the Gemma models. In terms of score, AuPair
always generates higher-scoring fixes than best-of-N .

3.5 DECENT CROSS-MODEL TRANSFER

Now that we have seen that our approach can exhibit very good out-of-distribution generalisation
along the data axis, we evaluate it on its ability to generalise on the model axis, i.e., we look at the
performance of AuPairs collected using a different model. We evaluate this cross-model transfer
capability for all model combinations on CodeForces. The resulting 16 ablations are shown in
Fig. 7(a), and help disentangle the impact of the AuPairs versus the code repair capabilities of the
inference model. A key takeaway is that the Gemma models exhibit worse performance, regardless
of the quality of AuPairs used at inference time, indicating that they are inferior at the capability of
code repair. Gemini-1.5-Flash performs much better at code repair, and its sensitivity to the source
of AuPairs is negligible: it is equally performant for each source. Gemini-1.5-Pro, on the other hand,
is sensitive to the source of AuPairs; in particular, when Gemini-1.5-Pro uses AuPairs collected by
the same model, it achieves the best performance by a large margin. With AuPairs selected using
other models, Gemini-1.5-Pro achieves comparable performance to Gemini-1.5-Flash. One reason
for the standout performance when using Gemini-1.5-Pro AuPairs seems that those examples result
in substantially more diverse generations, as shown in Section 3.6. However, Fig. 7(a) as a whole
suggests that there is an ordering in terms of performance: 1) the model used at inference time
has to have good code repair capabilities, and 2) the stronger the model is at code repair, the more
improvement we can expect from it with a higher quality of AuPairs.

3.6 HIGH CODE-SPECIFIC DIVERSITY

We dive a bit deeper into the nature of fixes generated using different AuPairs. There are several
ways to analyse code; we choose Abstract Syntax Trees (ASTs) since they mostly capture the struc-
ture of changes. More concretely, since we have N fixes for each problem (here N = 32), we
measure the diversity per problem as the number of unique changes made to the guess over all N
fixes for that problem. The diversity score is calculated as the average number of unique abstract
syntactic subtrees generated per problem. More concretely, we perform the set difference of all
subtrees in the fix AST that are not in the guess AST and normalize with the maximum number of
subtrees. We plot this diversity metric against the score in Fig. 7(b) to get a sense of how diverse
and useful the AuPairs are. We also include diversity results of the best-of-N baseline, see A.2 for
further details on the diversity score computation. The results show that while AuPairs always in-
crease performance, they result in higher diversity of fixes when given to the more competent models
(Gemini-1.5-Pro and -Flash), and lower diversity for Gemma models. It is worth highlighting that
the exceptional performance of AuPairs produced and used by Gemini-Pro (Fig. 7(a), bottom right)
correspond to highly diverse fixes (Fig. 7(a), top right).
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Difficulty level→ A (671) B (675) C (671) D (666) E (649) F+ (537)

Gemma-9B 0.34 (+0.16) 0.23 (+0.13) 0.19 (+0.12) 0.15 (+0.09) 0.14 (+0.08) 0.12 (+0.07)
Gemma-27B 0.28 (+0.1) 0.25 (+0.12) 0.20 (+0.12) 0.19 (+0.1) 0.17 (+0.1) 0.20 (+0.11)
Gemini-1.5-Flash 0.54 (+0.2) 0.39 (+0.18) 0.34 (+0.15) 0.18 (+0.11) 0.26 (+0.12) 0.28 (+0.11)
Gemini-1.5-Pro 0.62 (+0.42) 0.52 (+0.4) 0.43 (+0.35) 0.38 (+0.32) 0.32 (+0.28) 0.35 (+0.29)

Table 1: Difficulty-wise analysis: score (§3) using AuPairs, categorised by difficulty level from
easy (A) to hard (F+), accompanied by number of problems. Absolute improvement in parentheses.
We see an expected trend here: the strongest performance is observed using the best models on the
easiest problems, and as difficulty increases, performance decreases across models. However, our
results with Gemini-1.5-Pro indicate improved performance with higher difficulty

3.7 IMPROVEMENT ON ALL DIFFICULTY LEVELS

Coding datasets have heterogeneous difficulty. As a sanity check, we conduct additional analysis
to determine which problem levels are most helped by AuPair, compared to the quality of initial
guesses. Table 1 shows the absolute improvement in score, i.e., the increase in score achieved by
AuPair for all 4 models on CodeForces. The two key observations are (a) AuPair helps significantly
at all difficulty levels for all models, and (b) there are larger improvements on easier levels, and
this trend is consistent across models. Note that the initial performance of Gemini-1.5-Pro is low
because the initial guesses generated do not adhere to the instruction (elaborated in Appendix §A.4);
however since this is the strongest model and shows the best overall performance across difficulty
levels, the increases in score that we see are significantly higher than the other models.

3.8 COVERAGE OF PROBLEM CATEGORIES IS PRESERVED

The CodeForces dataset is richly annotated with category labels for each problem. A problem may
have multiple tags, for instance, strings and two pointers. We use these fine-grained tags to
study how the problem distribution is affected by Phase 1 and Phase 2 of our method, separately.
Fig. 8 shows the proportions of these categories observed in the initial dataset, the full set of pairs
generated during Phase 1, and the final AuPairs. The high-level result is encouraging, namely that
the starting diversity is approximately preserved. Phase 1 yields pairs for every single category, even
those that lie at the tail. Furthermore, the (sparser) distribution over categories for the AuPairs after
Phase 2 still shows several problems from rare categories. This additional result consolidates our
insight that AuPairs are highly diverse, also in the types of problems they contain.

4 RELATED WORK

Automatic Program Repair (APR) has been a longstanding research area in the field of machine
learning (Devlin et al., 2017; Bhatia & Singh, 2016; Chen et al., 2019; Feng et al., 2020; Berabi
et al., 2021; Chakraborty et al., 2022; Yuan et al., 2022). Most methodologies rely on supervised
finetuning to adapt LLMs to the task of code generation using labeled pairs of broken / fixed code
pairs, which is costly to obtain and often task- and problem-specific (Hu et al., 2022; Jiang et al.,
2021; Xia & Zhang, 2022; Dinella et al., 2020). On the other hand, unsupervised APR is challenging
since it requires syntactic and semantic understanding of code, and most automatic code breaking
approaches tend to be out-of distribution with real samples. Yasunaga & Liang (2021) train both a
breaker and a fixer in order to learn to propose new code fixes that are realistic, and uses a compiler
to verify its correctness. Close to our approach we use partial fixes generated by the model as the
initial broken code to be fixed iteratively.

More recently, a few unsupervised approaches have been proposed based on the capability of LLMs
to generate code (Chen et al., 2021; Nijkamp et al., 2023; Chowdhery et al., 2024; Li et al., 2022b;
Fried et al., 2023; Li et al., 2023). The APR task still remains challenging, even though models are
better at generating code (Olausson et al., 2024; Chen et al., 2023). Zhao et al. (2024) use a step-by-
step method to repair code using a reward model as a critic, providing feedback to finetune an LLM.
Shypula et al. (2024) propose a retrieval based few-shot prompting approach with Chain-of-Thought
(CoT) reasoning traces, and use supervised fine-tuning (SFT) to finetune a model using self-play.

The main disadvantage of using SFT approaches comes from the need to finetune the model to
the task, which becomes much more costly with ever-growing model sizes. In recent years the in-
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Figure 8: Category-wise analysis: analysing the distribution of AuPairs across different categories
and comparing it with the distribution of problems in the dataset.

context learning (ICL) paradigm (Brown et al., 2020) has been shown to be a flexible and compute
efficient adaptation approach to new tasks (Von Oswald et al., 2023; Akyürek et al., 2023). Le et al.
(2022) use an LLM to generate code and a critic network to predict functional correctness of the
the generated program, with zero-shot transfer to new tasks. Our work focuses on tasks which the
correctness is specified by the number of test cases the generated code passes. Gou et al. (2024)
combine the use of LLMs with tools to provide feedback for the LLM to self-correct via additional
calls to evaluate its own output in a validation setting. Wang et al. (2023a) also make use of external
tools and use an LLM in a learner / teacher role to provide a chain of repairs to fix the code.

Yin et al. (2024) propose an automated self-repair approach with few-shot prompting but using CoT
and execution feedback information. Agarwal et al. (2024) also use CoT rationales but remove them
from context when few-shot-prompting the model. Olausson et al. (2024) show that using an LLM
as a feedback source for self repair has its limitations when compared with the same number of
independent model calls for the same problem since the ability to generated better code may be
interconnected with the ability to identify its faulty behaviour. Welleck et al. (2023) decouple the
generation and the correction phase, by independently training a corrector with scalar and natural
language feedback to correct intermediate imperfect generations. We use self-corrections, since
we use the same model for generating the fixes and the broken code pairs, but the improvement is
grounded on the number of passing tests, avoiding degenerate behaviours.

Yuan & Banzhaf (2017) propose a multi-objective evolutionary algorithm to search over possible
correct code patches; Romera-Paredes et al. (2023) use an island-based evolutionary method to
encourage exploration of diverse programs, and perform iterative best-shot-prompting to improve
the quality of the generated code. In this paper, we use a generative approach; closer to the work
of Shirafuji et al. (2023), we make use of ICL abilities of LLMs to generate improved code repairs,
but we provide an extra submodular process to select the samples, that encourages diversity.

5 CONCLUSIONS AND FUTURE WORK

We propose an algorithm, AuPair, which produces a set of golden example pairs that can be provided
as in-context examples using 1-shot prompting to improve code repair performance at inference
time. Our approach is highly scalable, showing significantly better outcomes than best-of-N , which
is the current state-of-the-art method that improves performance as inference compute is scaled
up. In addition to this, the AuPairs generated using our algorithm show strong out-of-distribution
generalisation and thus can be reused at inference time to solve a wide range of problems. While
in this paper we have explored repair in the coding domain, our algorithm is general and can be
used in any setting in which an initial solution generated by an LLM can be improved via repair.
Additionally, the choice of coding implies that all our feedback is grounded, but our algorithm is
general enough to accommodate ungrounded feedback from reward models, so future work merging
this line of research into the full LLM pipeline might be worth investigating.
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A APPENDIX

A.1 PAIR GENERATION

In this section, we discuss the specifics of the pair generation phase and provide results pertaining
to this phase. The approach that we use for pair generation is provided in Algorithm 3. Note that
this is one way to generate pairs; they can be generated in other ways, or be available beforehand.

Algorithm 3 Pair Generation

Require:


LLM large language model
Dtrain training dataset
k number of few-shot examples
N total number of LLM calls
score code eval function

1: init candidate pairs C ← {}
2: for i = 1, . . . , N do
3: sample problem from dataset: x ∼ Dtrain
4: sample k pairs to use in-context: c1, . . . , ck ∼ C
5: build k-shot prompt: p← c1 ∥ . . . ∥ ck ∥ x
6: generate fix: ŷ ← LLM(p)
7: evaluate fix: sŷ ← score(ŷ)
8: if sŷ > sx then
9: create new pair: c← ⟨x, ŷ⟩

10: add to candidate pairs: C ← C ∪ c
11: if sŷ < 1 then
12: create new problem x̂ with guess ŷ
13: add new problem to dataset: Dtrain ← Dtrain ∪ x̂
14: else
15: remove problem from dataset: Dtrain ← Dtrain − {x}
16: end if
17: end if
18: end for

return C

A.1.1 RESULTS

We report the results obtained after phase 1 of our algorithm, pair generation. For the AtCoder
dataset, we set a budget of 10,000 LLM calls for pair generation. Since the CodeForces dataset is
larger, we set a budget of 35,000 LLM calls to maintain a good balance between having enough LLM
calls per problem and maintaining the affordability of the overall approach in terms of computational
resources. We report the number of pairs generated on both of these datasets across all 4 models:
Gemini-1.5-Pro, Gemini-1.5-Flash, Gemma-27B, and Gemma-9B in Table 2. Here we provide some
additional results that we were unable to include in the main text.

CodeForces # of pairs # AuPairs

Gemini-1.5-Pro 1560 144
Gemini-1.5-Flash 1327 110
Gemma-27B 509 77
Gemma-9B 556 122

AtCoder # of pairs # AuPairs

Gemini-1.5-Pro 927 64
Gemini-1.5-Flash 397 64
Gemma-27B 295 27
Gemma-9B 147 14

Table 2: Number of pairs collected during phase 1 of the algorithm (# of pairs) and number of
AuPairs extracted in phase 2 (# AuPairs): CodeForces (top) and AtCoder (bottom) for all 4 models.
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Figure 10: Percentage of fully solved problems with N = 32 LLM calls at inference time. Code-
Forces (left) and AtCoder (right).

A.1.2 SCALING INFERENCE COMPUTE

Figure 9: Scaling up inference compute on
the CodeForces dataset with Gemini-1.5-Flash.
Scores correspond to average pass test rate on all
the test problems. blue dashed line represents the
average score of the initial guesses. orange show
the best of N x 1-shot prompt, green show the
best of N AuPair 1-shot prompt. With increasing
compute N we can see a clear improvement with
Aupair prompting on a much larger steeper slope
than best-of-N.

In addition to the scaling experiment we
performed using Gemini-1.5-Pro, results in
Fig. 5(b), we also perform the same scaling ex-
periment using Gemini-1.5-Flash and show the
results in Fig. 9. The trend is similar to what
we observed before: best-of-N plateaus after
a certain number of LLM calls, while our ap-
proach scales as the compute budget increases,
delivering an improvement in performance for
each newly included AuPair. Since our AuPairs
are selected submodularly, the initial pairs yield
high returns in performance and these returns
start diminishing slowly, but notably, perfor-
mance does not plateau yet. Thus, it is abun-
dantly clear that using AuPairs has a distinct ad-
vantage over current state-of-the-art approaches
like best-of-N in improving performance at in-
ference time as compute budget increases.

A.1.3 MEASURING CORRECTNESS
IN TERMS OF SOLVED PROBLEMS

In addition to pass rate of unit tests, we also
report the percentage of fully solved problems,
for which the generated code passes all test
cases. We see that AuPair outperforms all other
baselines on all models across the board, with
results for CodeForces and AtCoder shown in Fig. 10.

A.1.4 CODE REPAIR WITH LIVECODEBENCH

Generalisation of AuPair prompting is important to improve code repair of smaller datasets. We posit
that the AuPairs contain diverse code changes that transfer meaningfully across datasets, which may
be important to those with scarce data.

We now show some examples of AuPairs obtained for a smaller dataset (400 problems) Live-
CodeBench (LCB) (Jain et al., 2024). We generated the same train/val/test split (37.5/12.5/50%)
over 400 problems and applied our AuPair approach to obtain in distribution AuPairs for LCB.

Fig. 11 shows that even with smaller number of selected AuPairs we still obtain a gain over best-
of-N prompting. We obtained 5 AuPairs with the submodular extraction in Algorithm 2 for all the
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Figure 12: Visualising the lineage of the set of all pairs as the first phase of the algorithm, pair
generation, progresses.

models except Gemma-9B which obtained only 3 AuPairs. Given the difference in dataset size these
values are larger in proportion to the ones obtained from a larger dataset CodeForces (8.8k problems,
144 extracted AuPairs).

0.5

Figure 11: LiveCodeBench in distribution results show AuPair prompting is outperforming best-
of-N even in the small data regime.

A.1.5 LINEAGE

Here we look at the lineage of each pair generated during phase 1 of our algorithm, pair generation.
The key idea here is to see if the set of all pairs collected during the pair generation phase are deeper
i.e., they generate iteratively better solutions for a smaller set of problems, or broader i.e., they
generate solutions for a larger set of problems but those solutions may not necessarily be perfect.
The last plot in Fig. 12 (pairs generated on the CodeForces dataset using Gemini-Pro-1.5) indicates
that the pairs collected have shallow lineage: a large proportion of guesses that had a score of 0 had
corresponding fixes with perfect score at depth 1. We also see that the number of fixes decreases as
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depth increases (as seen from the size of the circles), indicating that several problems could not be
improved beyond a certain point, or that they were not resampled during the pair generation phase.
In both these cases, one solution is to allow more LLM calls during phase 1 to allow each problem
to be sampled for repair more times. The takeaway here is that more sophisticated fixes for difficult
problems can be discovered as we increase the budget of LLM calls during the pair generation phase.
The entire evolution of this lineage at different points during pair generation is illustrated in Fig. 12.

A.2 CODE DIVERSITY

We compute the code diversity score in Fig. 7(b) based on the number of different abstract syntactic
sub-trees each code instance produces. First we compute the set of all abstract syntactic sub-trees
that the guess code Sguessj = AST(guessj) and the fix code Sfixi,j = AST(fixi,j) generates, for
every problem/guess xj in the dataset (in Dtest and every generated fix i. For AuPair we use the
selected pair ci in the prompt (a guess/fix pair) to generate a fix ci ∈ A for each AuPair generated
in Algorithm 2. Next, we compute the set difference of the generated guess/fix to obtain the unique
sub-trees for the code diff Sfixi,j\Sguessj . Then with increase compute N , we calculate the unique
number of sub-trees generated so far for each problem and compute its average across pairs and
problems. The diversity score δ is for a given compute budget N is written as:

δ =
1

C N |Dtest|
∑
i=1

|Dtest|∑
j=1

N⊕
i=1

Sfixi,j\Sguessj (1)

this score is normalized by a constant corresponding to the max set size C =

max
i,j

#

(
N⊕
i=1

Sfixi,j\Sguessj

)
. Here we denote x ∈ A\B ⇐⇒ x ∈ A\Bx ∈ A ∧ x /∈ B as the

set difference and use
⊕

to write the set addition.

Algorithm 4 summarises how we compute the diversity scores:

Algorithm 4 Diversity score computation
1: for problem xj ∈ Dtest do
2: init diversity set of code diffs D0,j ← ∅
3: compute guess AST sub-trees Sguessj
4: for for every generated fix i: do
5: compute fix AST sub-trees Sfixi,j
6: update set of sub-trees Di,j ←Di−1,j

⊕
Sfixi,j\Sguessj

7: count number of unique sub-trees δi,j = #Di,j

8: end for
9: end for

10: compute its average δ = 1
N |Dtest|

∑
i,j δi,j

11: normalize score δ = δ/C with C = max
i,j

δi,j .

return δ

A.3 PROMPTING

There are 2 types of prompts that we use: 1) guess generation prompt, and 2) repair prompt. The
guess generation prompt is used during dataset creation, for obtaining the initial guesses for all prob-
lems in the dataset. The repair prompt is used throughout the rest of the paper: in the Pair Generation
(Phase 1, §2.1 with k = 32 random examples) and in the AuPair Extraction (Phase 2, §2.2). The
function signature indicates that the function expects a string as an input. The instruction specifies
that the final answer is meant to be printed inside the function, and that the main function is not
meant to be written.

The structure of our repair prompt is as follows: there is a generic instruction at the top, followed by
the few-shot examples in the format of question, followed by the guess or bad solution, followed by
the fix or good solution. We also add the score achieved by the guess and the fix for the in-context
example pairs. Following this, we add the text and initial guess solution for the problem and the
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LLM then has to generate a better fix. Note that we do not provide any extra execution feedback in
the form of execution traces; this could potentially be explored by future work. Our aim is clear:
the pairs indicate a certain type of change and we provide these pairs in context to aid the LLM in
generating an improved solution for the given problem. Some different prompting strategies that we
tried out were the following:

Guess Generation Prompt

<problem text>
Complete the function definition below. Print the final answer in the function. Do not write
main. Do not write anything outside the solve() function.

def solve(s: str):
...

Repair Prompt

You are an experienced software developer.
Look at the question (Q) and solutions below (A).
The main objective is to improve the solve() function to answer the question.

Example 1:

(Q): ...
Bad solution code A(bad):

def solve(s: str):
...

The score of this code is score(A(bad)) = <example_guess_score>.

Good solution code A(good):
The score of this code is score(A(good)) = <example_fix_score>.

def solve(s: str):
...

...

================================================================

The main objective is to improve the solve() function to answer the question.
(Q): ...
Bad solution code A(bad):

def solve(s: str):
...

The score of this solution is score(A(bad)) = <guess_score>

Good solution code A(good):
The score of this solution is score(A(good)) = 100

Naïve prompting: only include the problem, guess and fix solutions for the pairs, followed by the
problem and guess for the test problem.

Prompting with instruction only: include the header instruction followed by the components of the
naïve prompting strategy.

Prompting with instruction and score: include the elements of 2 above, but in addition, also include
the score that each guess/fix received on the corresponding problem’s test cases. This is the prompt
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that we finally use and the one that gives us better results when compared using the same set of pairs
with the previous 2 strategies. An important thing to note here is that we prompt the model with a
desired fix score of 100 for the test problem.

We test the three strategies described above on a sub-
set of the CodeForces dataset and report their perfor-
mance in terms of number of problems solved, in the
figure on the right. The results clearly indicate that
the final prompting strategy that includes the instruc-
tion and score is the best strategy and so we choose
it to compose the repair prompt.

A.4 CODE EXECUTION

When the LLM generates a fix for any problem, we
call the solve() function for each test case associ-
ated with that problem. We then compare the output
with the ground truth and give a partial score corresponding to the proportion of test cases passed
by this fix.

An important point to note is that the solve() function has to take as input a string, which is then
parsed into the correct variables. This formatting requirement is a key reason for the poor initial and
best-of-N performance of Gemini-1.5-Pro in Fig. 4. Since the instruction for generating the initial
guess is not correctly followed by the model, a lot of guesses end up invariably having incorrect
parsing of the input, leading to low scores. A lot of AuPairs extracted using these models, as a
result, contain this formatting fix, as we will see in Section A.5.

A.5 TYPES OF FIXES IN AUPAIRS

We now show some examples of AuPairs and highlight the differences between the guess and fix for
each pair. These are a mix of CodeForces pairs collected using the 4 models. The scores achieved
by the guess and fix on the corresponding problem’s test cases are specified at the top right corner
for each example in Fig. 13. We also provide a short description for each type of fix in the caption.
The types of pairs discovered using our algorithm cover a large area of potential fixes that can be
made to an initial buggy piece of code: from smaller ones like parsing, fixing logical bugs pertaining
to indexing errors, variable initialisations, etc., to larger changes like rewriting parts of the code, or
even suggesting alternate routes to solve the same problem.
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def solve(n: str):
  n = int(n)
  dp = [0] * (n + 1)
  dp[0] = 1
  for i in range(1, n + 1):
    dp[i] = dp[i - 1] * 4
  print(dp[n])

def solve(n: str):
  n = int(n)
  dp = [[0 for _ in range(4)] for _ in range(n + 1)]
  dp[0][0] = 1
  for i in range(1, n + 1):
    for j in range(4):
      for k in range(j, 4):
        dp[i][k] = (dp[i][k] + dp[i - 1][j]) % 
1000000007
  print(sum(dp[n]))

score: 0.33 score: 0.67

(a) Fix: converts a 1-D dynamic programming solution to 2-D.

def solve(s: str, t: str, k: int):
  n = len(s)
  m = len(t)
  count = 0
  for i in range(n - m + 1):
    match = True
    for j in range(m):
      if abs(i + j - s.find(t[j], i, i + m)) > k:
        match = False
        break
    if match:
      count += 1
  print(count)

def solve(s: str):
  n, m, k = map(int, s.split('\n')[0].split())
  S = s.split('\n')[1]
  T = s.split('\n')[2]
  count = 0
  for i in range(n - m + 1):
    match = True
    for j in range(m):
      found = False
      for p in range(max(1, i + j - k), min(n, i + j 
+ k) + 1):
        if S[p - 1] == T[j]:
          found = True
          break
      if not found:
        match = False
        break
    if match:
      count += 1
  print(count)

score: 0.0 score: 1.0

(b) Fix: composition of 1) input parsing correction, and 2) logical bug fix.

def solve(s: str):
  n, a, b, c = map(int, s.split())
  if a <= b:
    print(n // a)
  else:
    glass_bottles = n // b
    remaining_money = n - glass_bottles * b
    plastic_bottles = remaining_money // a
    print(glass_bottles + plastic_bottles)

def solve(s: str):
  n, a, b, c = map(int, s.split())
  if a <= b:
    print(n // a)
  else:
    glass_bottles = n // b
    remaining_money = n - glass_bottles * b
    plastic_bottles = remaining_money // a
    if remaining_money >= b - c:
      glass_bottles += 1
      remaining_money -= b - c
      plastic_bottles = remaining_money // a
    print(glass_bottles + plastic_bottles)

score: 0.5 score: 1.0

(c) Fix: add an extra condition for edge cases.
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def solve(s: str):
  n = int(s.split('\n')[0])
  a = list(map(int, s.split('\n')[1].split()))
  count = 0
  for i in range(n):
    sum = 0
    for j in range(i, n):
      sum += a[j]
      if sum != 0:
        count += 1
  print(count)

def solve(s: str):
  n = int(s.split('\n')[0])
  a = list(map(int, s.split('\n')[1].split()))
  count = 0
  for i in range(n):
    sum = 0
    for j in range(i, n):
      sum += a[j]
      if sum != 0:
        count += 1
      else:
        break
  print(count)

score: 0.5 score: 1.0

(d) Fix: add loop exit condition.

def solve(s: str):
    n = int(input())
    a = list(map(int, input().split()))
    if sum(a) == 0:
        print("NO")
        return
    print("YES")
    if a[0] != 0:
        print(1)
        print(1, n)
    else:
        print(n)
        for i in range(1, n + 1):
            print(i, i)

def solve(s: str):
    n = int(s.split('\n')[0])
    a = list(map(int, s.split('\n')[1].split()))
    if sum(a) == 0:
        print("NO")
    else:
        print("YES")
        print(n)
        for i in range(n):
            print(i + 1, i + 1)

score: 0.0 score: 0.25

(e) Fix: composition of 1) input parsing correction, and 2) logical bug fix.

def solve(n: int, d: int, a: list[int]):
    balance = 0
    bank_visits = 0
    for i in range(n):
        balance += a[i]
        if balance < 0:
            if balance + d < 0:
                print(-1)
                return
            bank_visits += 1
            balance = d + balance
        if balance > d:
            print(-1)
            return
    print(bank_visits)
if __name__ == "__main__":
    n, d = map(int, input().split())
    a = list(map(int, input().split()))
    solve(n, d, a)

def solve(s: str):
    n, d = map(int, s.split('\n')[0].split())
    a = list(map(int, s.split('\n')[1].split()))
    balance = 0
    bank_visits = 0
    for i in range(n):
        balance += a[i]
        if balance > d:
            print(-1)
            return
        if a[i] == 0 and balance < 0:
            bank_visits += 1
            balance = d
    print(bank_visits)

score: 0.0 score: 0.67

(f) Fix: composition of 1) function signature correction, 2) input parsing correction, and 3) logical bug fix.

def solve(s: str):
    n = int(input())
    s = input().split()
    p = [int(x) for x in s]
    ans = 1
    for i in range(n):
        ans = ans * p[i] % (10**9 + 7)
    print(ans)

def solve(s: str):
    n = int(s.split('\n')[0])
    p = list(map(int, s.split('\n')[1].split()))
    ans = 1
    for i in range(n):
        ans = ans * p[i] % (10**9 + 7)
    print(ans)

score: 0.0 score: 0.5

(g) Fix: input parsing correction.
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def solve(s: str):
  n, p = map(int, s.split())
  dp = [float('inf')] * (n + 1)
  dp[0] = 0
  for i in range(1, n + 1):
    for j in range(32):
      if (1 << j) <= i:
        dp[i] = min(dp[i], dp[i - (1 << j)] + 1)
    if i - p >= 0:
      dp[i] = min(dp[i], dp[i - p] + 1)
  if dp[n] == float('inf'):
    print(-1)
  else:
    print(dp[n])

def solve(s: str):
  n, p = map(int, s.split())
  cnt = 0
  while n > 0:
    if n & 1:
      cnt += 1
    n >>= 1
  if p != 0:
    cnt += (n + p - 1) // p
  print(cnt)

score: 0.2 score: 0.6

(h) Fix: solve problem using bit manipulation instead of dynamic programming.

def solve(s: str):
  n = int(s.split('\n')[0])
  graph = [[] for _ in range(n + 1)]
  for i in range(1, n):
    u, v = map(int, s.split('\n')[i].split())
    graph[u].append(v)
  visited = [False] * (n + 1)
  count = 0
  for i in range(1, n + 1):
    if not visited[i]:
      count += 1
      dfs(i, graph, visited)
  print(count - 1)
  res = []
  for i in range(1, n + 1):
    if not visited[i]:
      res.append(i)
  print(*res)
def dfs(node, graph, visited):
  visited[node] = True
  for neighbor in graph[node]:
    if not visited[neighbor]:
      dfs(neighbor, graph, visited)

def solve(s: str):
  n = int(s.split('\n')[0])
  graph = [[] for _ in range(n + 1)]
  for i in range(1, n):
    u, v = map(int, s.split('\n')[i].split())
    graph[u].append(v)
  def dfs(node, visited):
    visited[node] = True
    for neighbor in graph[node]:
      if not visited[neighbor]:
        dfs(neighbor, visited)
  count = 0
  visited = [False] * (n + 1)
  for i in range(1, n + 1):
    if not visited[i]:
      count += 1
      dfs(i, visited)
  print(count - 1)
  res = []
  visited = [False] * (n + 1)
  for i in range(1, n + 1):
    if not visited[i]:
      dfs(i, visited)
      res.append(i)
  print(*res)

score: 0.0 score: 0.5

(i) Fix: partial correction to depth-first search graph algorithm.

def solve(s: str):
  n, p, k = map(int, s.split()[0:3])
  a = list(map(int, s.split()[3:3+n]))
  s = [list(map(int, 
s.split()[3+n+i*p:3+n+(i+1)*p])) for i in range(n)]
  people = sorted(enumerate(a), key=lambda x: x[1], 
reverse=True)
  max_strength = 0
  for i, (person_index, audience_strength) in 
enumerate(people):
    if i == k:
      break
    max_strength += audience_strength
    for j in range(p):
      max_strength_for_position = 
max(max_strength_for_position, s[person_index][j])
    max_strength += max_strength_for_position
  print(max_strength)

def solve(s: str):
  n, p, k = map(int, s.split()[0:3])
  a = list(map(int, s.split()[3:3+n]))
  s = [list(map(int, 
s.split()[3+n+i*p:3+n+(i+1)*p])) for i in range(n)]
  people = sorted(enumerate(a), key=lambda x: x[1], 
reverse=True)
  max_strength = 0
  for i in range(k):
    person_index = people[i][0]
    max_strength += a[person_index]
  for j in range(p):
    best_player_index = -1
    best_player_strength = -1
    for i in range(n):
      if i not in [person[0] for person in 
people[:k]]:  
        if best_player_strength < s[i][j]:
          best_player_strength = s[i][j]
          best_player_index = i
    max_strength += best_player_strength
  print(max_strength)

score: 0.0 score: 1.0

(j) Fix: rewrite partial solution to pass all test cases.

Figure 13: Examples of AuPairs produced by our algorithm (all 4 models represented above)
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