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Abstract

We study the problem of contextual combinatorial semi-bandits, where input con-
texts are mapped into subsets of size m of a collection of K possible actions. In
each round of the interaction, the learner observes feedback consisting of the
realized reward of the predicted actions. Motivated by prototypical applications
of contextual bandits, we focus on the s-sparse regime where we assume that
the sum of rewards is bounded by some value s < K. For example, in recom-
mendation systems the number of products purchased by any customer is sig-
nificantly smaller than the total number of available products. Our main result
is for the (&, 0)-PAC variant of the problem for which we design an algorithm
that returns an g-optimal policy with high probability using a sample complexity
of O((poly(K/m) + sm/&?) log(|11|/6)) where II is the underlying (finite) class
and s is the sparsity parameter. This bound improves upon known bounds for
combinatorial semi-bandits whenever s <« K, and in the regime where s = O(1),
the leading terms in our bound match the corresponding full-information rates,
implying that bandit feedback essentially comes at no cost. Our PAC learning
algorithm is also computationally efficient given access to an ERM oracle for II.
Our framework generalizes the list multiclass classification problem with bandit
feedback, which can be seen as a special case with binary reward vectors. In the
special case of single-label classification corresponding to s = m = 1, we prove
an 0((K7 +1/&%) log(|H|/ 5)) sample complexity bound for a finite hypothesis
class H, which improves upon recent results in this scenario. Additionally, we
consider the regret minimization setting where data can be generated adversarially,
and establish a regret bound of O (|I1| ++/smT log |I1|), extending the result of [18§]]
who consider the simpler single label classification setting.

1 Introduction

In the contextual combinatorial semi-bandit (CCSB) problem, a learner is tasked with mapping input
contexts from a (possibly infinite) context space X to subsets of a fixed size m of a collection of K
available actions. The learner’s reward is defined as the sum of the rewards of the predicted actions,
and the feedback revealed to the learner consists of the individual reward values of those actions;
namely, semi-bandit feedback. The primary objective in this problem is to compete with the best
policy in an underlying policy class IT which is a collection of mappings from X to subsets of actions
of size m.

A natural application of this problem, and in fact, one of the classical motivating applications for
studying contextual bandits [34] is a recommendation system visited sequentially by users (each
arriving with side information playing the role of a context), where upon each visit the system is
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tasked with presenting a user with a set of m recommended products (or ads) available for purchase,
after which the system observes the purchased products as feedback. This is naturally viewed as a
bandit scenario in the sense that the system only observes the user’s behavior with respect to the
recommended products and not others. That is, the only way to obtain feedback on a given product is
by actively recommending it to a user.

In such an application, it is natural to assume that each user will only be purchasing up to s < K
products, where s is considerably smaller than the total number of products K, which can be very large.
This assumption culminates in a sparsity property of the rewards in the underlying combinatorial semi-
bandit problem, which raises the question of whether or not sparsity can result in better performance
guarantees. More specifically, we are interested in obtaining performance bounds whose leading
terms scale primarily with s rather than K.

Prior work on combinatorial semi-bandits focuses for the most part on the regret minimization
objective, with the rate of O(VmKT) obtained by [3] for the vanilla non-contextual variant, and as
remarked in the same paper, is optimal for non-sparse losses. The work of [40]] provides first-order
regret bounds of the form O (m+/KL}) where L7. is the cumulative loss of the best arm in hindsight,
and while it may be a significant improvement in cases where the cumulative loss of the best arm
is sublinear in 7', the bound still contains a polynomial dependence on K. To our knowledge, no
prior works on either the vanilla or the contextual variants prove regret bounds which scale with the
sparsity s of the losses instead of directly with K.

An important special case of CCSB is the (agnostic) bandit multiclass list classification problem, in
which contexts, actions and policies correspond to examples, labels and hypotheses, respectively. In
this CCSB variant, the rewards exhibit a special structure; namely, the reward of a predicted label is
the zero-one reward. Existing work on multiclass list classification focuses on the full-information
single-label setting, where a given example has a single correct label which is revealed to the learner
after each prediction. The primary focus on this literature is on characterizing properties of the
underlying hypothesis class H under which various notions of learnability can be achieved; e.g.,
PAC learnability [10], uniform convergence [24] and online learnability [39]]. In bandit multiclass
list classification, upon predicting a list of labels of size m < K, the learner observes partial, a.k.a.
“bandit” feedback consisting only of the predicted labels which belong to the collection of s correct
labels for the given example

In the context of traditional multiclass classification (that is, when m = s = 1), extensive research
has studied the bandit variant of the problem, starting with the work of [30] who consider linear
classification. Follow-up works study various questions of learnability of general hypothesis classes
(L5} 113} 144) [19] and other recent works [[17, [18] study optimal rates for both the regret minimization
and PAC objectives with a focus on finite hypothesis classes. It is thus natural to study the extension
of the problem to list multiclass classification with bandit feedback which, to our knowledge, our
work is the first to tackle.

For contextual bandits (m = 1) with finite policy classes I1, the recent work of [18]] characterized the
optimal regret; that is, the cumulative reward of the learner compared to that of the best policy in
I1, and showed that it is of the form ©(min{|IT| + VsT, /KT log |TI|}), implying that for relatively
small policy classes the classical VKT rate of EXP4 [5] can be improved if s < K. In a subsequent
work, [17] study the PAC objective in single-label bandit multiclass classification (s = m = 1) where
the goal is to learn a near-optimal hypothesis with respect to some unknown data distribution, and
establish a sample complexity bound of O((K° + 1/&%) log(|H|/6)) for (&, §)-PAC learning in the
single-label setting using a computationally efficient algorithm given an ERM oracle to . One
of the key takeaways from both of these works is that in the single-label setting, bandit feedback
essentially comes at no additional cost compared to full feedback in the asymptotic regimes where
T - oande — 0.

We are thus motivated to investigate the following more general question: what is the role of reward
sparsity in contextual combinatorial semi-bandits? In this work, we provide an answer to this
question by designing PAC learning and regret minimization algorithms for CCSB with finite policy
classes, and prove that they attain sample complexity and regret bounds whose dominant terms scale
with the sparsity parameter s rather than K.

UIn the wider context of CCSB, this feedback actually corresponds to semi-bandit feedback, as defined earlier.



To illustrate the challenge in answering this question, let us consider the naive approach for PAC
learning in CCSB by which subsets of actions of size m are sampled uniformly at random, and bandit
feedback is used to estimate the rewards of policies in IT via importance sampling. Since the variance
of such reward estimators scales polynomially with K, this approach ultimately results in a sample
complexity of ~ Km /2. This bound is far from optimal since, as we will show, the leading term in
the optimal sample complexity bound in fact scales with s instead of K.

1.1 Summary of Contributions
We summarize our results for contextual combinatorial semi-bandits over a finite policy class I1:

* Our main result involves the PAC setting (see Section[3]), where we design an algorithm that
with probability at least 1 — ¢ outputs a policy moy € I that is e-optimal with respect to the
population reward, using a sample complexity of at most

ol 2ot

Moreover, our algorithm is computationally efficient given an ERM oracle for 1. We also
present the high-level construction of a sample complexity lower bound of Q(sm/£?) which
holds even for a single context, showing that the dominant term in our bound is in fact optimal.
As an immediate corollary, the above results hold in the special case of bandit multiclass list
classification with s-sparse rewards over a finite hypothesis class.

* In the special case of single label bandit multiclass classification corresponding to s =
m = 1, we show that a slight variation of our approach results in a sample complexity of
O((K T4+ 1/e?) log(|H|/ 6)), which has an improved dependence on K compared to the exist-
ing bounds in [[17].

» We also consider the online regret minimization setting, where we design an algorithm achieving
an expected regret bound of O(|I1| + +/smT log |I1]), which holds even when the input and
reward sequence is adversarial. See Appendix [B|for more details.

Our starting point for addressing the PAC setting in CCSB is the recent work of [[17] who study
the single-label (s = m = 1) classification setting. Following the general scheme they proposed,
our algorithm operates in two stages by first computing a low-variance exploration distribution over
policies in IT and then using this distribution to uniformly estimate the policies’ expected rewards.
Generalizing the single-label classification setting to CCSB, however, comes with some nontrivial
technical challenges. First, [[17] use the single-label assumption in order to collect a labeled dataset
by uniformly sampling labels. In the general setting, however, this approach cannot work effectively,
since the full reward function cannot be inferred unless the predicted set contains all s correct labels,
which is a very unlikely event. We circumvent the issue by introducing additional importance
sampling estimation with an appropriate modification of the convex potential in use. Moreover, as a
means to compute a low-variance exploration distribution, rather than using a stochastic optimization
scheme as suggested in [17]], we optimize an empirical objective and use Rademacher complexity
arguments in order to establish its uniform convergence to the expected objective given sufficient
samples. This approach allows us in particular to improve the overall dependence on K in the single-
label classification setting, leveraging refined L., vector-contraction results for the Rademacher
complexity [21].

1.2 Additional Related Work

Combinatorial semi-bandits. The non-contextual variant of the combinatorial semi-bandit problem
was introduced by [23] in the framework of online shortest paths. This problem has been extensively
studied in the bandit literature, mostly in the context of regret minimization [3 48}, 33} 140} 147, 27}
etc.]. A regret bound of O(VmKT) was shown by [3] for adversarial losses, and was proven by
[36]] to be optimal in the multiple-play setting in which the available combinatorial actions are all
subsets of size m of the action set (which is the setting considered in this paper). The contextual
combinatorial semi-bandit (CCSB) problem is considerably less explored, with some existing works
[43] 148l 146l 49] focusing on the case where rewards are noisy linear functions of the inputs, and
others [31} 132] which consider a setting similar to ours with finite unstructured policy classes, and



establish regret bounds of the form O (4/mKT log |I1|). To our knowledge, all previous results on
combinatorial semi-bandits exhibit a polynomial dependence on K in the leading term, thus leaving
open the question of adaptivity to reward sparsity.

Combinatorial (full-)bandits. Another well-studied variant of CCSB is known as combinatorial
bandits (also referred to as bandit combinatorial optimization, |38, 16]]), where the feedback is limited
only to the realized reward, that is, the sum of rewards of predicted actions. For the non-sparse
version of the problem, regret bounds of O (m3/>VKT) have been established in several previous
works [[12} [1} 18 9} 25]] and have subsequently been shown to be optimal [11,28]]. In the context of
multiclass classification, while perhaps not as natural as semi-bandit feedback, full-bandit feedback
is well-motivated in some applications, for example, in cases where a recommendation system is
interested in protecting the users’ privacy by only observing the amount of products purchased rather
than the products themselves. While our results apply in the semi-bandit model, examining the
full-bandit variant raises some very interesting questions and generalizing our results to this setting
seems highly non-trivial; see Section 4 for further discussion.

List multiclass Classification. The theoretical framework of multiclass list classification was
originally introduced by [[7]. [10] provide a characterization of PAC learnability for multiclass list
classification by generalizing the DS-dimension [[14], [39] consider the regret minimization setting
and characterize learnability by a generalization of the Littlestone dimension, and [24] study the
notions of uniform convergence and sample compression in the context of multiclass list classification.
A regression-variant of list learning has also been studied in [42] who provide a characterization of
learnability for this problem. Notably, all of these works on multiclass list classification focus on the
single-label setting.

Bandit multiclass classification. The setting of bandit multiclass classification was originally
introduced by [30], with [[15] showing that learnability of deterministic learners in the realizable
setting is characterized by the bandit Littlestone dimension. [13] generalize those results by showing
that the bandit Littlestone dimension characterizes online learnability whenever the label set is finite,
and [44]] generalize this result to infinite label sets. Several previous works [4} |15} 37] study the price
of bandit feedback in the realizable setting, with the recent work of [[19] showing that this price is
bounded by a factor of O(K) over the mistake bound in the full-information setting for randomized
learners.

2 Problem Setup

We study a learning scenario where a learner has to map contexts from a domain X to subsets
of size m of a collection of K > m possible actions, denoted by YV = [K]. We denote by A =
{a € {0, 13X | |la]l, = m}E]the set of available combinatorial actions. In the semi-bandit setting, the
learner iteratively interacts with an environment according to the following, forr =1,2,...:

(i) The environment generates a context-reward vector pair (x;, ;) where x; € X and r; € [0, 1]X,
the learner receives x;;
(ii) The learner predicts a; € A;
(iii) The learner gains reward r; - a, (namely the sum of rewards of predicted actions) and observes
semi-bandit feedback consisting of the rewards of the predicted actions {r;(y) | y € a;}.

We assume that there is a known bound s < K on the L;-norm of all reward vectors, that is, ||r,||; < s
for all t We remark that since r,(-) € [0, 1], this sparsity condition also implies that ||r; ||% <s.In
the settings we consider, the learner’s performance is measured with respect to an underlying policy
class IT € {X — A}; focusing in this work on the case where I1 is finite.

PAC setting. In the (&, §)-PAC setting, the context-reward pairs (x;, r;) are generated in an i.i.d
manner by some unknown distribution 9. The learner’s goal is to compute, using as few samples as
possible, a policy 7oy € IT such that with probability at least 1 — ¢ (over all randomness during the

2n some formulations, the available actions come from a fixed, arbitrary subset of A; here we focus on the
setting where all subsets of Y of size m are valid.
3This notion of sparsity is weaker than strict sparsity, where the rewards have at most s nonzero coordinates.



interaction with the environment),

ro(n*) = rp(Tow) < &,

where rp (1) = E(y,)~p[r"n(x)] and 7* = argmax ..y rp(7) is the population reward of 7, and
m* £ argmax .. Fo () is the best policy in the class IT w.r.t. D. The learner’s performance in this
setting is measured in terms of sample complexity, that is, the number of samples (x;, r;) generated
by the environment during the interaction as a function of (&, §) after which the learner outputs a
policy 7oy satisfying the guarantee above.

Regret minimization setting. In the online regret setting, the pairs (x;, r;) are generated by an
oblivious adversaryﬂ The interaction lasts for T rounds, where in each round ¢, after predicting
a; € A, the learner gains a reward r; (a;) = r;-a; € [0, s], and the objective is to ultimately minimize
regret with respect to I, defined as

T T

Rr 2 sup Zr:n*(x,) - Zr?a,.

el oy t=1

ERM oracle. To discuss the computational efficiency of our PAC learning algorithm, we assume
access to an empirical risk minimization (ERM) oracle for I1. This oracle, denoted by ERM, gets
as input a collection of pairs S = {(x1, 1), ..., (xn, 7n)} € X x RX and returns

n
ERMyi(S) € argmaxZ Z ().
7ell 521 yen(x)
This is a natural generalization of the optimization oracle used in previous works on contextual
bandits [16,[2]. When we refer to the computational complexity of our algorithm, we assume that

each call to ERMy; takes constant time.

Bandit Multiclass List Classification. The semi-bandit multiclass list classification problem is a
special case of CCSB, with the following specialized notation: The set of all lists (subsets) of Y of
size m is denoted by £, and instead of a policy class we refer to a hypothesis class H € {X — L}.
In every round ¢ of the interaction, the environment generates a pair (x;, Y;) where x; € X and Y; C Y
where Y, corresponds to the set of all true labels at round ¢. We assume that |Y;| < s for all ¢ for some
known bound s which corresponds to reward sparsity in this setting. Upon predicting a list L; € L,
the learner observes semi-bandit feedback consisting of L; N Y;, which corresponds to the zero-one
reward values for all labels in a;.

3 Main Result: Agnostic PAC Setting

In this section we design and analyze a PAC learning algorithm for CCSB with s-sparse rewards. Our
algorithm is displayed in Algorithm|[T] and our main result is detailed in the following theorem:

Theorem 1. If we set y = %, Ny = @(Z—ilog(ll’[l/é))), Ny = O((K/me +sm/&?)log(|11|/6)),
T = O((K/m)?), then with probability at least 1 — § Algorithmoutputs Tout € T with rp(a*) —
ro(mout) < € using a sample complexity of

K> sm |TT|
N] +N2 = 0(($ + g)log T)

Furthermore, Algorithmmakes a total of T + 1 = O((K/m)>) calls to ERM.

In Appendix we show that in the special case of single-label classification (corresponding to
s =m = 1 and zero-one rewards), a specialized version of Algorithm [T]results in a sample complexity

bound of
1 |H |
7
0((K + ;) IOg ?),

4We consider an oblivious adversary throughout, though most of our results extend to an adaptive adversary.




Algorithm 1 PAC-COMBAND

Parameters: N, N»,y € (0, %],T e N.
Phase 1:
fori=1,...,N; do
/I Environment generates (x;,7;) ~ D, algorithm receives x;.
Predict a; € A uniformly at random and receive feedback {r;(y) | y € a;}.
end for
Initialize p; € Ap to be a delta distribution.
fortr=1,...,T do

Let g, € Ap be the delta distribution on 7, = ERMH({(x,-, fl-)}f\ill), where

F () = (1 - S LY EAIW) gy ey,
Nl m Qx,-,y (pt)
Update psy1 = (1 —1¢)pr + 1:q; Where g, =2/(2 +1).
end for
Letp = prs1-
Phase 2:
fori=1,...,N> do
/I Environment generates (x;,7;) ~ D, algorithm receives x;.
With prob. y pick a; € A uniformly at random; otherwise sample 7; ~ p and set a; = 7;(x;).
Predict a; and receive feedback {r;(y) | y € a;}.
end for
Return:

1{y € a;}ri(y)

Row = ERMn({(xi. )} ). where 73(y) = 0%y (D)
Xi»y

Vye Y.

which has an improved dependence on K compared to the bound obtained by [17] which scales as K°.

Given a context-action pair (x,y) € X x Y and p € A; = {p € IRLHl | zlfl' pi= 1} we denote

Qey(p) 2 ) p(my € n(x)},
mell

i.e., the probability that y belongs to w(x) when sampling 7 ~ p, and given y € (0, 1) we define

Ly(p) 2 (1=7)Qxy(p) +ym/K,
that is, the distribution induced by mixing p with a uniform distribution over A.

At a high level, our algorithm initially uses the Frank-Wolfe algorithm to approximately solve the
following convex optimization problem:

Ny
minimize f(p) 2 Nil ;f(p;zl'), p € Aq, (1
K
where  f(p;z=(x,r,a)) = - Z r(y)log(Q%.y(p)). @
y€a

Here D’ is the product distribution over Z 2 X x [0, 11X x A defined as D’ £ D x Unif (A), that
is, a pair (x,7) € X x [0, 1]X is sampled from D and a € A is sampled independently uniformly at
random. The random objective f(-;z) is defined according to Eq. (2), and we note that even though
the full reward function r is not observed, f(-; z) depends only on the reward of the actions in a ~ A
and can thus be fully accessed. The K /m factor in Eq. (2) is necessary due to the random sampling of
a ~ A used for importance-weighted estimation of the reward function, and it is straightforward to



see that the expected objective has the following form:
F(p) £ Eevny [f(p3;)] = Eqryn|— D 7(3)log(QLy(p))|- 3)
yey

This form of F is of crucial importance as its gradient at a point p is proportional to the variance of
an appropriate unbiased reward estimator for the policies in I1:

Var[Rp(nj)] sm- Vr; €Il

oF
o) (p)

As we will show, poly(K/m) samples suffice in order for the empirical objective Fto approximate
the expected objective F(-) with sufficient accuracy uniformly over Ay, resulting in the fact that
an approximate minimizer p € Ap of F () satisfies ||[VF(p)|lo < s. This fact generalizes the key
insight from the previous works of [[16, 2, [17]] in the sense that the reward estimators induced by p
have variance bounded by C - sm, where C is an absolute constant. Crucially, this variance bound
doesn’t depend directly on the number of actions K, implying that we can use p to estimate the
expected rewards of the policies in IT with only ~ sm/e” samples by Bernstein’s variance-sensitive
concentration inequality.

3.1 Analysis

Here we detail the main steps in the analysis of Algorithm [I| and in particular, outline the main
challenges compared to the single-label setting where s = m = 1.

Initial exploration. While in the single label classification setting it is possible to collect a dataset
containing poly(K) i.i.d samples from D by simply predicting labels uniformly, this approach does
not work in the multilabel classification setting (i.e. s > 1) and neither in CCSB with s-sparse
rewards. The reason is that in these settings a uniform prediction of a list of actions will simply not
yield a full observation of the reward vector, even after poly(K) such predictions. Thus, instead of
collecting a dataset, we use semi-bandit feedback directly in order to estimate the convex objective
of interest using importance sampling, as detailed in Algorithm[I] These random objectives are
unbiased with respect to F(-) defined in Eq. (3)), while importance weighting adds a scaling factor
of K/m. An additional noteworthy difference in our approach is the fact that rather than using a
stochastic optimization procedure to minimize the stochastic objective in Eq. (3)) directly, we optimize
the empirical version of this objective and use a uniform convergence argument to show that an
approximate empirical minimizer also achieves nearly optimal expected function value. Our uniform
convergence analysis of the underlying function class leverages Lo, vector-contraction properties of
Rademacher complexities introduced in [20]]; see Appendix [A.T|for more details.

Optimizing for low-variance exploration. In order to approximately solve the convex optimization
problem defined in Eq. (I)), we employ the Frank-Wolfe (FW) algorithm [22], and make use of a
convergence result by [29] which allows us to take advantage of L;/L.-smoothness properties of
the objective. In more detail, we run Frank-Wolfe on the objective defined in Eq. (I) over samples
generated by the distribution 9’, where crucially the gradients of the random objectives defined in
Eq. () can be calculated exactly via

df(pix,r,a) _ (1 _y)g Z Hy e 7;(0)}r(y)

. Yy e[ @)

dp; o 06,
The FW algorithm uses these gradients with a linear optimization oracle LOOyy, defined by

LOOy(v) £ argminv - p, Vv e R,
PEAN

Importantly, each call to LOOp can be implemented by a call to ERMp; (see Appendix for
the proof). The analysis of [29]] applied to the objective in Eq. (T)) shows that with an appropriate
choice of parameters, the Frank-Wolfe algorithm outputs a p-approximate minimizer of Eq. (1) after
T = O(sK?*/(ym?p)) iterations. This follows from L{-smoothness properties of the functions defined
in Eq. (2) with smoothness parameter 8 = sK>/(y*m?). For more details, see Appendix



Low-variance reward estimation. In the second phase of Algorithm[I} we use the low-variance
exploration distribution p € Ay; computed in the first phase in order to estimate the expected reward
of all policies in IT using importance-weighted estimators, defined as

Rz Y % i€ [N

The guarantee on p provides us with the ability to bound the variance of these estimators by
O (sm) (with no explicit dependence on K) which is why, using Bernstein’s inequality, O (K/(me) +
sm/&*) samples in the second phase are sufficient for the average estimated rewards to constitute &-
approximations of the true rewards uniformly over all policies in IT, thus implying the PAC guarantee
for the policy which maximizes the average estimated reward.

yemn(x)

Proof of Theorem |l|(sketch). We now give an overview of the proof of Theorem I} We rely on the
following key lemma which shows that a sufficiently approximate optimum p of the convex objective
defined in Eq. is a point at which the gradient is bounded in L, norm by s. The proof of this
lemma can be found in Appendix [A] O

Lemma 1. Suppose y < % and let p € Ay be an approximate minimizer of the objective F (-) defined
in Eq. 3) up to an additive error of u. Then,

R 2suK?
IVE(P)lleo < S+\fﬁ-
y2m

In particular, setting u = sy*m?|2K? gives |[VF(p)|l < 2.

In order to apply Lemma [T} we make use of a uniform convergence argument which implies that
given sufficiently many samples, an approximate minimizer of the empirical objective defined in
Eq. (T) is also an approximate minimizer of the stochastic objective defined in Eq. (3). This lemma is
also proven in Appendix

Lemma 2. Assume Ny = @)(% log %) and that phase 1 of Algorithm|l|results in p € A which
minimizes F(-) defined in Eq. up to an additive error of u/3. Then witltprobability at least 1 — 6,
P minimizes F(-) defined in Eq. (3)) up to an additive error of u.

In Appendix we prove that T = O(sK3/(y*m3u)) iterations of FW result in p_€ Ay that
minimizes F(-) up to accuracy u/3. Setting u = sy>m?/2K?, Lemma [1]and Lemma [2] imply that
phase 1 of Algorithm I]yields a distribution p € Ap satisfying

r(y)
E - <4s Vrell )
o] 2 T

In phase 2, Algorithm [T uses samples from p to estimate the expected rewards of policies in IT with
the following estimators:

yemr(x)

Rim = % i e V2],

It is straightforward to see that this is an unbiased estimator for r g (7), and moreover, using the
Cauchy-Schwarz inequality and Eq. (3)), its variance can be upper bounded by

yenr(x)

i (y)
0%y (D)

< 4sm.

Var[R;(m)] < mE Z

yenr(x;)

Using Bernstein’s inequality and the fact that the random variables R; () are bounded by K /(ym)
we deduce that the following sample complexity suffices for (&, §)-PAC:

K K sm |TT|
N +Ny = 0| — + — + = | log == |,
mé me &2 )

and second term can be dropped since the sum of the other two terms dominates the bound.



3.2 Lower Bound

We conclude this section with presenting a lower bound, according to which the dependence on m
and s in Theorem|I]is tight even in the non-contextual setting.

Theorem 2. For any combinatorial semi-bandit algorithm Alg over K actions and combinatorial
actions of size m < K /2, there exists an s-sparse instance for which in order for Alg to output & € A
which is e-optimal for € < 1/K with constant probability, AlQ requires a sample complexity of at

least Q(sm/&?).

We provide a sketch of the proof of Theorem 2] below, see the formal statement and proof in
Appendix [A.4]

Proof of Theorem ) (sketch). Consider an instance specified by m Bernoulli arms with expected
reward % + = each while the other K — m arms have expected reward % — =.. Denote the set of m
arms with highest expected reward by S. Now, note that in order to find an 5-optimal subset, Alg
must identify at least half of the arms in S, and thus is required to estimate all of the arms’ rewards
up to an accuracy of 5=.. Since each arm’s reward distribution has variance of ~ %, the number of
Var(r, ; 2 .

et ¥ & . Since
such an estimation needs to be performed for all K arms and each time step gives Alg samples for m

arms via semi-bandit feedback, the total sample complexity is of order at least

samples required to make such an estimation of the reward for each arm y is

4 Conclusion and Open Problems

In this work, we provide sample complexity bounds for contextual combinatorial semi-bandits whose
dominant terms scale with an underlying sparsity parameters s rather than with the number of actions
K. We also give regret bounds for the online (adversarial) version of the problem. Our results apply
to the special case of bandit multiclass list classification, and constitute a generalization of previous
work on the single-label classification setting [17, [18]].

Our works leaves several compelling open questions, such as the extension of our results to the
full-bandit setting, improving the dependence on K in the sample complexity bound, and extending
our results to infinite policy classes. For further discussion of future directions, see Appendix[C]
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The theoretical claims made in the abstract and introduction are all rigorously
proven in the paper, and the scope of the paper’s contributions is accurately reflected in the
abstract and introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations of the work are thoroughly discussed both in the introduction
and throughout the text, and the assumptions made are formally stated in the problem
definition.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Every theoretical result is rigorously proven either in the main text or in the
supplementary material. All assumptions are formally stated in the problem setup.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This is a theoretical paper and does not contain any experimental results.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This is a theoretical paper and does not contain any experimental results.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This is a theoretical paper and does not contain any experimental results.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This is a theoretical paper and does not contain any experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This is a theoretical paper and does not contain any experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper is purely theoretical and conforms, in
every respect, with the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research conducted in the paper is purely theoretical is not tied to any
specific applications with societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: This is a theoretical paper and does not contain any experimental results.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This is a theoretical paper that does not contain any experimental results and
does not use any existing assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This is a theoretical paper that does not contain any experimental results and
does not release new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

18


paperswithcode.com/datasets

14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is purely theoretical and does not involve crowdsourcing nor research
with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is purely theoretical and does not involve crowdsourcing nor research
with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research conducted in the paper does not involve LLMs as any non-
standard component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs for Section

To prove Lemma[l] we will need the following auxiliary result:

Lemma 3. Suppose y < 1 and let p* = argminp, F(P). Then it holds that |[VF (p*)||. < s.

Proof. First note that the gradient of F(+) is given by

El— Z A -rify e a0} |

(VF( ))71 -
: o 07, (p)

Thus, using first-order convex optimality conditions, the following holds that for any p € A,
VE(p*)-(p-p*) 20,

which with the explicit form of the gradient becomes

E Z (1 =1 ) Xaen(p(n) = p*(n))1{y € n(x)}

Y * <0,
= Ox,y(p*)

or equivalently, after dividing by 1 —y

<0,

E Z rM(Q%y(p) — 0%y (p™)

oy oy (P%)

which rearranges to

y
E ZM <E Zr(y) =E[llrlly] < s.

i Qxy(P) Y

Letting p € Ay be the distribution concentrated at some 7 € II, we get

) Z r(y)]l{y en(x)}

= 0%y (p*)

and the claim follows since the left-hand side equals (—VF(p*)), and is nonnegative.

Proof of Lemmall] Using Lemma[3]and the triangle inequality, it suffices to show that

R 2suk?
IVF() = TF(p")l < |t

and by the assumption on p this clearly holds if

2
IVE) = VPRI < S (F () = F (™).
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To prove this inequality, we start with the left-hand side and use the explicit form of VF(-):

2
r(y)I{y € n(x)} r(y)1{y € n(x)}
MACSA AN I N - MACS A AN Al

2
S ry) r(y)
- (yz; 0%, (h) égz,ym
2
— el r(y) 1
”’”l(y; i (@7, ~ 0%, ()

2
1 1
<E -
<Ellirlh 2, rly )(Qz,y(ﬁ) Qz,y<p*))

yey

IVF(p) = VF(p*)II% = max(1 - y)z(tE

2
1 1
<s-E _ ) 6
' yezy’(y)(gz,ym) Q%,y@*)) ©

where we used Jensen’s inequality twice and the fact that ||r||; < s. Now, for any (x,y) € X X Vit
holds that

1 )2:(Ql,y(ﬁ)—QZ,y(p*))2
0Ly 0Ly (01,(9)* (0L, (p%)
LM (e
o0\ el |

2
< —— min

< 1

where we have used the fact that QY () > ym/K. Using the fact that 1 min{(1 - 2)2, (1 - 1/2)*} <
—logz+z—-1withz= Qz,y (ﬁ)/Q%iy (p*) (see e.g. [17], Lemma 4) we obtain, after combining the
above with Eq. (6) and taking expectations:

Y (A Y (A _ Y *
IVEG) - TG < 2K ) {—10g 0%y (D) Q%)) = 0%y (p )}

yim? o o 0%y (p*) 0%y (p®)
2sK? . R

= S=E. o [f(p.2) = f(p*.2) =V f(p*,2) - (p - p*)]
v2m
2sK? R R

= 5 (F(p) = F(p*) = VF(p*) - (p - p))
v2m
2sK? R .

< yz—mz(F(P) - F(p")),

where in the second inequality we used first-order optimality conditions. O

Proof of Theorem(l] By Lemma I] Theorem [3|and Lemma 2] phase 1 of Algorithm [I]results in a
distribution p € A satisfying

<2s Vmell,

r(y){y € n(x)}
1= Y)E( - § DY =S
(1 =BG o 200

and since y = 1/2 we get

r(y)
E(x,r)~D Z y—@ <4s Vrmell
X,y

yen(x)
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Fix 7 € IT and for i € [N;,] define the induced importance-weighted reward estimator by R;(r)

Yyen(x) % This is an unbiased estimator of 7 (1), since for a given y € Y the probability

that y € a; equals Q}/’y (p), and thus

E[R(m)] =E| > r(y)|=Elr-x(x)] =rp(m).

yen(x)
Moreover, Ry (n), ..., Ry, (7) are i.i.d and exhibit the following variance bound:

Var[R; (m)] < E[R;(n)?]
2
ri(y)1{y € a;}

=E
0%y (P)

yem(xi)

2

_ el L Z ri(Y)il{Yfai}
Qxi,y(p)

yenr(x;)

[ 2
ri({y € a;}
=mE Z( HRT) )

| yer(n)

ri(y)
=mlE ———— | < 4sm,
mE| ), ol p| ="

where in the first inequality we use Jensen’s inequality. With the variance bound, we use Bernstein’s
inequality (e.g. [35], page 86) and the fact that the random variables R; (7r) are bounded by K/(ym) to
deduce that the following sample complexity suffices to have r o (7*) —r o (7ou) < & with probability

|yem(xi)

atleast 1 — ¢:
K° K I
N+ N, =0 [ Ksm) o ),
md me &2 6
and the proof is concluded once we note that the second term can be dropped via Young’s inequality
which shows that the sum of the other two terms dominates the bound. o

A.1 Uniform Convergence via Rademacher Complexity

Consider the ERM objective F : A — R defined as
~ 1<
F(p)==> f(p:z). pe€hn,
=

where f(p; z) is defined in Eq. (2)) and z, . . ., z,, are sampled i.i.d. from the distribution D’ over Z.
Denote by ¥ C {Z — R} the underlying class of models, that is,
F ={z— f(p;2) | p € An}.
For each z = (x,7,a) € Z we define the binary matrix Z € {0, 1}X*I1l by
Zy s =1{yen(x)}, VyelY,mell
With this notation, we note that the objective can be written as
fpiz= (o) =+ 2 roog( g+ (1-9)(p),).

Thus, given y € Y, we define the function i (-) : RK — R by

. K m
vy (u) = —;log(% +(1 —y)uy), ue Rf,
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so that
F(p32) = > rwy(Zp).
yea

Note that for each y € Y, the function class L, defined by

Ly ={Zy > yy(Zp) | p € An},

is a class of generalized linear models, as ,(Zp) only depends on the inner product between p
and the y’th row of the matrix Z. Now, given a dataset S = {z1,...,2,} € Z", the Rademacher
complexity of F with respect to S is defined by

R(F o5) £ —Egl sup Zcr,f(p )|,

PEAn T4

where o, . . ., 0y, are i.i.d. Rademacher random variables (that is, +1 with probability %). ‘We make
use of the following uniform convergence result over the function class ¥ in terms of its Rademacher
complexity (see e.g. [45]]).

Lemma 4. Assume that |f(-)| < Bforall f € F. Then with probability at least 1 =6 over S ~ (D’)",
for all p € Ar it holds that

F(p) - F(p) <2R(F o) +4B\/@.

Note that for our function class of interest , we have B < % log(yﬁm).

The following key lemma will allow us to obtain a bound on the Rademacher complexity of ¥ by
presenting the functions in the class as linear combinations of L-Lipschitz functions, and using the
result given in [20] to relate its Rademacher complexity to that of generalized linear models.

Lemma 5. Let S € Z" where n > log|I1|. Then,

sK25 [log|II
og| |_10g2n).
m

R(FoS)<O0

n

Proof. Fix a dataset S € Z". We first write the Rademacher complexity of ¥ with respect to S as
follows:

nR(F o $) = Ey| sup me(p )

PEAN =

n

sup Za'i¢i(zip) ,
PeAn =]

=[E,

where @1, ..., ¢, : Rf — R are defined by
giw) = D ri(Muy (W), ueRX.

ye€ai

Using the L, contraction argument given by Theorem 1 of [20], it holds that

E| sup Zowﬁ,(Z,p) < O(G\/_) -max sup E. | sup ZO’,(Zl D'p -log?n,
pebn i yeY srezn pehdn 2
where ¢y, ..., ¢, are G-Lipschitz with respect to the L,,-norm. Moreover, the expectation on the

right-hand side is the worst-case Rademacher complexity of a linear model that is bounded by 1 in
Li-norm over data which is bounded by 1 in L,-norm. Using standard Rademacher complexity
arguments (e.g. Lemma 26.11 in [43])), this expression is bounded by

max sup E.,
YEY grezn

sup Z oi(Z; ) p

pEAn i=

2nlog(2|I1)).
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It is now left to bound the L-Lipschitz constant of the functions ¢y, ..., ¢,. Forall u,v € IRf and
i € [n], we have

@i () = ¢r )| =| > re(3) (y (w) = gy (v))
Yea;
< > rOy ) - gy )|
yea;

< § - max u)— v)l,
yeylz/fy( ) =¥y (v)]
where we used the fact that ||r;||; < s. Now, for each y € Y, it holds that
_ 2
Kk 1=y K

%+(1 —Yuy ~ ym?

Vry ()lly =

0
%lﬁy(u)

Therefore, using Holder’s inequality,
2

K
|9i(u) =iV <5+ — - [lu -V,
ym
and we deduce that G < ;—’;;, which concludes the proof. m|
We can now use Lemmaf]and Lemma 5] to prove Lemma[2]

Proof of Lemmal2] Let p € Ay be the output of Algorithm [2{ when run on F(-) using the dataset

S of n i.i.d. samples from D’ and assume that I::(ﬁ) - f(p) < u/3 for all p € Ap. Let py =
argmin F(p). Then with probability at least 1 — 6,

F(p) - F(p) = F(p) — F(p) + F(p) - F(p)
<F(p)-F(p)+F(p) - F(p) +5

< F(p) ~ F(p) + /3 + B[220

where the first inequality uses the fact that p is a (u/3)-approximate minimizer of F (+) and the
second inequality follows from Hoeffding’s inequality with B = % log(K /(ym)) being a bound on
both the empirical and the expected function values. We now use Lemma [ to further bound the

suboptimality of j by
2log(4/6
nm—F@wﬂwasnsakiﬂJJ+§,
n

The proof is now concluded using Lemmaonce we note that if n = (:)( SZKSZ log(|T1] /6)) then the

m*u

above is bounded by pu. O

PEAN

A.2 The Frank-Wolfe Algorithm

We now present the details of the Frank-Wolfe optimization algorithm used to obtain an approximate
minimizer of the objective defined in Eq. (I). The algorithm operates under the classical convex
optimization model:

minimize F(w), weW,

where ‘W C R is a convex domain. We assume that the algorithm has access to the full gradients of
the objective, that is, it has access to VF (w) for each w € ‘W. We assume the objective satisfies the
following Li-smoothness condition:

For all u, w € W and it holds that F(w) < F(u) + VF(u)T (w — u) + 5|lw — ul1}.

Applying the generic result of given in Theorem 1 of [29] to the objective defined in Eq. (I, we
obtain the following result stating the rate of convergence and oracle complexity of Algorithm 2]
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Algorithm 2 Frank-Wolfe

Parameters: Objective F : A — R, step sizes {n;},.
Initialize p € Aq.
fort=1,2,...do
Let g; = VF(p;).
Compute g, = LOOp(g;);
Update pry1 = (1 = n4)pr + 06415
end for

Theorem 3. Let p* = argmin, ca, I?(p). Then Algorithm |2|with step sizes n; = 2/(2 + t) outputs

P € Arp with f(ﬁ) - I?(p*) < u within T iterations, where

K3
R
y2m3p

In particular, Algorithmmakes at most O (sK>/(y*m3p)) calls to LOO.

Proof. Using Theorem 1 of [29], it suffices to prove that the objective F () defined in Eq. (1) satisfies
the following L{-smoothness property:

—~ —~ sK3
IVE(p) = VF (@)l < WHP —qll;-

Indeed, observe that for all = € I1:
N,
—~ —~ 1
(V@) = (VF@) | <5 D[V (iz0)x = (Vf(gi )]
g d 13
1 1

0%,(p) 0Ly(q)

Q;’,y (p) - Qz,y (p)
y(P)0%y(q)

< s 23

z=(x,r,a)eZ M 7=

s (1=9)7 3" ()

z=(x,r,a)eZ yea
sK3
- ,),Zm?a

llp - qlly,

where we have used the fact that ||r||; < s. O

The following lemma asserts that each call to the linear optimization oracle in Algorithm [2]can in
fact be implemented by a call to the ERM oracle ERMyy.

Lemma 6. In Algorithm 2| with the objective defined in Eq. (1), each call to LOOy can be imple-
mented via a single call to ERM.

Proof. Foreacht =1,2,...itholds that
LOOn(g:) = argmin{VF(p)" p}

pGA]‘[
AL
=argmin{ — » Vf(p;:z)'p
pEAn Nl ; re

= argmin{L (Vf(pt;zi))n}
=1

mell

l

=

—_—
z

= argmax Z fi(y) ,
mell =T yer ()
here #: = LK Lyeany) o g
where 7:(y) = 5y (1=7) =g~ o by Ea. (4. O



A.3 Improved Rate for the Single-Label Setting

We now present a version of Algorithm [I]specialized for the single-label classification setting, and
show that it enjoys a sample complexity guarantee whose dependence on K is better than that obtained
by [17]].

Algorithm 3 Bandit PAC for Single Label Classification

Parameters: Ny, N»,y € (0, %], T € N.

Phase 1:

Initialize S = 0.

fori=1,...,N; do
Environment generates (x;, y;) ~ D, algorithm receives x;.
Predict a uniformly random y; € Y and receive feedback 1{9; = y;}.
If §; = y;, update § « S U {(x;, y:)}.

end for

Initialize p| € A¢ to be a delta distribution.

fort=1,...,T do

Let g, € Agq be the delta distribution on A, = ERMH({(xi, f,-)}l.ill), where

R 1 {9 =yi =y} .
Fi(y) = =0 -y)————, Vie[lS]l.yed.
l N 0%.y(po)
Update p;+1 = (1 —1:)pr + 19 Where n, =2/(2+1).
end for
Let p = pry1.
Phase 2:

fori=1,...,N> do
Environment generates (x;, y;) ~ D, algorithm receives x;.
With prob. y pick §; € Y uniformly at random; otherwise sample 4; ~ p and set §; = h; (x;).
Predict ; and receive feedback 1{$; = y;}.

end for

Return:

{Di=yi=y}

o = ERM (117015 ). where 75() = S vy ey
Xi>Y

At a high level, the difference between the specialized version given in Algorithm [3]and the more
general approach (Algorithm I)) lies in the fact that in the single label setting, we are able to collect a
fully-labeled dataset by predicting random labels, and once every ~ K rounds we are guaranteed to
add a sample to our dataset with high probability, as is the approach of [[17]. This removes the need
to estimate the objective given in Eq. (3)) via importance sampling, which would result in a scaling
factor of K in the objective and thus in an additional K2 factor in the total sample complexity due to
the Rademacher complexity arguments. Instead, collecting the dataset S results in one extra factor K
in the total sample complexity. The improvement of the sample complexity bound over that of [[18]
arises from the usage of the empirical FW optimization algorithm instead of the stochastic variant.
Indeed, in our approach, the sample complexity depends on the Lipschitz constant of the objective
which scales with K, and not on its smoothness parameter which scales with K 2. The result is stated
formally in the following.

Theorem 4. Consider the single-label bandit multiclass classification setting. If we set y = %
Ny = O(K"log(|H|/9))), N2 = O((K /e + 1/£?) log(|H|/8)) and T = O©(K*) in Algorithm then
with probability at least 1 — § Algorithmoutputs hout € H with rp(W*) — rp(how) < € using a
sample complexity of

1
Ni+ N, = 0((K7 + —2) log @)
& 1)

Furthermore, Algorithmmakes a total of T + 1 = O(K*) calls to ERMy.
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Proof. The analysis of the second phase is identical to that of the more general setting of combinatorial
semi-bandits with s-sparse rewards (see the proof of Theorem [I)), where in this case we have
s =m = 1. Now, note that the first phase of Algorithm 3]is an implementation of the FW algorithm
on the following objective:

s = 1
minimize F(p) = m Z [—log(Q;y(p))], P € Ay
(x,y)eS
Thus, it suffices to show that in the first phase, O (K Tlog(|H|/ 6)) samples suffice in for uniform

converges of F (-) with rate 4 = 1/8K?. Indeed, a straightforward concentration argument shows that
with probability at least 1 — §, the number of samples in S after the data collection process is at least
H
|S| = Q(K6 log u)
)
Now, note that the realized objectives optimized in the first phase come from a generalized linear
model of the form

F = {z — —10g(y/K+ (1 —y)sz) | pe Aw}'

Since the function ¢ : R — R defined by ¢ (x) = —log(y/K + (1 — y)x) is G-Lipschitz with
G = K /v, a simple contraction argument (see e.g. Lemma 26.9 in [45]) together with a bound on the
Rademacher complexity of L;/L-bounded linear models (see e.g. Lemma 26.11 in [45]]), shows
that the Rademacher complexity of ¥ with respect to S is bounded by

2log2IHI) _ 5\/210g(2|¢{|)

|S] Y IS]

Using Lemmaf] as in the proof of Lemma |2} we deduce that with probability at least 1 — & it holds
that

R(TOS)SG‘\/

F(p) - F(px) < u,

where ¢ = 1/8K?. The bound on the number of iterations of FW follows from the fact that the
objective is O (K?)-smooth with respect to the L; norm, and similar arguments as those in the proof
of Theorem 3] O

A.4 Lower Bound for Sparse Combinatorial Semi-Bandits

We now provide a formal proof of the sample complexity lower bound given in Theorem [2| (and
more formally restated below) for combinatorial semi-bandits with s-sparse rewards. We construct
hard instances for the problem denoted by s for all subsets S C Y of size m. In Ig, the reward
distribution is constructed as follows: The rewards of all actions y € § are Bernoulli random variables
with parameter 5% + £, and the rewards of all actions y € Y/ \ S are Bernoulli random variables with

9 2K m . .. . . . .
parameter 5% — 2. The rewards are sampled in an i.i.d. manner between actions, and it is easily

seen that th2sKsumKofmexpected rewards of actions is exactly 5. Using standard binomial concentration
arguments, we will show that with high probability all realized reward vectors are s-sparse, and so
conditioning on the event in which all reward realizations are s-sparse will not substantially affect the
lower bound. We also limit our analysis to deterministic algorithms, which suffices in general due to
Yao’s principle as the instances we construct do not depend on the decisions of the algorithm. The

formal lower bound is established in the following theorem:

Theorem 5 (restatement of Theorem [2). Ler Alg be a deterministic combinatorial semi-bandit
algorithm over action set M of size K with combinatorial actions being subsets of Y of sizem < K [12.
Then for sufficiently small & > 0, there exists an instance Is for which if we run Alg for T < 320
rounds over rewards sampled according to Ig, then Alg outputs an &/2-suboptimal subset with
probability at least 1/4.

Proof. For the analysis, we define an additional problem instance denoted by 7y in which the expected
reward of all actions is 5 — £5... For a given S C Y of size m, we denote by Ps and Py the
probability distributions over length 7' sequences (a,r1, - . ., ar, rr) where a; is the subset produced

by Alg on round ¢, conditioned on the instance Zg or Z, respectively. We also denote the history up
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toround ¢ by h, = (ay,r1,...,a:-1,rr—1), and note that since Alg is assumed to be deterministic, a,
is deterministically chosen conditioned on #,. For an action y € Y/ denote by N, the number of times
Alg chooses a subset containing y during the T rounds.

We claim that there is some subset Y’ C Y of size at least K /3 such that for all y € Y’ it holds that

3T 3m
[E()[Ny] < ? and Py[y € ar] < 7

Indeed, by the fact that each action may be chosen at most 7' times, for at least (2/3)K actions y € Y
it holds that

3
[EQ[Ny] < ?

Similarly, since at each round Alg picks m actions, for at least (2/3)K actions y € Y it holds that
3m
Poly € ar] < -

Therefore, both conclusions hold for the intersection of the two subsets of actions, denoted by Y’,
which must be of size at least K/3. Let S C Y’ be some subset of Y’ of size m. We now show that
the theorem holds with the instance 7s.

Now, by construction of Zg, in order to prove the theorem it suffices to upper bound the probability
that at least half of the actions in S belong to ar by 3/4. By Markov’s inequality, it then suffices to
prove that the expected number of arms of S which belong to ar is at most 3m/8. Fix y € S. By
Pinsker’s inequality and the chain rule for KL-divergence, it holds that

2(Poly € ar] - Psly € ar])* < KL(Py | Ps)
T

KL(PO[”t | ht] | PS[”Z | h,])
=1

t

T
= D Pola =81 ) KL®[r () | h] | Pslr(y) | hi)),
=1 §'CY,|8|=m yes'nS
where KL(p | ¢) = 2, p(2) log % is the KL-divergence between distributions. Now, note that

the KL terms in the last expression are all equal to the KL divergence between Bernoulli random

variables with biases & - ﬁ and ﬁ + %, respectively, and thus can be bounded for sufficiently
small & by
K 2 2 2 ZK
KL(Ber(L S ) IBer(i+£)) < — g( e/m) . — < 3 82 .
2K K—m 2K m (Z_K_K;m)(l_ﬁ+K—m) m=s
Therefore, the above is further bounded by
r 2
32e°K
2(Poly € ar] — Ps[y € ar])? < Pola; =SS N S| -
(Poly €arl =Pslyear])®< ), >, Polar =SS S| =

=1 §'CY |8 |=m

32£2K
= Eo[N.
2 Z o[Ny]

m y'eS

96T
ms

<_?
32

where we used the fact that Eg[N,/] < 3T /K for each y’ € S and the choice of T'. Simplifying the
above inequality and using the fact that Py[y € ar] < 3m/K, we have

1 3m 1 1 3



where we used the fact that m < K/12. Summing over S, we obtain

3m
2, Pslyear] < =

yeS

which concludes the proof. m}

In order to obtain a valid lower bound for instances in which the reward realizations are s-sparse, we
use a multiplicative Chernoff bound together with a union bound over [T] to deduce that for every
instance Jg:

1
Ps[3r € [T] st |Irelly > s] < Te ®/* < o

where the last inequality holds for s > 41og(2T). Note that conditioned on the event that ||r/||; < s
for all ¢, the rewards are still i.i.d. across rounds, and thus their conditional distribution defines an
s-sparse instance on which Alg outputs an &/2-suboptimal subset with probability at least %

B Online Regret Minimization Setting

In this section we present a regret minimization algorithm for CCSB with rewards that satisfy

||rt||§ < s which is a slightly relaxed version of the assumption ||r;||; < s. Instead of rewards in
[0, 1], it will be convenient for us to instead consider losses, so we introduce the following negative
loss vectors:

t(y)=-ri(y) Vte[T]l,yed.

It is obvious that the losses satisfy ||£; ||§ < s and that the transformation from rewards to losses does
not affect the regret. A natural approach for regret minimization in CCSB would be to use the EXP4
algorithm [5]] over the policy class IT, which amounts to Follow-the-regularized-leader (FTRL) using
negative entropy regularization, defined as
0]
H(p) = > pilogpi, p €An. @)

i=1

However, as been observed by [18]], since the loss vectors are negative, this approach alone would not
suffice to achieve a regret bound that is adaptive to the sparsity level s, and would instead yield a

regret bound of the form O (4/mKT log |I1]). In order to adapt to sparsity, they introduce an additional
log-barrier regularization, defined as

||
®(p) £ > logpi, peAn. ®)

i=1
We adopt this approach and generalize it to the combinatorial setup with Algorithm 4}
We prove the following result for Algorithm {4}

Theorem 6. Assume that the loss vectors €; satisfy ||¢; ||% < sforallt € [T]. Then Algorithmwith

v = 1—16 and n = {/log(|I1|)/(msT) attains the following expected regret bound w.r.t. a finite policy
class I1:

E[R7] < 0(|n|1og(|n|T) +\/smTlog|H|).

We remark that the linear dependence on |I1] is essentially tight if we require the leading term to
depend on s rather than K, as shown in [[18] for the single-label setting.

Theorem [6] primarily stems from the following the following result which is a consequence of a
generic analysis of FTRL (see e.g. [26], [41] (Lemma 7.14)):
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Algorithm 4 EXP4-COMB-SPARSE

Parameters: m, K, T, s, finite policy class IT C {X — A}, stepsizesny > 0,0 < v < 1.
Initialize p; € Ap as the uniform distribution over IT.
fort=1,2,...,T do
Obtain x; € X.
Sample 7, ~ p; and let a; = 7w, (x;) € A.
Observe {{;(y) | y € a,} and construct importance-weighted loss estimators for policies in IT
via

& (y)1 ' .
éuti) = Z()—(”Qt{(yyf“} i e (i),
yEmi (X

where Q;(y) = lenl p:(D)1{y € m;(x,)} is the probability that y belongs to a, when sampling a

policy using p;.
Update p; via

t
. L1 1
P+l = argmm{p e+ EH(p) + ;Q(p)},

peAn =1

where H(-) and ®(-) are defined in Eq. (7)) and Eq. (8] respectively.
end for

Lemma 7. For all p* € Ay, the following regret bound holds for Algorithm '

T |

2 *) < R(p*) - R<p1)+”zzp,(z>ct<z>

t=1 t=1 i=

M"]

where R(p) = 71]H(p) + ;dD(p), and p; € [ps, pi+1] is some point which lies on the line segment
connecting p; and p41.

In order to relate p, given in the bound to p,, we use the following result which is where we make
use of the properties of the log—barrier regularization ®(-).

Lemma 8. Assuming that v < it holds that p;y1 (i) < 8Vp,(z)for alli € [|IT]].

M’

[L8] prove this claim for the single-label setting, for completeness we include the proof for the
multilabel setting. The proof requires the following preliminary definition:

Local and dual norms. Given a strictly convex twice-differentiable function F : ‘W — R where
W C R is a convex domain, we define the local norm of a vector g € ‘W about a point z € ‘W with
respect to F' by

lgllr,. = VgTV2F(2)g,

and its dual norm by
lglle . = VeTV2F(2)'g.

Proof of Lemma[8} Fix t € [T] and define F, : Ap — R by

t—1

Fi(p)2 Y éc-p+R(p),

7=1

where R(p) = H,(p) +®,(p) = %H(p) + %(I)(p). That is, F; is the function minimized by p, at
round ¢ of Algorithm Now, by the form of the Hessian of ®(-), for all p, p’, g € Ay it holds that

LS (p() =P ()
m2 _ p 4
Ip = p'l3,q = VZI A
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. 2 . o
and thus it suffices to prove that ||psy1 — ps ||év»Pr < < where ¢ = 8%, — 1 > 1, since in this case for
all i € [|IT]|] we will have

8y

implying the result. Note that a sufficient condition for the above is that for all g € Ar for which

2
(e (D) = pr (1)) < (i . 1) P2,

lg - pillo, p, = C—Vz it holds that Fy,1(g) > Fy41(p;). Indeed, in this case, if we define the convex

set & = {p €An | llp - pillo,,p, < %} (which in particular contains p;), since Fy4; is strictly
convex, the condition that Fy41(q) > Fy41(p;) for all g on the relative boundary of & implies that its

minimizer, p,1, must belong to &. With that in mind, fix ¢ € Ay with ||g — p; ”év,p, = <. Usinga
second-order Taylor approximation of F;,; around p,, we have

1
Fi41(q) = Fr1(ps) + VEu1(p) " (g = po) + Ellq - Pt”%e,p’

where p is a point on the line segment connecting p; and g. Using the definition of F;,; and the fact
that V2R(-) = V2@, () since H,, is convex, we get

R 1
Fr1(q) = Froi(po) + VE(p:) (g = po) + ¢/ (g = po) + EHCI - Pt”%bwp’
and using first-order convex optimality conditions for p, as a minimizer of F;, we obtain
R 1
Fri1(q) 2 Fre1(pe) + C;r(q - p)+ 5”‘1 - pt”gpy,p-

Starting with the local norm term, we note that since ||g — p,lléwpt < é it holds that ¢ (i) < %p,(i)
for all i € [|IT]], and since p lies on the segment connecting ¢ and p;, the same holds for p instead of
q. Therefore,

lg = pill3, , = Z (g9() = P (D)?

o p)?
(q(i) = p:(i))*
> 64y
; Pz(l)z
=64llg - pill3,
= 64VC2~

Thus, to conclude the proof, we need to show that ¢ (¢ — p;) = —32vc?. Indeed, since the losses are
non-positive, we have

-0 = 9 S i)~ o)) = ar)
4 pt_Qf(af),-:1q Pt iXy) = a;
ft(at) S
> Z 91 {mi(x,) = ;.

Using the fact that g (i) < % p: (i) we further lower bound this term as

1 6(ay) &
t t B
1{m; =
a=r) = g 5705 let(o {mi(x) = ar}
= gft(az)
1
T8y’
where we used the fact that £,(-) € [—1,0]. The proof is concluded once we note that 32vc? > % if
and only if ¢? > 256v2, which clearly holds since 256v? < 1 < ¢?. O
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With Lemma [7)and Lemma [§]in hand, we can prove the following result:
Theorem 7. Algorithmwith v < 1—16 and n > 0 attains the following expected regret bound.:
T 1]

nE| " Z P ()

t=1 i=

.. M log(JII|T) 10g L3I
v

E[Rr] <1

Proof of Theorem[/] Fix p* € Ay and fory = IH\T letp (i) £ (1 =|II|y)p* (i) +y forall i € [|IT]].
In addition, let ¢, € [—1,0]" defined by ¢, (i) = & (7;(x;)). We have,

Cr'(Pt_P*) :ict'(Pt_P;)"'iCt'(P;_P*)

t=1 t=1 t=1

T T
= Z cy - ( ) + Z Ct(l) |H|7p*(i))
=1 t=1 i=1
T
< Zcz : (Pt ) +y[I|T
=1
T

where we have used the fact that ¢;(i) € [—1,0]. Taking expectations and using Lemma [7| and
Lemma 8] together with the fact that E,[¢;] = ¢, we obtain

ElRrl < 18| Y 6] (pe = 3)
t=1
=1+E y c%-(pz—p$)

t=1

=

|
< R(p}) = R(p1) +nE

M=
'ZM

1l
—

pi ()¢, (i) l
1|

IA

MH

1 1
—®(p3) - —H(p1) +nE
v n

Il
—_

t i=1

pt(i)ét(i)zl

T
t=1 i=1
as claimed. m]

|, Il log(mi7) Lo LIECES

v

pz(i)ét(i)zl,

Proof of Theorem[6] Using Theorem([7|and considering the stability term, forall 7 € [T] and i € [|I1|]
it holds that
2

. () Hy € a;}
;| ¢ 2] = E, A N
[ 7] yE;(m 0.()

2
el v aonvean
=m“E; (m yEHZ(Xt) 0:(y) )

Gy € a,})2

< mE, Z ( Qt()’)

yem(x;)
ft(y)z
0:(y) ’

yem(xt)

32



where the third line uses Jensen’s inequality, and the last equality uses the fact that E,[1{y € a,}] =
Q¢ (y). Thus, the stability term is bounded by

T |0 T |0 L)
5 A [ B t
ME| D D p DB (]| <mmE\ D D pi(i) D, S
=1 i=1 =1 i=1 yem(x) <! y
T K M 2
. G (y)
=nmE pe() Uy € mi(x;)}
; ; = ! o 0:(y)
0 (y)
[T
=nmlE ZH&H% < nsmT,
| r=1
and plugging in the specified values for 7 and v gives the desired bound. O

C Open Problems

Full-bandit feedback. Our results for PAC learning in the semi-bandit setting raise a natural
question regarding the full-bandit feedback model, which is characterized by the fact that the
observation upon predicting a, € A consists of a single number r,a,. Specifically, it is unclear
given our results whether adapting to reward sparsity and obtaining improved sample complexity
bounds of the form poly(s, m)/&? is possible in the full-bandit model. While we do not fully know
how to extend our techniques to the full-bandit setting, we present some interesting ideas which
may provide initial directions towards answering this question. We focus on the question of how
we should modify the log-barrier potential given in Eq. (I) to accommodate full-bandit feedback,
that is, such that its gradient would correspond to the variance of an appropriate full-bandit reward
estimator. Indeed, importance-weighted reward estimators for combinatorial bandits are widely used
in the literature [see, e.g.,[3]], and it is straightforward to construct such an unbiased estimator R (1)
and show that its variance can be bounded as

Var[R(7)] < 52 - 7n(x)TC™'n(x),

where C is the covariance matrix associated with sampling a policy from p. Interestingly, the latter
quantity can be shown to be proportional to the gradient of the following log-determinant potential:

|IT]
F(p3x) £ ~logdet(C(p3 ) = —logdet(z p(k)m(x):rk(xf) ,
k=1

which would seem like a natural generalization of the log-barrier potential used in Eq. (I). This
variance bound, however, contains no dependence on the reward function r, and in turn the existing
analysis would result in a sample complexity of ~ K /&2, which we would like to avoid.

Improving the dependence on K. A natural question which is also left open in [17] for the single-
label setting concerns improving the dependence on K in the additive term of the sample complexity
bound. We strongly believe that this term could be significantly improved, potentially reaching K /&
which would result in a minimax optimal sample complexity bound. The high polynomial degree in
the current bound mostly stems from requiring the approximate minimization of F(-) as a means to
obtain a point at which the gradient is small. Intuitively, minimizing the objective F(-) itself is not
our primary goal, but rather we are interested in finding a point at which the gradient of F(-) is small.
This naturally leads us to look for an optimization procedure which would minimize the norm of the
gradient of F(-) directly, which can be done in various unconstrained optimization problems [see, e.g.,
21]], using a sample complexity which only depends logarithmically on the objective’s smoothness.
The constrained nature of our problem of interest, though, poses a significant challenge to adopting
this approach directly. Nevertheless, we conjecture that leveraging specific properties of the objective
function (such as self-concordance) may enable extending these methods to constrained settings. Such
results would not only improve the sample complexity bounds for bandit multiclass classification but
could also be of independent interest to the convex optimization research community.
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Extension to infinite classes. Another natural research direction is to extend our result given in
Theorem|I]to hypothesis classes which could be infinite, but exhibit certain properties which allow
for replacing the dependence on log || with some combinatorial dimension. For the single-label
setting, [[17] show that a finite Natarajan dimension is indeed such a property. We thus expect that for
list classification, an appropriate generalization of the Natarajan dimension would give such results,
in a similar manner to how the Littlestone dimension is generalized by [39] to list classification in the
online setting.
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