
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUPAIR: GOLDEN EXAMPLE PAIRS FOR CODE REPAIR

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling up inference-time compute has proven to be a valuable strategy in improv-
ing the performance of Large Language Models (LLMs) without fine-tuning. A
task that can benefit from such additional inference-time compute is self-repair:
given an initial flawed response, the LLM has to correct its own mistake and pro-
duce an improved response. We propose leveraging the in-context learning ability
of LLMs to perform self-repair. The key contribution of this paper is an approach
to synthesise and select a golden set of pairs, each of which contains a problem
with an initial guess, and a consequent fix, both generated by the LLM. Each
golden example pair, or AuPair1, is then provided as an in-context example at in-
ference time to generate a candidate repaired solution with 1-shot prompting; in
line with best-of-N the highest-scoring response is selected. Given an inference-
time compute budget of N LLM calls, our algorithm selects N AuPairs in a man-
ner that maximises complementarity and usefulness. We demonstrate the results
of our algorithm on the coding domain for code repair on 4 LLMs across 7 com-
petitive programming datasets. The AuPairs produced by our approach provide a
significant boost in performance compared to best-of-N , and also exhibit strong
generalisation across datasets and models. Moreover, our approach shows strong
scaling with the inference-time compute budget.

1 INTRODUCTION

Recent progress in the field of Large Language Models (LLMs) has resulted in models that keep get-
ting better at generating responses to user queries. When providing these already powerful models
with more inference-time compute—increasing number of LLM calls—methods that sample dif-
ferent responses and then select the best among them, such as best-of-N (Stiennon et al., 2020)
or self-consistency (Wang et al., 2023b), have shown clear benefits. While these approaches are
more breadth-focused, another way to leverage inference time compute is to improve or repair the
LLM’s initial guesses by generating better fixes. We propose combining the benefits of both these
approaches to generate a wide set of repaired solutions for poor initial LLM responses, and then
select the best as final answer.

To generate a wide range of repaired solutions for each initial LLM response, we exploit the in-
context learning capability exhibited by LLMs. The main contribution of this paper is an algorithm
that produces a golden sequence of pairs of guesses and fixes, which can each be provided as in-
context example for generating repaired solutions. Each such AuPair consists of the problem de-
scription, the initial guess, and the consequent fix, along with their respective scores. An example
AuPair is illustrated in Fig. 2. Given an inference-time compute budget of N LLM calls, our al-
gorithm provides an ordered set of N golden example pairs or AuPairs. These AuPairs are used
to generate N fixes at inference time, out of which the highest scoring one is selected as the final
output response.

A core ingredient of our proposed algorithm is the selection of these AuPairs. We propose a submod-
ular approach based on the ability of each pair to solve different problems in a held-out validation
set. Since the list of AuPairs is constructed by taking the greedy pair at each step, only those pairs
that increase the score of the fix on a subset of problems are selected, resulting in useful AuPairs.

1The name AuPair is a coupling of Au, the chemical symbol for gold, and Pair, jointly referring to golden
pairs that are produced by our algorithm. The high-level interpretation is that like an "au pair", the approach
guides the LLM towards better behaviour.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

 train repair candidate
pairs

k-shot
 prompts

sample
guess

fix

as

if 1 > >

if >

sample

Figure 1: Pair Generation: This phase includes collecting a large set C of guesses and their fixes
giving pairs . At each step, a problem with its guess is sampled from the training dataset

"train"[left], and used in conjunction with k randomly sampled pairs from the candidate pair buffer
to compose a k-shot prompt. This prompt is then passed through an LLM to generate a fix. The fix
is evaluated on the unit tests by running the Python interpreter and computing its test pass rate. If
this fix is better than the guess, this (guess, fix) pair is added to "train". Any improved but imperfect
fix is also added as a new guess to the "train" set of guesses. See §2.1 for more details.

Also, as the AuPairs are selected in a submodular manner to solve different sets of problems, by
design, we get complementary AuPairs. In a nutshell:

AuPair is a simple and general-purpose selection algorithm, which builds a diverse and useful
set of examples that can be provided in context at inference time. It can be used to solve tasks in
which the model can repair its own solution to improve performance, provided a grounded source
of verification, such as a set of correctness tests.

In this paper, we focus on the code repair task: given a coding problem, an initial guess which is
LLM-generated code, and a set of test cases that are used only to evaluate the correctness of the
generated code, can the LLM generate an improved fix for the problem? We show that the fixes
generated with AuPairs provided as in-context examples are significantly more useful and diverse
than those generated using best-of-N (§3) for the same inference-time compute budget.

The key contributions of this paper are the following:

• An inference-time algorithm, AuPair, which constructs a golden set of code repair exam-
ples that boost performance significantly when used as in-context examples (§2).

• Reliably outperforming best-of-N across 4 different model sizes: Gemma-9B, Gemma-
27B, Gemini-1.5-Flash, Gemini-1.5-Pro, and 7 competitive programming datasets (§3.1).

• Strong scaling performance with inference time compute, with far less diminishing returns
than best-of-N (§3.3).

• Robust out-of-distribution generalisation, w.r.t. both model size and dataset (§3.4).

• Demonstrably higher diversity of solutions, without performance trade-off (§3.6).

2 APPROACH

The goal of our algorithm is to improve code repair performance on unit tests at inference time, by
building a list of pairs that can be provided as in context examples. The code repair prompt includes
an optional set of examples, followed by a text description of the problem to solve and the initial
guess generated by the LLM. The LLM generates a revision, or a fix that improves performance on
the unit tests for that problem, see Fig. 2. In the prompt, we also include the scores achieved by the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

def solve(x: int):
 x = str(x)
 count = 0
 for i in range(1, x + 1):
 if x[0] in str(i) or str(i)[0] in x:
 count += 1
 print(count)

def solve(x: int):
 x = str(x)
 count = 0
 for i in range(1, int(x) + 1):
 if int(x) % i == 0:
 i = str(i)
 for digit in x:
 if digit in i:
 count += 1
 break
 print(count)

G
ue
ss Fix

score: 0.0

score: 1.0

Problem: The Little Elephant loves numbers.
He has a positive integer x. The Little Elephant wants to find the number of positive integers d, such that d is
the divisor of x, and x and d have at least one common (the same) digit in their decimal representations.
Help the Little Elephant to find the described number.

Input
A single line contains a single integer x (1 ≤ x ≤ 10^9).

Output
In a single line print an integer — the answer to the problem.

Examples

Input
1
Output
1

Input
10
Output
2

Figure 2: An example AuPair : guess/fix from CodeForces and their respective test pass rates
[above], and the problem description [below]. The guess checks only the first digit for every single
number leading up to the input. The fix corrects the logic by iterating over the divisors of the input,
and checking for an intersection over all digits with the input.

guess and fix on the unit tests, but no additional execution feedback.2 Our approach consists of two
main phases: 1) Pair Generation §2.1, and 2) AuPair Extraction §2.2.

In order to disentangle repair performance from the quality of initial guesses, we first curate com-
posite datasets consisting of initial guesses for all the coding problems. Given a dataset consisting
of problems and their corresponding tests, we first generate an initial guess for each problem and
compute its score on the unit tests. If the guess passes all the unit tests for that problem correctly,
no further improvement is required and we discard that problem. If not, we add this guess along
with its corresponding score and problem as a datapoint to our curated dataset. This dataset is then
divided into training, validation, and test datasets. We use the training dataset Dtrain ≡ D for pair
generation (Fig. 1), and the validation dataset Dval for AuPair extraction. The test dataset is used in
the final testing phase only Dtest.

2.1 PHASE 1: PAIR GENERATION

In this phase, we generate a set C of candidate (guess, fix) pairs using the approach illustrated in
Fig. 1. These pairs will then be used to select the AuPairs in the next phase. For each problem
sampled from the training dataset D, we have an initial guess. Next, the LLM has to generate a
fix for this guess. To collect a wide variety of fixes, we randomly sample k pairs from the existing
set of candidate pairs C and provide them as in-context examples of code repair. Note that initially
the candidate pair buffer is empty so there will be no in-context examples. However, this candidate
pair set C gradually gets populated as more fixes are generated by the LLM. These k example pairs,
along with the problem and its initial guess, are used to compose a k-shot repair prompt. This
repair prompt is then provided as input to the LLM, which generates a fix that is scored on the unit
tests. If this score is an improvement over the guess score, this (guess, fix) pair is added to the
set of candidate pairs. Furthermore, if this fix is imperfect, i.e., it does not pass all the test cases, it

2The repair prompt is composed using the prompting strategy shown in Fig. A.3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

 val

repair

1.
2.
3.
…

candidate
pairs

submodular
selection

fix-quality
matrix1-shot

 prompts

AuPairs

Figure 3: AuPair Extraction: given a large set C of "candidate pairs" , each pair is provided
as a 1-shot in-context example in the prompt for each problem and its guess from the validation
set "val". These prompts are passed to the LLM which generates one fix at a time to all the guesses
in the validation set "val". These fixes are evaluated on the corresponding unit tests to populate a
"fix-quality matrix" M ∈ R|C|×|Dval|, as described in Algorithm 1. Then, a submodular selection
mechanism is applied to obtain the list of AuPairs, in Algorithm 2, see §2.2 for details.

becomes a potential guess with further scope for improvement, so we add it as a guess to our training
dataset D. This process is repeated several times to collect a large set of such candidate pairs. 3

2.2 PHASE 2: AUPAIR EXTRACTION

Now that we have a large set C of candidate pairs, the next step is to determine which of these
will actually help boost performance, i.e., which of these are AuPairs. We do this in a submodular
fashion by making use of the validation dataset Dval. For every single pair-problem combination
(ci,xj) ∈ C × Dval, we build a 1-shot prompt p using the prompting strategy described in A.3 to
query the LLM to generate a fix for the given problem xj ∈ Dval. The fix generated by the LLM is
then evaluated on the unit tests and stored in the fix quality matrix M ∈ R|C|×|Dval| at index (i, j).
This first step of AuPair extraction is outlined in Algorithm 1.

Algorithm 1 Fix quality matrix computation

Require:

LLM large language model
C candidate pairs
Dval validation dataset
score code eval function

1: init fix quality matrix M ← 0|C|×|Dval|

2: for pair ci, problem xj ∈ C × Dval do
3: build 1-shot prompt: p← ci ∥ xj

4: generate fix: ŷ ← LLM(p)
5: evaluate fix: Mi,j ← score(ŷ)
6: end for

return M

Algorithm 2 Submodular AuPair extraction

Require:

{
M fix quality matrix
C candidate pairs
ϵ tolerance

1: initialise AuPairs A ← ()
2: repeat
3: per-pair scores: m̄← row-mean(M)
4: get best pair: ck ← argmaxCm̄
5: append to AuPairs: A ← A∪ ck
6: update M ← clip(M −Mk, 0, 1)
7: until max(m̄) < ϵ

return A

Next, we use this fix quality matrix M to extract the AuPairs by taking the following steps: 1) Select
the pair that gets the highest mean score across all problems in Dval, say ck, and add it to the list
of AuPairs A : A ← A ∪ ck. This is a greedy way of selecting the best pair given all previous
AuPairs and produces an ordered set of AuPairs. 2) Subtract the row score Mk (i.e. score on all the
problems in Dval) of this newly added pair from all the rows in the fix quality matrix with an update:
M −Mk. This ensures that redundant AuPairs are not produced by the approach. The updated

3Please refer to Table 2 for initial candidate pair buffer details.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

fix quality matrix is clipped to (0, 1) since any negative value in the matrix M , say Mi,j , implies
that the problem xj cannot be improved further by pair ci. Without clipping, we would not get an
accurate estimate of the improvement in the next step of submodular extraction. 3) this process is
repeated till the improvement falls beyond a tolerance ϵ. This submodular extraction of AuPairs
is shown in Algorithm 2. Fig. 3 has a joint diagram depicting fix quality matrix computation and
submodular AuPair extraction.

This process of iteratively constructing the set of AuPairs ensures that they improve performance
on disjoint parts of the problem space. The AuPairs that we obtain from this phase are then used in
the same manner at inference time, as 1-shot examples, to improve code repair performance. The
compute budget N at inference time determines the number of AuPairs that we can use at inference
time. Since the AuPairs form an ordered set, the first N AuPairs are used at inference time for
budget N . The final solution for each problem is the best among all generated solutions, i.e., the one
that passes the most test cases.

3 EXPERIMENTS

Datasets: We use 7 datasets that contain problems and test cases from competitive program-
ming contests: 1) CodeForces (8.8k problems), 2) AtCoder (1.3k problems), 3) HackerEarth (1.2k
problems), 4) CodeChef (768 problems), 5) LiveCodeBench (400 problems), 6) CodeJam (180
problems), and 7) Aizu (2.2k problems) (Li et al., 2022a; Jain et al., 2024). We choose Code-
Forces and AtCoder, separately, for in-distribution testing, and use the rest exclusively for out-of-
distribution testing. Our train / val / test split proportions for the CodeForces and AtCoder datasets
are 37.5/12.5/50%. Some datasets have difficulty levels as part of the problem; for those datasets
we maintain the same stratified distribution of questions in the training, validation, and test datasets.

Models: We use 4 models of different sizes: Gemma-9B, Gemma-27B, Gemini-1.5-Flash and
Gemini-1.5-Pro. In addition to using these models for dataset curation and pair generation, we
look at the transfer capabilities of our method with respect to different models in Section 3.5.

Evaluation: We use each AuPair as 1-shot example, in context with the problem text and initial
guess in the repair prompt. The structure of the prompt is the same as the one used earlier (A.3).
We perform two types of evaluation: in-distribution and out-of-distribution. For in-distribution
evaluation, we use the test split from the same dataset as the one used for pair generation and AuPair
extraction. This ensures that the format of questions and test cases in the test questions matches
that of the AuPairs. Out-of-distribution evaluation uses a different coding dataset; this means that
the test samples have different format of questions, difficulty, types of problems and test cases than
the AuPairs. Another axis of out-of-distribution evaluation that we look at is the model axis: we
report the performance obtained using AuPairs produced by a different model than the one used at
inference time.

Metrics: Our primary metric is the best-of-N accuracy, which we calculate as the average of the
best response across N LLM calls for all points in the test dataset. In our case, we have grounded
feedback available in the form of the number of unit tests passed by each LLM response, when
executed using the Python interpreter. We use this feedback to compute the maximum score out
of the N generated outputs for our approach and baselines, all of which involve N LLM calls at
inference time for fair comparison. For our approach we pick the first N AuPairs from A.

Baselines: We compare the effectiveness of our proposed approach with best-of-N (Stiennon et al.,
2020) and self-repair (Olausson et al., 2024). Best-of-N is currently the strongest baseline to im-
prove model performance by allowing multiple (N) LLM calls at inference time. To have a strong
best-of-N baseline, we set the temperature to 1.0, to ensure sampling of diverse responses while
preserving good quality responses (Renze & Guven, 2024) Self-repair uses the N LLM calls to ei-
ther generate verbal feedback or repaired code. In our experiments, for a budget of N = 32 LLM
calls, we use 4 LLM calls to generate verbal feedback and 7 LLM calls to generate repaired code for
each verbal feedback.

The remainder of this section will discuss a plethora of empirical results, on overall and ablated
performance (§3.1 and 3.2), scalability and generalisation (§3.3 to 3.5), and diversity (§3.6 to 3.8).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: In-distribution code repair performance: with N = 32 LLM calls at inference time and
the same train / val / test data distribution, we compute the average pass rate on test cases. The same
model is used for generating the initial guesses and fixes and the AuPair extraction. CodeForces
(left, 8.8k problems) and AtCoder (right, 1.3k problems), see §3.1 for more details.

3.1 SIGNIFICANTLY BOOSTED CODE REPAIR PERFORMANCE

The first step to assess code repair performance is to measure in-distribution performance; namely
generate and selecting AuPairs on the training and validation sets that match the test dataset, and
using the same model at evaluation as for construction. We do this for 2 datasets (CodeForces
and AtCoder) and all 4 models. Fig. 4 shows the resulting comparison between the best-of-N
baseline and our AuPair approach, for a budget of N = 32 LLM calls at inference time.4 AuPair is
clearly superior to best-of-N on all models and datasets, sometimes by wide margins. This clearly
establishes that our proposal of providing a different in-context example of code repair in each LLM
call can significantly boost performance.

An interesting side-result is visible in initial performance, i.e., the performance of the initial re-
sponses of the LLMs to the problems, which have to then be repaired. Gemini-1.5-Pro, despite
being a superior model to Gemini-1.5-Flash, shows worse initial performance. Since the code gen-
erated has certain conditions that allow successful execution, we observe that many initial guesses of
generated code fail because they do not obey these conditions (see Appendix §A.4). In such cases,
code repair with best-of-N is unlikely to give us high boost in performance since the initial solution
is badly formatted. This is one clear case where having an AuPair in context significantly improves
performance. As a result, using AuPairs in conjunction with high performing models leads to large
performance improvements despite poor initial performance, as we can see for both CodeForces and
AtCoder with the Gemini-1.5-Pro model in Fig. 4.

3.2 SELECTION MATTERS: AUPAIRS ARE MORE EFFECTIVE THAN RANDOM PAIRS

We design an ablation to disentangle the two possible sources of improvement that our approach
demonstrates, namely 1) in-context learning and 2) the choice of AuPairs. It is not implausible for
the boost in performance to result from the LLMs’ in-context learning ability, and that the same
result could be achieved by including any set of pairs. On the other hand, our approach specifically
targets complementarity during construction of AuPairs in that subsequent AuPairs are selected
based on their ability to solve problems that previous AuPairs were unable to solve. To resolve
this, we compare the full method to a random-pair baseline that randomly selects pairs from the full
candidate set (the result of Phase 1), deduplicating the problems that the random pairs solve (which
makes it a stronger baseline). Fig. 5 shows that AuPair significantly outperforms the random-pair
baseline for N = 1, ..., 32. Note that for any fixed candidate set, as N grows toward the size of the
full set of pairs, the performance of the random-pair baseline will equal that of AuPair.

4Since our algorithm yields a variable number of AuPairs, for smaller datasets with fewer generated pairs,
the total number of AuPairs can be less than 32. To have a fair comparison in that case, we set the same compute
budget N for the best-of-N baseline. This is the case for AtCoder (Fig. 4, right), where our algorithm yields 14
and 27 AuPairs for Gemma-9B and Gemma-27B respectively. So the corresponding best-of-N baseline results
also use a matching compute budget of 14 and 27 LLM calls respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: (a) AuPairs vs. random pairs: AuPairs (green) are significantly (about 3×) more com-
pute efficient than random pairs (red); it takes only 11 AuPairs to reach the same performance as 32
random pairs (CodeForces dataset, Gemini-1.5-Pro); (b) Scaling inference-time compute: using
AuPairs the score increases with compute budget at a much steeper rate compared to best-of-N .

Figure 6: Out-of-distribution code repair performance: AuPairs extracted on the CodeForces
dataset show strong generalisation performance across the other six datasets with Gemini-1.5-Pro.

3.3 BETTER SCALING WITH INFERENCE-TIME COMPUTE

At a fixed budget of N = 32 LLM calls, our results look promising. In this section, we investigate
whether and how performance scales with N . Fig. 5(b) plots the score as a function of the inference
compute budget N using Gemini-1.5-Pro (additional scaling curves in the Appendix, see Fig. 9).
For each additional LLM call, we use the next best AuPair produced by the algorithm and provide it
in context to generate the LLM response. The results shows a clear scaling trend with a consistent
log-linear performance increase as a function of compute, without any sign of a plateau. More
importantly, the increase is substantially steeper than for the best-of-N baseline; in other words,
our prompting with complementary AuPairs makes more efficient use of compute than repeated
sampling given a fixed prompt.

3.4 STRONG GENERALISATION TO OUT-OF-DISTRIBUTION DATASETS

The aim of this set of experiments is to determine whether our approach exhibits out-of-distribution
generalisation, i.e., given AuPairs collected on a different dataset, see if we can retain the perfor-
mance improvements that we obtain in-distribution. We evaluate the AuPairs collected using the
Gemini-1.5-Pro model on the CodeForces dataset on the other 6 datasets and compare them with the
corresponding best-of-N baselines. Fig. 6 shows that for all 6 datasets, our approach outperforms
best-of-N by a large margin, in spite of having out-of-distribution AuPairs. This in turn implies that
the process of collecting AuPairs may only be needed on one dataset, and its benefits can be reaped
across a wide range of problems (from other datasets, or users) at inference time.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: (a) Cross-model transfer: AuPair shows good cross-model transfer capabilities for all
four models on CodeForces; (b) Diversity-Score plot: we calculate diversity as the percentage
of unique subtrees present in Abstract Syntactic Trees of the N generated fixes (higher is better).
AuPair (⋆) with Gemini-1.5-Flash and Gemini-1.5-Pro generates more diverse responses than best-
of-N (□) while this diversity trend is reversed for the Gemma models. In terms of score, AuPair
always generates higher-scoring fixes than best-of-N .

3.5 DECENT CROSS-MODEL TRANSFER

Now that we have seen that our approach can exhibit very good out-of-distribution generalisation
along the data axis, we evaluate it on its ability to generalise on the model axis, i.e., we look at the
performance of AuPairs collected using a different model. We evaluate this cross-model transfer
capability for all model combinations on CodeForces. The resulting 16 ablations are shown in
Fig. 7(a), and help disentangle the impact of the AuPairs versus the code repair capabilities of the
inference model. A key takeaway is that the Gemma models exhibit worse performance, regardless
of the quality of AuPairs used at inference time, indicating that they are inferior at the capability of
code repair. Gemini-1.5-Flash performs much better at code repair, and its sensitivity to the source
of AuPairs is negligible: it is equally performant for each source. Gemini-1.5-Pro, on the other hand,
is sensitive to the source of AuPairs; in particular, when Gemini-1.5-Pro uses AuPairs collected by
the same model, it achieves the best performance by a large margin. With AuPairs selected using
other models, Gemini-1.5-Pro achieves comparable performance to Gemini-1.5-Flash. One reason
for the standout performance when using Gemini-1.5-Pro AuPairs seems that those examples result
in substantially more diverse generations, as shown in Section 3.6. However, Fig. 7(a) as a whole
suggests that there is an ordering in terms of performance: 1) the model used at inference time
has to have good code repair capabilities, and 2) the stronger the model is at code repair, the more
improvement we can expect from it with a higher quality of AuPairs.

3.6 HIGH CODE-SPECIFIC DIVERSITY

We dive a bit deeper into the nature of fixes generated using different AuPairs. There are several
ways to analyse code; we choose Abstract Syntax Trees (ASTs) since they mostly capture the struc-
ture of changes. More concretely, since we have N fixes for each problem (here N = 32), we
measure the diversity per problem as the number of unique changes made to the guess over all N
fixes for that problem. The diversity score is calculated as the average number of unique abstract
syntactic subtrees generated per problem. More concretely, we perform the set difference of all
subtrees in the fix AST that are not in the guess AST and normalize with the maximum number of
subtrees. We plot this diversity metric against the score in Fig. 7(b) to get a sense of how diverse
and useful the AuPairs are. We also include diversity results of the best-of-N baseline, see A.2 for
further details on the diversity score computation. The results show that while AuPairs always in-
crease performance, they result in higher diversity of fixes when given to the more competent models
(Gemini-1.5-Pro and -Flash), and lower diversity for Gemma models. It is worth highlighting that
the exceptional performance of AuPairs produced and used by Gemini-Pro (Fig. 7(a), bottom right)
correspond to highly diverse fixes (Fig. 7(a), top right).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Difficulty level→ A (671) B (675) C (671) D (666) E (649) F+ (537)

Gemma-9B 0.34 (+0.16) 0.23 (+0.13) 0.19 (+0.12) 0.15 (+0.09) 0.14 (+0.08) 0.12 (+0.07)
Gemma-27B 0.28 (+0.1) 0.25 (+0.12) 0.20 (+0.12) 0.19 (+0.1) 0.17 (+0.1) 0.20 (+0.11)
Gemini-1.5-Flash 0.54 (+0.2) 0.39 (+0.18) 0.34 (+0.15) 0.18 (+0.11) 0.26 (+0.12) 0.28 (+0.11)
Gemini-1.5-Pro 0.62 (+0.42) 0.52 (+0.4) 0.43 (+0.35) 0.38 (+0.32) 0.32 (+0.28) 0.35 (+0.29)

Table 1: Difficulty-wise analysis: score (§3) using AuPairs, categorised by difficulty level from
easy (A) to hard (F+), accompanied by number of problems. Absolute improvement in parentheses.
We see an expected trend here: the strongest performance is observed using the best models on the
easiest problems, and as difficulty increases, performance decreases across models. However, our
results with Gemini-1.5-Pro indicate improved performance with higher difficulty

3.7 IMPROVEMENT ON ALL DIFFICULTY LEVELS

Coding datasets have heterogeneous difficulty. As a sanity check, we conduct additional analysis
to determine which problem levels are most helped by AuPair, compared to the quality of initial
guesses. Table 1 shows the absolute improvement in score, i.e., the increase in score achieved by
AuPair for all 4 models on CodeForces. The two key observations are (a) AuPair helps significantly
at all difficulty levels for all models, and (b) there are larger improvements on easier levels, and
this trend is consistent across models. Note that the initial performance of Gemini-1.5-Pro is low
because the initial guesses generated do not adhere to the instruction (elaborated in Appendix §A.4);
however since this is the strongest model and shows the best overall performance across difficulty
levels, the increases in score that we see are significantly higher than the other models.

3.8 COVERAGE OF PROBLEM CATEGORIES IS PRESERVED

The CodeForces dataset is richly annotated with category labels for each problem. A problem may
have multiple tags, for instance, strings and two pointers. We use these fine-grained tags to
study how the problem distribution is affected by Phase 1 and Phase 2 of our method, separately.
Fig. 8 shows the proportions of these categories observed in the initial dataset, the full set of pairs
generated during Phase 1, and the final AuPairs. The high-level result is encouraging, namely that
the starting diversity is approximately preserved. Phase 1 yields pairs for every single category, even
those that lie at the tail. Furthermore, the (sparser) distribution over categories for the AuPairs after
Phase 2 still shows several problems from rare categories. This additional result consolidates our
insight that AuPairs are highly diverse, also in the types of problems they contain.

4 RELATED WORK

Automatic Program Repair (APR) has been a longstanding research area in the field of machine
learning (Devlin et al., 2017; Bhatia & Singh, 2016; Chen et al., 2019; Feng et al., 2020; Berabi
et al., 2021; Chakraborty et al., 2022; Yuan et al., 2022). Most methodologies rely on supervised
finetuning to adapt LLMs to the task of code generation using labeled pairs of broken / fixed code
pairs, which is costly to obtain and often task- and problem-specific (Hu et al., 2022; Jiang et al.,
2021; Xia & Zhang, 2022; Dinella et al., 2020). On the other hand, unsupervised APR is challenging
since it requires syntactic and semantic understanding of code, and most automatic code breaking
approaches tend to be out-of distribution with real samples. Yasunaga & Liang (2021) train both a
breaker and a fixer in order to learn to propose new code fixes that are realistic, and uses a compiler
to verify its correctness. Close to our approach we use partial fixes generated by the model as the
initial broken code to be fixed iteratively.

More recently, a few unsupervised approaches have been proposed based on the capability of LLMs
to generate code (Chen et al., 2021; Nijkamp et al., 2023; Chowdhery et al., 2024; Li et al., 2022b;
Fried et al., 2023; Li et al., 2023). The APR task still remains challenging, even though models are
better at generating code (Olausson et al., 2024; Chen et al., 2023). Zhao et al. (2024) use a step-by-
step method to repair code using a reward model as a critic, providing feedback to finetune an LLM.
Shypula et al. (2024) propose a retrieval based few-shot prompting approach with Chain-of-Thought
(CoT) reasoning traces, and use supervised fine-tuning (SFT) to finetune a model using self-play.

The main disadvantage of using SFT approaches comes from the need to finetune the model to
the task, which becomes much more costly with ever-growing model sizes. In recent years the in-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Category-wise analysis: analysing the distribution of AuPairs across different categories
and comparing it with the distribution of problems in the dataset.

context learning (ICL) paradigm (Brown et al., 2020) has been shown to be a flexible and compute
efficient adaptation approach to new tasks (Von Oswald et al., 2023; Akyürek et al., 2023). Le et al.
(2022) use an LLM to generate code and a critic network to predict functional correctness of the
the generated program, with zero-shot transfer to new tasks. Our work focuses on tasks which the
correctness is specified by the number of test cases the generated code passes. Gou et al. (2024)
combine the use of LLMs with tools to provide feedback for the LLM to self-correct via additional
calls to evaluate its own output in a validation setting. Wang et al. (2023a) also make use of external
tools and use an LLM in a learner / teacher role to provide a chain of repairs to fix the code.

Yin et al. (2024) propose an automated self-repair approach with few-shot prompting but using CoT
and execution feedback information. Agarwal et al. (2024) also use CoT rationales but remove them
from context when few-shot-prompting the model. Olausson et al. (2024) show that using an LLM
as a feedback source for self repair has its limitations when compared with the same number of
independent model calls for the same problem since the ability to generated better code may be
interconnected with the ability to identify its faulty behaviour. Welleck et al. (2023) decouple the
generation and the correction phase, by independently training a corrector with scalar and natural
language feedback to correct intermediate imperfect generations. We use self-corrections, since
we use the same model for generating the fixes and the broken code pairs, but the improvement is
grounded on the number of passing tests, avoiding degenerate behaviours.

Yuan & Banzhaf (2017) propose a multi-objective evolutionary algorithm to search over possible
correct code patches; Romera-Paredes et al. (2023) use an island-based evolutionary method to
encourage exploration of diverse programs, and perform iterative best-shot-prompting to improve
the quality of the generated code. In this paper, we use a generative approach; closer to the work
of Shirafuji et al. (2023), we make use of ICL abilities of LLMs to generate improved code repairs,
but we provide an extra submodular process to select the samples, that encourages diversity.

5 CONCLUSIONS AND FUTURE WORK

We propose an algorithm, AuPair, which produces a set of golden example pairs that can be provided
as in-context examples using 1-shot prompting to improve code repair performance at inference
time. Our approach is highly scalable, showing significantly better outcomes than best-of-N , which
is the current state-of-the-art method that improves performance as inference compute is scaled
up. In addition to this, the AuPairs generated using our algorithm show strong out-of-distribution
generalisation and thus can be reused at inference time to solve a wide range of problems. While
in this paper we have explored repair in the coding domain, our algorithm is general and can be
used in any setting in which an initial solution generated by an LLM can be improved via repair.
Additionally, the choice of coding implies that all our feedback is grounded, but our algorithm is
general enough to accommodate ungrounded feedback from reward models, so future work merging
this line of research into the full LLM pipeline might be worth investigating.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao
Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D. Co-Reyes, Eric Chu, Feryal Be-
hbahani, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning, 2024. URL
https://arxiv.org/abs/2404.11018.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. Tfix: Learning to fix coding
errors with a text-to-text transformer. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 780–791. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/berabi21a.html.

Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors in programming assign-
ments using recurrent neural networks. CoRR, abs/1603.06129, 2016. URL http://arxiv.
org/abs/1603.06129.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. Codit: Code editing
with tree-based neural models. IEEE Transactions on Software Engineering, 48(4):1385–1399,
April 2022. ISSN 2326-3881. doi: 10.1109/tse.2020.3020502. URL http://dx.doi.org/
10.1109/TSE.2020.3020502.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. In arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and
Martin Monperrus. Sequencer: Sequence-to-sequence learning for end-to-end program repair.
CoRR, abs/1901.01808, 2019. URL http://arxiv.org/abs/1901.01808.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sashank Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Bar-
ret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: scaling language modeling with pathways.
J. Mach. Learn. Res., 24(1), March 2024. ISSN 1532-4435.

Jacob Devlin, Jonathan Uesato, Rishabh Singh, and Pushmeet Kohli. Semantic code repair us-
ing neuro-symbolic transformation networks. CoRR, abs/1710.11054, 2017. URL http:
//arxiv.org/abs/1710.11054.

11

https://arxiv.org/abs/2404.11018
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
http://arxiv.org/abs/1603.06129
http://arxiv.org/abs/1603.06129
https://arxiv.org/abs/2005.14165
http://dx.doi.org/10.1109/TSE.2020.3020502
http://dx.doi.org/10.1109/TSE.2020.3020502
http://arxiv.org/abs/1901.01808
http://arxiv.org/abs/1710.11054
http://arxiv.org/abs/1710.11054

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity: Learning
graph transformations to ddetect and fix bugs in programs. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=SJeqs6EFvB.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming
and natural languages. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020, pp. 1536–1547, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139. URL
https://aclanthology.org/2020.findings-emnlp.139.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. In International Conference on Learning Representations, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Sx038qxjek.

Yaojie Hu, Xingjian Shi, Qiang Zhou, and Lee Pike. Fix bugs with transformer through a neural-
symbolic edit grammar, 2022. URL https://arxiv.org/abs/2204.06643.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Nan Jiang, Thibaud Lutellier, and Lin Tan. Cure: Code-aware neural machine translation for
automatic program repair. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, May 2021. doi: 10.1109/icse43902.2021.00107. URL http:
//dx.doi.org/10.1109/ICSE43902.2021.00107.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. In Ad-
vances in Neural Information Processing Systems, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023. URL https://arxiv.org/abs/2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Rob-
son, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-
level code generation with alphacode. Science, 378(6624):1092–1097, 2022a. doi: 10.1126/
science.abq1158. URL https://www.science.org/doi/abs/10.1126/science.
abq1158.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven

12

https://openreview.net/forum?id=SJeqs6EFvB
https://aclanthology.org/2020.findings-emnlp.139
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://arxiv.org/abs/2204.06643
http://dx.doi.org/10.1109/ICSE43902.2021.00107
http://dx.doi.org/10.1109/ICSE43902.2021.00107
https://arxiv.org/abs/2305.06161
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022b. ISSN 1095-9203.
URL http://dx.doi.org/10.1126/science.abq1158.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In International Conference on Learning Representations, 2023.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In International Conference on
Learning Representations, 2024.

Matthew Renze and Erhan Guven. The effect of sampling temperature on problem solving in large
language models, 2024. URL https://arxiv.org/abs/2402.05201.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste
Mouret, Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large
language models. Nature, 625:468 – 475, 2023. URL https://www.nature.com/
articles/s41586-023-06924-6.

Atsushi Shirafuji, Yusuke Oda, Jun Suzuki, Makoto Morishita, and Yutaka Watanobe. Refactoring
programs using large language models with few-shot examples. In 2023 30th Asia-Pacific Soft-
ware Engineering Conference (APSEC). IEEE, December 2023. doi: 10.1109/apsec60848.2023.
00025. URL http://dx.doi.org/10.1109/APSEC60848.2023.00025.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi, Gra-
ham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits, 2024. URL https://arxiv.org/abs/2302.07867.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback. CoRR,
abs/2009.01325, 2020. URL https://arxiv.org/abs/2009.01325.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR, 2023.

Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu, and Ge Yu. Inter-
venor: Prompt the coding ability of large language models with the interactive chain of repairing.
CoRR, abs/2311.09868, 2023a. URL http://dblp.uni-trier.de/db/journals/
corr/corr2311.html#abs-2311-09868.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.11171.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
hH36JeQZDaO.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting au-
tomated program repair via zero-shot learning. In Proceedings of the 30th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software En-
gineering, ESEC/FSE 2022, pp. 959–971, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450394130. doi: 10.1145/3540250.3549101. URL https:
//doi.org/10.1145/3540250.3549101.

13

http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2402.05201
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
http://dx.doi.org/10.1109/APSEC60848.2023.00025
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/2009.01325
http://dblp.uni-trier.de/db/journals/corr/corr2311.html#abs-2311-09868
http://dblp.uni-trier.de/db/journals/corr/corr2311.html#abs-2311-09868
https://arxiv.org/abs/2203.11171
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for program re-
pair. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 11941–11952. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/yasunaga21a.html.

Xin Yin, Chao Ni, Shaohua Wang, Zhenhao Li, Limin Zeng, and Xiaohu Yang. Thinkrepair: Self-
directed automated program repair. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2024, pp. 1274–1286, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.
3680359. URL https://doi.org/10.1145/3650212.3680359.

Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet Hung, Xiaodong Hao,
and Hongzhi Yin. Circle: continual repair across programming languages. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2022, pp. 678–690, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393799. doi: 10.1145/3533767.3534219. URL https://doi.org/10.1145/
3533767.3534219.

Yuan Yuan and W. Banzhaf. Arja: Automated repair of java programs via multi-objective genetic
programming. IEEE Transactions on Software Engineering, 46:1040–1067, 2017. URL https:
//api.semanticscholar.org/CorpusID:25222219.

Yuze Zhao, Zhenya Huang, Yixiao Ma, Rui Li, Kai Zhang, Hao Jiang, Qi Liu, Linbo Zhu, and
Yu Su. RePair: Automated program repair with process-based feedback. In Findings of the
Association for Computational Linguistics ACL 2024. Association for Computational Linguistics,
August 2024. URL https://aclanthology.org/2024.findings-acl.973.

14

https://proceedings.mlr.press/v139/yasunaga21a.html
https://proceedings.mlr.press/v139/yasunaga21a.html
https://doi.org/10.1145/3650212.3680359
https://doi.org/10.1145/3533767.3534219
https://doi.org/10.1145/3533767.3534219
https://api.semanticscholar.org/CorpusID:25222219
https://api.semanticscholar.org/CorpusID:25222219
https://aclanthology.org/2024.findings-acl.973

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PAIR GENERATION

In this section, we discuss the specifics of the pair generation phase and provide results pertaining
to this phase. The approach that we use for pair generation is provided in Algorithm 3. Note that
this is one way to generate pairs; they can be generated in other ways, or be available beforehand.

Algorithm 3 Pair Generation

Require:

LLM large language model
Dtrain training dataset
k number of few-shot examples
N total number of LLM calls
score code eval function

1: init candidate pairs C ← {}
2: for i = 1, . . . , N do
3: sample problem from dataset: x ∼ Dtrain
4: sample k pairs to use in-context: c1, . . . , ck ∼ C
5: build k-shot prompt: p← c1 ∥ . . . ∥ ck ∥ x
6: generate fix: ŷ ← LLM(p)
7: evaluate fix: sŷ ← score(ŷ)
8: if sŷ > sx then
9: create new pair: c← ⟨x, ŷ⟩

10: add to candidate pairs: C ← C ∪ c
11: if sŷ < 1 then
12: create new problem x̂ with guess ŷ
13: add new problem to dataset: Dtrain ← Dtrain ∪ x̂
14: else
15: remove problem from dataset: Dtrain ← Dtrain − {x}
16: end if
17: end if
18: end for

return C

A.1.1 RESULTS

We report the results obtained after phase 1 of our algorithm, pair generation. For the AtCoder
dataset, we set a budget of 10,000 LLM calls for pair generation. Since the CodeForces dataset is
larger, we set a budget of 35,000 LLM calls to maintain a good balance between having enough LLM
calls per problem and maintaining the affordability of the overall approach in terms of computational
resources. We report the number of pairs generated on both of these datasets across all 4 models:
Gemini-1.5-Pro, Gemini-1.5-Flash, Gemma-27B, and Gemma-9B in Table 2. Here we provide some
additional results that we were unable to include in the main text.

CodeForces # of pairs # AuPairs

Gemini-1.5-Pro 1560 144
Gemini-1.5-Flash 1327 110
Gemma-27B 509 77
Gemma-9B 556 122

AtCoder # of pairs # AuPairs

Gemini-1.5-Pro 927 64
Gemini-1.5-Flash 397 64
Gemma-27B 295 27
Gemma-9B 147 14

Table 2: Number of pairs collected during phase 1 of the algorithm (# of pairs) and number of
AuPairs extracted in phase 2 (# AuPairs): CodeForces (top) and AtCoder (bottom) for all 4 models.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 10: Percentage of fully solved problems with N = 32 LLM calls at inference time. Code-
Forces (left) and AtCoder (right).

A.1.2 SCALING INFERENCE COMPUTE

Figure 9: Scaling up inference compute on
the CodeForces dataset with Gemini-1.5-Flash.
Scores correspond to average pass test rate on all
the test problems. blue dashed line represents the
average score of the initial guesses. orange show
the best of N x 1-shot prompt, green show the
best of N AuPair 1-shot prompt. With increasing
compute N we can see a clear improvement with
Aupair prompting on a much larger steeper slope
than best-of-N.

In addition to the scaling experiment we
performed using Gemini-1.5-Pro, results in
Fig. 5(b), we also perform the same scaling ex-
periment using Gemini-1.5-Flash and show the
results in Fig. 9. The trend is similar to what
we observed before: best-of-N plateaus after
a certain number of LLM calls, while our ap-
proach scales as the compute budget increases,
delivering an improvement in performance for
each newly included AuPair. Since our AuPairs
are selected submodularly, the initial pairs yield
high returns in performance and these returns
start diminishing slowly, but notably, perfor-
mance does not plateau yet. Thus, it is abun-
dantly clear that using AuPairs has a distinct ad-
vantage over current state-of-the-art approaches
like best-of-N in improving performance at in-
ference time as compute budget increases.

A.1.3 MEASURING CORRECTNESS
IN TERMS OF SOLVED PROBLEMS

In addition to pass rate of unit tests, we also
report the percentage of fully solved problems,
for which the generated code passes all test
cases. We see that AuPair outperforms all other
baselines on all models across the board, with
results for CodeForces and AtCoder shown in Fig. 10.

A.1.4 CODE REPAIR WITH LIVECODEBENCH

Generalisation of AuPair prompting is important to improve code repair of smaller datasets. We posit
that the AuPairs contain diverse code changes that transfer meaningfully across datasets, which may
be important to those with scarce data.

We now show some examples of AuPairs obtained for a smaller dataset (400 problems) Live-
CodeBench (LCB) (Jain et al., 2024). We generated the same train/val/test split (37.5/12.5/50%)
over 400 problems and applied our AuPair approach to obtain in distribution AuPairs for LCB.

Fig. 11 shows that even with smaller number of selected AuPairs we still obtain a gain over best-
of-N prompting. We obtained 5 AuPairs with the submodular extraction in Algorithm 2 for all the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 12: Visualising the lineage of the set of all pairs as the first phase of the algorithm, pair
generation, progresses.

models except Gemma-9B which obtained only 3 AuPairs. Given the difference in dataset size these
values are larger in proportion to the ones obtained from a larger dataset CodeForces (8.8k problems,
144 extracted AuPairs).

0.5

Figure 11: LiveCodeBench in distribution results show AuPair prompting is outperforming best-
of-N even in the small data regime.

A.1.5 LINEAGE

Here we look at the lineage of each pair generated during phase 1 of our algorithm, pair generation.
The key idea here is to see if the set of all pairs collected during the pair generation phase are deeper
i.e., they generate iteratively better solutions for a smaller set of problems, or broader i.e., they
generate solutions for a larger set of problems but those solutions may not necessarily be perfect.
The last plot in Fig. 12 (pairs generated on the CodeForces dataset using Gemini-Pro-1.5) indicates
that the pairs collected have shallow lineage: a large proportion of guesses that had a score of 0 had
corresponding fixes with perfect score at depth 1. We also see that the number of fixes decreases as

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

depth increases (as seen from the size of the circles), indicating that several problems could not be
improved beyond a certain point, or that they were not resampled during the pair generation phase.
In both these cases, one solution is to allow more LLM calls during phase 1 to allow each problem
to be sampled for repair more times. The takeaway here is that more sophisticated fixes for difficult
problems can be discovered as we increase the budget of LLM calls during the pair generation phase.
The entire evolution of this lineage at different points during pair generation is illustrated in Fig. 12.

A.2 CODE DIVERSITY

We compute the code diversity score in Fig. 7(b) based on the number of different abstract syntactic
sub-trees each code instance produces. First we compute the set of all abstract syntactic sub-trees
that the guess code Sguessj = AST(guessj) and the fix code Sfixi,j = AST(fixi,j) generates, for
every problem/guess xj in the dataset (in Dtest and every generated fix i. For AuPair we use the
selected pair ci in the prompt (a guess/fix pair) to generate a fix ci ∈ A for each AuPair generated
in Algorithm 2. Next, we compute the set difference of the generated guess/fix to obtain the unique
sub-trees for the code diff Sfixi,j\Sguessj . Then with increase compute N , we calculate the unique
number of sub-trees generated so far for each problem and compute its average across pairs and
problems. The diversity score δ is for a given compute budget N is written as:

δ =
1

C N |Dtest|
∑
i=1

|Dtest|∑
j=1

N⊕
i=1

Sfixi,j\Sguessj (1)

this score is normalized by a constant corresponding to the max set size C =

max
i,j

#

(
N⊕
i=1

Sfixi,j\Sguessj

)
. Here we denote x ∈ A\B ⇐⇒ x ∈ A\Bx ∈ A ∧ x /∈ B as the

set difference and use
⊕

to write the set addition.

Algorithm 4 summarises how we compute the diversity scores:

Algorithm 4 Diversity score computation
1: for problem xj ∈ Dtest do
2: init diversity set of code diffs D0,j ← ∅
3: compute guess AST sub-trees Sguessj
4: for for every generated fix i: do
5: compute fix AST sub-trees Sfixi,j
6: update set of sub-trees Di,j ←Di−1,j

⊕
Sfixi,j\Sguessj

7: count number of unique sub-trees δi,j = #Di,j

8: end for
9: end for

10: compute its average δ = 1
N |Dtest|

∑
i,j δi,j

11: normalize score δ = δ/C with C = max
i,j

δi,j .

return δ

A.3 PROMPTING

There are 2 types of prompts that we use: 1) guess generation prompt, and 2) repair prompt. The
guess generation prompt is used during dataset creation, for obtaining the initial guesses for all prob-
lems in the dataset. The repair prompt is used throughout the rest of the paper: in the Pair Generation
(Phase 1, §2.1 with k = 32 random examples) and in the AuPair Extraction (Phase 2, §2.2). The
function signature indicates that the function expects a string as an input. The instruction specifies
that the final answer is meant to be printed inside the function, and that the main function is not
meant to be written.

The structure of our repair prompt is as follows: there is a generic instruction at the top, followed by
the few-shot examples in the format of question, followed by the guess or bad solution, followed by
the fix or good solution. We also add the score achieved by the guess and the fix for the in-context
example pairs. Following this, we add the text and initial guess solution for the problem and the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

LLM then has to generate a better fix. Note that we do not provide any extra execution feedback in
the form of execution traces; this could potentially be explored by future work. Our aim is clear:
the pairs indicate a certain type of change and we provide these pairs in context to aid the LLM in
generating an improved solution for the given problem. Some different prompting strategies that we
tried out were the following:

Guess Generation Prompt

<problem text>
Complete the function definition below. Print the final answer in the function. Do not write
main. Do not write anything outside the solve() function.

def solve(s: str):
...

Repair Prompt

You are an experienced software developer.
Look at the question (Q) and solutions below (A).
The main objective is to improve the solve() function to answer the question.

Example 1:

(Q): ...
Bad solution code A(bad):

def solve(s: str):
...

The score of this code is score(A(bad)) = <example_guess_score>.

Good solution code A(good):
The score of this code is score(A(good)) = <example_fix_score>.

def solve(s: str):
...

...

==

The main objective is to improve the solve() function to answer the question.
(Q): ...
Bad solution code A(bad):

def solve(s: str):
...

The score of this solution is score(A(bad)) = <guess_score>

Good solution code A(good):
The score of this solution is score(A(good)) = 100

Naïve prompting: only include the problem, guess and fix solutions for the pairs, followed by the
problem and guess for the test problem.

Prompting with instruction only: include the header instruction followed by the components of the
naïve prompting strategy.

Prompting with instruction and score: include the elements of 2 above, but in addition, also include
the score that each guess/fix received on the corresponding problem’s test cases. This is the prompt

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

that we finally use and the one that gives us better results when compared using the same set of pairs
with the previous 2 strategies. An important thing to note here is that we prompt the model with a
desired fix score of 100 for the test problem.

We test the three strategies described above on a sub-
set of the CodeForces dataset and report their perfor-
mance in terms of number of problems solved, in the
figure on the right. The results clearly indicate that
the final prompting strategy that includes the instruc-
tion and score is the best strategy and so we choose
it to compose the repair prompt.

A.4 CODE EXECUTION

When the LLM generates a fix for any problem, we
call the solve() function for each test case associ-
ated with that problem. We then compare the output
with the ground truth and give a partial score corresponding to the proportion of test cases passed
by this fix.

An important point to note is that the solve() function has to take as input a string, which is then
parsed into the correct variables. This formatting requirement is a key reason for the poor initial and
best-of-N performance of Gemini-1.5-Pro in Fig. 4. Since the instruction for generating the initial
guess is not correctly followed by the model, a lot of guesses end up invariably having incorrect
parsing of the input, leading to low scores. A lot of AuPairs extracted using these models, as a
result, contain this formatting fix, as we will see in Section A.5.

A.5 TYPES OF FIXES IN AUPAIRS

We now show some examples of AuPairs and highlight the differences between the guess and fix for
each pair. These are a mix of CodeForces pairs collected using the 4 models. The scores achieved
by the guess and fix on the corresponding problem’s test cases are specified at the top right corner
for each example in Fig. 13. We also provide a short description for each type of fix in the caption.
The types of pairs discovered using our algorithm cover a large area of potential fixes that can be
made to an initial buggy piece of code: from smaller ones like parsing, fixing logical bugs pertaining
to indexing errors, variable initialisations, etc., to larger changes like rewriting parts of the code, or
even suggesting alternate routes to solve the same problem.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

def solve(n: str):
 n = int(n)
 dp = [0] * (n + 1)
 dp[0] = 1
 for i in range(1, n + 1):
 dp[i] = dp[i - 1] * 4
 print(dp[n])

def solve(n: str):
 n = int(n)
 dp = [[0 for _ in range(4)] for _ in range(n + 1)]
 dp[0][0] = 1
 for i in range(1, n + 1):
 for j in range(4):
 for k in range(j, 4):
 dp[i][k] = (dp[i][k] + dp[i - 1][j]) %
1000000007
 print(sum(dp[n]))

score: 0.33 score: 0.67

(a) Fix: converts a 1-D dynamic programming solution to 2-D.

def solve(s: str, t: str, k: int):
 n = len(s)
 m = len(t)
 count = 0
 for i in range(n - m + 1):
 match = True
 for j in range(m):
 if abs(i + j - s.find(t[j], i, i + m)) > k:
 match = False
 break
 if match:
 count += 1
 print(count)

def solve(s: str):
 n, m, k = map(int, s.split('\n')[0].split())
 S = s.split('\n')[1]
 T = s.split('\n')[2]
 count = 0
 for i in range(n - m + 1):
 match = True
 for j in range(m):
 found = False
 for p in range(max(1, i + j - k), min(n, i + j
+ k) + 1):
 if S[p - 1] == T[j]:
 found = True
 break
 if not found:
 match = False
 break
 if match:
 count += 1
 print(count)

score: 0.0 score: 1.0

(b) Fix: composition of 1) input parsing correction, and 2) logical bug fix.

def solve(s: str):
 n, a, b, c = map(int, s.split())
 if a <= b:
 print(n // a)
 else:
 glass_bottles = n // b
 remaining_money = n - glass_bottles * b
 plastic_bottles = remaining_money // a
 print(glass_bottles + plastic_bottles)

def solve(s: str):
 n, a, b, c = map(int, s.split())
 if a <= b:
 print(n // a)
 else:
 glass_bottles = n // b
 remaining_money = n - glass_bottles * b
 plastic_bottles = remaining_money // a
 if remaining_money >= b - c:
 glass_bottles += 1
 remaining_money -= b - c
 plastic_bottles = remaining_money // a
 print(glass_bottles + plastic_bottles)

score: 0.5 score: 1.0

(c) Fix: add an extra condition for edge cases.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

def solve(s: str):
 n = int(s.split('\n')[0])
 a = list(map(int, s.split('\n')[1].split()))
 count = 0
 for i in range(n):
 sum = 0
 for j in range(i, n):
 sum += a[j]
 if sum != 0:
 count += 1
 print(count)

def solve(s: str):
 n = int(s.split('\n')[0])
 a = list(map(int, s.split('\n')[1].split()))
 count = 0
 for i in range(n):
 sum = 0
 for j in range(i, n):
 sum += a[j]
 if sum != 0:
 count += 1
 else:
 break
 print(count)

score: 0.5 score: 1.0

(d) Fix: add loop exit condition.

def solve(s: str):
 n = int(input())
 a = list(map(int, input().split()))
 if sum(a) == 0:
 print("NO")
 return
 print("YES")
 if a[0] != 0:
 print(1)
 print(1, n)
 else:
 print(n)
 for i in range(1, n + 1):
 print(i, i)

def solve(s: str):
 n = int(s.split('\n')[0])
 a = list(map(int, s.split('\n')[1].split()))
 if sum(a) == 0:
 print("NO")
 else:
 print("YES")
 print(n)
 for i in range(n):
 print(i + 1, i + 1)

score: 0.0 score: 0.25

(e) Fix: composition of 1) input parsing correction, and 2) logical bug fix.

def solve(n: int, d: int, a: list[int]):
 balance = 0
 bank_visits = 0
 for i in range(n):
 balance += a[i]
 if balance < 0:
 if balance + d < 0:
 print(-1)
 return
 bank_visits += 1
 balance = d + balance
 if balance > d:
 print(-1)
 return
 print(bank_visits)
if __name__ == "__main__":
 n, d = map(int, input().split())
 a = list(map(int, input().split()))
 solve(n, d, a)

def solve(s: str):
 n, d = map(int, s.split('\n')[0].split())
 a = list(map(int, s.split('\n')[1].split()))
 balance = 0
 bank_visits = 0
 for i in range(n):
 balance += a[i]
 if balance > d:
 print(-1)
 return
 if a[i] == 0 and balance < 0:
 bank_visits += 1
 balance = d
 print(bank_visits)

score: 0.0 score: 0.67

(f) Fix: composition of 1) function signature correction, 2) input parsing correction, and 3) logical bug fix.

def solve(s: str):
 n = int(input())
 s = input().split()
 p = [int(x) for x in s]
 ans = 1
 for i in range(n):
 ans = ans * p[i] % (10**9 + 7)
 print(ans)

def solve(s: str):
 n = int(s.split('\n')[0])
 p = list(map(int, s.split('\n')[1].split()))
 ans = 1
 for i in range(n):
 ans = ans * p[i] % (10**9 + 7)
 print(ans)

score: 0.0 score: 0.5

(g) Fix: input parsing correction.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

def solve(s: str):
 n, p = map(int, s.split())
 dp = [float('inf')] * (n + 1)
 dp[0] = 0
 for i in range(1, n + 1):
 for j in range(32):
 if (1 << j) <= i:
 dp[i] = min(dp[i], dp[i - (1 << j)] + 1)
 if i - p >= 0:
 dp[i] = min(dp[i], dp[i - p] + 1)
 if dp[n] == float('inf'):
 print(-1)
 else:
 print(dp[n])

def solve(s: str):
 n, p = map(int, s.split())
 cnt = 0
 while n > 0:
 if n & 1:
 cnt += 1
 n >>= 1
 if p != 0:
 cnt += (n + p - 1) // p
 print(cnt)

score: 0.2 score: 0.6

(h) Fix: solve problem using bit manipulation instead of dynamic programming.

def solve(s: str):
 n = int(s.split('\n')[0])
 graph = [[] for _ in range(n + 1)]
 for i in range(1, n):
 u, v = map(int, s.split('\n')[i].split())
 graph[u].append(v)
 visited = [False] * (n + 1)
 count = 0
 for i in range(1, n + 1):
 if not visited[i]:
 count += 1
 dfs(i, graph, visited)
 print(count - 1)
 res = []
 for i in range(1, n + 1):
 if not visited[i]:
 res.append(i)
 print(*res)
def dfs(node, graph, visited):
 visited[node] = True
 for neighbor in graph[node]:
 if not visited[neighbor]:
 dfs(neighbor, graph, visited)

def solve(s: str):
 n = int(s.split('\n')[0])
 graph = [[] for _ in range(n + 1)]
 for i in range(1, n):
 u, v = map(int, s.split('\n')[i].split())
 graph[u].append(v)
 def dfs(node, visited):
 visited[node] = True
 for neighbor in graph[node]:
 if not visited[neighbor]:
 dfs(neighbor, visited)
 count = 0
 visited = [False] * (n + 1)
 for i in range(1, n + 1):
 if not visited[i]:
 count += 1
 dfs(i, visited)
 print(count - 1)
 res = []
 visited = [False] * (n + 1)
 for i in range(1, n + 1):
 if not visited[i]:
 dfs(i, visited)
 res.append(i)
 print(*res)

score: 0.0 score: 0.5

(i) Fix: partial correction to depth-first search graph algorithm.

def solve(s: str):
 n, p, k = map(int, s.split()[0:3])
 a = list(map(int, s.split()[3:3+n]))
 s = [list(map(int,
s.split()[3+n+i*p:3+n+(i+1)*p])) for i in range(n)]
 people = sorted(enumerate(a), key=lambda x: x[1],
reverse=True)
 max_strength = 0
 for i, (person_index, audience_strength) in
enumerate(people):
 if i == k:
 break
 max_strength += audience_strength
 for j in range(p):
 max_strength_for_position =
max(max_strength_for_position, s[person_index][j])
 max_strength += max_strength_for_position
 print(max_strength)

def solve(s: str):
 n, p, k = map(int, s.split()[0:3])
 a = list(map(int, s.split()[3:3+n]))
 s = [list(map(int,
s.split()[3+n+i*p:3+n+(i+1)*p])) for i in range(n)]
 people = sorted(enumerate(a), key=lambda x: x[1],
reverse=True)
 max_strength = 0
 for i in range(k):
 person_index = people[i][0]
 max_strength += a[person_index]
 for j in range(p):
 best_player_index = -1
 best_player_strength = -1
 for i in range(n):
 if i not in [person[0] for person in
people[:k]]:
 if best_player_strength < s[i][j]:
 best_player_strength = s[i][j]
 best_player_index = i
 max_strength += best_player_strength
 print(max_strength)

score: 0.0 score: 1.0

(j) Fix: rewrite partial solution to pass all test cases.

Figure 13: Examples of AuPairs produced by our algorithm (all 4 models represented above)

23

	Introduction
	Approach
	Phase 1: Pair Generation
	Phase 2: AuPair Extraction

	Experiments
	Significantly Boosted Code Repair Performance
	Selection Matters: AuPairs are More Effective than Random Pairs
	Better Scaling with Inference-Time Compute
	Strong Generalisation to Out-of-distribution Datasets
	Decent Cross-Model Transfer
	High Code-specific Diversity
	Improvement on All Difficulty Levels
	Coverage of Problem Categories is Preserved

	Related Work
	Conclusions and Future Work
	Appendix
	Pair Generation
	Results
	Scaling Inference Compute
	Measuring correctness in terms of solved problems
	Code Repair with LiveCodeBench
	Lineage

	Code Diversity
	Prompting
	Code Execution
	Types of Fixes in AuPairs

