

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONE2SCENE: GEOMETRIC CONSISTENT EXPLORABLE 3D SCENE GENERATION FROM A SINGLE IMAGE

Anonymous authors

Paper under double-blind review

ABSTRACT

Generating explorable 3D scenes from a single image is a highly challenging problem in 3D vision. Existing methods struggle to support free exploration, often producing severe geometric distortions and noisy artifacts when the viewpoint moves far from the original perspective. We introduce **One2Scene**, an effective framework that decomposes this ill-posed problem into three tractable sub-tasks to enable immersive explorable scene generation. We first use a panorama generator to produce anchor views from a single input image as initialization. Then, we lift these 2D anchors into an explicit 3D geometric scaffold via a generalizable, feed-forward Gaussian Splatting network. Instead of treating the panorama as a single image for reconstruction, we project it into multiple sparse anchor views and reformulate the reconstruction task as multi-view stereo matching, which allows us to leverage robust geometric priors learned from large-scale multi-view datasets. A bidirectional feature fusion module is used to enforce cross-view consistency, yielding an efficient and geometrically reliable scaffold. Finally, the scaffold serves as a strong prior for a novel view generator to produce photorealistic and geometrically accurate views at arbitrary cameras. By explicitly conditioning on a 3D-consistent scaffold to perform reconstruction, One2Scene works stably under large camera motions, supporting immersive scene exploration. Extensive experiments show that One2Scene substantially outperforms state-of-the-art methods in panorama depth estimation, feed-forward 360° reconstruction, and explorable 3D scene generation. Code and models will be released. Anonymous project page can be found at: <https://one2scene5406.github.io/>.

Figure 1: **Comparison on large-viewpoint novel view synthesis.** Existing methods such as Wonderjourney (Yu et al., 2023) and DreamsScene360 (Zhou et al., 2024) exhibit clear geometric distortions and artifacts, while our method generates photorealistic and geometrically accurate novel views. **The input image is highlighted by a red bounding box. The other images represent the novel views.**

054

1 INTRODUCTION

055
 056 The increasing demand for high-quality 3D content is reshaping the landscape of video games, visual
 057 effects, and mixed reality, making 3D generation a highly active research topic (Valevski et al.,
 058 2024; Adamkiewicz et al., 2022; Martin-Brualla et al., 2021; Ye et al., 2024b). Reconstruction-
 059 based methods like Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) and Gaussian Splatting
 060 (GS) (Kerbl et al., 2023) have achieved remarkable results, but they typically require hundreds or
 061 even thousands of input images. Although sparse-view reconstruction approaches alleviate this
 062 requirement (Wang et al., 2023; Yang et al., 2023; Yu et al., 2024a; Charatan et al., 2024; Liu et al.,
 063 2024c; Wu et al., 2024a; Szymanowicz et al., 2024b), these methods struggle with large viewpoint
 064 extrapolation and fail to generalize to unseen regions. In stark contrast, generative view synthesis
 065 (Liu et al., 2023; Sargent et al., 2024; Liu et al., 2024a; Yu et al., 2024b) is emerging as a significant
 066 advancement in 3D content creation, as it can generate plausible content in unobserved regions (Shi
 067 et al., 2024; Zhou et al., 2025; Szymanowicz et al., 2025).
 068

069 **Although object-level 3D generation (Liu et al., 2023; Sargent et al., 2024; Ye et al., 2024b) has
 070 achieved rapid progress, generating an explorable 3D scene from a single image remains a significant
 071 challenge.** One of the key challenges is how to maintain 3D geometric consistency and visual quality
 072 under large viewpoint changes and long-term generation. Some methods leverage pre-trained video
 073 generation models (Brooks et al., 2024; Xing et al., 2024; Hong et al., 2022; Yang et al., 2024) to
 074 create 3D-aware sequences (Liu et al., 2024a;d; Yu et al., 2024b; Chen et al., 2024; Sun et al., 2024;
 075 Liang et al., 2024), but they often suffer from geometric inconsistency and loop-closure consistency.
 076 Panorama-based pipelines such as DreamScene360 (Zhou et al., 2024) and DreamCube (Huang et al.,
 077 2025) attempt to convert panoramas into 3D scenes, but their ability to support broader exploration is
 078 very limited, as shown in Figure 1 (a). Although navigation and inpainting-based methods (Chung
 079 et al., 2023; Yu et al., 2023; Höllerin et al., 2023) enable the generation of more expansive scenes,
 080 their iterative nature often causes global semantic drift. Furthermore, cumulative errors often result in
 081 stretched or distorted geometry, as shown in Figure 1 (b). These limitations highlight the need for a
 082 new approach that can produce geometrically accurate and photorealistic scenes from a single image
 083 while supporting broad exploration.

084 To achieve the goal mentioned above, in this paper we introduce **One2Scene**, a novel framework that
 085 systematically decomposes explorable 3D scene generation into three distinct, yet more manageable
 086 subtasks. First, to overcome the profound information deficit of a single image, we generate a set
 087 of anchor views for global coverage using a panoramic cubemap representation. Note that these
 088 anchor views alone are insufficient to create a truly explorable scene, as shown in Figure 1 (a). Full
 089 exploration requires synthesizing high-quality novel views from arbitrary viewpoints, while how
 090 to ensure 3D consistency presents a significant hurdle. To this end, we introduce a powerful and
 091 efficient prior that encodes both geometry and appearance to stably constrain the generative process.
 092 Specifically, we reformulate the problem of monocular panoramic depth estimation as a multi-view
 093 stereo matching problem across extremely sparse anchor views, and lift the 2D anchor views into an
 094 explicit 3D geometric scaffold using a feed-forward 3D GS model. Such a design not only ensures the
 095 high efficiency of our feed-forward model but also critically enables us to leverage robust geometric
 096 priors learned from large-scale multi-view datasets. To further enforce geometric consistency across
 097 anchor-view boundaries, we introduce a bidirectional fusion module. As a result, our feed-forward
 098 model can reconstruct a geometrically accurate, high-quality 3D scaffold in 0.5 seconds.

099 The constructed explicit geometric scaffold provides strong priors for both geometry and appearance
 100 to guide the final novel view synthesis. To effectively utilize this scaffold, we introduce a novel
 101 Dual-LoRA training strategy. Unlike common refinement models that use channel-wise conditional
 102 injection (Wu et al., 2025), our strategy effectively fuses information from the high-quality input
 103 view with the coarse yet geometrically-rich views rendered from our scaffold. These combined
 104 conditions then guide the generation process at arbitrary camera views via a global 3D-aware
 105 attention mechanism. Our experiments demonstrate that this design significantly enhances the
 106 model’s ability to leverage the priors provided. By grounding the generation process in a consistent
 107 3D representation, the final results of our One2Scene model are not only photorealistic but also
 108 exhibit superior multi-view consistency, as demonstrated in Figure 1 (c).

109 Our contributions can be summarized as follows. First, we introduce a powerful feed-forward 3D GS
 110 model with a bidirectional fusion module to construct a high-quality 3D scaffold by reformulating
 111 the monocular panoramic depth estimation into a multi-view stereo problem. Second, we present

108 a scaffold-guided synthesis method to utilize explicit geometric and appearance priors from any
 109 target view, which robustly grounds the final rendering and resolves the geometric ambiguities
 110 inherent in single-image generation. Finally, we demonstrate that our proposed One2Scene sets a new
 111 state-of-the-art on explorable 3D scene generation, achieving superior photorealism and geometric
 112 accuracy, particularly under significant viewpoint shifts.

2 RELATED WORK

119 **3D Scene Reconstruction.** Differentiable rendering techniques, such as NeRF (Mildenhall et al.,
 120 2020) and 3DGS (Kerbl et al., 2023), are primarily designed for per-scene optimization and re-
 121 quire dense input views, which limit their practical applications in the real world. To reduce the
 122 need for dense images, the research community has proposed various sparse-view reconstruction
 123 methods (Wang et al., 2023; Yang et al., 2023; Yu et al., 2024a; Charatan et al., 2024; Liu et al.,
 124 2024c;b; Wu et al., 2024a; Szymanowicz et al., 2024b). Concurrently, generalizable feed-forward
 125 models (Charatan et al., 2024; Chen et al., 2025; Szymanowicz et al., 2024b;a; Wewer et al., 2024;
 126 Xu et al., 2025; Ye et al., 2024a; Hong et al., 2024; Tang et al., 2024), which can directly produce
 127 3D representations from sparse inputs without per-instance optimization, have garnered significant
 128 attention. However, a fundamental challenge shared by these sparse-view approaches is their limited
 129 extrapolation capability, as they are unable to render unobserved regions.

130 **Video Diffusion-based 3D Scene Generation.** Recent video generation models (Brooks et al.,
 131 2024; Xing et al., 2024; Hong et al., 2022; Yang et al., 2024) have shown great potential to generate
 132 3D-aware sequences. These models can naturally serve as 3D scene generators when camera poses
 133 are controllable (Guo et al., 2024; Wang et al., 2024b; Melas-Kyriazi et al., 2024; Voleti et al., 2024;
 134 Liang et al., 2024). To enhance 3D consistency, recent works such as ReconX (Liu et al., 2024a),
 135 ViewCrafter (Yu et al., 2024b) and VMem (Li et al., 2025) have integrated 3D geometric priors into
 136 their frameworks by leveraging reconstruction models such as DUSt3R (Wang et al., 2024a) and
 137 CUT3R (Wang et al., 2025b).

Image Diffusion-based 3D Scene Generation.

138 Several innovative investigations (Liu et al., 2023; Wu et al., 2024b; Sargent et al., 2024; Höllerin
 139 et al., 2024; Seo et al., 2024; Shi et al., 2024; Wang & Shi, 2023; Shi et al., 2023; Liu et al., 2024e)
 140 have incorporated camera pose information into pre-trained T2I models to generate novel views.
 141 Within this category, two key strategies have emerged for generating explorable scenes from a single
 142 image. The first strategy employs **pose-conditioned view synthesis**. Methods such as SEVA (Zhou
 143 et al., 2025) and CAT3D (Gao et al., 2024) leverage camera pose information to guide the generation
 144 of novel views, demonstrating impressive scene-level results. However, when applied to single-
 145 image inputs over extended camera trajectories, these methods struggle to maintain long-range
 146 geometric consistency and visual coherence, often resulting in accumulated errors and semantic drift
 147 that compromise global scene structure. The second strategy relies on **iterative navigation and**
 148 **inpainting**(Pu et al., 2024; Chung et al., 2023; Yu et al., 2023; Höllerin et al., 2023). One notable
 149 example, Pano2Room(Pu et al., 2024), builds the scene sequentially by navigating through space and
 150 inpainting unseen areas. Although it can produce plausible indoor results, this iterative framework is
 151 inherently prone to accumulating geometric and appearance errors over time, compromising global
 152 scene consistency. A second limitation is its design, which incorporates strong indoor priors that
 153 restrict its generalization to outdoor scenes and diverse visual styles.

154 In contrast to these sequential approaches, our One2Scene framework introduces a novel scaffold-
 155 guided paradigm. It decomposes the ill-posed single-image-to-scene problem into more manageable
 156 subtasks, achieving superior geometric fidelity and photorealistic quality. By first generating a
 157 globally consistent 3D scaffold in a single, feed-forward pass, our One2Scene method establishes
 158 a robust geometric and semantic foundation for the entire scene. This holistic global prior directly
 159 counteracts the error accumulation inherent in sequential methods like pose-conditioned synthesis
 160 and iterative inpainting. Consequently, our approach is not only more geometrically consistent but
 161 also significantly more general than specialized methods like Pano2Room, demonstrating superior
 162 performance across both indoor and outdoor environments.

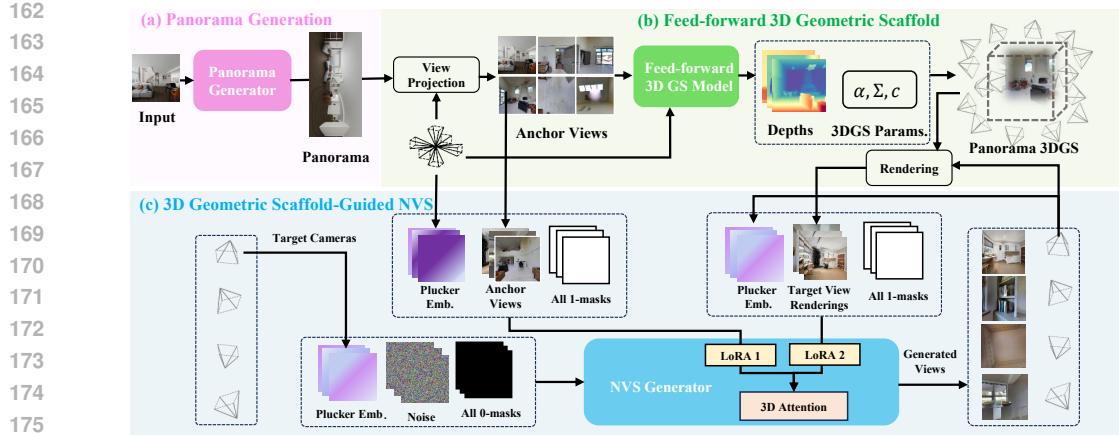


Figure 2: **Overview of One2Scene.** Our method consists of three stages: (a) an anchor view generation stage to establish an initial 360-degree representation, (b) a feed-forward 3D Gaussian Splatting stage to construct an explicit 3D geometric scaffold, and (c) a synthesis stage that leverages the scaffold information to produce high-quality novel views. The pipeline enables geometrically consistent and photorealistic novel view synthesis from a single input image.

3 METHODOLOGY

This section details our One2Scene framework, which can generate an explorable 3D scene from a single image by decomposing this ill-posed problem into a sequence of manageable sub-tasks, as illustrated in Figure 2. First, to overcome the severe information deficit, we generate a panorama to cover the global scene. Second, we obtain a set of anchor views from the panorama and introduce a feed-forward 3D GS model to lift these 2D anchor views into an explicit 3D geometric scaffold. Finally, with the strong geometric and appearance priors provided by the 3D scaffold, a synthesis network is used to generate photorealistic and consistent novel views from arbitrary camera poses.

3.1 PANORAMA GENERATION

Generating explorable 3D scenes from a single image is a highly challenging problem, often resulting in pronounced semantic drift and geometric inconsistency across long-range novel views. To address this challenge, we adopt a progressive approach that first expands visual information content and subsequently establishes a robust geometric foundation. We employ a specialized image-to-panorama generation model to transform the limited input view into a 360° panoramic representation. This representational choice is motivated by two primary considerations. First, the comprehensive field of view provides more visual cues that facilitate subsequent globally consistent scene generation. Second, compared to direct arbitrary novel view synthesis, panoramic image generation with a single image as input is a more well-posed computational task. In particular, we employ Hunyuan-Pano-DiT (Wang et al., 2025c), which demonstrates exceptional generalization capabilities acquired through training on extensive large-scale datasets, to generate the panoramic image.

3.2 FEED-FORWARD 3D GEOMETRIC SCAFFOLD

Although the panorama generated from the initial stage provides global coverage, it remains a 2D representation estimated from a single viewpoint and lacks explicit 3D information. Maintaining geometric consistency when synthesizing with large viewpoint changes and long sequences remains a fundamental challenge in explorable scene generation. To this end, we introduce a novel feed-forward 3D GS model to predict a set of 3D Gaussian parameters $(\mu_i, \alpha_i, \Sigma_i, c_i), i = 1^{H \times W \times N}$ for each pixel in the generated panorama. This process provides the scene with explicit 3D information, thereby ensuring global geometric consistency.

Anchor View Projection. Accurate depth estimation is the cornerstone of this model, as inaccurate depth can introduce severe rendering artifacts. **Although significant progress has been made in depth estimation from a single panoramic image (Ai et al., 2023; Wang & Liu, 2024; Pintore et al.,**

216 2023), this task remains highly challenging. A key difficulty lies in the lack of large-scale datasets
 217 comparable to those available for perspective images, limiting the generalization ability of panoramic
 218 depth estimators. To achieve robust depth estimation, we propose to reformulate the problem of
 219 monocular panoramic depth estimation as a multi-view stereo matching problem. Specifically, we
 220 first project the 360° panorama into a set of six perspective cubemap views, which serve as the input
 221 anchor views for our model. This strategy allows us to leverage powerful geometric priors learned
 222 from large-scale multi-view datasets. We choose to use cubemaps because they provide the most
 223 compact perspective representation of the panoramic scene, ensuring high efficiency. To facilitate
 224 correspondence matching across views, we expand each cubemap’s Field of View (FoV) to 95°,
 225 creating a 2.5° overlap at adjacent view boundaries. For further details, please refer to appendix A.2.
 226

227 **Bidirectional Fusion Module.** Although a 2.5-degree overlap is established between adjacent
 228 anchor views, the correspondence remains extremely sparse. Existing multi-view stereo models like
 229 VGGT (Wang et al., 2025a), which rely on substantial inter-view overlap, suffer from significant
 230 performance degradation in such scenarios. To address this limitation, we propose novel architectural
 231 modifications to VGGT to explicitly enforce cross-view consistency and improve the robustness of
 232 depth estimation. Specifically, we integrate a bidirectional fusion mechanism into the pre-trained
 233 DPT head of VGGT to promote cross-view depth consistency. This mechanism establishes geometric
 234 correspondence across views while preserving view-specific details.

235 To effectively handle overlapped regions, we introduce a Cube-to-Equirectangular (C2E) transforma-
 236 tion module that projects the dense feature maps \mathbf{F}_i from the six anchor views into a unified equirect-
 237 angular latent. Subsequently, these equirectangular features are fused using a convolutional layer \mathbf{H}_c .
 238 Then, the fused features \mathbf{F}_e are transformed back to the cubic space via an Equirectangular-to-Cube
 239 (E2C) module and merged with the original anchor view features through a residual connection. The
 240 finally updated feature for each view, \mathbf{F}'_i , is computed as follows:

$$\mathbf{F}_e = \mathbf{H}_c(\text{C2E}(\{\mathbf{F}_i\}_{i=1}^6)), \quad \mathbf{F}'_i = \mathbf{F}_i + \text{E2C}(\mathbf{F}_e). \quad (1)$$

241 This bidirectional transformation and fusion mechanism aligns features in overlapped regions to
 242 achieve geometric consistency via C2E/E2C transformations, while using residual connections to
 243 maintain view-specific details simultaneously. **For further details, please refer to appendix A.3.**
 244

245 **Gaussian Parameter Prediction Heads.** For each pixel, the Gaussian center μ is computed by
 246 unprojecting the predicted depth into 3D space using the camera intrinsics: $\mu = \mathbf{K}^{-1}\mathbf{u}d + \Delta$, where
 247 \mathbf{K} denotes the camera intrinsic matrix, $\mathbf{u} = (u_x, u_y, 1)$ represents the pixel coordinates, and $\Delta \in \mathbb{R}^3$
 248 indicates the predicted positional offset. To predict the remaining Gaussian parameters (opacity,
 249 covariance, and color), we employ an additional prediction head based on the DPT architecture.
 250 Following NoPosplat (Ye et al., 2024a), this prediction head takes both VGGT features and the
 251 RGB image as inputs. The direct pathway from RGB images complements VGGT’s high-level
 252 semantic-focused features by preserving essential fine textural details.

253 **Training.** The feed-forward 3DGS model is trained using a composite loss function, which includes
 254 a rendering loss and a depth loss. The rendering loss is a combination of the Mean Squared Error
 255 (MSE) and the LPIPS perceptual loss (Johnson et al., 2016), while the depth loss is the Scale-Invariant
 256 Logarithmic (SILog) loss (Eigen et al., 2014). The model is trained on a collection of four datasets:
 257 two synthetic datasets, Structured3D (Zheng et al., 2020) and Deep360 (Li et al., 2022), and two real-
 258 world datasets, Matterport3D (Chang et al., 2017) and Stanford2D3D (Armeni et al., 2017). Through
 259 this training regimen, our feed-forward 3DGS model demonstrates precise geometric modeling
 260 capabilities and robust generalization across indoor, outdoor, and even stylized scenes.

261 3.3 3D SCAFFOLD GUIDED NOVEL VIEW SYNTHESIS

262 In the final stage of our pipeline, we leverage the 3D geometric scaffold to generate a fully explorable
 263 3D scene. In particular, we propose to transform the task of novel view synthesis from a single view
 264 to the problem of synthesis conditioned on the set of anchor views:

$$p(\mathbf{I}^{\text{tgt}} \mid \mathbf{I}^{\text{anchor}}, \mathbf{p}^{\text{anchor}}, \mathbf{p}^{\text{tgt}}). \quad (2)$$

265 However, the above formulation remains limited since the anchor views are all observations from
 266 a single point in the space, and they lack the explicit scale and geometric information required for
 267 robust 3D understanding. Our 3D geometric scaffold, with its precise geometric modeling capabilities,

270 overcomes this limitation by enabling the rendering of novel views from arbitrary viewpoint. These
 271 rendered views contain rich geometric and appearance information. Therefore, they can serve as
 272 powerful conditions to guide the synthesis of novel views, significantly enhancing their realism and
 273 consistency. Although these rendered views may exhibit artifacts or occlusions (e.g., black holes) for
 274 large viewpoint changes, they still retain a substantial amount of useful structural information, owing
 275 to our model’s accurate depth estimation. This insight allows us to further reformulate the synthesis
 276 problem as follows:

$$p(\mathbf{I}^{\text{tgt}} \mid \mathbf{I}^{\text{anchor}}, \mathbf{p}^{\text{anchor}}, \mathbf{I}^{\text{render}}, \mathbf{p}^{\text{tgt}}), \quad (3)$$

278 where view $\mathbf{I}^{\text{render}}$ is rendered from the scaffold in the camera pose of the target view \mathbf{I}^{tgt} .
 279

280 **Dual-LoRA Training.** It is a challenging task to manage two distinct types of conditions in the synthesis
 281 process: the high-quality anchor views, which offer pristine appearance but are geometrically
 282 ambiguous, and the rendered views, which provide strong geometric priors but may contain artifacts.
 283 To effectively guide the synthesis using both conditions, we need to process these heterogeneous
 284 signals. Inspired by MMDiT (Esser et al., 2024), which uses separate encoders for different modalities,
 285 such as text and images, before fusing their features for self-attention, we propose a Dual-LoRA
 286 training strategy. Built upon the SEVA architecture (Zhou et al., 2025), our approach employs two
 287 different LoRA modules to process the anchor view and the rendered view independently, as shown
 288 in Figure 2 (c). The features from both conditions are then integrated with the noisy latent represen-
 289 tation through a 3D attention mechanism. Our experiments confirm that this method demonstrates
 290 significantly stronger learning capabilities compared to a naive approach of simply concatenating the
 291 rendered view with the noise latent.

292 **Memory Condition.** To ensure temporal and spatial consistency when generating a large number of
 293 frames for a continuous 3D scene, we introduce an additional memory condition during inference.
 294 This condition is a previously generated frame selected from a memory bank, which has the closest
 295 average camera pose to the current target frame. The synthesis problem is thus further refined to:

$$p(\mathbf{I}^{\text{tgt}} \mid \mathbf{I}^{\text{anchor}}, \mathbf{p}^{\text{anchor}}, \mathbf{I}^{\text{render}}, \mathbf{I}^{\text{mem}}, \mathbf{p}^{\text{mem}}, \mathbf{p}^{\text{tgt}}). \quad (4)$$

296 This memory-guided approach effectively preserves visual consistency, particularly when synthesizing
 297 content in occluded regions.
 298

299 **Training Data Construction.** To assemble a dataset for supervised training, we perform sparse 3D
 300 reconstructions on the DL3DV (Ling et al., 2023) and RealEstate10K (Zhou et al., 2018) datasets
 301 using the pre-trained feed-forward 3DGS model MVSplat (Chen et al., 2025). This strategy is
 302 intentionally employed to simulate the artifacts and holes that arise in rendered views when the
 303 reconstruction is based on sparse input viewpoints. By using the camera trajectories inherent to these
 304 datasets, we sample novel views that exhibit significant viewpoint deviations. Training pairs are
 305 subsequently formed, each comprising a ground truth image and its corresponding view rendered
 306 from the sparse 3D reconstruction at the identical camera pose.

307 4 EXPERIMENTS

309 4.1 EXPERIMENTAL SETTINGS

311 **Implementation Details.** In the panorama generation stage, we employ Hunyuan-Pano-DiT (Wang
 312 et al., 2025c) as the generator. The feed-forward 3DGS model is trained for 80,000 iterations using
 313 the AdamW optimizer. We set the learning rate of the VGGT backbone to 2e-5, and set the learning
 314 rate to 2e-4 for all other modules. In the final stage, the 3D scaffold-guided novel view synthesis
 315 model is trained for 40,000 iterations using the Adam optimizer based on SEVA (Zhou et al., 2025),
 316 with a batch size of 16 and a learning rate of 1.25e-5.

317 **Experiments Setup.** To more comprehensively evaluate our proposed One2Scene model and
 318 demonstrate its effectiveness and advantages, we conduct the following experiments. (1) First, we
 319 benchmark our One2Scene model against the SOTA 3D scene generation models in producing
 320 high-quality, explorable 3D scenes. (2) Second, we evaluate the key component of our One2Scene
 321 model, i.e., the feed-forward 360° reconstruction network, by comparing its quality, efficiency, and
 322 geometric accuracy with the SOTA methods. Its depth estimation performance is also evaluated on
 323 standard panorama depth estimation benchmarks. (3) Third, we conduct a series of ablation studies
 to dissect the effectiveness of our design of One2Scene.

324 **Evaluation Metrics.** We evaluate the quality of our generated scenes across three key dimensions. (1)
 325 Visual Fidelity. We measure visual quality using two no-reference image quality assessment metrics:
 326 NIQE (Mittal et al., 2012) and Q-Align (Wu et al., 2023). (2) Semantic Consistency. We measure
 327 the semantic consistency between the initial image and the novel views using CLIP-I score (Hessel
 328 et al., 2021). (3) Geometric Consistency. We evaluate geometric stability by first estimating the
 329 camera poses of the generated views with a pre-trained VGGT model. These estimated poses are
 330 then benchmarked against the ground-truth camera trajectories to compute Rotation Error (RotError)
 331 (He et al., 2024), Camera Motion Consistency (CamMC) (Wang et al., 2024b), and Translation Error
 332 (TransError) (He et al., 2024). More details of our evaluation protocol are provided in Appendix A.1.
 333
 334
 335

336 4.2 MAIN RESULTS
 337

338 4.2.1 EXPLORABLE 3D SCENE GENERATION
 339

340
 341 To establish a rigorous evaluation protocol in the absence of a standard benchmark for explorable
 342 3D scene generation, we adapt the WorldScore benchmark (Duan et al., 2025), which is originally
 343 proposed for short-sequence 3D scene evaluation. To ensure a comprehensive assessment, we sample
 344 40 scenes spanning four diverse static scene categories: indoor-real, indoor-stylized, outdoor-real,
 345 and outdoor-stylized (10 per category). This diverse benchmark allows us to thoroughly test the
 346 robustness and quality of the generated 3D scenes from single-view inputs.

347 **Results.** We compare One2Scene with DreamScene360 (Zhou et al., 2024), WonderJourney (Yu
 348 et al., 2023), VMem (Li et al., 2025) and SEVA (Zhou et al., 2025). Quantitative results are reported
 349 in Table 1. For methods that accept camera-conditioned novel view synthesis, we additionally evaluate
 350 geometric consistency. Since DreamScene360 and WonderJourney do not produce fully explorable
 351 scenes (as shown in Figure 1), we can only perform qualitative comparisons with VMem and SEVAin,
 352 as shown in Figure 3. We also condition VMem and SEVA on the anchor views produced in our
 353 One2Scene method, and denote the corresponding methods as VMem+ and SEVA+.

354 **Semantic and Appearance Consistency.** As demonstrated in Figure 3, SEVA and VMem often
 355 hallucinate content in unobserved regions, leading to semantic inconsistencies. Our 3D scaffold,
 356 however, preserves global semantic coherence. This advantage is validated by our quantitative results
 357 in Table 1: our One2Scene achieves superior NIQE (4.43) and Q-Align (4.13) scores, and its CLIP-I
 358 score (89.95) markedly surpasses those of SEVA (87.82) and VMem (75.80).

359 **Scale Ambiguity and Drift.** As noted by Zhou et al. (2025) in SEVA, the single input image makes
 360 SEVA suffer from scale ambiguity issues. This manifests the distortion of object size and physically
 361 implausible geometric artifacts, such as cameras penetrating through walls (see Figure 3). Even
 362 conditioned on our anchor views, SEVA+ and VMem+ remain unable to effectively resolve the scale
 363 drift problem. This fundamental limitation stems from the lack of relative translation information in
 364 anchor views, which prevents the model from inferring a unified global scale. In contrast, our method
 365 explicitly constructs a 3D scaffold that provides robust scale constraints, effectively mitigating the
 366 scale ambiguity issue and producing physically plausible results.

367 **Geometric Stability.** Existing methods often struggle to maintain long-term geometric stability.
 368 SEVA, for example, lacks a persistent geometric representation, causing inconsistent reconstructions
 369 in loop-closure scenarios (e.g., frame 78 vs. 255 in Figure 3). VMem attempts to enforce consistency
 370 via online reconstruction with CUT3R, but this strategy is highly susceptible to a vicious cycle
 371 of error accumulation: generated low-quality frames destroy the geometry, which in turn provide
 372 wrong guidance for subsequent frames, leading to catastrophic failure. In contrast, our pre-built 3D
 373 scaffold provides a stable geometric prior, effectively preventing error propagation. This advantage
 374 is substantiated by the quantitative results: our method achieves a score of 0.389 in CamMC,
 375 significantly outperforming VMem (0.998, see Table 1).

376 The above results highlight the superiority of our three-stage design of One2Scene, which systemati-
 377 cally addresses the global semantic inconsistency, scale ambiguity, and geometric instability. More
 378 results can be found in Appendix A.6 and our anonymous project page.

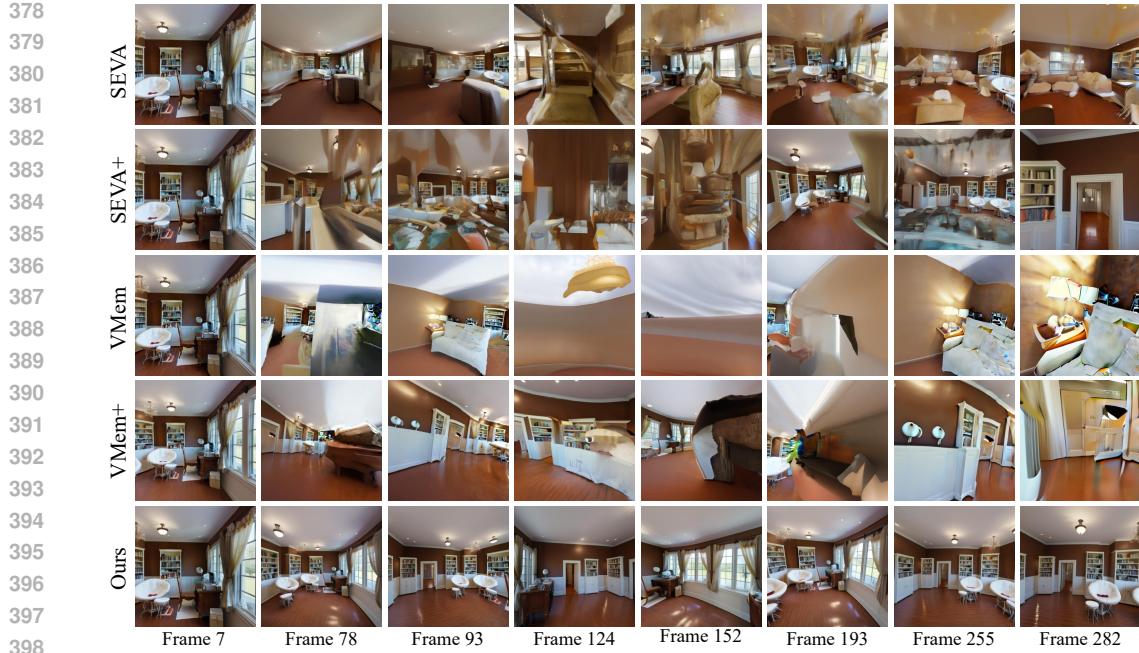


Figure 3: **Qualitative comparison.** Our method retains compelling visual quality and generates plausible continuations of the scene, even under large viewpoint change.

Table 1: Quantitative comparisons for 3D scene generation.

Methods	NIQE \downarrow	Q-Align \uparrow	CLIP-I \uparrow	TransErr \downarrow	RotErr \downarrow	CamMC \downarrow
DreamScene360 (Zhou et al. (2024))	8.40	1.91	74.24	-	-	-
WonderJourney (Yu et al. (2023))	4.97	3.02	77.92	-	-	-
SEVA (Zhou et al. (2025))	4.53	3.20	87.82	0.460	0.165	0.558
SEVA (Zhou et al. (2025)) + Anchor	4.45	3.45	88.70	0.422	0.116	0.460
VMem (Li et al. (2025))	6.86	2.95	75.80	0.573	0.569	0.998
VMem (Li et al. (2025)) + Anchor	5.23	3.04	81.33	0.613	0.426	0.887
One2Scene (Ours)	4.43	4.13	89.95	0.326	0.107	0.389

4.2.2 FEED-FORWARD 360° RECONSTRUCTION

This section validates the core advantages of our feed-forward 3DGS network, a cornerstone of our pipeline. We demonstrate its superiority in reconstruction quality, computational efficiency, and geometric accuracy compared to SOTA methods.

Reconstruction Quality. We conduct a direct comparison with the SOTA method, AnySplat (Jiang et al., 2025). Since both methods are extensions of the VGGT model, this shared foundation ensures a fair evaluation. As shown in Figure 4, AnySplat’s reconstruction fails with only 6 sparse views. This is because it predicts an erroneous depth map, which results in a distorted geometric scene. Even when 20 densely tangent patches with substantial overlap are projected from a panorama, its performance remains sub-par, suffering from severe artifacts in drastic viewpoint changes. In stark contrast, our model constructs a high-quality and robust 3D geometric scaffold even from sparse inputs. Although large rotations can introduce minor local artifacts due to occlusion, the underlying geometric foundation remains stable, providing crucial priors for the subsequent generation task. The importance of our scaffold is further confirmed by the experiment in Table 2: replacing our reconstruction module with AnySplat causes a significant degradation in final generation quality.

Table 2: Comparison on the 3D scene generation performance by replacing our feed-forward 360° reconstruction network with AnySplat.

Methods	NIQE \downarrow	Q-Align \uparrow	CLIP-I \uparrow	TransErr \downarrow	RotErr \downarrow	CamMC \downarrow
AnySplat (Jiang et al., 2025)	4.96	3.61	81.96	0.332	0.367	0.616
Ours	4.43	4.13	89.95	0.326	0.107	0.389

432 Table 3: Comparison of depth estimation on Matterport3D and Stanford2D3D datasets.
433

434 Methods	435 Matterport3D				436 Stanford2D3D			
	437 $AbsRel \downarrow$	438 $\delta_1 \uparrow$	439 $\delta_2 \uparrow$	440 $\delta_3 \uparrow$	441 $AbsRel \downarrow$	442 $\delta_1 \uparrow$	443 $\delta_2 \uparrow$	444 $\delta_3 \uparrow$
BiFuse (Wang et al., 2020)	0.2048	84.52	93.19	96.32	0.1209	86.60	95.80	98.60
UniFuse (Jiang et al., 2021)	0.1063	88.97	96.23	98.31	0.1114	87.11	96.64	98.82
HoHoNet (Sun et al., 2020))	0.1488	87.86	95.19	97.71	0.1014	90.54	96.93	98.86
BiFuse++ (Wang et al., 2022)	—	87.90	95.17	97.72	—	87.83	96.49	98.84
ACDNet (Zhuang et al., 2022)	0.1010	90.00	96.78	98.76	0.0984	88.72	97.04	98.95
PanoFormer (Shen et al., 2022)	0.0904	88.16	96.61	98.78	0.1131	88.08	96.23	98.55
HRDFuse (Ai et al., 2023)	0.0967	91.62	96.69	98.44	0.0935	91.40	97.98	99.27
EGFormer (Yun et al., 2023)	0.1473	81.58	93.90	97.35	0.1528	81.85	93.38	97.36
Elite360D (Ai & Wang, 2024)	0.1115	88.15	96.46	98.74	0.1182	88.72	96.84	98.92
Depth Anywhere (Wang & Liu, 2024)	0.0850	91.70	97.60	99.10	0.1180	91.00	97.10	98.70
Ours (Zero-shot)	0.1070	88.97	96.51	98.61	0.0675	95.20	98.53	99.30
Ours (Finetune)	0.0391	98.09	99.41	99.74	0.0444	96.95	98.85	99.44

447 **Computational Efficiency.** Using six sparse views, our model reconstructs a high-quality scaffold in
448 0.5 seconds on an H20 GPU, marking a $5.6\times$ speedup over AnySplat, which relies on a dense view
449 set and requires 2.8 seconds. The inference time is further slashed to only 0.1 seconds when using a
450 more powerful NVIDIA H100 GPU.

451 **Accurate Depth Estimation.** To quantitatively assess the geometric accuracy of our model, we
452 evaluate its depth estimation performance against SOTA methods on the Matterport3D and Stan-
453 ford2D3D datasets. As detailed in Table 3, the results are compelling: our model, when applied in
454 a zero-shot setting, surpasses all compared approaches on the Stanford2D3D dataset. This result
455 indicates that our method effectively inherits and transfers geometric priors from the foundational
456 VGGT model. Furthermore, when our model is fine-tuned on the Matterport3D and Stanford2D3D
457 datasets, it demonstrates exceptional performance, boosting the $AbsRel$ metric by over 50%. This
458 further underscores the powerful geometric modeling capabilities of our reconstruction model.

459 4.3 ABLATIONS AND ANALYSIS

460 Given limited space, we provide comprehensive ablation studies in the Appendix, featuring in-depth
461 analyses of our Dual-LoRA training methodology, memory condition mechanism, and bidirectional
462 fusion module (see Appendix A.4). We also provide detailed quantitative evaluation results for our
463 generation model on the DL3DV dataset (see Appendix A.5).

466 5 CONCLUSION AND LIMITATIONS

467 In this paper, we introduced One2Scene, a novel and effective framework for generating fully ex-
468 plorable 3D scenes from a single image. We addressed the critical challenge of geometric distortion
469 and artifact generation in existing methods when there were large viewpoint changes. Our core
470 contribution lied in the decomposition of this ill-posed problem into three tractable subtasks: initializ-
471 ing sparse anchor views via a panorama generator, lifting them into an explicit and geometrically
472 reliable 3D scaffold by a feed-forward GS network, and finally, leveraging the scaffold as a strong
473 prior for photorealistic novel view synthesis. Our extensive experiments validated that One2Scene
474 substantially outperformed state-of-the-art methods in explorable 3D scene generation.

475 **Limitations.** While our approach significantly improves 3D consistency across long sequences
476 and large viewpoint changes, the generated views may contain subtle inconsistencies. Similar to
477 CAT3D (Gao et al., 2024), we can further enhance geometric consistency through post-reconstruction
478 processing. Please see the “Result Gallery” on our anonymous project page. In future work, we plan
479 to construct larger-scale datasets to further improve our model’s performance and robustness.

481 6 ETHICS STATEMENT

482 This research does not involve human participants or the collection of sensitive personal information.
483 All datasets utilized in this study are employed in strict accordance with their respective licensing
484 agreements and terms of use.

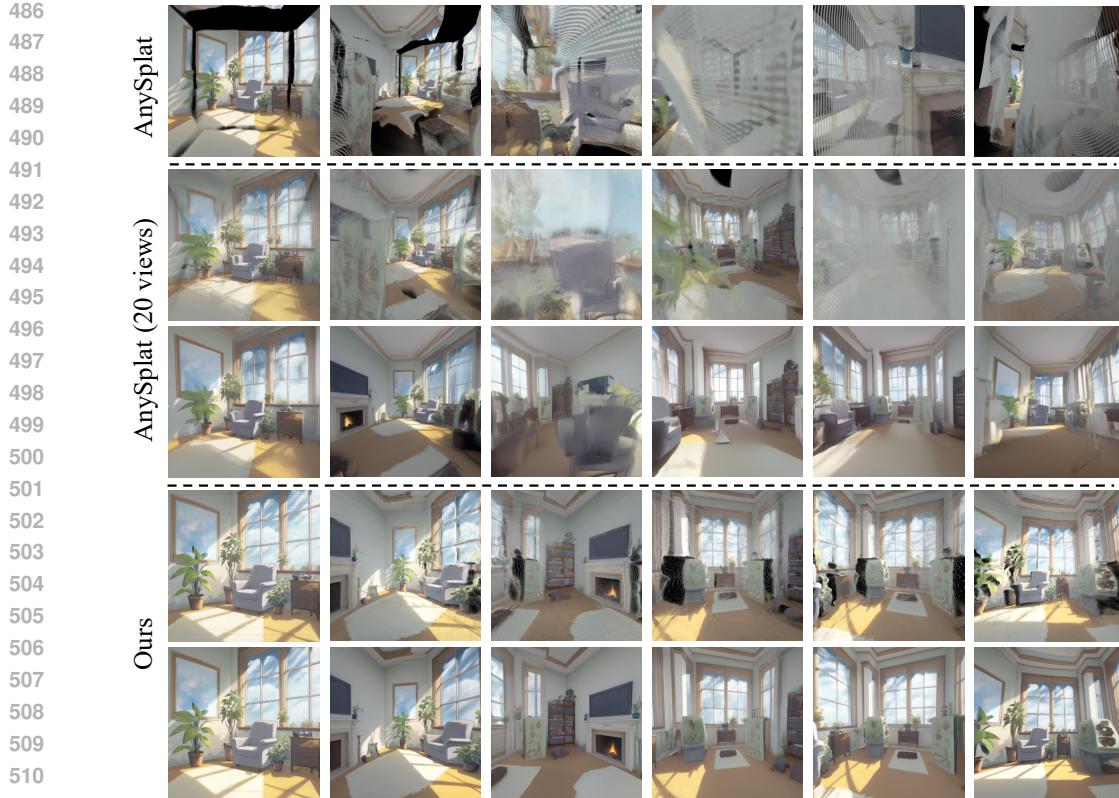


Figure 4: Ablation study on reconstruction performance. We compare the 3D scene generation quality by replacing our feedforward network with AnySplat. Top row: reconstruction results. Bottom row: generation results using our model.

The proposed methodology is designed exclusively for academic research and scientific advancement. While we do not anticipate direct harmful applications, we recognize the potential for misuse if deployed without appropriate ethical considerations and safety measures. We advocate for the responsible application of our research contributions, emphasizing the importance of fairness, transparency, and adherence to applicable legal frameworks.

7 REPRODUCIBILITY STATEMENT

We have implemented comprehensive measures to facilitate the reproducibility of our research findings. The main manuscript provides thorough documentation of our proposed framework, including detailed descriptions of the model architecture, dataset preprocessing methodologies, and algorithmic implementations. Complete hyperparameter configurations and training protocols are explicitly specified to enable independent replication of our results.

REFERENCES

Michał Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Preston Culbertson, Jeanette Bohg, and Mac Schwager. Vision-only robot navigation in a neural radiance world. *IEEE Robotics and Automation Letters*, 7(2):4606–4613, 2022.

Hao Ai and Lin Wang. Elite360d: Towards efficient 360 depth estimation via semantic-and distance-aware bi-projection fusion. In *CVPR*, 2024.

Hao Ai, Zidong Cao, Yan-Pei Cao, Ying Shan, and Lin Wang. Hrdfuse: Monocular 360deg depth estimation by collaboratively learning holistic-with-regional depth distributions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13273–13282, 2023.

540 Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese. Joint 2d-3d-semantic data for indoor
 541 scene understanding. *arXiv preprint arXiv:1702.01105*, 2017.

542

543 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
 544 Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators, 2024.

545

546 Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
 547 Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
 548 environments. *arXiv preprint arXiv:1709.06158*, 2017.

549

550 David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian
 551 splats from image pairs for scalable generalizable 3d reconstruction. In *CVPR*, pp. 19457–19467,
 552 2024.

553

554 Yuedong Chen, Chuanxia Zheng, Haofei Xu, Bohan Zhuang, Andrea Vedaldi, Tat-Jen Cham, and
 555 Jianfei Cai. Mvsplat360: Feed-forward 360 scene synthesis from sparse views. In *NeurIPS*
 556 (*NeurIPS*), 2024.

557

558 Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen
 559 Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images. In
 560 *ECCV*, pp. 370–386. Springer, 2025.

561

562 Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, and Kyoung Mu Lee. Luciddreamer:
 563 Domain-free generation of 3d gaussian splatting scenes. *CoRR*, abs/2311.13384, 2023.

564

565 Haoyi Duan, Hong-Xing Yu, Sirui Chen, Li Fei-Fei, and Jiajun Wu. Worldscore: A unified evaluation
 566 benchmark for world generation. *arXiv preprint arXiv:2504.00983*, 2025.

567

568 David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a
 569 multi-scale deep network. *Advances in neural information processing systems*, 27, 2014.

570

571 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 572 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 573 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
 574 2024.

575

576 Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
 577 Srinivasan, Jonathan T Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view
 578 diffusion models. *arXiv preprint arXiv:2405.10314*, 2024.

579

580 Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Animatediff:
 581 Animate your personalized text-to-image diffusion models without specific tuning. In *International
 582 Conference on Learning Representations*, 2024.

583

584 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang. Cam-
 585 eractrl: Enabling camera control for text-to-video generation. *arXiv preprint arXiv:2404.02101*,
 586 2024.

587

588 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
 589 free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

590

591 Lukas Höllerin, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner. Text2room:
 592 Extracting textured 3d meshes from 2d text-to-image models. *arXiv preprint arXiv:2303.11989*,
 593 2023.

594

595 Lukas Höllerin, Aljaž Božič, Norman Müller, David Novotny, Hung-Yu Tseng, Christian Richardt,
 596 Michael Zollhöfer, and Matthias Nießner. Viewdiff: 3d-consistent image generation with text-
 597 to-image models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 598 Recognition*, pp. 5043–5052, 2024.

599

600 Sunghwan Hong, Jaewoo Jung, Heeseong Shin, Jisang Han, Jiaolong Yang, Chong Luo, and Seungry-
 601 ong Kim. Pf3plat: Pose-free feed-forward 3d gaussian splatting. *arXiv preprint arXiv:2410.22128*,
 602 2024.

594 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
 595 pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.
 596

597 Yukun Huang, Yanning Zhou, Jianan Wang, Kaiyi Huang, and Xihui Liu. DreamCube: 3D Panorama
 598 Generation via Multi-plane Synchronization. 2025.

599 Hualie Jiang, Zhe Sheng, Siyu Zhu, Zilong Dong, and Rui Huang. Unifuse: Unidirectional fusion for
 600 360° panorama depth estimation. *IEEE Robotics and Automation Letters*, 6:1519–1526, 2021.
 601

602 Lihan Jiang, Yucheng Mao, Linning Xu, Tao Lu, Kerui Ren, Yichen Jin, Xudong Xu, Mulin
 603 Yu, Jiangmiao Pang, Feng Zhao, et al. Anysplat: Feed-forward 3d gaussian splatting from
 604 unconstrained views. *arXiv preprint arXiv:2505.23716*, 2025.

605 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
 606 super-resolution. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
 607 Netherlands, October 11–14, 2016, Proceedings, Part II 14*, pp. 694–711. Springer, 2016.
 608

609 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
 610 for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

611 Ming Li, Xueqian Jin, Xuejiao Hu, Jingzhao Dai, Sidan Du, and Yang Li. Mode: Multi-view
 612 omnidirectional depth estimation with 360 cameras. In *European Conference on Computer Vision*,
 613 pp. 197–213. Springer, 2022.
 614

615 Runjia Li, Philip Torr, Andrea Vedaldi, and Tomas Jakab. Vmem: Consistent interactive video scene
 616 generation with surfel-indexed view memory. *arXiv preprint arXiv:2506.18903*, 2025.

617 Hanwen Liang, Junli Cao, Vudit Goel, Guocheng Qian, Sergei Korolev, Demetri Terzopoulos,
 618 Konstantinos N Plataniotis, Sergey Tulyakov, and Jian Ren. Wonderland: Navigating 3d scenes
 619 from a single image. *arXiv preprint arXiv:2412.12091*, 2024.
 620

621 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo, Zixun
 622 Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d vision.
 623 *arXiv preprint arXiv:2312.16256*, 2023.

624 Fangfu Liu, Wenqiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang, and
 625 Yueqi Duan. Reconx: Reconstruct any scene from sparse views with video diffusion model. *arXiv
 626 preprint arXiv:2408.16767*, 2024a.
 627

628 Fangfu Liu, Hanyang Wang, Weiliang Chen, Haowen Sun, and Yueqi Duan. Make-your-3d: Fast and
 629 consistent subject-driven 3d content generation. *arXiv preprint arXiv:2403.09625*, 2024b.
 630

631 Fangfu Liu, Diankun Wu, Yi Wei, Yongming Rao, and Yueqi Duan. Sherpa3d: Boosting high-fidelity
 632 text-to-3d generation via coarse 3d prior. In *CVPR*, pp. 20763–20774, 2024c.
 633

634 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 635 Zero-1-to-3: Zero-shot one image to 3d object. In *Proceedings of the IEEE/CVF international
 636 conference on computer vision*, pp. 9298–9309, 2023.

637 Xi Liu, Chaoyi Zhou, and Siyu Huang. 3dgs-enhancer: Enhancing unbounded 3d gaussian splatting
 638 with view-consistent 2d diffusion priors. *arXiv preprint arXiv:2410.16266*, 2024d.
 639

640 Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping Wang.
 641 Syncdreamer: Generating multiview-consistent images from a single-view image. In *International
 642 Conference on Learning Representations*, 2024e.

643 Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,
 644 and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections.
 645 In *CVPR*, pp. 7210–7219, 2021.

646 Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni,
 647 and Filippos Kokkinos. Im-3d: Iterative multiview diffusion and reconstruction for high-quality 3d
 648 generation. *arXiv preprint arXiv:2402.08682*, 2024.

648 B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng. Nerf: Representing
 649 scenes as neural radiance fields for view synthesis. In *European conference on computer vision*,
 650 2020.

651 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 652 analyzer. *IEEE Signal processing letters*, 20(3):209–212, 2012.

653 Giovanni Pintore, Fabio Bettio, Marco Agus, and Enrico Gobbetti. Deep scene synthesis of atlanta-
 654 world interiors from a single omnidirectional image. *IEEE Transactions on Visualization and*
 655 *Computer Graphics*, 29(11):4708–4718, 2023.

656 Guo Pu, Yiming Zhao, and Zhouhui Lian. Pano2room: Novel view synthesis from a single indoor
 657 panorama. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024.

658 Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann, Hong-Xing Yu, Yunzhi Zhang, Eric Ryan
 659 Chan, Dmitry Lagun, Li Fei-Fei, Deqing Sun, et al. Zeronvs: Zero-shot 360-degree view synthesis
 660 from a single image. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 661 *Recognition*, pp. 9420–9429, 2024.

662 Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu,
 663 Chieh-Hsin Lai, Seungryong Kim, and Yuki Mitsufuji. Genwarp: Single image to novel views
 664 with semantic-preserving generative warping. *Advances in Neural Information Processing Systems*,
 665 2024.

666 Zhijie Shen, Chunyu Lin, Kang Liao, Lang Nie, Zishuo Zheng, and Yao Zhao. Panoformer: Panorama
 667 transformer for indoor 360° depth estimation. In *ECCV*, 2022.

668 Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen,
 669 Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base
 670 model. *arXiv preprint arXiv:2310.15110*, 2023.

671 Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li, and Xiao Yang. Mvdream: Multi-view
 672 diffusion for 3d generation. In *International Conference on Learning Representations*, 2024.

673 Cheng Sun, Min Sun, and Hwann-Tzong Chen. Hohonet: 360 indoor holistic understanding with
 674 latent horizontal features. *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 675 (*CVPR*), pp. 2573–2582, 2020.

676 Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, and Yikai Wang.
 677 Dimensionx: Create any 3d and 4d scenes from a single image with controllable video diffusion,
 678 2024. URL <https://arxiv.org/abs/2411.04928>.

679 Stanislaw Szymanowicz, Eldar Insafutdinov, Chuanxia Zheng, Dylan Campbell, João F Henriques,
 680 Christian Rupprecht, and Andrea Vedaldi. Flash3d: Feed-forward generalisable 3d scene recon-
 681 struction from a single image. *arXiv preprint arXiv:2406.04343*, 2024a.

682 Stanislaw Szymanowicz, Chrisitian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast
 683 single-view 3d reconstruction. In *CVPR*, pp. 10208–10217, 2024b.

684 Stanislaw Szymanowicz, Jason Y. Zhang, Pratul Srinivasan, Ruiqi Gao, Arthur Brussee, Aleksander
 685 Holynski, Ricardo Martin-Brualla, Jonathan T. Barron, and Philipp Henzler. Bolt3D: Generating
 686 3D Scenes in Seconds. *arXiv:2503.14445*, 2025.

687 Shengji Tang, Weicai Ye, Peng Ye, Weihao Lin, Yang Zhou, Tao Chen, and Wanli Ouyang. Hisplat:
 688 Hierarchical 3d gaussian splatting for generalizable sparse-view reconstruction. *arXiv preprint*
 689 *arXiv:2410.06245*, 2024.

690 Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
 691 game engines. *arXiv preprint arXiv:2408.14837*, 2024.

692 Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin, Christian
 693 Laforet, Robin Rombach, and Varun Jampani. Sv3d: Novel multi-view synthesis and 3d generation
 694 from a single image using latent video diffusion. In *European Conference on Computer Vision*, pp.
 695 439–457. Springer, 2024.

702 Fu-En Wang, Yu-Hsuan Yeh, Min Sun, Wei-Chen Chiu, and Yi-Hsuan Tsai. Bifuse: Monocular 360
 703 depth estimation via bi-projection fusion. In *CVPR*, pp. 459–468. Computer Vision Foundation /
 704 IEEE, 2020.

705 Fu-En Wang, Yu-Hsuan Yeh, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun. Bifuse++: Self-
 706 supervised and efficient bi-projection fusion for 360 depth estimation. *IEEE transactions on*
 707 *pattern analysis and machine intelligence*, 45(5):5448–5460, 2022.

708 Guangcong Wang, Zhaoxi Chen, Chen Change Loy, and Ziwei Liu. Sparsenerf: Distilling depth
 709 ranking for few-shot novel view synthesis. In *ICCV*, pp. 9065–9076, 2023.

710 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 711 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the IEEE/CVF*
 712 *Conference on Computer Vision and Pattern Recognition*, 2025a.

713 Ning-Hsu Albert Wang and Yu-Lun Liu. Depth anywhere: Enhancing 360 monocular depth estimation
 714 via perspective distillation and unlabeled data augmentation. *Advances in Neural Information*
 715 *Processing Systems*, 37:127739–127764, 2024.

716 Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation.
 717 *arXiv preprint arXiv:2312.02201*, 2023.

718 Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Continuous
 719 3d perception model with persistent state. *arXiv preprint arXiv:2501.12387*, 2025b.

720 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
 721 Geometric 3d vision made easy. In *CVPR*, 2024a.

722 Zhenwei Wang, Yuhao Liu, Junta Wu, Zixiao Gu, Haoyuan Wang, Xuhui Zuo, Tianyu Huang,
 723 Wenhuan Li, Sheng Zhang, et al. Hunyuanworld 1.0: Generating immersive, explorable, and
 724 interactive 3d worlds from words or pixels. *arXiv preprint arXiv:2507.21809*, 2025c.

725 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo, and
 726 Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In *ACM*
 727 *SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024b.

728 Christopher Wewer, Kevin Raj, Eddy Ilg, Bernt Schiele, and Jan Eric Lenssen. latentsplat: Autoencoding
 729 variational gaussians for fast generalizable 3d reconstruction. *arXiv preprint arXiv:2403.16292*,
 730 2024.

731 Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
 732 Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching Imms for visual scoring via
 733 discrete text-defined levels. *arXiv preprint arXiv:2312.17090*, 2023.

734 Jay Zhangjie Wu, Yuxuan Zhang, Haithem Turki, Xuanchi Ren, Jun Gao, Mike Zheng Shou, Sanja
 735 Fidler, Zan Gojcic, and Huan Ling. Difix3d+: Improving 3d reconstructions with single-step
 736 diffusion models. *arXiv preprint arXiv: 2503.01774*, 2025.

737 Kailu Wu, Fangfu Liu, Zhihan Cai, Runjie Yan, Hanyang Wang, Yating Hu, Yueqi Duan, and
 738 Kaisheng Ma. Unique3d: High-quality and efficient 3d mesh generation from a single image.
 739 *arXiv preprint arXiv:2405.20343*, 2024a.

740 Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson, Pratul P
 741 Srinivasan, Dor Verbin, Jonathan T Barron, Ben Poole, et al. Reconfusion: 3d reconstruction with
 742 diffusion priors. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 743 *Recognition*, pp. 21551–21561, 2024b.

744 Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu,
 745 Xintao Wang, Ying Shan, and Tien-Tsin Wong. Dynamicrafter: Animating open-domain images
 746 with video diffusion priors. In *ECCV*, pp. 399–417. Springer, 2024.

747 Haofei Xu, Songyou Peng, Fangjinhua Wang, Hermann Blum, Daniel Barath, Andreas Geiger, and
 748 Marc Pollefeyns. Depthsplat: Connecting gaussian splatting and depth. In *CVPR*, 2025.

756 Jiawei Yang, Marco Pavone, and Yue Wang. Freenerf: Improving few-shot neural rendering with free
 757 frequency regularization. In *CVPR*, pp. 8254–8263, 2023.

758

759 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 760 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 761 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

762 Botao Ye, Sifei Liu, Haofei Xu, Xuetong Li, Marc Pollefeys, Ming-Hsuan Yang, and Songyou Peng.
 763 No pose, no problem: Surprisingly simple 3d gaussian splats from sparse unposed images. *arXiv
 764 preprint arXiv:2410.24207*, 2024a.

765

766 Junliang Ye, Fangfu Liu, Qixiu Li, Zhengyi Wang, Yikai Wang, Xinzhou Wang, Yueqi Duan,
 767 and Jun Zhu. Dreamreward: Text-to-3d generation with human preference. *arXiv preprint
 768 arXiv:2403.14613*, 2024b.

769 Hanyang Yu, Xiaoxiao Long, and Ping Tan. Lm-gaussian: Boost sparse-view 3d gaussian splatting
 770 with large model priors. *arXiv preprint arXiv:2409.03456*, 2024a.

771

772 Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent, Michael Rubinstein, William T. Freeman,
 773 Forrester Cole, Deqing Sun, Noah Snavely, Jiajun Wu, and Charles Herrmann. Wonderjourney:
 774 Going from anywhere to everywhere. *CoRR*, abs/2312.03884, 2023.

775 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
 776 Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for
 777 high-fidelity novel view synthesis. *arXiv preprint arXiv:2409.02048*, 2024b.

778 Ilwi Yun, Chanyong Shin, Hyunku Lee, Hyuk-Jae Lee, and Chae Eun Rhee. Egformer: Equirectan-
 779 gular geometry-biased transformer for 360 depth estimation. *arXiv preprint arXiv:2304.07803*,
 780 2023.

781

782 Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d: A
 783 large photo-realistic dataset for structured 3d modeling. In *Computer Vision–ECCV 2020: 16th
 784 European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16*, pp. 519–535.
 785 Springer, 2020.

786 Jensen Jinghao Zhou, Hang Gao, Vikram Voleti, Aaryaman Vasishta, Chun-Han Yao, Mark Boss,
 787 Philip Torr, Christian Rupprecht, and Varun Jampani. Stable virtual camera: Generative view
 788 synthesis with diffusion models. *arXiv e-prints*, pp. arXiv–2503, 2025.

789

790 Shijie Zhou, Zhiwen Fan, Dejia Xu, Haoran Chang, Pradyumna Chari, Tejas Bharadwaj, Suya
 791 You, Zhangyang Wang, and Achuta Kadambi. Dreamscene360: Unconstrained text-to-3d scene
 792 generation with panoramic gaussian splatting. In *European Conference on Computer Vision*, pp.
 793 324–342. Springer, 2024.

794

795 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 Learning view synthesis using multiplane images. *ACM Trans. Graph*, 37, 2018.

796

797 Chuanqing Zhuang, Zhengda Lu, Yiqun Wang, Jun Xiao, and Ying Wang. Acdnet: Adaptively
 798 combined dilated convolution for monocular panorama depth estimation. In *Proceedings of the
 799 AAAI Conference on Artificial Intelligence*, volume 36, pp. 3653–3661, 2022.

800

801

802

803

804

805

806

807

808

809

810
811

A APPENDIX

812
813
We provide the following materials in this appendix:814
815
816
817
818
819
820
821
822
823
824
825
826

- Appendix A.1: Detailed evaluation protocol.
- Appendix A.2: Details about cube projection.
- **Appendix A.3: Details about bidirectional fusion module.**
- Appendix A.4: Ablation study and analysis.
- Appendix A.5: More NVS results on DL3DV.
- Appendix A.6: More qualitative results.
- Appendix A.7: Declaration of LLM assistance.

827
828

A.1 EVALUATION PROTOCOL

829
830
To assess the quality of our generated scenes, we evaluate them across three key aspects: visual
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
172100
172101
172102
172103
172104
172105
172106
172107
172108
172109
172110
172111
172112
172113
172114
172115
172116
172117
172118
172119
172120
172121
172122
172123
172124
172125
172126
172127
172128
172129
172130
172131
172132
172133
172134
172135
172136
172137
172138
172139
172140
172141
172142
172143
172144
172145
172146
172147
172148
172149
172150
172151
172152
172153
172154
172155
172156
172157
172158
172159
172160
172161
172162
172163
172164
172165
172166
172167
172168
172169
172170
172171
172172
172173
172174
172175
172176
172177
172178
172179
172180
172181
172182
172183
172184
172185
172186
172187
172188
172189
172190
172191
172192
172193
172194
172195
172196
172197
172198
172199
172200
172201
172202
172203
172204
172205
172206
172207
172208
172209
172210
172211
172212
172213
172214
172215
172216
172217
172218
172219
172220
172221
172222
172223
172224
172225
172226
172227
172228
172229
172230
172231
172232
172233
172234
172235
172236
172237
172238
172239
172240
172241
172242
172243
172244
172245
172246
172247
172248
172249
172250
172251
172252
172253
172254
172255
172256
172257
172258
172259
172260
172261
172262
172263
172264
172265
172266
172267
172268
172269
172270
172271
172272
172273
172274
172275
172276
172277
172278
172279
172280
172281
172282
172283
172284
172285
172286
172287
172288
172289
172290
172291
172292
172293
172294
172295
172296
172297
172298
172299
172300
172301
172302
172303
172304
172305
172306
172307
172308
172309
172310
172311
172312
172313
172314
172315
172316
172317
172318
172319
172320
172321
172322
172323
172324
172325
172326
172327
172328
172329
172330
172331
172332
172333
172334
172335
172336
172337
172338
172339
172340
172341
172342
172343
172344
172345
172346
172347
172348
172349
172350
172351
172352
172353
172354
172355
172356
172357
172358
172359
172360
172361
172362
172363
172364
172365
172366
172367
172368
172369
172370
172371
172372
172373
172374
172375
172376
172377
172378
172379
172380
172381
172382
172383
172384
172385
172386
172387
172388
172389
172390
172391
172392
172393
172394
172395
172396
172397
172398
172399
172400
172401
172402
172403
172404
172405
172406
172407
172408
172409
172410
172411
172412
172413
172414
172415
172416
172417
172418
172419
172420
172421
172422
172423
172424
172425
172426
172427
172428
172429
172430
172431
172432
172433
172434
172435
172436
172437
172438
172439
172440
172441
172442
172443
172444
172445
172446
172447
172448
172449
172450
172451
172452
172453
172454
172455
172456
172457
172458
172459
172460
172461
172462
172463
172464
172465
172466
172467
172468
172469
172470
172471
172472
172473
172474
172475
172476
172477
172478
172479
172480
172481
172482
172483
172484
172485
172486
172487
172488
172489
172490
172491
172492
172493
172494
172495
172496
172497
172498
172499
172500
172501
172502
172503
172504
172505
172506
172507
172508
172509
172510
172511
172512
172513
172514
172515
172516
172517
172518
172519
172520
172521
172522
172523
172524
172525
172526
172527
172528
172529
172530
172531
172532
172533
172534
172535
172536
172537
172538
172539
172540
172541
172542
172543
172544
172545
172546
172547
172548
172549
172550
172551
172552
172553
172554
172555
172556
172557
172558
172559
172560
172561
172562
172563
172564
172565
172566
172567
172568
172569
172570
172571
172572
172573
172574
172575
172576
172577
172578
172579
172580
172581
172582
172583
172584
172585
172586
172587
172588
172589
172590
172591
172592
172593
172594
172595
172596
172597
172598
172599
172600
172601
172602
172603
172604
172605
172606
172607
172608
172609
172610
172611
172612
172613
172614
172615
172616
172617
172618
172619
172620
172621
172622
172623
172624
172625
172626
172627
172628
172629
172630
172631
172632
172633
172634
172635
172636
172637
172638
172639
172640
172641
172642
172643
172644
172645
172646
172647
172648
172649
172650
172651
172652
172653
172654
172655
172656
172657
172658
172659
172660
172661
172662
172663
172664
172665
172666
172667
172668
172669
172670
172671
172672
172673
172674
172675
172676
172677
172678
172679
172680
172681
172682
172683
172684
172685
172686
172687
172688
172689
172690
172691
172692
172693
172694
172695
172696
172697
172698
172699
172700
172701
172702
172703
172704
172705
172706
172707
172708
172709
172710
172711
172712
172713
172714
172715
172716
172717
172718
172719
172720
172721
172722
172723
172724
172725
172726
172727
172728
172729
172730
172731
172732
172733

864 A.2 DETAILS ABOUT CUBE PROJECTION
865

866 For equirectangular to cube (E2C) projection, the field-of-view (FoV) of each cube face is equal to
867 90 degrees; each face can be considered as a perspective camera whose focal length is $w/2$, and all
868 faces share the same center point in the world coordinate. Since the six cube faces share the same
869 center point, the extrinsic matrix of each camera can be defined by a rotation matrix R_i . p is then the
870 pixel on the cube face:

$$871 \quad p = K \cdot R_i^T \cdot q, \quad (5)$$

872 where

$$873 \quad q = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} = \begin{bmatrix} \sin(\theta) \cdot \cos(\phi) \\ \sin(\phi) \\ \cos \theta \cdot \cos \phi \end{bmatrix}, K = \begin{bmatrix} w/2 & 0 & w/2 \\ 0 & w/2 & w/2 \\ 0 & 0 & 1 \end{bmatrix}, \quad (6)$$

876 where θ and ϕ are longitude and latitude in equirectangular projection and q is the position in
877 Euclidean space coordinates.

878 While the 90° FoV model is mathematically exact for a perfect cube, it can introduce rendering
879 artifacts at the seams between adjacent faces. To resolve this, we expand the field-of-view slightly,
880 for instance to 95°. This modification ensures that each cube face captures a small, overlapped region
881 from its neighbors. The projection methodology remains the same, but the camera's intrinsic matrix
882 must be recalculated.

883 The relationship between focal length f , image width w , and FoV is given by $f = (w/2)/\tan(\text{FoV}/2)$. For a 95° FoV, the new focal length, denoted by f' , is:

$$886 \quad f' = \frac{w/2}{\tan(95^\circ/2)} = \frac{w/2}{\tan(47.5^\circ)}. \quad (7)$$

888 This results in a modified intrinsic matrix, K' , where the focal length term $w/2$ is replaced by f' :

$$890 \quad K' = \begin{bmatrix} \frac{w/2}{\tan(47.5^\circ)} & 0 & w/2 \\ 0 & \frac{w/2}{\tan(47.5^\circ)} & w/2 \\ 0 & 0 & 1 \end{bmatrix}. \quad (8)$$

894 The final projection equation using the improved model is:

$$895 \quad p = K' \cdot R_i^T \cdot q. \quad (9)$$

897 This adjustment, while minor, is critical for producing high-quality, artifact-free cubemaps suitable
898 for production rendering environments. The definitions of q and R_i remain unchanged.

900 The inverse transformation, Cube to Equirectangular (C2E) projection, which is used to project
901 features from the cube faces back to the panoramic view, is achieved by mathematically reversing this
902 projection process. This robust projection method is essential for the bidirectional feature exchange
903 in our model.

904 A.3 DETAILS ABOUT BIDIRECTIONAL FUSION MODULE
905

906 The performance of traditional multi-view models, such as VGGT that relies on dense overlap,
907 degrades significantly when faced with extremely sparse correspondences resulting from a mere 2.5-
908 degree overlap between anchor views. To address this issue, we introduce an innovative modification
909 to the VGGT architecture, which aims to explicitly enhance cross-view consistency, thereby improving
910 the robustness of depth estimation. Specifically, we integrate a Bidirectional Fusion Module into the
911 pre-trained DPT head to promote cross-view depth consistency. The core principle of this module
912 is to establish geometric correspondences across views while preserving the unique, high-fidelity
913 details inherent to each individual view.

914 The module commences with the feature maps $\{\mathbf{F}_i\}_{i=1}^6$ extracted from the six anchor views. To
915 effectively process the overlapping regions, we first introduce a C2E transformation module. As
916 detailed in Appendix A.2, the C2E transformation leverages strict geometric projection principles
917 to seamlessly project and aggregate the features from the six discrete cube views into a unified
918 equirectangular latent space via differentiable bilinear sampling.

918 Subsequently, a lightweight convolutional layer, \mathbf{H}_c , is applied to this aggregated global feature
 919 map. Its purpose is to smooth the boundaries between the projected views and fuse their information,
 920 forming a globally consistent feature representation, \mathbf{F}_e . This step can be conceptualized as a process
 921 that information from all views is aggregated to build a consensus representation. This forward fusion
 922 process is formulated as:

$$923 \quad \mathbf{F}_e = \mathbf{H}_c(\text{C2E}(\{\mathbf{F}_i\}_{i=1}^6)). \quad (10)$$

926 Next, to propagate this global consistency information back to each individual view, we perform an
 927 inverse process. Through an E2C transformation, the fused global feature \mathbf{F}_e is re-projected into the
 928 coordinate spaces of the six original anchor views.

929 Finally and crucially, rather than directly replacing the original features with this global information,
 930 we employ a residual connection to add it to the original feature map \mathbf{F}_i , yielding the updated
 931 view-specific feature \mathbf{F}'_i :

$$932 \quad \mathbf{F}'_i = \mathbf{F}_i + \text{E2C}(\mathbf{F}_e). \quad (11)$$

935 The elegance of this “local-to-global-to-local” bidirectional mechanism lies in its dual function: the
 936 C2E/E2C transformations are responsible for aligning features in overlapping regions to enforce
 937 geometric consistency, while the residual connection ensures that the model retains and utilizes the
 938 original, high-fidelity details from each view. In this manner, our module effectively strengthens
 939 cross-view constraints while preventing the loss of view-specific information that can occur with
 940 forced fusion.

941 A.4 ABLATION STUDY AND ANALYSIS

943 **Effectiveness of Dual-LoRA Training.** We first compare our Dual-LoRA training against the
 944 common channel-wise concatenation method. As shown in Figure A1, our model exhibits superior
 945 generation quality, no matter with and without the memory condition. This is because our Dual-LoRA
 946 approach can better leverage the two conditions of varying quality. The results in Table A1 further
 947 confirm that Dual-LoRA achieves better visual quality and geometric consistency.

948 **Effectiveness of Memory Condition.** We then analyze the impact of incorporating an additional
 949 memory condition at inference time. Although the quantitative results in Table A1 do not show a
 950 significant improvement, we observe a clear qualitative benefit. As highlighted by the colored boxes
 951 in Figure A1, this condition helps our model maintain better multi-view consistency, especially in
 952 occluded regions requiring significant content synthesis.

954 **Effectiveness of Bidirectional Fusion Module.** Our baseline approach directly applies VGGT for
 955 multi-view consistent depth estimation. However, due to the extremely sparse overlap between anchor
 956 views in panoramic scenarios, VGGT struggles to handle such conditions, resulting in significant
 957 performance degradation compared to geometric estimation tasks with larger overlaps. We fine-tune
 958 VGGT on panoramic images without any architectural modifications, which leads to noticeable
 959 performance improvements but still exhibits seaming artifacts at view boundaries.

960 Our proposed Bidirectional Fusion (BF) module substantially alleviates the geometric inconsisten-
 961 cies at edges. The BF module leverages complementary Cubemap-to-Equirectangular (C2E) and
 962 Equirectangular-to-Cubemap (E2C) transformations to establish robust geometric correspondences
 963 through residual connections. This bidirectional information flow enables the model to better handle
 964 the sparse overlap challenge inherent in panoramic depth estimation. As demonstrated in Table A2,
 965 the integration of the BF module yields significant performance improvements across both datasets,
 966 with notable gains in accuracy metrics such as reduced AbsRel error and increased δ_1 , δ_2 and δ_3 ,
 967 confirming the effectiveness of our approach in addressing multi-view consistency challenges in
 968 panoramic depth estimation.

969 A.5 NVS RESULTS ON DL3DV

971 **Competing Method.** Our primary competing method is MVSplat360 (Chen et al., 2024), a state-of-
 972 the-art method capable of refining rendered views. To ensure a direct and fair comparison, we strictly

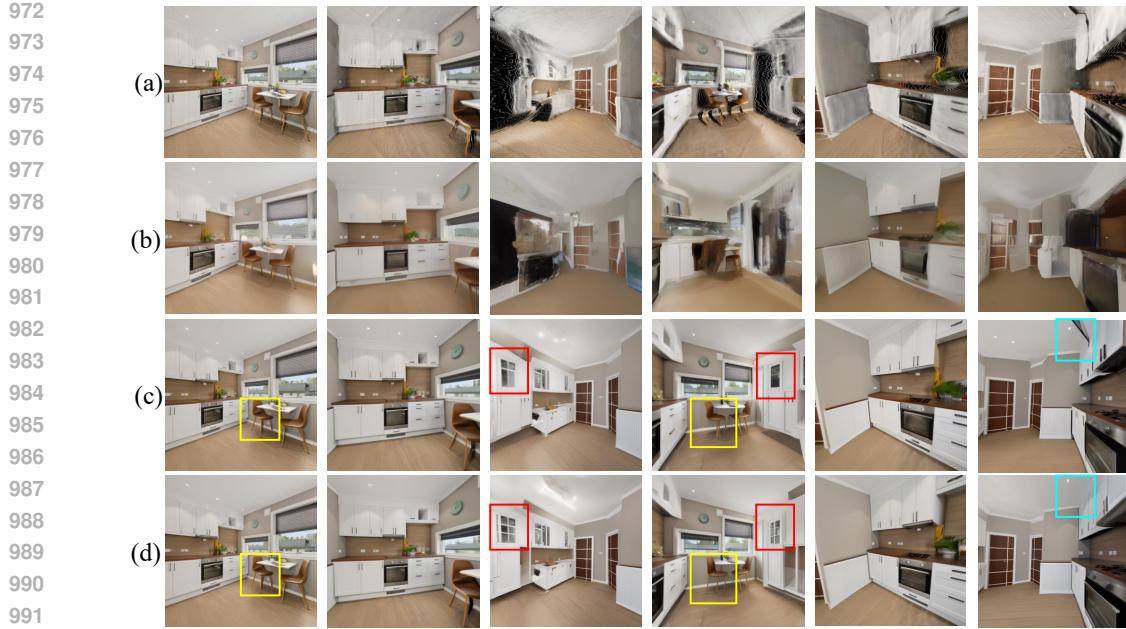


Figure A1: Qualitative comparison for the ablation study. (a) Render views from our 3D scaffold. (b) Naive concatenation baseline. (c) Ours (Dual-LoRA training only). (d) Ours (Full model with memory condition).

Table A1: Ablation study on 3D scaffold guided novel view synthesis.

Methods	NIQE \downarrow	Q-Align \uparrow	CLIP-I \uparrow	TransErr \downarrow	RotErr \downarrow	CamMC \downarrow
Naive Concat.	5.04	3.41	85.30	0.481	0.260	0.655
Dual-LoRA Training	4.42	4.10	89.51	0.326	0.119	0.401
+ Memory Condition	4.43	4.13	89.95	0.326	0.107	0.389

Table A2: Effectiveness of BF module. Zero-shot quantitative comparison on Matterport3D and Stanford2D3D datasets.

Methods	Matterport3D				Stanford2D3D			
	$AbsRel\downarrow$	$\delta_1\uparrow$	$\delta_2\uparrow$	$\delta_3\uparrow$	$AbsRel\downarrow$	$\delta_1\uparrow$	$\delta_2\uparrow$	$\delta_3\uparrow$
Baseline	0.1576	78.82	93.20	96.15	0.1497	81.99	93.53	97.88
w/o BF	0.1204	86.28	95.36	97.45	0.0797	94.31	97.42	98.85
w BF	0.1070	88.97	96.51	98.61	0.0675	95.20	98.53	99.30

adhere to the evaluation protocol established for the DL3DV (Ling et al., 2023) dataset, as utilized by the competing method.

Quantitative Results. As detailed in Table A3, our method demonstrates superior performance over MVSplat360 across all evaluation metrics. Specifically, our method achieves a PSNR of 17.35 (+0.98) and an FID of 116.84 (-1.48). Furthermore, we observe substantial reductions in both LPIPS (0.343) and DIST (0.181) indices, indicating superior perceptual similarity and geometric accuracy, respectively. Collectively, these quantitative improvements underscore our method’s enhanced effectiveness in leveraging auxiliary views to synthesize more accurate and high-fidelity novel views.

Qualitative Results. The qualitative comparisons presented in Figure A2 visually corroborate our quantitative findings. Our method consistently generates sharper and more structurally coherent scenes, showcasing an effective use of information from auxiliary views. In contrast, the results from MVSplat360 frequently exhibit noticeable artifacts and structural distortions, particularly when synthesizing views with large camera pose changes.

Table A3: The NVS numerical comparison on the DL3DV (Ling et al., 2023) dataset.

Methods	PSNR (\uparrow)	SSIM (\uparrow)	LPIPS (\downarrow)	DIST (\downarrow)	FID (\downarrow)
PixelSplat	15.32	0.422	0.517	0.374	139.75
MVSplat	15.94	0.441	0.459	0.282	73.91
MVSplat360	16.37	0.453	0.439	0.238	18.32
Ours	17.35	0.506	0.343	0.181	16.84

Figure A2: Visual comparison with existing SOTA methods on DL3DV.

A.6 MORE QUALITATIVE RESULTS

In this section, we provide more qualitative results to further support the claims presented in the main paper. We showcase a broader range of visual comparisons against baseline methods across diverse and challenging scenes, including indoor, outdoor, and stylized scenes. These examples serve to visually corroborate the quantitative improvements reported in the main paper, highlighting our method’s superior performance in generating explorable 3D scenes.

We present side-by-side visualizations to compare our method, One2Scene, against key competitors: VMem and SEVA. Consistent with the main paper, we also include results for their ‘+’ variants (VMem+ and SEVA+), which are conditioned on our generated anchor views. These comparisons, as shown from Figure A3 to Figure A7, further demonstrate the superior performance of our method in terms of visual fidelity, 3D geometric consistency, and the effective mitigation of scale ambiguity artifacts in previous methods.

A.7 DECLARATION OF GENERATIVE AI ASSISTANCE

During the preparation of this manuscript, we utilized Gemini-2.5-Pro to assist in improving its linguistic quality. Specifically, after completing the initial draft, we provided the model with selected passages to obtain suggestions for grammar, clarity, and conciseness. All AI-assisted revisions were rigorously reviewed and edited by the authors, who assume full responsibility for the final accuracy and scholarly appropriateness of the content.

Figure A3: Qualitative comparison between One2Scene and SOTA methods.

Figure A4: Qualitative comparison between One2Scene and SOTA methods.

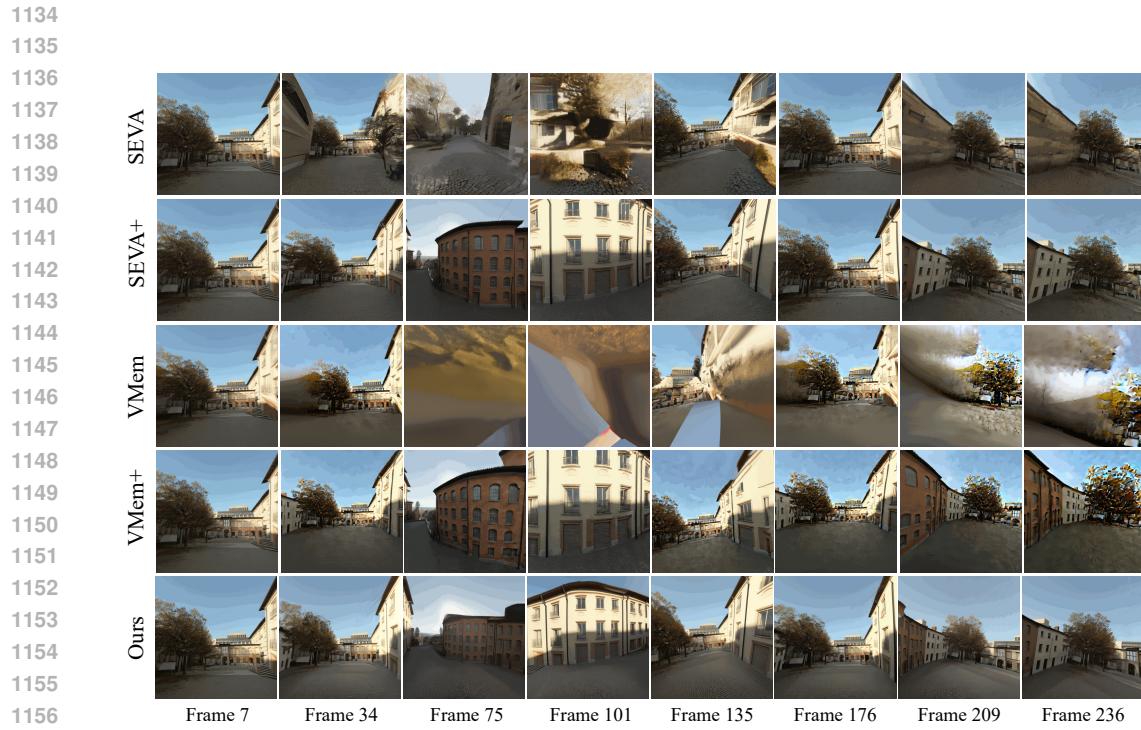


Figure A5: Qualitative comparison between One2Scene and SOTA methods.

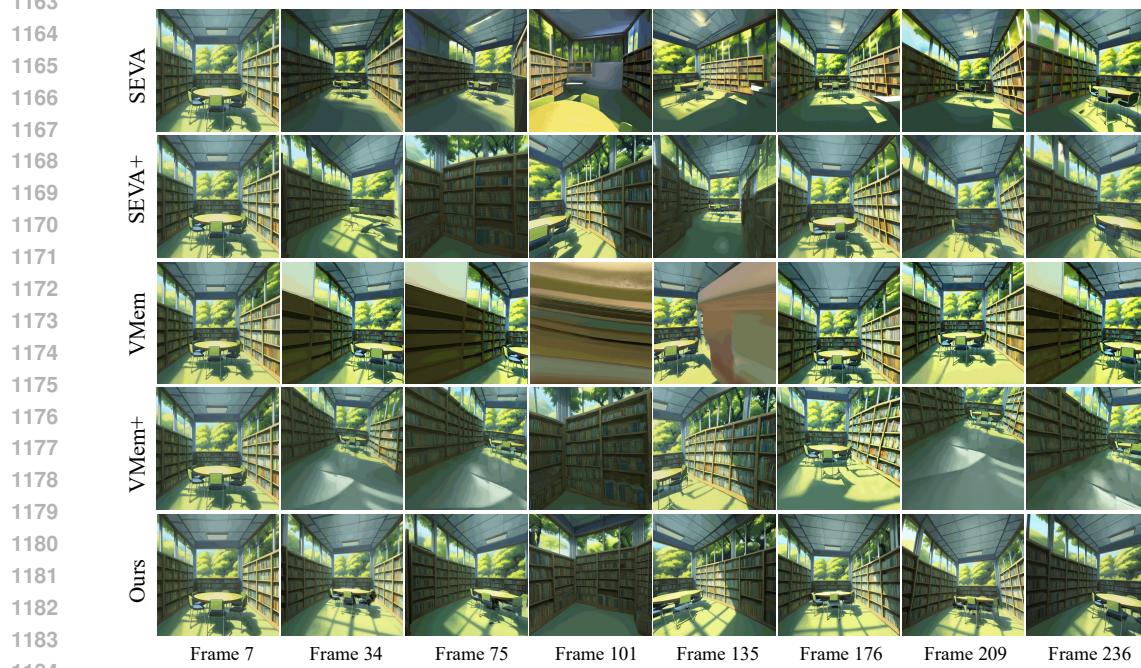


Figure A6: Qualitative comparison between One2Scene and SOTA methods.

Figure A7: Qualitative comparison between One2Scene and SOTA methods.