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ABSTRACT

Generating explorable 3D scenes from a single image is a highly challenging
problem in 3D vision. Existing methods struggle to support free exploration, often
producing severe geometric distortions and noisy artifacts when the viewpoint
moves far from the original perspective. We introduce One2Scene, an effective
framework that decomposes this ill-posed problem into three tractable sub-tasks to
enable immersive explorable scene generation. We first use a panorama generator
to produce anchor views from a single input image as initialization. Then, we
lift these 2D anchors into an explicit 3D geometric scaffold via a generalizable,
feed-forward Gaussian Splatting network. Instead of treating the panorama as a
single image for reconstruction, we project it into multiple sparse anchor views and
reformulate the reconstruction task as multi-view stereo matching, which allows us
to leverage robust geometric priors learned from large-scale multi-view datasets. A
bidirectional feature fusion module is used to enforce cross-view consistency, yield-
ing an efficient and geometrically reliable scaffold. Finally, the scaffold serves as a
strong prior for a novel view generator to produce photorealistic and geometrically
accurate views at arbitrary cameras. By explicitly conditioning on a 3D-consistent
scaffold to perform reconstruction, One2Scene works stably under large camera
motions, supporting immersive scene exploration. Extensive experiments show that
One2Scene substantially outperforms state-of-the-art methods in panorama depth
estimation, feed-forward 360° reconstruction, and explorable 3D scene generation.
Code and models will be released. Anonymous project page can be found at:
https://one2scene5406.github.io/l
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Figure 1: Comparison on large-viewpoint novel view synthesis. Existing methods such as Wonder-

journy (Yu et al.| [2023) and Dreamscene360 (Zhou et al.,2024) exhibit clear geometric distortions

and artifacts, while our method generates photorealistic and geometrically accurate novel views. The
input image is highlighted by a red bounding box. The other images represent the novel views.
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1 INTRODUCTION

The increasing demand for high-quality 3D content is reshaping the landscape of video games, visual
effects, and mixed reality, making 3D generation a highly active research topicm (Valevski et al.,
2024; /Adamkiewicz et al., 2022} IMartin-Brualla et al., [2021; |Ye et al., [2024b). Reconstruction-
based methods like Neural Radiance Fields (NeRF) (Mildenhall et al.,2020) and Gaussian Splatting
(GS) (Kerbl et al., 2023) have achieved remarkable results, but they typically require hundreds or
even thousands of input images. Although sparse-view reconstruction approaches alleviate this
requirement (Wang et al.l 2023} |Yang et al., 2023} [Yu et al., 2024a}; |Charatan et al.,2024; [Liu et al.}
2024cib; [Wu et al., 2024a; Szymanowicz et al., 2024b), these methods struggle with large viewpoint
extrapolation and fail to generalize to unseen regions. In stark contrast, generative view synthesis
(Liu et al.| [2023]; |Sargent et al., [2024; Liu et al.|[2024a; |Yu et al.| |2024b)) is emerging as a significant
advancement in 3D content creation, as it can generate plausible content in unobserved regions (Shi
et al.,[2024; [Zhou et al.| [2025}; [Szymanowicz et al., 2025).

Although object-level 3D generation (Liu et al.| [2023}; [Sargent et al.| 2024} |Ye et al.| [2024b) has
achieved rapid progress, generating an explorable 3D scene from a single image remains a significant
challenge. One of the key challenges is how to maintain 3D geometric consistency and visual quality
under large viewpoint changes and long-term generation. Some methods leverage pre-trained video
generation models (Brooks et al., [2024; Xing et al., [2024; Hong et al., |2022; |Yang et al., [2024) to
create 3D-aware sequences (Liu et al.,[2024a]d; 'Yu et al.| 2024bj |Chen et al., 2024; Sun et al., 2024;
Liang et al.| [2024), but they often suffer from geometric inconsistency and loop-closure consistency.
Panorama-based pipelines such as Dreamscene360 (Zhou et al., [2024) and DreamCube (Huang et al.,
2025)) attempt to convert panoramas into 3D scenes, but their ability to support broader exploration is
very limited, as shown in Figure|[T|(a). Although navigation and inpainting-based methods (Chung
et al., 2023} 'Yu et al.} [2023; |Hollein et al., 2023) enable the generation of more expansive scenes,
their iterative nature often causes global semantic drift. Furthermore, cumulative errors often result in
stretched or distorted geometry, as shown in Figure[T](b). These limitations highlight the need for a
new approach that can produce geometrically accurate and photorealistic scenes from a single image
while supporting broad exploration.

To achieve the goal mentioned above, in this paper we introduce One2Scene, a novel framework that
systematically decomposes explorable 3D scene generation into three distinct, yet more manageable
subtasks. First, to overcome the profound information deficit of a single image, we generate a set
of anchor views for global coverage using a panoramic cubemap representation. Note that these
anchor views alone are insufficient to create a truly explorable scene, as shown in Figure|l|(a). Full
exploration requires synthesizing high-quality novel views from arbitrary viewpoints, while how
to ensure 3D consistency presents a significant hurdle. To this end, we introduce a powerful and
efficient prior that encodes both geometry and appearance to stably constrain the generative process.
Specifically, we reformulate the problem of monocular panoramic depth estimation as a multi-view
stereo matching problem across extremely sparse anchor views, and lift the 2D anchor views into an
explicit 3D geometric scaffold using a feed-forward 3D GS model. Such a design not only ensures the
high efficiency of our feed-forward model but also critically enables us to leverage robust geometric
priors learned from large-scale multi-view datasets. To further enforce geometric consistency across
anchor-view boundaries, we introduce a bidirectional fusion module. As a result, our feed-forward
model can reconstruct a geometrically accurate, high-quality 3D scaffold in 0.5 seconds.

The constructed explicit geometric scaffold provides strong priors for both geometry and appearance
to guide the final novel view synthesis. To effectively utilize this scaffold, we introduce a novel
Dual-LoRA training strategy. Unlike common refinement models that use channel-wise conditional
injection (Wu et al., 20235)), our strategy effectively fuses information from the high-quality input
view with the coarse yet geometrically-rich views rendered from our scaffold. These combined
conditions then guide the generation process at arbitrary camera views via a global 3D-aware
attention mechanism. Our experiments demonstrate that this design significantly enhances the
model’s ability to leverage the priors provided. By grounding the generation process in a consistent
3D representation, the final results of our One2Scene model are not only photorealistic but also
exhibit superior multi-view consistency, as demonstrated in Figure|l|(c).

Our contributions can be summarized as follows. First, we introduce a powerful feed-forward 3D GS
model with a bidirectional fusion module to construct a high-quality 3D scaffold by reformulating
the monocular panoramic depth estimation into a multi-view stereo problem. Second, we present
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a scaffold-guided synthesis method to utilize explicit geometric and appearance priors from any
target view, which robustly grounds the final rendering and resolves the geometric ambiguities
inherent in single-image generation. Finally, we demonstrate that our proposed One2Scene sets a new
state-of-the-art on explorable 3D scene generation, achieving superior photorealism and geometric
accuracy, particularly under significant viewpoint shifts.

2 RELATED WORK

3D Scene Reconstruction. Differentiable rendering techniques, such as NeRF
2020) and 3DGS (Kerbl et al.| [2023)), are primarily designed for per-scene optimization and re-
quire dense input views, which limit their practical applications in the real world. To reduce the
need for dense images, the research community has proposed various sparse-view reconstruction
methods 2023} [Yang et al, 2023} [Yu et al 2024} [Charatan et al.| 2024} [Liu et al.
[2024c:b; Wu et al., 2024a; Szymanowicz et al.,[2024b). Concurrently, generalizable feed-forward
models (Charatan et al., 2024; (Chen et al., 2025} |Szymanowicz et al.l 2024ba; Wewer et al., 2024}

Xu et al., 2025} |Ye et al.,20244; [Hong et al., 2024} Tang et al., [2024), which can directly produce
3D representations from sparse inputs without per-instance optimization, have garnered significant

attention. However, a fundamental challenge shared by these sparse-view approaches is their limited
extrapolation capability, as they are unable to render unobserved regions.

Video Diffusion-based 3D Scene Generation. Recent video generation models (Brooks et al.|
2024} Xing et al.l [2024; [Hong et al. [2022; [Yang et all,[2024) have shown great potential to generate
3D-aware sequences. These models can naturally serve as 3D scene generators when camera poses

are controllable (Guo et al} 2024} [Wang et all,[2024b}; Melas-Kyriazi et al., 2024} [Voleti et al.,
Liang et al.,[2024). To enhance 3D consistency, recent works such as ReconX (Liu et al.,[2024a),
ViewCerafter (Yu et al.l[2024b) and VMem 2025) have integrated 3D geometric priors into
their frameworks by leveraging reconstruction models such as DUSt3R (Wang et all, [2024d) and

CUT3R (Wang et al.| 2025b).

Image Diffusion-based 3D Scene Generation.

Several innovative investigations (Liu et al.| 2023; 2024bj} [Sargent et al.| 2024; [Hollein
let all} 2024} [Seo et al., [2024; [Shi et al.,[2024; Wang & Shil [2023} |Shi et al., 2023} [Liu et al., [2024e))

have incorporated camera pose information into pre-trained T2I models to generate novel views.
Within this category, two key strategies have emerged for generating explorable scenes from a single
image. The first strategy employs pose-conditioned view synthesis. Methods such as SEVA
[2025)) and CAT3D [2024) leverage camera pose information to guide the generation
of novel views, demonstrating impressive scene-level results. However, when applied to single-
image inputs over extended camera trajectories, these methods struggle to maintain long-range
geometric consistency and visual coherence, often resulting in accumulated errors and semantic drift
that compromise global scene structure. The second strategy relies on iterative navigation and
inpainting(Pu et al] Chung et al| 2023} [Yu et al.| 2023} [HoIlein et al] [2023)). One notable
example, Pano2Room(Pu et al.| [2024), builds the scene sequentially by navigating through space and
inpainting unseen areas. Although it can produce plausible indoor results, this iterative framework is
inherently prone to accumulating geometric and appearance errors over time, compromising global
scene consistency. A second limitation is its design, which incorporates strong indoor priors that
restrict its generalization to outdoor scenes and diverse visual styles.

In contrast to these sequential approaches, our One2Scene framework introduces a novel scaffold-
guided paradigm. It decomposes the ill-posed single-image-to-scene problem into more manageable
subtasks, achieving superior geometric fidelity and photorealistic quality. By first generating a
globally consistent 3D scaffold in a single, feed-forward pass, our One2Scene method establishes
a robust geometric and semantic foundation for the entire scene. This holistic global prior directly
counteracts the error accumulation inherent in sequential methods like pose-conditioned synthesis
and iterative inpainting. Consequently, our approach is not only more geometrically consistent but
also significantly more general than specialized methods like Pano2Room, demonstrating superior
performance across both indoor and outdoor environments.
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Figure 2: Overview of One2Scene. Our method consists of three stages: (a) an anchor view
generation stage to establish an initial 360-degree representation, (b) a feed-forward 3D Gaussian
Splatting stage to construct an explicit 3D geometric scaffold, and (c) a synthesis stage that leverages
the scaffold information to produce high-quality novel views. The pipeline enables geometrically
consistent and photorealistic novel view synthesis from a single input image.

3 METHODOLOGY

This section details our One2Scene framework, which can generate an explorable 3D scene from a
single image by decomposing this ill-posed problem into a sequence of manageable sub-tasks, as
illustrated in Figure 2] First, to overcome the severe information deficit, we generate a panorama to
cover the global scene. Second, we obtain a set of anchor views from the panorama and introduce
a feed-forward 3D GS model to lift these 2D anchor views into an explicit 3D geometric scaffold.
Finally, with the strong geometric and appearance priors provided by the 3D scaffold, a synthesis
network is used to generate photorealistic and consistent novel views from arbitrary camera poses.

3.1 PANORAMA GENERATION

Generating explorable 3D scenes from a single image is a highly challenging problem, often resulting
in pronounced semantic drift and geometric inconsistency across long-range novel views. To address
this challenge, we adopt a progressive approach that first expands visual information content and
subsequently establishes a robust geometric foundation. We employ a specialized image-to-panorama
generation model to transform the limited input view into a 360° panoramic representation. This
representational choice is motivated by two primary considerations. First, the comprehensive field
of view provides more visual cues that facilitate subsequent globally consistent scene generation.
Second, compared to direct arbitrary novel view synthesis, panoramic image generation with a
single image as input is a more well-posed computational task. In particular, we employ Hunyuan-
Pano-DiT (Wang et al.| |2025c), which demonstrates exceptional generalization capabilities acquired
through training on extensive large-scale datasets, to generate the panoramic image.

3.2 FEED-FORWARD 3D GEOMETRIC SCAFFOLD

Although the panorama generated from the initial stage provides global coverage, it remains a 2D
representation estimated from a single viewpoint and lacks explicit 3D information. Maintaining
geometric consistency when synthesizing with large viewpoint changes and long sequences remains a
fundamental challenge in explorable scene generation. To this end, we introduce a novel feed-forward
3D GS model to predict a set of 3D Gaussian parameters (p;, ;, 3, ¢;), 1 = THXWXN for each
pixel in the generated panorama. This process provides the scene with explicit 3D information,
thereby ensuring global geometric consistency.

Anchor View Projection. Accurate depth estimation is the cornerstone of this model, as inaccurate
depth can introduce severe rendering artifacts. Although significant progress has been made in
depth estimation from a single panoramic image (A1 et al.| [2023;Wang & Liu} 2024 |Pintore et al.|
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2023)), this task remains highly challenging. A key difficulty lies in the lack of large-scale datasets
comparable to those available for perspective images, limiting the generalization ability of panoramic
depth estimators. To achieve robust depth estimation, we propose to reformulate the problem of
monocular panoramic depth estimation as a multi-view stereo matching problem. Specifically, we
first project the 360° panorama into a set of six perspective cubemap views, which serve as the input
anchor views for our model. This strategy allows us to leverage powerful geometric priors learned
from large-scale multi-view datasets. We choose to use cubemaps because they provide the most
compact perspective representation of the panoramic scene, ensuring high efficiency. To facilitate
correspondence matching across views, we expand each cubemap’s Field of View (FoV) to 95°,
creating a 2.5° overlap at adjacent view boundaries. For further details, please refer to appendix [A.2]

Bidirectional Fusion Module. Although a 2.5-degree overlap is established between adjacent
anchor views, the correspondence remains extremely sparse. Existing multi-view stereo models like
VGGT (Wang et al., 2025a), which rely on substantial inter-view overlap, suffer from significant
performance degradation in such scenarios. To address this limitation, we propose novel architectural
modifications to VGGT to explicitly enforce cross-view consistency and improve the robustness of
depth estimation. Specifically, we integrate a bidirectional fusion mechanism into the pre-trained
DPT head of VGGT to promote cross-view depth consistency. This mechanism establishes geometric
correspondence across views while preserving view-specific details.

To effectively handle overlapped regions, we introduce a Cube-to-Equirectangular (C2E) transforma-
tion module that projects the dense feature maps F; from the six anchor views into a unified equirect-
angular latent. Subsequently, these equirectangular features are fused using a convolutional layer H..
Then, the fused features F', are transformed back to the cubic space via an Equirectangular-to-Cube
(E2C) module and merged with the original anchor view features through a residual connection. The
finally updated feature for each view, F, is computed as follows:

F. = H.(C2E({Fi};_,)), F;=F;+E2C(F.). (1)

This bidirectional transformation and fusion mechanism aligns features in overlapped regions to
achieve geometric consistency via C2E/E2C transformations, while using residual connections to
maintain view-specific details simultaneously. For further details, please refer to appendix [A.3]

Gaussian Parameter Prediction Heads. For each pixel, the Gaussian center p is computed by
unprojecting the predicted depth into 3D space using the camera intrinsics: g = K~ 1ud + A, where
K denotes the camera intrinsic matrix, v = (u,, Uy, 1) represents the pixel coordinates, and A € R?
indicates the predicted positional offset. To predict the remaining Gaussian parameters (opacity,
covariance, and color), we employ an additional prediction head based on the DPT architecture.
Following NoPosplat (Ye et al., [2024a), this prediction head takes both VGGT features and the
RGB image as inputs. The direct pathway from RGB images complements VGGT’s high-level
semantic-focused features by preserving essential fine textural details.

Training. The feed-forward 3DGS model is trained using a composite loss function, which includes
a rendering loss and a depth loss. The rendering loss is a combination of the Mean Squared Error
(MSE) and the LPIPS perceptual loss (Johnson et al.; 2016), while the depth loss is the Scale-Invariant
Logarithmic (SILog) loss (Eigen et al.,2014). The model is trained on a collection of four datasets:
two synthetic datasets, Structured3D (Zheng et al.,2020) and Deep360 (Li et al., 2022), and two real-
world datasets, Matterport3D (Chang et al., 2017) and Stanford2D3D (Armeni et al.,|2017). Through
this training regimen, our feed-forward 3DGS model demonstrates precise geometric modeling
capabilities and robust generalization across indoor, outdoor, and even stylized scenes.

3.3 3D SCAFFOLD GUIDED NOVEL VIEW SYNTHESIS

In the final stage of our pipeline, we leverage the 3D geometric scaffold to generate a fully explorable
3D scene. In particular, we propose to transform the task of novel view synthesis from a single view
to the problem of synthesis conditioned on the set of anchor views:

P (Itgt ‘ Ianchor, panchor7 ptgt) ) (2)

However, the above formulation remains limited since the anchor views are all observations from
a single point in the space, and they lack the explicit scale and geometric information required for
robust 3D understanding. Our 3D geometric scaffold, with its precise geometric modeling capabilities,
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overcomes this limitation by enabling the rendering of novel views from arbitrary viewpoint. These
rendered views contain rich geometric and appearance information. Therefore, they can serve as
powerful conditions to guide the synthesis of novel views, significantly enhancing their realism and
consistency. Although these rendered views may exhibit artifacts or occlusions (e.g., black holes) for
large viewpoint changes, they still retain a substantial amount of useful structural information, owing
to our model’s accurate depth estimation. This insight allows us to further reformulate the synthesis
problem as follows:

p (Ilgt | Ianchor7 panchor’ Irender7 ptgl) , (3)

where view I is rendered from the scaffold in the camera pose of the target view I'€'.

Dual-LoRA Training. It is a challenging task to manage two distinct types of conditions in the syn-
thesis process: the high-quality anchor views, which offer pristine appearance but are geometrically
ambiguous, and the rendered views, which provide strong geometric priors but may contain artifacts.
To effectively guide the synthesis using both conditions, we need to process these heterogeneous
signals. Inspired by MMDiT (Esser et al.,|2024), which uses separate encoders for different modali-
ties, such as text and images, before fusing their features for self-attention, we propose a Dual-LoRA
training strategy. Built upon the SEVA architecture (Zhou et al., [2025)), our approach employs two
different LoORA modules to process the anchor view and the rendered view independently, as shown
in Figure 2] (c). The features from both conditions are then integrated with the noisy latent represen-
tation through a 3D attention mechanism. Our experiments confirm that this method demonstrates
significantly stronger learning capabilities compared to a naive approach of simply concatenating the
rendered view with the noise latent.

Memory Condition. To ensure temporal and spatial consistency when generating a large number of
frames for a continuous 3D scene, we introduce an additional memory condition during inference.
This condition is a previously generated frame selected from a memory bank, which has the closest
average camera pose to the current target frame. The synthesis problem is thus further refined to:

p (Ilgt | Ianchor7 panchor’ Irender7 Imem7 pmem7 ptgt) ) (4)

This memory-guided approach effectively preserves visual consistency, particularly when synthesizing
content in occluded regions.

Training Data Construction. To assemble a dataset for supervised training, we perform sparse 3D
reconstructions on the DL3DV (Ling et al.,|2023)) and RealEstate 10K (Zhou et al., [2018)) datasets
using the pre-trained feed-forward 3DGS model MVSplat (Chen et al.l 2025). This strategy is
intentionally employed to simulate the artifacts and holes that arise in rendered views when the
reconstruction is based on sparse input viewpoints. By using the camera trajectories inherent to these
datasets, we sample novel views that exhibit significant viewpoint deviations. Training pairs are
subsequently formed, each comprising a ground truth image and its corresponding view rendered
from the sparse 3D reconstruction at the identical camera pose.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. In the panorama generation stage, we employ Hunyuan-Pano-DiT (Wang
et al., 2025c¢)) as the generator. The feed-forward 3DGS model is trained for 80,000 iterations using
the AdamW optimizer. We set the learning rate of the VGGT backbone to 2e-5, and set the learning
rate to 2e-4 for all other modules. In the final stage, the 3D scaffold-guided novel view synthesis
model is trained for 40,000 iterations using the Adam optimizer based on SEVA (Zhou et al., 2025),
with a batch size of 16 and a learning rate of 1.25e-5.

Experiments Setup. To more comprehensively evaluate our proposed One2Scene model and
demonstrate its effectiveness and advantages, we conduct the following experiments. (1) First, we
benchmark our One2Scene model against the SOTA 3D scene generation models in producing
high-quality, explorable 3D scenes. (2) Second, we evaluate the key component of our One2Scene
model, i.e., the feed-forward 360° reconstruction network, by comparing its quality, efficiency, and
geometric accuracy with the SOTA methods. Its depth estimation performance is also evaluated on
standard panorama depth estimation benchmarks. (3) Third, we conduct a series of ablation studies
to dissect the effectiveness of our design of One2Scene.



Under review as a conference paper at ICLR 2026

Evaluation Metrics. We evaluate the quality of our generated scenes across three key dimensions. (1)
Visual Fidelity. We measure visual quality using two no-reference image quality assessment metrics:
NIQE (Mittal et al., 2012)) and Q-Align (Wu et al.,|2023). (2) Semantic Consistency. We measure
the semantic consistency between the initial image and the novel views using CLIP-I score (Hessel
et al., [2021). (3) Geometric Consistency. We evaluate geometric stability by first estimating the
camera poses of the generated views with a pre-trained VGGT model. These estimated poses are
then benchmarked against the ground-truth camera trajectories to compute Rotation Error (RotError)
(He et al.l[2024), Camera Motion Consistency (CamMC) (Wang et al., | 2024b)), and Translation Error
(TransError) (He et al.| [2024). More details of our evaluation protocol are provided in Appendix [A.T]

4.2 MAIN RESULTS
4.2.1 EXPLORABLE 3D SCENE GENERATION

To establish a rigorous evaluation protocol in the absence of a standard benchmark for explorable
3D scene generation, we adapt the WorldScore benchmark (Duan et al.,|2025), which is originally
proposed for short-sequence 3D scene evaluation. To ensure a comprehensive assessment, we sample
40 scenes spanning four diverse static scene categories: indoor-real, indoor-stylized, outdoor-real,
and outdoor-stylized (10 per category). This diverse benchmark allows us to thoroughly test the
robustness and quality of the generated 3D scenes from single-view inputs.

Results. We compare One2Scene with DreamScene360 (Zhou et al., [2024)), WonderJourney (Yu
et al.,2023), VMem (Li et al.| 2025)) and SEVA (Zhou et al., 2025). Quantitative results are reported
in Table([l] For methods that accept camera-conditioned novel view synthesis, we additionally evaluate
geometric consistency. Since DreamScene360 and WonderJourney do not produce fully explorable
scenes (as shown in Figure([I)), we can only perform qualitative comparisons with VMem and SEVAin,
as shown in Figure [3] We also condition VMem and SEVA on the anchor views produced in our
One2Scene method, and denote the corresponding methods as VMem+ and SEVA+.

Semantic and Appearance Consistency. As demonstrated in Figure |3} SEVA and VMem often
hallucinate content in unobserved regions, leading to semantic inconsistencies. Our 3D scaffold,
however, preserves global semantic coherence. This advantage is validated by our quantitative results
in Table our One2Scene achieves superior NIQE (4.43) and Q-Align (4.13) scores, and its CLIP-I
score (89.95) markedly surpasses those of SEVA (87.82) and VMem (75.80).

Scale Ambiguity and Drift. As noted by Zhou et al.|(2025) in SEVA, the single input image makes
SEVA suffer from scale ambiguity issues. This manifests the distortion of object size and physically
implausible geometric artifacts, such as cameras penetrating through walls (see Figure [3). Even
conditioned on our anchor views, SEVA+ and VMem+ remain unable to effectively resolve the scale
drift problem. This fundamental limitation stems from the lack of relative translation information in
anchor views, which prevents the model from inferring a unified global scale. In contrast, our method
explicitly constructs a 3D scaffold that provides robust scale constraints, effectively mitigating the
scale ambiguity issue and producing physically plausible results.

Geometric Stability. Existing methods often struggle to maintain long-term geometric stability.
SEVA, for example, lacks a persistent geometric representation, causing inconsistent reconstructions
in loop-closure scenarios (e.g., frame 78 vs. 255 in Figure[3). VMem attempts to enforce consistency
via online reconstruction with CUT3R, but this strategy is highly susceptible to a vicious cycle
of error accumulation: generated low-quality frames destroy the geometry, which in turn provide
wrong guidance for subsequent frames, leading to catastrophic failure. In contrast, our pre-built 3D
scaffold provides a stable geometric prior, effectively preventing error propagation. This advantage
is substantiated by the quantitative results: our method achieves a score of 0.389 in CamMC,
significantly outperforming VMem (0.998, see Table|I]).

The above results highlight the superiority of our three-stage design of One2Scene, which systemati-
cally addresses the global semantic inconsistency, scale ambiguity, and geometric instability. More
results can be found in Appendix and our anonymous project page.
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Figure 3: Qualitative comparison. Our method retains compelling visual quality and generates
plausible continuations of the scene, even under large viewpoint change.

Table 1: Quantitative comparisons for 3D scene generation.

Methods ‘ NIQE] Q-Alignt CLIP-It TransErr] RotErr| CamMC |
DreamScene360 (Zhou et al.|(2024)) 8.40 1.91 74.24 - - -
WonderJourney (Yu et al.|(20 4.97 3.02 77.92 - - -
SEVA (Zhou et al.|(2025)) 4.53 3.20 87.82 0.460 0.165 0.558
SEVA (Zhou et al.|(2025)) + Anchor 4.45 3.45 88.70 0.422 0.116 0.460
VMem (L1 et al.|(2025)) 6.86 2.95 75.80 0.573 0.569 0.998
VMenm (Li et al.|(2025)) + Anchor 5.23 3.04 81.33 0.613 0.426 0.887
One2Scene (Ours) \ 443 4.13 89.95 0.326 0.107 0.389

4.2.2 FEED-FORWARD 360° RECONSTRUCTION

This section validates the core advantages of our feed-forward 3DGS network, a cornerstone of our
pipeline. We demonstrate its superiority in reconstruction quality, computational efficiency, and
geometric accuracy compared to SOTA methods.

Reconstruction Quality. We conduct a direct comparison with the SOTA method, AnySplat
2025). Since both methods are extensions of the VGGT model, this shared foundation ensures
a fair evaluation. As shown in Figure ] AnySplat’s reconstruction fails with only 6 sparse views.
This is because it predicts an erroneous depth map, which results in a distorted geometric scene.
Even when 20 densely tangent patches with substantial overlap are projected from a panorama, its
performance remains sub-par, suffering from severe artifacts in drastic viewpoint changes. In stark
contrast, our model constructs a high-quality and robust 3D geometric scaffold even from sparse
inputs. Although large rotations can introduce minor local artifacts due to occlusion, the underlying
geometric foundation remains stable, providing crucial priors for the subsequent generation task.
The importance of our scaffold is further confirmed by the experiment in Table 2} replacing our
reconstruction module with AnySplat causes a significant degradation in final generation quality.

Table 2: Comparison on the 3D scene generation performance by replacing our feed-forward 360°
reconstruction network with AnySplat.

Methods \ NIQE| Q-Alignt CLIP-IT TransErr] RotErr] CamMC |
AnySplat _ -2025 4.96 3.61 81.96 0.332 0.367 0.616
Qurs 4.43 4.13 89.95 0.326 0.107 0.389
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Table 3: Comparison of depth estimation on Matterport3D and Stanford2D3D datasets.

Methods \ Matterport3D [ Stanford2D3D

‘ AbsRelJ, ‘ 51T (SQT (sﬂ\ H AbsRelJ, ‘ (517\ (sQT (SgT
BiFuse (Wang et al.||2020) 0.2048 | 84.52 93.19 96.32 0.1209 | 86.60 95.80 98.60
UniFuse (Jiang et al.|[2021) 0.1063 | 88.97 96.23 98.31 0.1114 | 87.11 96.64 98.82
HoHoNet (Sun et al.|[2020)) 0.1488 | 87.86 95.19 97.71 0.1014 | 90.54 96.93 98.86
BiFuse++ (Wang et al.||[2022) — | 8790 95.17 97.72 — | 87.83 96.49 98.84
ACDNet (Zhuang et al.![2022) 0.1010 | 90.00 96.78 98.76 0.0984 | 88.72 97.04 98.95
PanoFormer (Shen et al.[[2022) 0.0904 | 88.16 96.61 98.78 0.1131 | 88.08 96.23 98.55
HRDFuse (At et al.[|2023) 0.0967 | 91.62 96.69 98.44 0.0935 | 9140 97.98 99.27
EGFormer (Yun et al.|[2023) 0.1473 | 81.58 93.90 97.35 0.1528 | 81.85 93.38 97.36
Elite360D (A1 & Wang|2024) 0.1115 | 88.15 96.46 98.74 0.1182 | 88.72 96.84 98.92
Depth Anywhere (Wang & Liu|[2024) 0.0850 | 91.70 97.60 99.10 0.1180 | 91.00 97.10 98.70
Ours (Zero-shot) 0.1070 | 88.97 96.51 98.61 0.0675 | 9520 98.53 99.30
Ours (Finetune) 0.0391 | 98.09 99.41 99.74 0.0444 | 96.95 98.85 99.44

Computational Efficiency. Using six sparse views, our model reconstructs a high-quality scaffold in
0.5 seconds on an H20 GPU, marking a 5.6 X speedup over AnySplat, which relies on a dense view
set and requires 2.8 seconds. The inference time is further slashed to only 0.1 seconds when using a
more powerful NVIDIA H100 GPU.

Accurate Depth Estimation. To quantitatively assess the geometric accuracy of our model, we
evaluate its depth estimation performance against SOTA methods on the Matterport3D and Stan-
ford2D3D datasets. As detailed in Table[3] the results are compelling: our model, when applied in
a zero-shot setting, surpasses all compared approaches on the Stanford2D3D dataset. This result
indicates that our method effectively inherits and transfers geometric priors from the foundational
VGGT model. Furthermore, when our model is fine-tuned on the Matterport3D and Stanford2D3D
datasets, it demonstrates exceptional performance, boosting the AbsRel metric by over 50%. This
further underscores the powerful geometric modeling capabilities of our reconstruction model.

4.3 ABLATIONS AND ANALYSIS

Given limited space, we provide comprehensive ablation studies in the Appendix, featuring in-depth
analyses of our Dual-LoRA training methodology, memory condition mechanism, and bidirectional
fusion module (see Appendix [A.4). We also provide detailed quantitative evaluation results for our
generation model on the DL3DV dataset (see Appendix [A.5).

5 CONCLUSION AND LIMITATIONS

In this paper, we introduced One2Scene, a novel and effective framework for generating fully ex-
plorable 3D scenes from a single image. We addressed the critical challenge of geometric distortion
and artifact generation in existing methods when there were large viewpoint changes. Our core
contribution lied in the decomposition of this ill-posed problem into three tractable subtasks: initializ-
ing sparse anchor views via a panorama generator, lifting them into an explicit and geometrically
reliable 3D scaffold by a feed-forward GS network, and finally, leveraging the scaffold as a strong
prior for photorealistic novel view synthesis. Our extensive experiments validated that One2Scene
substantially outperformed state-of-the-art methods in explorable 3D scene generation.

Limitations. While our approach significantly improves 3D consistency across long sequences
and large viewpoint changes, the generated views may contain subtle inconsistencies. Similar to
CAT3D (Gao et al.| [2024])), we can further enhance geometric consistency through post-reconstruction
processing. Please see the “Result Gallery” on our anonymous project page. In future work, we plan
to construct larger-scale datasets to further improve our model’s performance and robustness.

6 ETHICS STATEMENT

This research does not involve human participants or the collection of sensitive personal information.
All datasets utilized in this study are employed in strict accordance with their respective licensing
agreements and terms of use.
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Figure 4: Ablation study on reconstruction performance. We compare the 3D scene generation quality
by replacing our feedforward network with AnySplat. Top row: reconstruction results. Bottom row:
generation results using our model.

The proposed methodology is designed exclusively for academic research and scientific advancement.
While we do not anticipate direct harmful applications, we recognize the potential for misuse if
deployed without appropriate ethical considerations and safety measures. We advocate for the respon-
sible application of our research contributions, emphasizing the importance of fairness, transparency,
and adherence to applicable legal frameworks.

7 REPRODUCIBILITY STATEMENT

We have implemented comprehensive measures to facilitate the reproducibility of our research
findings. The main manuscript provides thorough documentation of our proposed framework,
including detailed descriptions of the model architecture, dataset preprocessing methodologies, and
algorithmic implementations. Complete hyperparameter configurations and training protocols are
explicitly specified to enable independent replication of our results.
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A APPENDIX

We provide the following materials in this appendix:

* Appendix [A.T} Detailed evaluation protocol.

* Appendix [A.2} Details about cube projection.

* Appendix [A.3} Details about bidirectional fusion module.
* Appendix [A.4} Ablation study and analysis.

* Appendix [A.5} More NVS results on DL3DV.

* Appendix [A.6f More qualitative results.

* Appendix Declaration of LLM assistance.

A.1 EVALUATION PROTOCOL

To assess the quality of our generated scenes, we evaluate them across three key aspects: visual
quality, input-output alignment, and geometric consistency.

For visual quality, we use two no-reference image quality assessment (NR-IQA) metrics. The first is
NIQE (Mittal et al., 2012), where a lower score indicates that the image’s statistics are more similar
to a natural image. The second is Q-Align (Wu et al., [2023)), a state-of-the-art model where a higher
score signifies better perceptual quality.

For input-output alignment, we use the CLIP-I score (Hessel et al., 2021)) to measure the semantic
similarity between the generated images and the single input image. A higher score means the content
and style are better preserved.

For geometric consistency, we evaluate how accurately the generated camera trajectory matches the
ground truth. Our process is as follows: we sample a frame for every 10 frames from the generated
sequence, estimate their camera poses using a pre-trained VGGT model (Wang et al., 2025a)), and
then compare these estimated poses to the ground-truth poses used for generation. This comparison
is quantified using three metrics: RotError, TransError, and CamMC. To ensure a fair comparison,
all methods are tested on the same set of camera trajectories, which are combinations of linear
movements (move forward/backward/left/right) and curvilinear movements (orbit, lemniscate). These
metrics are defined as follows:

RotError (He et al., 2024). It measures the average per-frame rotation error between the estimated
rotation R; and the ground-truth rotation R;:

tI‘(RTR;P) —1

1 n
RotErr = — E 5
otErr = — arccos 5

=1

TransError (He et al., 2024). It measures the average per-frame position error, calculated as the L2
distance between the estimated translation 7; and the ground-truth translation 7;:

T, —T;

1 n
TransErr = — ‘ .
ranscrr n ; )

CamMC (Wang et al., 2024b). It provides a single score for the average overall pose error by
computing the Frobenius norm of the difference between the estimated and ground-truth 3x4 pose
matrices:

L= ra o5
CamMC = - Z | [2:T3] - [RZ|EH‘F
i=1

For all geometric error metrics, a lower value indicates better performance.
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A.2 DETAILS ABOUT CUBE PROJECTION

For equirectangular to cube (E2C) projection, the field-of-view (FoV) of each cube face is equal to
90 degrees; each face can be considered as a perspective camera whose focal length is w/2, and all
faces share the same center point in the world coordinate. Since the six cube faces share the same
center point, the extrinsic matrix of each camera can be defined by a rotation matrix R;. p is then the
pixel on the cube face:

p=K-R] -q, ®)
where
Ga sin(6) - cos(¢) w/2 0 w/2
q= lqy] = l sin(¢) ] VK = [ 0 w/2 w/21 , (6)
q cos @ - cos ¢ 0 0 1

where 6 and ¢ are longitude and latitude in equirectangular projection and ¢ is the position in
Euclidean space coordinates.

While the 90° FoV model is mathematically exact for a perfect cube, it can introduce rendering
artifacts at the seams between adjacent faces. To resolve this, we expand the field-of-view slightly,
for instance to 95°. This modification ensures that each cube face captures a small, overlapped region
from its neighbors. The projection methodology remains the same, but the camera’s intrinsic matrix
must be recalculated.

The relationship between focal length f, image width w, and FoV is given by f =
(w/2)/ tan(FoV/2). For a 95° FoV, the new focal length, denoted by f’, is:

w/2 w/2

r= tan(95°/2) B tan(47.5°) ™

This results in a modified intrinsic matrix, K’, where the focal length term w/2 is replaced by f:

w/2
, tan(47.5°) (32 w/2
— w
K= 0 tan(47.5°) w/2 ’ ®)
0 0 1

The final projection equation using the improved model is:
p=K R .q. ©)

This adjustment, while minor, is critical for producing high-quality, artifact-free cubemaps suitable
for production rendering environments. The definitions of ¢ and R; remain unchanged.

The inverse transformation, Cube to Equirectangular (C2E) projection, which is used to project
features from the cube faces back to the panoramic view, is achieved by mathematically reversing this
projection process. This robust projection method is essential for the bidirectional feature exchange
in our model.

A.3 DETAILS ABOUT BIDIRECTIONAL FUSION MODULE

The performance of traditional multi-view models, such as VGGT that relies on dense overlap,
degrades significantly when faced with extremely sparse correspondences resulting from a mere 2.5-
degree overlap between anchor views. To address this issue, we introduce an innovative modification
to the VGGT architecture, which aims to explicitly enhance cross-view consistency, thereby improving
the robustness of depth estimation. Specifically, we integrate a Bidirectional Fusion Module into the
pre-trained DPT head to promote cross-view depth consistency. The core principle of this module
is to establish geometric correspondences across views while preserving the unique, high-fidelity
details inherent to each individual view.

The module commences with the feature maps {F;}_, extracted from the six anchor views. To
effectively process the overlapping regions, we first introduce a C2E transformation module. As
detailed in Appendix [A.2] the C2E transformation leverages strict geometric projection principles
to seamlessly project and aggregate the features from the six discrete cube views into a unified
equirectangular latent space via differentiable bilinear sampling.
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Subsequently, a lightweight convolutional layer, H., is applied to this aggregated global feature
map. Its purpose is to smooth the boundaries between the projected views and fuse their information,
forming a globally consistent feature representation, F'.. This step can be conceptualized as a process
that information from all views is aggregated to build a consensus representation. This forward fusion
process is formulated as:

F. = H.(C2E({Fi};_,)). (10)

Next, to propagate this global consistency information back to each individual view, we perform an
inverse process. Through an E2C transformation, the fused global feature F' is re-projected into the
coordinate spaces of the six original anchor views.

Finally and crucially, rather than directly replacing the original features with this global information,
we employ a residual connection to add it to the original feature map F;, yielding the updated
view-specific feature F:

F, =TF, + E2C(F.). (11)

The elegance of this “local-to-global-to-local” bidirectional mechanism lies in its dual function: the
C2E/E2C transformations are responsible for aligning features in overlapping regions to enforce
geometric consistency, while the residual connection ensures that the model retains and utilizes the
original, high-fidelity details from each view. In this manner, our module effectively strengthens
cross-view constraints while preventing the loss of view-specific information that can occur with
forced fusion.

A.4 ABLATION STUDY AND ANALYSIS

Effectiveness of Dual-LoRA Training. We first compare our Dual-LoRA training against the
common channel-wise concatenation method. As shown in Figure [AT] our model exhibits superior
generation quality, no matter with and without the memory condition. This is because our Dual-LoRA
approach can better leverage the two conditions of varying quality. The results in Table [AT] further
confirm that Dual-LoRA achieves better visual quality and geometric consistency.

Effectiveness of Memory Condition. We then analyze the impact of incorporating an additional
memory condition at inference time. Although the quantitative results in Table [AT]do not show a
significant improvement, we observe a clear qualitative benefit. As highlighted by the colored boxes
in Figure[AT] this condition helps our model maintain better multi-view consistency, especially in
occluded regions requiring significant content synthesis.

Effectiveness of Bidirectional Fusion Module. Our baseline approach directly applies VGGT for
multi-view consistent depth estimation. However, due to the extremely sparse overlap between anchor
views in panoramic scenarios, VGGT struggles to handle such conditions, resulting in significant
performance degradation compared to geometric estimation tasks with larger overlaps. We fine-tune
VGGT on panoramic images without any architectural modifications, which leads to noticeable
performance improvements but still exhibits seaming artifacts at view boundaries.

Our proposed Bidirectional Fusion (BF) module substantially alleviates the geometric inconsisten-
cies at edges. The BF module leverages complementary Cubemap-to-Equirectangular (C2E) and
Equirectangular-to-Cubemap (E2C) transformations to establish robust geometric correspondences
through residual connections. This bidirectional information flow enables the model to better handle
the sparse overlap challenge inherent in panoramic depth estimation. As demonstrated in Table[A2]
the integration of the BF module yields significant performance improvements across both datasets,
with notable gains in accuracy metrics such as reduced AbsRel error and increased 41, d2 and d3,
confirming the effectiveness of our approach in addressing multi-view consistency challenges in
panoramic depth estimation.

A.5 NVS RESULTS oN DL3DV

Competing Method. Our primary competing method is MV Splat360 (Chen et al.| [2024), a state-of-
the-art method capable of refining rendered views. To ensure a direct and fair comparison, we strictly
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Figure A1: Qualitative comparison for the ablation study. (a) Render views from our 3D scaffold.
(b) Naive concatenation baseline. (c) Ours (Dual-LoRA training only). (d) Ours (Full model with
memory condition).

Table Al: Ablation study on 3D scaffold guided novel view synthesis.

Methods \ NIQE] Q-Alignt CLIP-If TransErr] RotErr] CamMC |
Naive Concat. | 5.04 3.41 85.30 0.481 0.260 0.655
Dual-LoRA Training 442 4.10 89.51 0.326 0.119 0.401
+ Memory Condition 443 4.13 89.95 0.326 0.107 0.389

Table A2: Effectiveness of BF module. Zero-shot quantitative comparison on Matterport3D and
Stanford2D3D datasets.

Methods | Matterport3D I Stanford2D3D
| AbsRel| | 611 ot 31 || AbsRell | 61T St dsT

Baseline 0.1576 | 78.82 93.20 96.15 0.1497 | 81.99 93.53 97.88
w/o BF 0.1204 | 86.28 9536 97.45 0.0797 | 9431 97.42 98.85
w BF 0.1070 | 88.97 96.51 98.61 0.0675 | 95.20 98.53 99.30

adhere to the evaluation protocol established for the DL3DV (Ling et al.| 2023)) dataset, as utilized by
the competing method.

Quantitative Results. As detailed in Table [A3] our method demonstrates superior performance
over MVSplat360 across all evaluation metrics. Specifically, our method achieves a PSNR of 17.35
(+0.98) and an FID of 116.84 (-1.48). Furthermore, we observe substantial reductions in both LPIPS
(0.343) and DIST (0.181) indices, indicating superior perceptual similarity and geometric accuracy,
respectively. Collectively, these quantitative improvements underscore our method’s enhanced
effectiveness in leveraging auxiliary views to synthesize more accurate and high-fidelity novel views.

Qualitative Results. The qualitative comparisons presented in Figure[A2] visually corroborate our
quantitative findings. Our method consistently generates sharper and more structurally coherent
scenes, showcasing an effective use of information from auxiliary views. In contrast, the results
from MVSplat360 frequently exhibit noticeable artifacts and structural distortions, particularly when
synthesizing views with large camera pose changes.
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Table A3: The NVS numerical comparison on the DL3DV (Ling et al., 2023) dataset.

Methods | PSNR (1) | SSIM (1) | LPIPS (}) | DIST (}) | FID (})
PixelSplat 15.32 0.422 0.517 0374 | 139.75
MVSplat 15.94 0.441 0.459 0282 | 73.91
MVSplat360 | 16.37 0.453 0.439 0238 | 18.32
Ours | 1735 | 0506 | 0343 | 0181 | 1684

MVSplat ! MV Splat360 Ours Ground Truth

Figure A2: Visual comparison with existing SOTA methods on DL3DV.

A.6 MORE QUALITATIVE RESULTS

In this section, we provide more qualitative results to further support the claims presented in the
main paper. We showcase a broader range of visual comparisons against baseline methods across
diverse and challenging scenes, including indoor, outdoor, and stylized scenes. These examples serve
to visually corroborate the quantitative improvements reported in the main paper, highlighting our
method’s superior performance in generating explorable 3D scenes.

We present side-by-side visualizations to compare our method, One2Scene, against key competitors:
VMem and SEVA. Consistent with the main paper, we also include results for their ‘+’ variants
(VMem+ and SEVA+), which are conditioned on our generated anchor views. These comparisons, as
shown from Figure[A3|to Figure[A7] further demonstrate the superior performance of our method in
terms of visual fidelity, 3D geometric consistency, and the effective mitigation of scale ambiguity
artifacts in previous methods.

A.7 DECLARATION OF GENERATIVE Al ASSISTANCE

During the preparation of this manuscript, we utilized Gemini-2.5-Pro to assist in improving its
linguistic quality. Specifically, after completing the initial draft, we provided the model with selected
passages to obtain suggestions for grammar, clarity, and conciseness. All Al-assisted revisions were
rigorously reviewed and edited by the authors, who assume full responsibility for the final accuracy
and scholarly appropriateness of the content.
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Figure A3: Qualitative comparison between One2Scene and SOTA methods.
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Figure A4: Qualitative comparison between One2Scene and SOTA methods.
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Figure AS: Qualitative comparison between One2Scene and SOTA methods.
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Figure A6: Qualitative comparison between One2Scene and SOTA methods.
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Frame 7 Frame 34 Frame 75 Frame 101 Frame 135 Frame 176 Frame 209 Frame 236

Figure A7: Qualitative comparison between One2Scene and SOTA methods.

23



	Introduction
	Related Work
	Methodology
	Panorama Generation
	Feed-forward 3D Geometric Scaffold
	3D Scaffold Guided Novel View Synthesis

	Experiments
	Experimental Settings
	Main Results
	Explorable 3D Scene Generation
	Feed-forward 360° Reconstruction

	Ablations and Analysis

	Conclusion and Limitations
	Ethics Statement
	Reproducibility Statement
	Appendix
	Evaluation Protocol
	Details about Cube Projection
	 Details about Bidirectional Fusion Module
	Ablation Study and Analysis
	NVS Results on DL3DV
	More Qualitative Results
	Declaration of Generative AI Assistance


