
To Distill or Decide? The Algorithmic Trade-off in
Partially Observable Reinforcement Learning

Yuda Song
CMU

yudas@cs.cmu.edu

Dhruv Rohatgi
MIT

drohatgi@mit.edu

Aarti Singh
CMU

aarti@cs.cmu.edu

J. Andrew Bagnell
Aurora Innovation, CMU
dbagnell@aurora.tech

Abstract

Partial observability is a notorious challenge in reinforcement learning (RL), due to
the need to learn complex, history-dependent policies. Recent empirical successes
have used privileged expert distillation — which leverages availability of latent
state information during training (e.g., from a simulator) to learn and imitate the op-
timal latent, Markovian policy — to disentangle the task of “learning to see” from
“learning to act” [56, 12, 9]. While expert distillation is more computationally effi-
cient than RL without latent state information, it also has well-documented failure
modes. In this paper — through a simple but instructive theoretical model called
the perturbed Block MDP, and controlled experiments on challenging simulated
locomotion tasks — we investigate the algorithmic trade-off between privileged
expert distillation and standard RL without privileged information. Our main
findings are: (1) The trade-off empirically hinges on the stochasticity of the latent
dynamics, as theoretically predicted by contrasting approximate decodability with
belief contraction in the perturbed Block MDP; and (2) The optimal latent policy
is not always the best latent policy to distill. Our results suggest new guidelines for
effectively exploiting privileged information, potentially advancing the efficiency
of policy learning across many practical partially observable domains.

1 Introduction

Partial observability is a common challenge in applied reinforcement learning: the decision-making
agent may not see the true state of the environment at all time-steps, whose information might only
be probabilistically inferred from the history of observations. An illustrative task is robot learning
for robots with image-based perception [58, 68]. A single image of the robot (or, in first-person
perspective, of the environment) will not capture important elements of the state such as the robot’s
velocity, and may miss other features due to e.g. occlusion or limited view.

The canonical theoretical model for such tasks is Partially Observable Markov Decision Process
(POMDP). Unfortunately, there are well-documented computational [57] and statistical [28] barriers
to planning and learning in POMDPs, which have motivated many theoretical works that seek to
bypass these barriers by making additional structural assumptions [28, 33, 19, 24, 23, 42]. On
the empirical side, the standard technique for mitigating partial observability is frame-stacking,
which enabled notable successes for learning to play Atari games [50, 51]. The idea is to treat the
“state” of the environment as the concatenation of a short window of L recent observations, and
apply a standard algorithm for fully-observed reinforcement learning (RL). This technique inspired
theoretical developments such as L-step decodability [19], and has some theoretical underpinnings
for γ-observable POMDPs [24]. Yet frame-stacking is not a silver bullet for partially observable
decision-making: sometimes effective planning requires long memory [18]. Also, high-dimensional
observations (such as stacks of images) can confound learning complex behaviors [58, 78].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Learning from latent state information. A common heuristic for planning in known POMDPs
is to use the optimal latent policy (also known as the state-based policy or privileged policy) —
i.e., the optimal policy that is allowed to “cheat” and see the underlying state of the environment
— as a starting point for computing an executable policy — i.e. a policy that only depends on the
observable history [40, 65, 12]. More recent works have brought this ansatz to the learning task,
where the description of the POMDP is a priori unknown. In the standard theoretical formalization of
this task [31], the latent states of the POMDP are never observed (nor even identifiable); however,
for applications such as robotics, it is often practically reasonable to construct a simulator of
the environment [13], from which the learning agent may draw trajectories that include both the
observations as well as the latent states — “privileged” information that is only available at training
time, not at test time.

The most prominent paradigm for exploiting this additional information is called privileged expert
distillation,1 which applies methods from imitation learning and structured prediction [15, 62, 64, 8]
to learning in POMDPs. Expert distillation has two steps: (1) learn an optimal latent policy, using a
standard RL algorithm with the latent state information provided by the simulator; and (2) distill the
latent policy to an executable policy, using an imitation learning algorithm such as DAgger [64]. This
paradigm has achieved impressive success in applications such as autonomous driving [9], robotics
[37, 48, 85] and LLMs [11].

These successes suggest a fundamental question: when does expert distillation help in realistic
decision-making tasks? On the one hand, in controlled experiments, expert distillation uniformly
converges faster and more stably than RL without latent state information [53], likely because it
disentangles representation learning from decision-making [9]. Moreover, expert distillation enjoys a
provable computational advantage in decodable POMDPs2 [7]. On the other hand, there are well-
documented failure modes of expert distillation — most notably, due to its inability to encourage
purely information-gathering actions [2, 79] — where more expensive hybrid methods such as
Asymmetric Actor-Critic [58] are fundamentally required.

In this paper, motivated by image-based locomotion tasks, we focus on the middle ground where
(perfect) decodability may fail, yet the observations are still highly informative of the latent state.
In this regime, we ask: (i) when and how is expert distillation as performant as standard RL with
frame-stacking, and (ii) are there lightweight improvements to expert distillation? We use simple
theoretical models in tandem with controlled experiments to address the preceding questions.

Our contributions.

1. The prior theoretical model for understanding the benefits of latent state information was a
perfectly decodable POMDP [7]. We begin by empirically demonstrating that this model is too
restrictive for image-based locomotion tasks.

2. We then introduce approximate decodability, and connect it to the success of expert distillation
— in analogy with the connection between belief contraction and the success of standard rein-
forcement learning with frame-stacking. But when are these conditions satisfied? As a theoretical
testbed, we introduce the perturbed Block MDP.

3. We show both theoretically (by analyzing the perturbed Block MDP model) and experimentally
that the performance of expert distillation compared to standard reinforcement learning depends
crucially on the stochasticity of the model dynamics: for deterministic dynamics, distillation is
competitive with RL, but as the stochasticity increases, its performance comparatively degrades.

4. Finally, we show that distillation of the optimal latent policy is often a sub-optimal use of latent
state information: the simple modification of adding stochasticity to the latent MDP before
computing the optimal policy yields robust performance benefits via improved smoothness.

2 Preliminaries

A (finite-horizon, layered) Partially Observable Markov Decision Process (POMDP) is a tuple
P = (H,X ,S,A,P,O, R), where H ∈ N is the horizon, X = {Xh}Hh=1 is the observa-

1The same paradigm is sometimes called Learning by Cheating or Teacher to Student Learning.
2Decodable POMDPs without any prefix refer to H-step decodable POMDPs, where H is the horizon of the

POMDPs.

2

tion space, S = {Sh}Hh=1 is the latent state space, A = {Ah}Hh=1 is the action space, P =

{Ph : Sh−1 ×Ah−1 → ∆(Sh)}Hh=1 describes the latent transitions, O = {Oh : Sh → ∆(Xh)}Hh=1
describes the emission distributions, and R = {Rh : Sh ×Ah → [0, 1]} describes the rewards.
We write A := maxh|Ah|, S := maxh|Sh|, and X := maxh|Xh|. Given any timestep h
and L ∈ [H], we denote X h−L:h := Xh−L × Xh−L+1 × · · · × Xh, and similarly for Ah−L:h,
with the shorthand h − L := max{1, h − L}. Then an L-step executable policy is a collection
π = {πh : X h−L+1:h ×Ah−L:h−1 → ∆(Ah)}; we let ΠL denote the class of such policies. Given
any executable policy π ∈ Π := ΠH , a trajectory τ = (s1, x1, a1, r1, . . . , sH , xH , aH , rH) is gen-
erated by sh ∼ Ph(sh−1, ah−1), xh ∼ Oh(sh), ah ∼ π(x1:h, a1:h−1), rh = Rh(sh, ah). We use
Pπ and Eπ to denote the law and expectation under this process. Following convention, we assume∑H

h=1 rh ≤ 1 almost surely under all policies. The value of a policy π is J(π) := Eπ
[∑H

h=1 rh

]
.

Note that the POMDP P also defines an underlying Markov Decision Process (MDP)
M = {S,A,P, R,H} (which we call the latent MDP) where the state is fully observable.
A latent (Markovian) policy is a collection πlatent = {πlatent

h : Sh → ∆(Ah)}, and we let Πlatent

denote the class of latent policies. A latent trajectory τ latent = (s1, a1, . . . , sH , aH) is generated
by sh ∼ Ph(sh−1, ah−1), ah ∼ πlatent

h (sh), and we define Pπlatent

and Eπlatent

accordingly.

Learning with/without latent state information. In the standard theoretical RL access model
(i.e. without latent state information) [30, 27], at training time, the learning agent can repeatedly
interact with the POMDP P by playing an executable policy π and observing the partial trajectory
(x1:H , a1:H , r1:H). In contrast, in the learning with latent state information model [7], at training
time, the learning agent can play any policy, and observes the full trajectory (s1:H , x1:H , a1:H , r1:H).
In both settings, the goal is to eventually produce an executable policy π̂ that minimizes J(π⋆)−J(π̂)
(where π⋆ is the optimal executable policy).

Belief states. A belief state is a distribution over latent states. For a prior b on the latent state at step
h− 1, let Uh(b; ah−1, xh) be the posterior on the latent state at step h after taking action ah−1 and
then observing xh (see Definition B.1 for the formal algebraic definition).

Definition 2.1. For any observation/action sequence (x1:h, a1:h−1), the true belief state
bh(x1:h, a1:h−1) is defined as follows. For h = 1 with observation x1, let b1(x1) := B1(P1;x1).
For any 2 ≤ h ≤ H , let

bh(x1:h, a1:h−1) := Uh(bh−1(x1:h−1, a1:h−2); ah−1, xh). (1)

For any executable policy π, step h, and history (x1:h, a1:h−1), bh(x1:h, a1:h−1) is the distribution
of the latent state sh under Pπ , conditioned on (x1:h, a1:h−1) (Lemma C.2).

Many methods for efficient planning in POMDPs are based on approximate belief states that only de-
pend on a short window of recent actions and observations [29, 24]. Informally, the approximate belief
state bapx

h (xh−L+1:h, ah−L:h−1;D) is the posterior on state sh after observing (xh−L+1:h, ah−L:h−1)
with prior D on state sh−L. See Definition B.2 for the formal definition (analogous to Definition 2.1).

Additional notation. For distributions b, b′ ∈ ∆(Sh), the density ratio is ∥b/b′∥∞ =
sups∈Sh

b(s)/b′(s) ∈ [1,∞], with the convention that 0/0 = 1. For a belief state b ∈ ∆(Sh) and
conditional distribution πh : Sh → ∆(Ah), we let πh ◦ b denote the distribution over Ah obtained as

(πh ◦ b)(ah) :=
∑

sh∈Sh
b(sh)πh(ah | sh). (2)

Experimental Setup. We use three tasks in the Deepmind control suite [73]: walker-run, dog-walk
and the challenging humanoid-walk. To implement online (resp., offline) expert distillation, we
(1) train an expert on the latent state information using MrQ [22], and (2) imitate the expert via
DAgger [64] (resp., Behavior Cloning (BC)) on L-step executable policies. Unless otherwise
specified, we use the standard choice of L = 3, and we use mean squared error (MSE) as the
loss function: give input X = {xi}Ni=1 and target Y = {yi ∈ Rd}Ni=1, the loss of a function f is
ℓ(f,X, Y) = 1

Nd

∑N
i=1

∑d
j=1(f(x

i)j − yij)
2. To implement reinforcement learning (RL), we use

MrQ [22] on L-step executable policies. In experiments, we follow the common empirical practice
of only stacking observations (rather than both observations and actions).

Appendices. See Appendix A for additional related work, and Appendix H for experimental details.

3

3 Approximate Decodability and Belief Contraction

Even with access to latent state information during training, the problem of learning a near-optimal
policy in a POMDP is as hard as the planning task (where a description of the POMDP is already
known), which is well-known to be computationally intractable in the worst case [57]. However,
POMDPs encountered in practice will often satisfy additional structural properties that may mitigate
this hardness. Some of the most widely-studied properties are decodability [19, 7] and belief
contraction (also known as filter stability) [29, 24].

Privileged information is known to yield a provable computational benefit in decodable POMDPs
[7]. However, as we empirically demonstrate in Section 3.1, perfect decodability is an unrealistic
assumption in our motivating tasks. For this reason, in Section 3.2 we introduce the notion of
approximate decodability. Heuristically, this property governs the success of expert distillation
with L-step framestacking, whereas belief contraction governs the success of standard RL (also with
L-step framestacking). But when are these properties satisfied? As a clean theoretical testbed for
studying this question, in Section 3.3 we introduce the δ-perturbed Block MDP.

3.1 Prior Work: Perfectly Decodable POMDPs

In some applications, such as video games, it is plausible that the agent can deduce the latent state
from a small number of recent observations. This was empirically substantiated by the success
of DQN [50] and its variants, which only use the most recent four observations as policy inputs.
Theoretically, this motivated the study of the L-step decodable model [19], which posits that the most
recent L observations and actions suffice to fully disambiguate the latent state (Definition B.3).

Without latent state information (i.e. in the standard RL access model), learning a near-optimal
policy in an L-step decodable POMDPs requires Ω(AL) samples [19]. However, with latent state
information, [7] show that the sample and time complexity of learning a near-optimal policy π̂ ∈ ΠM

such that J(π̂) ≥ argmaxπ∈ΠM J(π)−ε with high probability is only poly(S,A,X,H, 1/ε). Thus,
for large L, there is a clear theoretical benefit of latent state information (both statistically and
computationally). However, unfortunately, L-step decodability is not always a realistic assumption:

Empirical test: does perfect decodability hold? Through controlled experiments on our three
chosen locomotion tasks (Section 2), we observe that latent states are not perfectly decodable in
practice, especially in early timesteps. We defer details of this experiment to Appendix H.1.

3.2 Errors in POMDPs

The above empirical result motivates the following theoretical definition of decodability error:
Definition 3.1 (Decodability Error). Fix a POMDP P . The decodability error for an executable
policy π and timestep h ∈ [H] is

εdecodeh (π) := Eπ[1− ∥bh(x1:h, a1:h−1)∥∞].

Intuitively, decodability error quantifies stochasticity of the true belief. Below, we show that it upper
bounds the misspecification of any latent policy πlatent with respect to the class of executable policies.

Lemma 3.1 (See Lemma E.3). Let πlatent ∈ Πlatent be a latent policy and let b̃1:H be a collection
of functions b̃h : X h × Ah−1 → ∆(Sh). Define executable policies π̃, π by π̃(x1:h, a1:h−1) :=

πlatent ◦ b̃h(x1:h, a1:h−1) and π(x1:h, a1:h−1) := πlatent ◦ bh(x1:h, a1:h−1) (see Eq. (2)). Then

TV(Pπlatent

,Pπ̃) ≤
H∑

h=1

2εdecodeh (π) + Eπ̃
[∥∥∥bh(x1:h, a1:h−1)− b̃h(x1:h, a1:h−1)

∥∥∥
1

]
. (3)

Low decodability error is not strictly required for low misspecification (see Section 6), but some such
assumption is needed to rule out models requiring active information-gathering [79]. As a special
case, Lemma 3.1 implies that πlatent is 2

∑H
h=1 ε

decode
h (π)-close to the executable policy π, which

evaluates πlatent at a random state s′h sampled from the true belief bh(x1:h, a1:h−1); this is because if
bh(x1:h, a1:h−1) is highly concentrated, then s′h likely matches the true latent state. The second error
term in Eq. (3) quantifies error in learning the true belief — e.g., due to using only L-step histories.

4

Next, it is instructive to contrast decodability error with belief contraction error, the discrepancy
between the true belief and the approximate belief induced by the L most recent observations/actions:

Definition 3.2 (Belief Contraction Error [24]). Fix a POMDP P . For an executable policy π, and
timestep h ∈ [H], the L-step belief contraction error (L ∈ [h− 1]) is

εcontracth (π;L) := Eπ
[
∥bh(x1:h, a1:h−1)− bapx

h (xh−L+1:h, ah−L:h−1; unif(Sh−L))∥1
]
.

In the absence of latent state information, bounding the belief contraction error is the standard method
of analyzing provably efficient algorithms for RL in POMDPs [29, 75, 24]. Indeed, belief contraction
implies that the POMDP with L-step frame-stacking is approximately Markovian, which heuristically
suggests that a standard RL algorithm [30, 5] with frame-stacking should achieve low error in time
≈ (AX)O(L). Due to technical issues with error compounding, this is not formally true, but under
an additional observability condition, there is an algorithm that provably achieves that guarantee:

Theorem 3.1 (Informal; see Theorem B.1; due to [23]). Suppose the POMDP is γ-observable
(Definition B.4), and satisfies L-step belief contraction with error ε.3 There exists a reinforcement
learning algorithm that achieves the sub-optimality bound

J(π⋆)− J(πrl) ≤ ε · poly(S,X,H, γ−1),

in time (XA)O(L) · poly(H,S, γ−1, ε−1).

Technically, the explicit result in [23] fixes L ∼ log4(SH/ε)/γ (in which case the desired belief
contraction bound is implied by γ-observability, but the algorithm requires quasi-polynomial time),
but we observe that the proof extends to the result above — see Theorem B.1. Notably, Theorem 3.1
gives a polynomial-time algorithm if belief contraction holds for L = O(1).

3.3 The Perturbed Block MDP

Approximate decodability and belief contraction are conditions under which expert distillation and
standard RL with frame-stacking, respectively, may be reasonably expected to succeed. But when
are these conditions satisfied, and how do they compare? As a theoretical testbed, we introduce
the perturbed Block MDP model. Block MDPs [16] are a well-studied abstraction of environments
with rich observations yet simple latent dynamics. However, they assume that the latent state is
fully determined by the current observation. Below, we generalize Block MDPs by allowing for δ
probability that the observation is sampled from an arbitrary conditional distribution.4

Definition 3.3. Fix a parameter δ > 0. A POMDP P is a δ-perturbed Block MDP if, for each h ∈ [H],
there are Õh, Eh : Sh → ∆(Xh) such that Õh : Sh → ∆(Xh) satisfies the block property [17], i.e.
Õh(· | sh), Õh(· | s′h) have disjoint supports for all sh ̸= s′h, and moreover the emission distribution
Oh at step h can be decomposed as follows: Oh(xh | sh) = (1− δ)Õh(xh | sh) + δEh(xh | sh).

A simple example is the noisy sensor model where S = X and the true state is observed with
probability at least 1− δ. Later, we will examine the empirical validity of this model; for now we
study its theoretical implications. Below, we prove that for any δ-perturbed Block MDP, the belief
contraction error decays exponentially as the frame-stack increases, by a factor of O(δ) per frame.

Theorem 3.2 (See Theorem D.1). Suppose that the POMDP P is a δ-perturbed Block MDP. There is
a universal constant CD.1 > 1 with the following property. Fix an executable policy π, indices 1 ≤
h−L < h ≤ H , and a distribution D ∈ ∆(Sh−L). Then for any partial history (x1:h−L, a1:h−L−1),

Eπ[∥bh(x1:h, a1:h−1)− bapx
h (xh−L+1:h, ah−L:h−1;D)∥

1
] ≤ (CD.1δ)

L/9

∥∥∥∥bh(x1:h−L, a1:h−L−1)

D

∥∥∥∥
∞

where the expectation is over trajectories drawn from policy π conditioned on the partial history
(x1:h−L, a1:h−L−1). Thus, in particular, εcontracth (π;L) ≤ (CD.1δ)

L/9S.

3Technically, the result requires slightly generalizing Definition 3.2; see Theorem B.1 for the formal statement.
4To be clear, our theoretical focus is on issues arising from partial observability, not on representation learning.

The size of the observation space is conceptually tangential, so we omit introducing technical complications
such as function approximation, which are central to theory for fully-observed Block MDPs [82, 47, 61].

5

Figure 1: The performance of (offline/online) expert distillation and RL with respect to wall-clock
time. We repeat each experiment 5 times and plot the mean and standard deviation. For the time
complexity of BC, we include the data collection time, and amortize it over the training steps. For
both BC and DAgger, we include the time to train the latent expert (also amortized).

While prior belief contraction results [24] apply to this model, they only yield contraction by
1 − (1 − 2δ)/C per frame, for a large constant C > 1 (Remark D.1), and so are vacuous for
L = o(logS), even in the regime δ ≪ 1 (i.e. low observation noise). Theorem 3.2 remedies this
limitation; e.g. for δ = 1/S it yields εcontracth (π;L) ≤ O(1/S) with only L = O(1). To prove
Theorem 3.2, one might hope that each new observation contracts the TV-distance by poly(δ) in
expectation. This is false (Example D.1), but in such cases, it turns out that the density ratio decays,
yielding a win-win argument.

Heuristically, Theorem 3.2 suggests that standard RL with L-step frame-stacking should progressively
improve as L increases. Formally, Theorem 3.2 and Theorem 3.1 imply the following end-to-end
learning guarantee for the RL algorithm of [23] (which does not use latent state information):
Corollary 3.1 (Informal; see Corollary F.1). There is a method that, for any δ-perturbed Block MDP,
learns a policy π̂ with J(π⋆)− J(π̂) ≤ (C3.2δ)

L/9(SXH)O(1) in time (XA/δ)O(L)(HS)O(1).

From a theoretical view, it remains to understand the decodability error for the perturbed Block MDP.
As we will show, this qualitatively depends on the stochasticity of the transition dynamics.

4 Distillation is Competitive for Deterministic Dynamics

In some environments, it is reasonable to assume that the latent transition dynamics are deterministic
(e.g., if the dynamics are governed by simple Newtonian mechanics). Simulation benchmarks with
this property include some Atari games as well as MuJoCo tasks. In this section, we theoretically and
empirically study the performance of expert distillation, versus standard RL with frame-stacking, in
such environments (with deterministic latent transitions, but stochastic initial state and observations).

4.1 Theoretical Analysis under Deterministic Dynamics

Below, we show that for perturbed Block MDPs with deterministic dynamics, the decodability error
decays exponentially as the step h ∈ [H] increases. Intuitively, each observation concentrates the
true belief state further, and the deterministic transitions cannot “spread out” the belief state. While
this intuition is not quite rigorous, it can be proven that most observations concentrate the belief state;
the result follows from an appropriate martingale analysis (Lemma C.5).
Proposition 4.1 (See Proposition D.1). There is a universal constant C4.1 > 1 so that the following
holds. Suppose that P is a δ-perturbed Block MDP with deterministic transitions. For any executable
policy π and index h ∈ [H], it holds that εdecodeh (π) ≤ min(δ, (C4.1δ)

(h−1)/9).

From Lemma 3.1, the “ideal” distillation of a latent expert πlatent is πimitation := πlatent ◦ b, i.e.,
given any history, query the latent expert based on the true belief. Combining Lemma 3.1 and
Proposition 4.1 immediately yields a strong, horizon-independent guarantee for this policy: if πlatent

is the optimal latent policy, then

J(π⋆)− J(πimitation) ≤ J(πlatent)− J(πimitation) ≤ 2

H∑
h=1

min(δ, (C4.1δ)
(h−1)/9) ≤ O(δ),

where the first inequality is by Lemma C.4. Of course, exactly learning the true belief state may be
unrealistic, since this would require conditioning on the entire history. However, we can prove that (a

6

100 200 300 400
Horizon

5

10

15

20

N
or

m
al

iz
ed

 S
ub

op
tim

al
ity

Suboptimality vs. Horizon - walker
Individual runs
Linear fit (R² = 0.1354)
Mean ± SE

100 200 300 400
Horizon

2

4

6

8

10

12

14

N
or

m
al

iz
ed

 S
ub

op
tim

al
ity

Suboptimality vs. Horizon - dog
Individual runs
Linear fit (R² = 0.7831)
Mean ± SE

100 200 300 400
Horizon

4

6

8

10

12

14

16

N
or

m
al

iz
ed

 S
ub

op
tim

al
ity

Suboptimality vs. Horizon - humanoid
Individual runs
Linear fit (R² = 0.6479)
Mean ± SE

100 200 300 400
Horizon

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

 S
ub

op
tim

al
ity

DAgger Suboptimality vs. Horizon - Walker
Individual runs
Linear fit (R² = 0.1574)
Mean ± SE

100 200 300 400
Horizon

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

 S
ub

op
tim

al
ity

DAgger Suboptimality vs. Horizon - Dog
Individual runs
Linear fit (R² = 0.1963)
Mean ± SE

100 200 300 400
Horizon

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 S
ub

op
tim

al
ity

DAgger Suboptimality vs. Horizon - Humanoid

Individual runs
Linear fit (R² = 0.0398)
Mean ± SE

Figure 2: The normalized suboptimality of the expert distillation algorithms (top: behavior cloning;
bottom: DAgger) with respect to the horizon. We repeat 5 runs for each horizon and task, and perform
linear regression on the results from each task. Note that the trajectory rewards for this plot have
been normalized by horizon (and by action-prediction error), so linear scaling indicates compounding
errors.

slight modification of) the Forward algorithm [62] (the non-stationary version of DAgger) on L-step
executable policies learns the following approximation of πimitation,5 in the infinite-sample limit:

πForward
h (· | xh−L+1:h, ah−L:h−1) =

{
πlatent
h ◦ bapx

h (xh−L+1:h, ah−L:h−1; d
πForward

h−L) if h > L

πlatent
h ◦ bh(x1:h, a1:h−1) otherwise

See Appendix E.2 for the algorithm and proof. Applying this derivation to Lemma 3.1, then using
Proposition 4.1 to bound the decodability error and Theorem 3.2 to bound the error in approximate
beliefs, gives the following guarantee for expert distillation under deterministic latent dynamics:
Theorem 4.1 (See Theorem E.1). Suppose that the POMDP P is a δ-perturbed Block MDP with
deterministic transitions, and fix L ∈ N. Let πlatent ∈ Πlatent be the optimal latent policy, and let
πForward be the policy computed by Forward with policy class ΠL (i.e. all L-step executable policies)
and expert πlatent, in the infinite-sample limit. Then

J(π⋆)− J(πForward) ≤ J(πlatent)− J(πForward) ≤ TV(Pπlatent

,Pπ̃) ≤ O(δ) + (CD.1δ)
L/9SH.

Comparison with RL. While Theorem 4.1 is presented in the infinite-sample limit, the effective
sample complexity is only ≈ (XA)O(L), since the optimization is over L-step executable policies.
More concretely, up to additional error εopt, the above guarantee can be achieved by the same
algorithm with only poly((AX)L, H, ε−1

opt) time and samples (Theorem E.2). Thus, the guarantee
for Forward qualitatively matches the guarantee for RL (Corollary 3.1), aside from the additional
horizon-independent term of O(δ) incurred above (due to poor decodability in initial steps).

4.2 Empirical Analysis under Deterministic Dynamics

Theorem 4.1 gives a strong performance guarantee for expert distillation under deterministic latent
dynamics, nearly matching that of RL. This suggests that expert distillation may be preferred over
standard RL due to its (practical) efficiency. Also, Theorem 4.1 suggests that error may compound
with the horizon H . However, the result is only an upper bound, and only for a stylized setting. We
now investigate whether these two theoretical implications hold up empirically.

Expert distillation outperforms RL under deterministic dynamics. In this experiment, we
compare the (a) asymptotic performance and (b) computational efficiency of expert distillation and

5Note that behavior cloning will not learn the same policy, due to the latching effect [72] (i.e. conditioning on
past actions of the latent expert). It may nevertheless achieve the same regret bound as Forward in our setting:
theoretically separating these algorithms likely requires assuming e.g. recoverability [20].

7

Figure 3: Performance of DAgger and RL with different frame-stacks on humanoid-walk and
dog-walk with motor noise. We repeat each experiment 5 times and plot the mean and standard
deviation. Note that in general, the improvement of RL over DAgger increases with the motor noise.

standard RL. We train each method until convergence, and we plot the episodic return with respect
to the wall clock time in Figure 1. We see that offline expert distillation (i.e., behavior cloning) is
competitive in easier tasks such as walker, but is suboptimal in harder tasks such as humanoid and
dog. However, online imitation learning (i.e., DAgger) is able to achieve the best performance in all
tasks, and with better computational efficiency (i.e., faster convergence) than RL. This supports our
theory that under deterministic dynamics, expert distillation can be close to optimal.

Empirical vignette: the source of error compounding? The horizon dependence of the error in
imitation learning has received intensive empirical [62, 35, 3] and theoretical [59, 20, 60] study, both
from the perspective of sample complexity [59, 20] and misspecification [60]. It is widely believed
that behavior cloning suffers error compounding over the horizon, which is avoided by online methods
such as DAgger that are able to recover from mistakes [63, 59]. Does this compounding manifest
in expert distillation for POMDPs, and is the cause sampling error or misspecification? In Figure
2, we vary the horizon H ∈ [50, 450], and measure the sub-optimality of offline and online expert
distillation. We normalize rewards so that trajectory reward lies in [0, 1]. We further normalize by
mean action-prediction MSE (averaged over choice of H). We see strong horizon dependence for
behavior cloning (and weaker for DAgger, likely due to recoverability). This contrasts with empirical
results of [20]: they perform well-specified behavior cloning in similar tasks, and find little horizon
dependence. Together, our results therefore suggest that misspecification, rather than sampling error,
may be the more fundamental source of horizon dependence for behavior cloning.

5 RL Outperforms Distillation for Stochastic Dynamics

While deterministic dynamics are plausible in some applications, there are also many potential
sources of stochasticity; in real-world robotics, stochasticity may be required to model e.g. internal
motor noise or unknowable features of the external environment. Some robotics simulators [44] also
have stochasticity arising from a PDE solver. How does the stochasticity of the environment affect
the performance of expert distillation and RL?

5.1 Theoretical Analysis under Stochastic Dynamics

We show a negative result in the perturbed Block MDP model: for general dynamics, the misspecifi-
cation of the optimal latent policy with respect to the class of L-step executable policies does not
necessarily decay as L increases, in contrast with the case of deterministic dynamics (Lemma 3.1).

Proposition 5.1 (See Proposition D.2). Let δ > 0 and H ∈ N. There is a δ-perturbed Block MDP
P with horizon H such that for all L ∈ [H], the optimal latent policy πlatent satisfies the following
bound, where ΠL is the class of L-step executable policies:

min
π∈ΠL

TV(Pπlatent

,Pπ) ≥ Ω(min(1, δH)).

8

This result also highlights the difference between decodability error and belief contraction error,
which does decay as L increases, regardless of the transition dynamics (Theorem 3.2). The intuition
for Proposition 5.1 is simple: in the extreme case where the dynamics are uniformly mixing at every
step, prior observations yield no information about the current state, so the δ error incurred by trying
to decode the current observation is irreducible. This decodability error compounds over timesteps,
and means that executable policies are unable to simulate the latent policy that plays an action
uniquely indexed by the latent state. In contrast, POMDPs with uniform mixing are easy for standard
RL, precisely because they reduce to H independent horizon-1 subproblems.

Comparison with RL. The above result, compared with Corollary 3.1, suggests a potential empirical
benefit of standard RL over expert distillation: the former may generically be able to trade increased
computation (by increasing L) for improved performance (by mitigating observation noise), whereas
the latter — at least in the worst case — incurs irreducible error due to stochasticity in the dynam-
ics. To be sure, the uniformly-mixing construction from Proposition 5.1 is practically unrealistic;
nevertheless, below we verify that this benefit occurs in more realistic environments.

5.2 Experimental Analysis under Stochastic Dynamics

RL with more computation eventually outperforms distillation. To simulate a POMDP with
stochastic latent dynamics, we apply motor noise in the humanoid-walk task. We add 0-mean
isotropic Gaussian noise with std-dev ∈ {0.1, 0.2, 0.3} to each action. We compare DAgger and RL
with frame-stack L ∈ {2, 3, 4}. We run each method until convergence (with the same number of
episodes for all runs with fixed algorithm/noise level) and plot episodic return against wall-clock
time (Figure 3). We observe that expert distillation does not benefit from larger L, whereas the
performance of RL sometimes benefits (at the cost of longer wall-clock time). This improvement is
not as dramatic as the theory predicts, perhaps suggesting that there is theoretically unaccounted-for
dependence between observation errors. Nevertheless, the results do corroborate the main prediction:
RL robustly outperforms expert distillation for higher noise levels.

Empirical vignette: does belief contraction error track RL sub-optimality? We empirically
estimate belief contraction error for each task with no motor noise, and for humanoid-walk with
std-dev = 0.2. We approximate the (unknown) ground truth belief by training a model b̂L⋆

that takes
L⋆ = 10 input frames. We compare against models b̂L with L ∈ [2, 5] input frames. Each model’s
output belief is parametrized as a multivariate Gaussian distribution with diagonal covariance. All
models are trained on the same 2000 trajectories collected by the latent expert policy. For each L

we compute the KL-divergence (a tractable proxy for TV-distance) between outputs of b̂L and b̂L⋆

,
and average across 100 episodes of validation data, also collected by the same latent expert policy.
We find that the empirical error decreases slightly as L increases (Figure 7), though not as fast as the
theory predicts.6 Adding motor noise has little noticeable effect (Figure 8). Interestingly, the error
is not predictive across tasks: dog-walk has highest empirical error among the three tasks, yet RL
achieves the lowest sub-optimality on it (Figure 1), indicating a theoretically-unexplained confounder.

6 Towards Better Distillation: Imitating a Smoother Expert

In this section, we discuss how the bounds via approximate decodability (e.g., Lemma 3.1) are
loose since they fail to capture the smoothness of the latent expert. A tighter bound with smoothness
suggests potential benefits of artificially smoothing the latent expert before distillation. We then
propose a broadly-applicable method for improving the smoothness, and show that it yields empirical
benefits. We view these results as largely a proof-of-concept and leave more detailed investigation
to future work.

Smoothness of the latent policy. Suppose that the true belief state at some step is always uniform
over two particular states {s, s′}. Then decodability error is large, and a worst-case latent policy
πlatent — namely, one that plays different actions on these states — is unavoidably misspecified with
respect to the class of executable policies. However, ambiguity between s and s′ is most likely to
occur if these states are somehow similar (e.g., close w.r.t. a metric). If πlatent is smooth in the sense
that it plays similar action distributions for nearby states, then the misspecification should be mitigated.

6Note that for γ-observable POMDPs, KL-divergence is also predicted to decay as L increases [24].

9

Figure 4: Performance of DAgger on the validation dataset for the humanoid-walk and dog-walk
environments with motor noise σ = 0.2, as the noise level for the training environment (i.e. the
environment in which the latent expert was trained) varies over {0.1, 0.2, 0.3, 0.4, 0.5}.

This phenomenon can be captured more generally by the following variant of Definition 3.1, which
measures decodability error of the actions (and hence is adaptive to the latent expert):
Definition 6.1 (Action-prediction error). Fix a latent policy πlatent. For a fixed executable policy π,
and timestep h, the action-prediction error is defined as

εact;π
latent

h (π) = Eπ
[
1−

∥∥πlatent ◦ bh(x1:h, a1:h−1)
∥∥
∞

]
.

In Lemma 3.1, the decodability error can indeed be replaced by the action-prediction error — see
Lemma E.4. Note that so long as πlatent is deterministic (which is without loss of generality for the
optimal latent policy), it generically holds that εact;π

latent

h (π) ≤ εdecodeh (π).

Algorithmic intervention: smoothing experts with motor noise. One way to construct a smoother
expert policy is to pre- or post-compose the optimal latent policy at each step with e.g. a Gaussian
convolution kernel (on the state or action space, respectively). However, such approaches ignore the
sequential nature of decision-making: smoothing the policy at later steps means that earlier actions
may no longer be optimal. We propose instead computing the optimal policy for a modified latent
MDP with additional motor noise. This encourages robustness to motor noise, as a tractable proxy
for robustness to observation noise—see Appendix G for an example of one potential mechanism by
which the former may lead to the latter.

Experimental results. For both humanoid-walk and dog-walk, for each σ ∈
{0.1, 0.2, 0.3, 0.4, 0.5}, we train an expert latent policy πσ in the environment with mean-0, std.
dev.-σ, Gaussian motor noise on each action. We distill each expert to an executable policy via
DAgger in an environment with σ = 0.2. We observe that π0.2 incurs worse estimated action-
prediction error than some higher-noise experts (Figure 9). Moreover, despite being the optimal
latent policy for this environment, it is not the best expert to distill (Figure 4): the distillations of
policies with lower action-prediction error achieve higher reward (substantially for humanoid-walk
and modestly for dog-walk). We also observe that the effect disappears when the true environment
has deterministic dynamics (Appendix H.2), likely since it is near-decodable.

Related methods. We view this method as a lightweight version of asymmetric RL methods that
iteratively refine the expert [78]. It is also closely related to the principle of noise injection in imitation
learning [35, 4], which has been shown to robustify Behavior Cloning—to match the performance of
DAgger—by mitigating out-of-distribution effects.7 Figure 4 demonstrates that even though DAgger
uses online data collection to mitigate out-of-distribution effects, noise injection can still improve its
performance in challenging image-based tasks—thus suggesting that there may be a qualitatively
different phenomenon at play in highly misspecified settings.

Limitations and future work. Our theoretical results are for discrete tabular models with independent
observation noise; weakening these assumptions could yield more precise understanding of the
fundamental challenges that arise in applications with rich partial observations. Our experiments
use synthetic injected motor noise; extending to more natural sources of stochasticity could be
valuable. Also, there is a vast design space of algorithmic interventions for smoothing, of which we
have only touched the surface. Finally, our work is motivated by applications like robot learning
where near-decodability is plausible, but an important problem — which we did not explore — is to
understand the algorithmic trade-offs in applications that require active information-gathering.

7We remark that DAgger saturates most of the benchmarks used by [35].

10

Acknowledgements

The authors are grateful to Noah Golowich, Audrey Huang, Nan Jiang, Akshay Krishnamurthy, Ankur
Moitra, Wen Sun, Gokul Swamy, and Kaiqing Zhang for their insightful discussion. AS and YS
acknowledge and thank the support of ONR grant N000142212363 and NSF AI Institute for Societal
Decision Making AI-SDM grant IIS2229881. DR is supported by NSF awards CCF-2430381 and
DMS-2022448, and ONR grant N00014-22-1-2339.

References
[1] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains

using egocentric vision. In Conference on robot learning, pages 403–415. PMLR, 2023.

[2] S. Arora, S. Choudhury, and S. Scherer. Hindsight is only 50/50: Unsuitability of mdp
based approximate pomdp solvers for multi-resolution information gathering. arXiv preprint
arXiv:1804.02573, 2018.

[3] A. Block, D. J. Foster, A. Krishnamurthy, M. Simchowitz, and C. Zhang. Butterfly effects
of sgd noise: Error amplification in behavior cloning and autoregression. arXiv preprint
arXiv:2310.11428, 2023.

[4] A. Block, A. Jadbabaie, D. Pfrommer, M. Simchowitz, and R. Tedrake. Provable guarantees for
generative behavior cloning: Bridging low-level stability and high-level behavior. Advances in
Neural Information Processing Systems, 36:48534–48547, 2023.

[5] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

[6] D. Burago, M. De Rougemont, and A. Slissenko. On the complexity of partially observed
markov decision processes. Theoretical Computer Science, 157(2):161–183, 1996.

[7] Y. Cai, X. Liu, A. Oikonomou, and K. Zhang. Provable partially observable reinforcement
learning with privileged information. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[8] K.-W. Chang, A. Krishnamurthy, A. Agarwal, H. Daumé III, and J. Langford. Learning to
search better than your teacher. In International Conference on Machine Learning, pages
2058–2066. PMLR, 2015.

[9] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In Conference on Robot
Learning (CoRL), 2019.

[10] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pages 11443–11450. IEEE,
2024.

[11] S. Choudhury. Process reward models for llm agents: Practical framework and directions. arXiv
preprint arXiv:2502.10325, 2025.

[12] S. Choudhury, M. Bhardwaj, S. Arora, A. Kapoor, G. Ranade, S. Scherer, and D. Dey. Data-
driven planning via imitation learning. The International Journal of Robotics Research, 37(13-
14):1632–1672, 2018.

[13] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P. Abbeel, and
W. Zaremba. Transfer from simulation to real world through learning deep inverse dynamics
model. arXiv preprint arXiv:1610.03518, 2016.

[14] C. Dann, N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. On
oracle-efficient PAC RL with rich observations. In Advances in Neural Information Processing
Systems, 2018.

[15] H. Daumé, J. Langford, and D. Marcu. Search-based structured prediction. Machine learning,
75:297–325, 2009.

11

[16] S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik, and J. Langford. Provably efficient
RL with rich observations via latent state decoding. In International Conference on Machine
Learning, 2019.

[17] S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik, and J. Langford. Provably efficient
RL with rich observations via latent state decoding. In International Conference on Machine
Learning, pages 1665–1674. PMLR, 2019.

[18] O. Eberhard, M. Muehlebach, and C. Vernade. Partially observable reinforcement learning with
memory traces. arXiv preprint arXiv:2503.15200, 2025.

[19] Y. Efroni, C. Jin, A. Krishnamurthy, and S. Miryoosefi. Provable reinforcement learning with
a short-term memory. In International Conference on Machine Learning, pages 5832–5850.
PMLR, 2022.

[20] D. J. Foster, A. Block, and D. Misra. Is behavior cloning all you need? understanding horizon in
imitation learning. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

[21] J. Fu, Y. Song, Y. Wu, F. Yu, and D. Scaramuzza. Learning deep sensorimotor policies for vision-
based autonomous drone racing. In 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5243–5250. IEEE, 2023.

[22] S. Fujimoto, P. D’Oro, A. Zhang, Y. Tian, and M. Rabbat. Towards general-purpose model-free
reinforcement learning. In The Thirteenth International Conference on Learning Representa-
tions, 2025.

[23] N. Golowich, A. Moitra, and D. Rohatgi. Learning in observable pomdps, without computa-
tionally intractable oracles. Advances in neural information processing systems, 35:1458–1473,
2022.

[24] N. Golowich, A. Moitra, and D. Rohatgi. Planning and learning in partially observable systems
via filter stability. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
pages 349–362, 2023.

[25] N. Golowich, A. Moitra, and D. Rohatgi. Exploration is harder than prediction: Cryptographi-
cally separating reinforcement learning from supervised learning. In 2024 IEEE 65th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1953–1967. IEEE, 2024.

[26] D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation for
quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024.

[27] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision
processes with low Bellman rank are PAC-learnable. In International Conference on Machine
Learning, 2017.

[28] C. Jin, S. Kakade, A. Krishnamurthy, and Q. Liu. Sample-efficient reinforcement learning of
undercomplete POMDPs. Advances in Neural Information Processing Systems, 33, 2020.

[29] A. Kara and S. Yuksel. Near optimality of finite memory feedback policies in partially observed
markov decision processes. Journal of Machine Learning Research, 23(11):1–46, 2022.

[30] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
learning, 49:209–232, 2002.

[31] A. Krishnamurthy, A. Agarwal, and J. Langford. PAC reinforcement learning with rich observa-
tions. In Advances in Neural Information Processing Systems, 2016.

[32] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

[33] J. Kwon, Y. Efroni, C. Caramanis, and S. Mannor. RL for latent MDPs: Regret guarantees and
a lower bound. Advances in Neural Information Processing Systems, 34, 2021.

12

[34] J. Kwon, S. Mannor, C. Caramanis, and Y. Efroni. RL in latent MDPs is tractable: Online
guarantees via off-policy evaluation. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[35] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. In Conference on robot learning, pages 143–156. PMLR, 2017.

[36] J. Lee, A. Agarwal, C. Dann, and T. Zhang. Learning in pomdps is sample-efficient with
hindsight observability. In International Conference on Machine Learning, pages 18733–18773.
PMLR, 2023.

[37] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion
over challenging terrain. Science Robotics, 5, 2020.

[38] Y. Li, G. Xie, and Z. Lu. Guided policy optimization under partial observability. arXiv preprint
arXiv:2505.15418, 2025.

[39] M. L. Littman. Memoryless policies: Theoretical limitations and practical results. In From
Animals to Animats 3: Proceedings of the third international conference on simulation of
adaptive behavior, volume 3, page 238. MIT Press Cambridge, MA, USA, 1994.

[40] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable
environments: Scaling up. In Machine Learning Proceedings 1995, pages 362–370. Elsevier,
1995.

[41] Q. Liu, A. Chung, C. Szepesvári, and C. Jin. When is partially observable reinforcement
learning not scary? In Conference on Learning Theory, pages 5175–5220. PMLR, 2022.

[42] Q. Liu, P. Netrapalli, C. Szepesvari, and C. Jin. Optimistic mle: A generic model-based
algorithm for partially observable sequential decision making. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, pages 363–376, 2023.

[43] Z. Luo, J. Cao, K. Kitani, W. Xu, et al. Perpetual humanoid control for real-time simulated
avatars. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10895–10904, 2023.

[44] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simulation
for robot learning. ArXiv, abs/2108.10470, 2021.

[45] N. Messikommer, J. Xing, E. Aljalbout, and D. Scaramuzza. Student-informed teacher training.
arXiv preprint arXiv:2412.09149, 2024.

[46] Z. Mhammedi, A. Block, D. J. Foster, and A. Rakhlin. Efficient model-free exploration in
low-rank MDPs. Advances in Neural Information Processing Systems, 2023.

[47] Z. Mhammedi, D. J. Foster, and A. Rakhlin. Representation learning with multi-step inverse
kinematics: An efficient and optimal approach to rich-observation rl. In International Confer-
ence on Machine Learning, 2023.

[48] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust
perceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[49] D. Misra, M. Henaff, A. Krishnamurthy, and J. Langford. Kinematic state abstraction and
provably efficient rich-observation reinforcement learning. In International conference on
machine learning, 2020.

[50] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[51] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

13

[52] A. Mousa, N. Karavis, M. Caprio, W. Pan, and R. Allmendinger. Tar: Teacher-aligned represen-
tations via contrastive learning for quadrupedal locomotion. arXiv preprint arXiv:2503.20839,
2025.

[53] T. Mu, Z. Li, S. W. Strzelecki, X. Yuan, Y. Yao, L. Liang, and H. Su. When should we
prefer state-to-visual dagger over visual reinforcement learning? In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pages 14637–14645, 2025.

[54] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of finite-horizon markov
decision process problems. Journal of the ACM (JACM), 47(4):681–720, 2000.

[55] H. Nguyen, A. Baisero, D. Wang, C. Amato, and R. Platt. Leveraging fully observable policies
for learning under partial observability. arXiv preprint arXiv:2211.01991, 2022.

[56] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots. Agile autonomous
driving using end-to-end deep imitation learning. arXiv preprint arXiv:1709.07174, 2017.

[57] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of markov decision processes. Mathe-
matics of operations research, 12(3):441–450, 1987.

[58] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic
for image-based robot learning. ArXiv, abs/1710.06542, 2017.

[59] N. Rajaraman, L. Yang, J. Jiao, and K. Ramchandran. Toward the fundamental limits of
imitation learning. Advances in Neural Information Processing Systems, 33:2914–2924, 2020.

[60] D. Rohatgi, A. Block, A. Huang, A. Krishnamurthy, and D. J. Foster. Computational-statistical
tradeoffs at the next-token prediction barrier: Autoregressive and imitation learning under
misspecification. arXiv preprint arXiv:2502.12465, 2025.

[61] D. Rohatgi and D. J. Foster. Necessary and sufficient oracles: Toward a computational taxonomy
for reinforcement learning. arXiv preprint arXiv:2502.08632, 2025.

[62] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668.
JMLR Workshop and Conference Proceedings, 2010.

[63] S. Ross and J. A. Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

[64] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011.

[65] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online planning algorithms for pomdps.
Journal of Artificial Intelligence Research, 32:663–704, 2008.

[66] S. Seo, H. Hwang, H. Yang, and K.-E. Kim. Regularized behavior cloning for blocking the
leakage of past action information. Advances in Neural Information Processing Systems,
36:2128–2153, 2023.

[67] I. Shenfeld, Z.-W. Hong, A. Tamar, and P. Agrawal. Tgrl: An algorithm for teacher guided
reinforcement learning. In International Conference on Machine Learning, pages 31077–31093.
PMLR, 2023.

[68] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-
tion. ArXiv, abs/2109.12098, 2021.

[69] Y. Song, K. Shi, R. Penicka, and D. Scaramuzza. Learning perception-aware agile flight in
cluttered environments. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 1989–1995. IEEE, 2023.

14

[70] Y. Song, L. Wu, D. J. Foster, and A. Krishnamurthy. Rich-observation reinforcement learning
with continuous latent dynamics. In Forty-first International Conference on Machine Learning,
2024.

[71] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell. Deeply aggrevated:
Differentiable imitation learning for sequential prediction. In International conference on
machine learning, pages 3309–3318. PMLR, 2017.

[72] G. Swamy, S. Choudhury, J. Bagnell, and S. Z. Wu. Sequence model imitation learning with
unobserved contexts. Advances in Neural Information Processing Systems, 35:17665–17676,
2022.

[73] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, T. P. Lillicrap, and M. A. Riedmiller. Deepmind control suite. ArXiv,
abs/1801.00690, 2018.

[74] M. Uehara, H. Kiyohara, A. Bennett, V. Chernozhukov, N. Jiang, N. Kallus, C. Shi, and W. Sun.
Future-dependent value-based off-policy evaluation in pomdps. Advances in neural information
processing systems, 36:15991–16008, 2023.

[75] M. Uehara, A. Sekhari, J. D. Lee, N. Kallus, and W. Sun. Provably efficient reinforcement
learning in partially observable dynamical systems. Advances in Neural Information Processing
Systems, 35:578–592, 2022.

[76] M. Uehara, A. Sekhari, J. D. Lee, N. Kallus, and W. Sun. Computationally efficient pac rl in
pomdps with latent determinism and conditional embeddings. In International Conference on
Machine Learning, pages 34615–34641. PMLR, 2023.

[77] A. Walsman, M. Zhang, S. Choudhury, D. Fox, and A. Farhadi. Impossibly good experts and
how to follow them. In The Eleventh International Conference on Learning Representations,
2022.

[78] A. Warrington, J. W. Lavington, A. Scibior, M. Schmidt, and F. Wood. Robust asymmetric
learning in pomdps. In International Conference on Machine Learning, pages 11013–11023.
PMLR, 2021.

[79] L. Weihs, U. Jain, I.-J. Liu, J. Salvador, S. Lazebnik, A. Kembhavi, and A. Schwing. Bridging
the imitation gap by adaptive insubordination. Advances in Neural Information Processing
Systems, 34:19134–19146, 2021.

[80] R. Yang, G. Yang, and X. Wang. Neural volumetric memory for visual locomotion control. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1430–1440, 2023.

[81] W. Zhan, M. Uehara, W. Sun, and J. D. Lee. PAC reinforcement learning for predictive state
representations. In The Eleventh International Conference on Learning Representations, 2023.

[82] X. Zhang, Y. Song, M. Uehara, M. Wang, A. Agarwal, and W. Sun. Efficient reinforcement
learning in block MDPs: A model-free representation learning approach. In International
Conference on Machine Learning, 2022.

[83] Y. Zhang and N. Jiang. Statistical tractability of off-policy evaluation of history-dependent
policies in pomdps. arXiv preprint arXiv:2503.01134, 2025.

[84] R. Zhou, R. Wang, and S. S. Du. Horizon-free reinforcement learning for latent markov decision
processes. 2022.

[85] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. In Conference on Robot Learning (CoRL), 2023.

15

Contents of Appendix
A Additional Related Work 16

A.1 Theoretical literature . 16
A.2 Empirical literature . 17

B Additional Preliminaries 18
B.1 Belief states . 18
B.2 Decodability and γ-Observability . 18

C Technical Lemmas 19

D Omitted Proofs for Perturbed Block MDP 23
D.1 Belief Contraction . 24
D.2 Approximate Decodability . 28
D.3 Misspecification Lower Bound for Stochastic Dynamics 31

E Omitted Proofs for Expert Distillation 31
E.1 Misspecification Bounds for Composed Policies . 31
E.2 Analysis of Forward for L-step Executable Policies 34
E.3 Finite-sample guarantee . 35

F Omitted Proofs for Reinforcement Learning 36

G A Motivating Toy Model for Smoothing 37

H Supplemental Materials for Experiments 37
H.1 Misspecification of Decodability in Practice . 37
H.2 Imitating a Smoother Expert under Deterministic Latent Dynamics 38
H.3 Omitted Figures . 40
H.4 Experiment Details . 41

A Additional Related Work

A.1 Theoretical literature

Planning and learning in POMDPs. It is well-known that the planning problem in POMDPs (i.e.
finding a near-optimal policy given the description of the POMDP) is computationally intractable
[57, 39, 6, 54], and the harder learning problem (i.e. finding a near-optimal policy given interactive
sample access to the POMDP) is also statistically intractable [31], without additional assumptions.
In light of these results, there has been recent interest in uncovering natural assumptions that allow
statistically or computationally efficient algorithms. On the computational side, [19] introduced the
L-step decodability assumption, and under this assumption derived a learning algorithm with time
complexity poly(XL, AL, H) via frame-stacking. Additionally, [24, 23] derived a quasi-polynomial
time algorithm for learning in γ-observable POMDPs. Computationally efficient learning algorithms
are also known for certain classes of POMDPs with deterministic dynamics [28, 76] and certain latent
MDPs [33, 34], which are a special case of POMDPs with fixed latent information.

On the statistical side, [28] derived a statistically efficient algorithm for POMDPs satisfying a weak
observability condition. Recently, [41, 75, 42, 81] proposed statistically efficient algorithms for
POMDPs or Predictive State Representations (PSR) satisfying certain low-rank conditions. More
tangential to our work, there has also been increasing interest in off-policy evaluation in POMDPs
[74, 83].

Learning with privileged information in POMDPs. The most relevant theoretical works to ours
are recent works that study the problem of learning POMDPs with latent state information (also
called hindsight observability) [33, 84, 36, 7]. Of these, [33, 84] are focused on a narrow yet
interesting special case of POMDPs called latent MDPs, where the unobserved data is fixed and low-
dimensional. [36] show that learning in general POMDPs with latent state information is statistically
tractable, in contrast with the situation without latent state information. [7] show that with latent

16

state information the sample complexity of the algorithm for learning γ-observable POMDPs [23]
can be improved from quasi-polynomial to polynomial, though it is an open question whether this is
possible without latent state information. Finally, as mentioned earlier, [7] showed that in perfectly
decodable POMDPs (Definition B.3), expert distillation yields a fully polynomial time algorithm for
learning (for arbitrarily large window size L). Since there is a statistical lower bound of Ω(AL) in the
absence of latent state information [19], this yields a provable computational benefit of latent state
information (and, in particular, for expert distillation), but only for perfectly decodable POMDPs.

Compared to the preceding theoretical works, our work seeks both theoretically and empirically
grounded understanding of the relative merits of expert distillation versus standard reinforcement
learning. Among works with similar motivations or results, [12] derive expressions for the output
of expert distillation (analogous to Lemma 3.1, except they use a slightly different value-based
distillation procedure rather than policy-based) and establish sub-optimality bounds for several
imitation learning algorithms. However, they do not instantiate these bounds for concrete models,
or theoretically contrast with reinforcement learning. [71] establish provable benefits of imitating
the optimal policy in a fully-observed MDP (versus learning it via reinforcement learning), but they
do not consider partial observability nor the ensuing error due to misspecification. [72] discuss a
failure mode of expert distillation in POMDPs when using offline imitation learning to distill the
latent expert. The “latching” effect that they discuss is due to conditioning on previous actions (see
also [66]) — a technical issue that corresponds to why we analyze Forward with L random actions —
though it is not clear whether this effect is related to the performance gaps between behavior cloning
and DAgger in our locomotion experiments. Finally, several works [2, 79] give examples of a more
fundamental failure mode of expert distillation: in general POMDPs, the optimal policy may need to
take information-gathering actions. The classical “Tiger Door” exemplifies this failure mode [40].

Learning with rich observations. There has been extensive recent interest in reinforcement learning
with rich observations [31], i.e. where the observation space is too large to enumerate. This line of
work has developed largely in parallel with the literature on partial observability, but it is motivated
by similar applications as our work (e.g. robotics with image-based perception), and these works
formalize the fundamental empirical challenge of representation learning, i.e. “learning to see” [9].
The most well-studied model is the Block MDP [14, 17], which corresponds to perfect decodability
with L = 1, but is studied in function approximation settings where the observation space is extremely
large or infinite, since the problem is computationally easy if the observation space has polynomially-
bounded cardinality. While the task of learning in Block MDPs is typically computationally intractable
as it inherits the intractable of PAC learning [25], there is by now precise understanding of the
computational complexity relative to supervised learning oracles [49, 82, 46, 70, 61].

As observed by [7], there is also a provable computational benefit of latent state information in Block
MDPs. Recent works [23, 61] showed that in the absence of latent state information, learning in
Φ-decodable Block MDPs (where Φ is the function approximation class) is strictly harder than the
supervised learning task of Φ-decodable one-context regression. In contrast, it is straightforward to
see that with latent state information and a one-context regression oracle, the true decoding function
ϕ⋆ ∈ Φ can be learned up to inverse-polynomial error (on average over any exploratory policy). This
function, composed with the optimal latent policy, yields the optimal executable policy. [7] formally
proved this result with a slightly different (multi-class classification rather than regression) supervised
learning oracle.

A.2 Empirical literature

Applied methods that learn with privileged information. Privileged information has been widely
used in training policies for real-world POMDPs, such as in robotics and autonomous driving. The
most prominent and successful method is expert distillation [56, 9, 37, 48, 32, 85, 80, 69, 21, 26, 10].
First, one trains an expert policy with access to privileged information — either the latent state
in a simulator [9], or observation data from more expensive sensors that will not be available at
deployment [56]. Second, one trains an executable policy by performing offline or online imitation
learning with respect to the latent policy. [56] also observe empirical benefits of online imitation
learning compared to offline, which is corroborated by our results. While there are also notable
successes of using RL without privileged information [1, 43], some of the previously-mentioned
works observed that RL without privileged information failed to learn locomotion in their environment
[37].

17

Motivated by the theoretical failure modes of expert distillation in the prequel, there is also a line
of work in the middle ground between expert distillation and RL without privileged information,
that seeks to avoid these failure modes while also improving the convergence of standard RL. These
hybrid methods include Asymmetric Actor-Critic [58], and more broadly are described as asymmetric
learning [58, 79, 78, 55, 77, 67, 45, 52, 38]. While there is some evidence that an algorithm
inspired by Asymmetric Actor-Critic may enjoy an improved statistical/computational trade-off
for γ-observable POMDPs [7] (compared to the best-known algorithm that does not use privileged
information [23]), the theoretical foundations for these methods remain otherwise largely unexplored.

Learning with and without privileged information. In addition to the previously-mentioned
ablation experiments [37], recent work of [53] conducted controlled comparisons between expert dis-
tillation and standard RL on simulated locomotion and manipulation tasks, with the goal of providing
heuristic guidance on when to prefer expert distillation over RL without privileged information. They
found that expert distillation converges faster. They also classified tasks as “easy” or “hard” based on
the convergence speed of standard RL, and suggested that expert distillation performed better on the
“hard” tasks.

Improvements to expert distillation. Recall that a key benefit of expert distillation for POMDPs
with rich observations (e.g. as found in robotics with image-based perception) was that it avoids
performing reinforcement learning on the high-dimensional and complex observation space. In
contrast, most of the previously-mentioned works on asymmetric learning use exactly such an
algorithm (e.g., as the “Actor” component in Asymmetric Actor-Critic). An exception is the method
of [78], which is a variant of expert distillation that iteratively refines the expert with the goal of
decreasing misspecification. Our smoothed distillation method (Section 6) can be thought of as a
more lightweight approach that refines the expert in one shot. As mentioned in Section 6, it is also
similar (though not identical) to several noise injection methods in imitation learning [35, 4].

B Additional Preliminaries

B.1 Belief states

The following operators describe how a belief state evolves as more information is revealed.
Definition B.1 (Belief state update [24]). For each h ∈ {1, . . . ,H}, the Bayes operator is Bh :
∆(Sh)×Xh → ∆(Sh) defined by

Bh(b;xh)(sh) :=
Oh(xh | sh)b(sh)∑

zh∈Sh
Oh(xh | zh)b(zh)

.

For each h ∈ {2, . . . ,H}, the belief update operator Uh : ∆(Sh−1) × Ah−1 × Xh → ∆(Sh), is
defined by Uh(b; ah−1, xh) := Bh(Ph(ah−1) · b;xh) where Ph(a) denotes the real-valued |Sh| ×
|Sh−1| matrix of latent transition probabilities from step h− 1 to step h under action ah−1.

The following definition of an approximate belief state is analogous to the inductive definition of
a true belief state (Definition 2.1); the only difference is that it updates based on a window of the
L most recent observations and actions (xh−L+1:h, ah−L:h−1) rather than the entire history, and is
additionally parametrized by a distribution D (which represents the prior on the latent state at step
h− L).
Definition B.2. For a window length L > 0, any h > L, and prior D ∈ ∆(Sh−L), the approximate
belief state is inductively defined as

bapx
h (xh−L+1:h, ah−L:h−1;D) := Uh(b

apx
h−1(xh−L+1:h−1, ah−L:h−2;D), ah−1, xh)

where for L = 0, bapx
h (∅;D) := D. For h ≤ L, the approximate belief state is defined to coincide

with the true belief state.

B.2 Decodability and γ-Observability

For completeness, we include the definition of (perfect) L-step decodability from [19].
Definition B.3 (L-step decodable model [19]). A POMDP is said to be L-step decodable if, for each
timestep h ∈ [H], there exists a deterministic mapping ϕh : X h−L:h ×Ah−L:h−1 → Sh such that
for any admissible trajectory τ = (s, x, a)1:h (i.e., a trajectory that occurs with positive probability
under the uniformly random policy), we have sh = ϕh(xh−L:h, ah−L:h−1).

18

Next, we introduce relevant definitions and results relating to γ-observable POMDPs from [24, 23].

Definition B.4 (γ-observability [24]). Let γ ∈ (0, 1). A POMDP is γ-observable if for any h ∈ [H]
and distributions b, b′ ∈ ∆(Sh), it holds that∥∥O⊤

h b−O⊤
h b

′∥∥
1
≥ γ∥b− b′∥1,

where Oh ∈ RSh×Xh is the observation matrix defined by (Oh)sx := Oh(x | s).

The algorithm of [23] for learning γ-observable POMDPs in quasi-polynomial time requires bounding
a slightly generalized version of the belief contraction error defined in Definition 3.2. We state this
version below.

Definition B.5 (Generalized belief contraction [23]). Let ε, ϕ ∈ (0, 1) and L ∈ N. We say that a
POMDP P satisfies (ε;ϕ,L)-belief contraction if the following property holds. Let π be an executable

policy, let h ∈ {L + 1, . . . ,H}, and let D,D′ ∈ ∆(Sh−L). If
∥∥∥D′

D

∥∥∥
∞

≤ 1/ϕ, then for any fixed

history (x1:h−L, a1:h−L−1) it holds that

Esh−L∼D′Eπ
[
∥bapx

h (xh−L+1:h, ah−L:h−1;D′)− bapx(xh−L+1:h, ah−L:h−1;D)∥
1

]
≤ ε

where the inner expectation is over partial trajectories (xh−L+1:h, ah−L:h−1) drawn from P by
initializing to latent state sh−L at step h − L, and sampling action ak ∼ π(x1:k, a1:k−1) at each
h− L ≤ k < h.

For context, see [23, Theorem 6.2] for the formal statement that γ-observability implies (ε;ϕ,L)-
belief contraction with L ∼ γ−4 log(1/(εϕ)). Definition 3.2 is a special case of the above definition,
with D′ := bh−L(x1:h−L, a1:h−L−1) and D := unif(Sh−L).

Theorem B.1 ([23]). There is a constant C⋆ with the following property. Given ε, β, γ > 0, L ∈ N,
and a γ-observable POMDP P , set ϕ := γ

C⋆·H5S7/2X2 ε. If P satisfies (ε;ϕ,L)-belief contraction,
the algorithm BaSeCAMP [23] produces an executable policy π̂ that satisfies

J(π⋆)− J(π̂) ≤ ε · poly(S,X,H, γ−1)

with probability at least 1 − β. Moreover, the time complexity is
poly((XA)L, H, S, ε−1, γ−1, log(β−1)).

Proof. Immediate from inspecting the analysis of BaSeCAMP [23]: while their analysis sets
L := γ−4 log(1/(εϕ)), the only place this is used in the proof is to invoke [23, Theorem 6.2] (which
is the claim that any γ-observable POMDP satisfies (ε;ϕ,L)-belief contraction with that choice of
L). Thus, it is sufficient to choose any L for which (ε;ϕ,L)-belief contraction holds.

C Technical Lemmas

Lemma C.1 (Data processing inequality). Let S, T be sets, let p, q ∈ ∆(S) be distributions, and let
K : S → ∆(T) be a conditional distribution function. Then

TV(K ◦ p,K ◦ q) ≤ TV(p, q).

Similarly, if p ≪ q, then ∥∥∥∥K ◦ p
K ◦ q

∥∥∥∥
∞

≤
∥∥∥∥pq
∥∥∥∥
∞

.

Proof. The first inequality follows from the fact that total variation distance is an f -divergence. The
second inequality can be directly checked: for all y ∈ T ,

(K ◦ p)(y) =
∑
x∈S

K(y | x)p(x) ≤
∥∥∥∥pq
∥∥∥∥
∞

∑
x∈S

K(y | x)q(x) =
∥∥∥∥pq
∥∥∥∥
∞

(K ◦ q)(y)

as needed.

19

Recall that a policy is executable if the action distribution at any step is determined by the ac-
tion/observation history (note that a latent policy therefore may not be executable). The following
lemma, which was implicitly used in prior work [24], verifies under any executable policy, the
conditional distribution of the latent state given the history is the true belief state.8

Lemma C.2. Fix any step h ∈ [H] and executable policy π. Then

Pπ[sh | x1:h, a1:h−1] = bh(x1:h, a1:h−1)(sh)

and, if h > 1,

Pπ[xh | x1:h−1, a1:h−1] = (O⊤
h · Ph(ah−1) · bh−1(x1:h−1, a1:h−2))(xh)

for any action/observation history (x1:h, a1:h−1) and latent state sh.

Proof. We prove the first claim by induction on h. It is clear that Pπ[s1 | x1] ∝ O1(x1 | s1)P[s1] ∝
B1(P1;x1) = b1(x1)(s1), where proportionality is up to factors independent of s1. Since Pπ[· | x1]
and b1(x1) are distributions, it follows from the proportionality that they are equal. Now fix any
h ∈ {2, . . . ,H} and assume the claim holds for h−1. Let (s1:h, x1:h, a1:h−1) be a random trajectory
drawn from Pπ, i.e. generated via sh ∼ Ph(sh−1, ah−1), xh ∼ Oh(sh), and ah ∼ π(x1:h, a1:h−1)
(since we assumed that π is executable, the action distribution does not directly depend on s1:h).
Then,

Pπ[sh | x1:h, a1:h−1] ∝
∑

s1:h−1

Pπ[s1:h, x1:h, a1:h−1]

=
∑

s1:h−1

Pπ[s1:h−1, x1:h−1, a1:h−2]π(x1:h−1, a1:h−2)P[sh | sh−1, ah−1]Oh(xh | sh)

∝
∑

s1:h−1

Pπ[s1:h−1, x1:h−1, a1:h−2]P[sh | sh−1, ah−1]Oh(xh | sh)

= Oh(xh | sh)
∑
sh−1

P[sh | sh−1, ah−1]
∑

s1:h−2

Pπ[s1:h−1, x1:h−1, a1:h−2]

∝ Oh(xh | sh)
∑
sh−1

P[sh | sh−1, ah−1]Pπ[sh−1 | x1:h−1, a1:h−2]

= Oh(xh | sh)
∑
sh−1

P[sh | sh−1, ah−1]bh−1(x1:h−1, a1:h−2)(sh−1)

∝ bh(x1:h, a1:h−1)(sh)

where the penultimate equality uses the induction hypothesis and the final equality uses Eq. (1). This
proves the first claim. To prove the second claim, observe that by a similar argument to above, for
any h > 1,

Pπ[sh | x1:h−1, a1:h−1] ∝
∑
sh−1

P[sh | sh−1, ah−1]bh−1(x1:h−1, a1:h−2)(sh−1)

so that Pπ[sh | x1:h−1, a1:h−1] = (Ph(ah−1) · bh−1(x1:h−1, a1:h−2))(sh). But then

Pπ[xh | x1:h−1, a1:h−1] ∝
∑
s1:h

Pπ[s1:h, x1:h, a1:h−1]

=
∑
sh

Oh(xh | sh)
∑

s1:h−1

Pπ[s1:h, x1:h−1, a1:h−1]

∝
∑
sh

Oh(xh | sh)Pπ[sh | x1:h−1, a1:h−1].

Therefore Pπ[xh | x1:h−1, a1:h−1] = (O⊤
h · Ph(ah−1) · bh−1(x1:h−1, a1:h−2))(xh) as claimed.

We will also need the following variant of Lemma C.2, which shows how approximate belief states
arise as conditional probability distributions:

8Note that this is not true for all policies, since a latent policy could reveal the latent state (or, more generally,
bias the conditional distribution) by its choice of action. This issue underpins the “latching” effect observed in
behavior cloning of privileged experts [72].

20

Lemma C.3. Fix any h ∈ [H], L ∈ {0, . . . , h − 1}, and executable policy π where πh−t(· |
x1:h−t, a1:h−t−1) is determined by (xh−L+1:h−t, ah−L:h−t−1) for all t ∈ [L]. Then

Pπ[sh | xh−L+1:h, ah−L:h−1] = bapx
h (xh−L+1:h, ah−L:h−1; d

π
h−L).

Proof. We induct on L. If L = 0 then, for any h ∈ [H], by definition Pπ[sh] = dπh(sh) =
bapx
h (∅; dπh)(sh). Fix any L > 0 and suppose the claim holds for L− 1 (for all h > L− 1). Then for

any h > L,

Pπ[sh | xh−L+1:h, ah−L:h−1]

∝
∑

sh−L:h−1

Pπ[sh−L:h, xh−L+1:h, ah−L:h−1]

=
∑

sh−L:h−1

Pπ[sh−L:h−1, xh−L+1:h−1, ah−L:h−2]π(ah−1 | xh−L+1:h−1, ah−L:h−2)Ph[sh | sh−1, ah−1]Oh(xh | sh)

∝
∑

sh−L:h−1

Pπ[sh−L:h−1, xh−L+1:h−1, ah−L:h−2]Ph[sh | sh−1, ah−1]Oh(xh | sh)

= Oh(xh | sh)
∑
sh−1

Ph[sh | sh−1, ah−1]Pπ[sh−1, xh−L+1:h−1, ah−L:h−2]

∝ Oh(xh | sh)
∑
sh−1

Ph[sh | sh−1, ah−1]Pπ[sh−1 | xh−L+1:h−1, ah−L:h−2]

= Oh(xh | sh)
∑
sh−1

Ph[sh | sh−1, ah−1]b
apx
h−1(xh−L+1:h−1, ah−L:h−2; d

π
h−L)(sh−1)

∝ bapx
h (xh−L+1:h, ah−L:h−1; d

π
h−L)(sh)

by the induction hypothesis and the definition of bapx
h (xh−L+1:h, ah−L:h−1; d

π
h−L).

The following fact is well-known.
Lemma C.4. Let π⋆ be the optimal policy of the POMDP, and let πlatent be the optimal policy of the
MDP. Then we have that

J(π⋆) ≤ J(πlatent).

Proof. We prove by proving a more general result. Consider any POMDP P and its corresponding
MDP M, for any latent policy πlatent, we use QM;πlatent

h : Sh ×Ah → [0, 1] to denote the Q-value
of following πlatent in the MDP at timestep h. We use QP;π

h : X 1:h × A1:h → [0, 1] to denote the
Q-value at timestep h of following executable policy π. We will use QP and QM to denote the
optimal POMDP Q-value and optimal MDP Q-value functions. Note that QP satisfies the following
optimality equation, for any x1:h, a1:h, we have

QP
h ((x1:h, a1:h−1), ah) =

∑
sh

bh(x1:h, a1:h−1)Rh(sh, ah) +
∑
xh+1

P (xh+1 | x1:h, a1:h)max
ah+1

QP
h ((x1:h+1, a1:h), ah+1),

where P (xh+1 | x1:h, a1:h) =
∑

sh,sh+1
bh(sh | x1:h, a1:h)Ph(sh+1 | sh, ah)Oh+1(xh+1 | sh+1).

Note that in this case, x1:h, ah−1 can be summarize as bh(x1:h, ah−1); and thus given any belief
bh ∈ ∆(Sh), we will abuse the notation and define

QP
h (bh, ah) =

∑
sh

bh(sh)Rh(sh, ah) +
∑
xh+1

P (xh+1 | bh, ah)max
ah+1

QP
h (bh+1, ah+1),

where bh+1 := Uh+1(bh; ah, xh+1). Similarly, we can define

QM
h (bh, ah) =

∑
sh

bh(sh)Q
M(sh, ah).

Note that in this case, let π⋆ be the optimal executable policy, and let πlatent be the optimal MDP
policy, we have that

J(π⋆) = Ex1

[
QP

1 (b1(x1), π
⋆(x1))

]
,

21

and
J(πlatent) = Es1 [Q

M
1 (s1, π

latent(s1))].

In the following we will prove that, for any timestep h ∈ [H], for any admissible belief bh ∈ ∆(Sh),
fix action ah, we have that

QM
h (bh, ah) ≥ QP

h (bh, ah).

We proceed with induction. For h = H , we have

QM
H (bH , aH) =

∑
sH

bH(sH)RH(sH , aH) = QP
H(bH , aH).

Then assuming QM
h+1(bh+1, ah+1) ≥ QP

h (bh+1, ah+1) for any admissible bh+1, we have for any
admissible bh and action ah,

QP
h (bh, ah) =

∑
sh

bh(sh)Rh(sh, ah) +
∑
xh+1

P (xh+1 | bh, ah)max
ah+1

QP
h+1(bh+1, ah+1)

≤
∑
sh

bh(sh)Rh(sh, ah) +
∑
xh+1

P (xh+1 | bh, ah)max
ah+1

QM
h+1(bh+1, ah+1)

≤
∑
sh

bh(sh)Rh(sh, ah) +
∑
xh+1

P (xh+1 | bh, ah)

∑
sh+1

bh+1(sh+1)max
ah+1

QM
h+1(sh+1, ah+1)

.

For any function f that only depend on the state, we have

∑
xh+1

P (xh+1 | bh, ah)

∑
sh+1

bh+1(sh+1)f(sh+1)


=
∑
xh+1

P (xh+1 | bh, ah)

∑
sh+1

(Oh(xh+1 | sh+1)
∑

sh
Ph(sh+1 | sh, ah)bh(sh)

P (xh+1 | bh, ah)

)
f(sh+1)


=
∑
xh+1

∑
sh+1

Oh+1(xh+1 | sh+1)
∑
sh

Ph(sh+1 | sh, ah)bh(sh)f(sh+1)

=
∑

sh,sh+1

Ph(sh+1 | sh, ah)bh(sh)f(sh+1).

This gives that

QP
h (bh, ah) ≤

∑
sh

bh(sh)Rh(sh, ah) +
∑

sh,sh+1

Ph(sh+1 | sh, ah)bh(sh)max
ah+1

QM
h+1(sh+1, ah+1)

=
∑
sh

bh(sh)

Rh(sh, ah) +
∑
sh+1

Ph(sh+1 | sh, ah)max
ah+1

QM
h+1(sh+1, ah+1)


=
∑
sh

bh(sh)Q
M
h (sh, ah)

= QM
h (bh, ah).

Finally, we conclude the proof by noting that

J(πlatent) = Es1 [Q
M
1 (s1, π

latent(s1))] = Es1 [max
a1

QM
1 (s1, a1)] ≥ max

a1

QM
1 (b1, a1) ≥ max

a1

QP
1 (b1, a1) = J(π⋆).

We will need the following martingale bound to analyze belief contraction error and decodability
error in the perturbed Block MDP.

22

Lemma C.5. Fix ε ∈ (0, 3−6) and S > 0. Let X0, . . . , XL be a non-negative supermartingale with
E[X0] ≤ S and Pr[Xn+1 > εXn|Xn] ≤ ε almost surely for all 0 ≤ n < L. Then

E[min(XL, S)] ≤ 2 · 3LεL/3S.

Proof. For any integer 0 ≤ n ≤ L and any integer k, define f(n, k) := Pr[εk+1S < Xn ≤ εkS].
We prove by induction on n that f(n, k) ≤ 3nε(n−k)/3. If n = 0, then the claim is trivially true for
k ≥ 0 since f(n, k) ≤ 1 always. For any k < 0, by Markov’s inequality,

f(0, k) ≤ Pr[X0 > εk+1S] ≤ E[X0]

εk+1S
= ε−k−1 ≤ ε−k/3.

For any 0 < n ≤ L and integer k, we have

f(n, k) =

∞∑
ℓ=−∞

Pr[εk+1S < Xn ≤ εkS | εℓ+1S < Xn−1 ≤ εℓS] · f(n− 1, ℓ)

≤
k−1∑

ℓ=−∞

f(n− 1, ℓ) + εf(n− 1, k) + εf(n− 1, k + 1) +

∞∑
ℓ=k+2

εℓ−k−1f(n− 1, ℓ) (4)

where the inequality uses the following two facts. First, for any ℓ ≥ k,

Pr[εk+1S < Xn ≤ εkS | εℓ+1S < Xn−1 ≤ εℓS] ≤ Pr[Xn > εXn−1 | εℓ+1S < Xn−1 ≤ εℓS] ≤ ε

by lemma assumption. Second, for any ℓ ≥ k + 2,

Pr[εk+1S < Xn ≤ εkS | εℓ+1S < Xn−1 ≤ εℓS] ≤ Pr[Xn > εk+1−ℓXn−1 | εℓ+1S < Xn−1 ≤ εℓS]

≤ εℓ−k−1

since X0, . . . , XL is a supermartingale. Returning to Eq. (4), we get

f(n, k) ≤
k−1∑

ℓ=−∞

f(n− 1, ℓ) + εf(n− 1, k) + εf(n− 1, k + 1) +

∞∑
ℓ=k+2

εℓ−k−1f(n− 1, ℓ)

≤
k−1∑

ℓ=−∞

3n−1ε(n−1−ℓ)/3 + 3n−1ε1+(n−k−1)/3 + 3n−1ε1+(n−k−2)/3 +

∞∑
ℓ=k+2

3n−1εℓ−k−1+(n−ℓ−1)/3

≤ 3n−1ε(n−k)/3

(
1

1− ε1/3
+ ε2/3 + ε1/3 +

1

1− ε2/3

)
≤ 3nε(n−k)/3

where the final inequality holds since ε ≤ 1/64. This completes the induction. Next,

E[min(XL, S)] ≤
−1∑

ℓ=−∞

S · f(L, ℓ) +
∞∑
ℓ=0

εℓS · f(L, ℓ)

≤ 3LS ·

(−1∑
ℓ=−∞

ε(L−ℓ)/3 +

∞∑
ℓ=0

εℓ+(L−ℓ)/3

)

≤ 3LS ·
(
ε(L+1)/3

1− ε1/3
+

εL/3

1− ε2/3

)
≤ 3LS · 2εL/3

as claimed.

D Omitted Proofs for Perturbed Block MDP

Below, we restate the definition of a δ-perturbed Block MDP. We then prove our main theoretical
results for the perturbed Block MDP. In Appendix D.1, we prove Theorem 3.2 (the belief contraction
result, restated as Theorem D.1). In Appendix D.2, we prove Proposition 4.1 (the decodability result
for deterministic dynamics, restated as Proposition D.1). Finally, in Appendix D.3, we prove Proposi-
tion 5.1 (the misspecification lower bound for stochastic dynamics, restated as Proposition D.2).

23

Definition D.1. Fix a parameter δ > 0. A POMDP P is a δ-perturbed Block MDP if, for each
h ∈ [H], there are Õh, Eh : Sh → ∆(Xh) such that Õh : Sh → ∆(Xh) satisfies the block
property [17], i.e. Õh(· | sh), Õh(· | s′h) have disjoint supports for all sh ̸= s′h, and moreover the
emission distribution Oh at step h can be decomposed as follows: Oh(xh | sh) = (1− δ)Õh(xh |
sh) + δEh(xh | sh).

For notational convenience, for each x ∈ Xh let ϕ(x) ∈ Sh be the unique state for which Õh(x |
ϕ(x)) > 0 (or arbitrary, if no such state exists).

Definition D.2. For any h ∈ [H], b ∈ Sh, and xh ∈ Oh, we write

Oh(xh | b) :=
∑

zh∈Sh

Oh(xh | zh)b(zh).

We similarly define Eh(xh | b) and Õh(xh | b).

Notice that Õh(xh | b) = b(ϕ(xh))Õh(xh | ϕ(xh)).

D.1 Belief Contraction

In this section, we prove Theorem D.1, a slight generalization of Theorem 3.2. The proof broadly
follows the proof of belief contraction for γ-observable POMDPs [24] (of which δ-perturbed Block
MDPs are a special case — see Remark D.1), but since we require a stronger bound, we must modify
the argument.

The basic idea (and main technical difficulty) in [24] is to identify a monotonic transform of an
f -divergence that multiplicatively contracts in expectation under the Bayes operator (Definition B.1).
In their case, they show that

√
KL(Bh(b;xh) ∥Bh(b′;xh)) contracts by roughly a constant factor

(relative to
√
KL(b ∥ b′)) in expectation over xh ∼ Oh(· | b). That is, updating the true belief and

approximate belief by an observation drawn from the true belief tends to decrease the KL-divergence.
Updating the two beliefs by applying a transition matrix cannot increase the KL-divergence since it is
an f -divergence, so an iterative argument (alternating between observation updates and transition
updates) proves exponential contraction of the belief error.

However, we would like to prove contraction by poly(δ) per step, and the following example seems
to present an obstacle to proving such contraction via KL-divergence. It also presents an obstacle to
directly analyzing TV-distance.

Example D.1 (Failure of contraction of TV and KL). Fix δ > 0. Let S = X = {0, 1} and let
O : S → ∆(X) be defined by O(x | x) = 1 − δ. Define b = (1, 0) and b′ = (δ2, 1 − δ2). Then it
holds almost surely over x ∼ O(· | b) that:

• TV(B(b;x),B(b′;x)) ≥ 1− δ even though TV(b, b′) ≤ 1.

• KL(B(b;x) ∥B(b′;x)) ≥ log(1/δ) even though KL(b ∥ b′) ≤ 2 log(1/δ).

◁

To resolve this, we observe that when the TV-distance fails to decay, the density ratio ∥b/b′∥∞ does
decay. To formalize this, we study contraction of the following error metric. While we cannot show
that it contracts by poly(δ) in expectation, we can show that it contracts with high probability; this is
the content of Lemma D.2 below.

Definition D.3. For distributions b, b′ ∈ ∆(S) with b ≪ b′, we define

D⋆(b∥b′) := TV(b, b′) ·
∥∥∥∥ bb′
∥∥∥∥
∞

.

Note that the above metric upper bounds TV-distance, and is upper bounded by ∥b/b′∥∞. Also, as
the product of metrics that satisfy the data processing inequality (Lemma C.1), it also satisfies the
same inequality, so it cannot increase under application of (even stochastic) transitions.

24

Lemma D.1. Let h ∈ [H]. Fix b, b′ ∈ ∆(Sh) with b ≪ b′, and fix x ∈ Oh. Then∥∥∥∥ Bh(b;x)

Bh(b′;x)

∥∥∥∥
∞

=
Oh(x | b′)
Oh(x | b)

·
∥∥∥∥ bb′
∥∥∥∥
∞

.

Proof. We have ∥∥∥∥ Bh(b;x)

Bh(b′;x)

∥∥∥∥
∞

= max
s∈Sh

Oh(x | s)b(s)
Oh(x | b)

· Oh(x | b′)
Oh(x | s)b′(s)

= max
s∈Sh

b(s)

b′(s)
· Oh(x | b′)
Oh(x | b)

=
Oh(x | b′)
Oh(x | b)

·
∥∥∥∥ bb′
∥∥∥∥
∞

as claimed.

Lemma D.2. Fix h ∈ [H] and b, b′ ∈ ∆(Sh). Draw x ∼ Oh(· | b). Define random variable

ξ := D⋆(Bh(b;x)∥Bh(b
′;x)) = TV(B(b;x),B(b′;x))

∥∥∥∥ B(b;x)B(b′;x)

∥∥∥∥
∞

. (5)

Then E[ξ] ≤ 4D⋆(b∥b′) and

Pr
[
ξ > 4δ1/3D⋆(b∥b′)

]
≤ 2δ1/3.

Proof. First, we compute that for any fixed x ∈ Xh,

TV(B(b;x),B(b′;x))

=
∑
s∈Sh

Oh(x | s)
∣∣∣∣ b(s)

Oh(x | b)
− b′(s)

Oh(x | b′)

∣∣∣∣
= (1− δ)Õh(x | ϕ(x))

∣∣∣∣ b(ϕ(x))

Oh(x | b)
− b′(ϕ(x))

Oh(x | b′)

∣∣∣∣+ δ
∑
s∈Sh

Eh(x | s)
∣∣∣∣ b(s)

Oh(x | b)
− b′(s)

Oh(x | b′)

∣∣∣∣
(6)

by Definition B.1 and Definition D.1. We bound these terms individually. To bound the first term, since
Oh(x | b) = (1 − δ)b(ϕ(x))Õh(x | ϕ(x)) + δEh(x | b) and Oh(x | b′) = (1 − δ)b′(ϕ(x))Õh(x |
ϕ(x)) + δEh(x | b′),

Õh(x | ϕ(x))
∣∣∣∣ b(ϕ(x))

Oh(x | b)
− b′(ϕ(x))

Oh(x | b′)

∣∣∣∣
= δÕh(x | ϕ(x))

∣∣∣∣b(ϕ(x))Eh(x | b′)− b′(ϕ(x))Eh(x | b)
Oh(x | b)Oh(x | b′)

∣∣∣∣
≤ δÕh(x | ϕ(x))

(
|b(ϕ(x))− b′(ϕ(x))| · Eh(x | b)

Oh(x | b)Oh(x | b′)
+

b(ϕ(x)) · |Eh(x | b)− Eh(x | b′)|
Oh(x | b)Oh(x | b′)

)
≤ δ

(
Õh(x | ϕ(x)) |b(ϕ(x))− b′(ϕ(x))| · Eh(x | b)

Oh(x | b)Oh(x | b′)
+

|Eh(x | b)− Eh(x | b′)|
(1− δ)Oh(x | b′)

)
. (7)

where the second inequality uses the fact that Oh(x | b) ≥ (1− δ)b(ϕ(x))Õh(x | ϕ(x)). To bound
the second term,∑
s∈Sh

Eh(x | s)
∣∣∣∣ b(s)

Oh(x | b)
− b′(s)

Oh(x | b′)

∣∣∣∣ ≤ ∑
s∈Sh

Eh(x | s)
Oh(x | b′)

|b(s)− b′(s)|+
∑
s∈Sh

Eh(x | s)b(s)
Oh(x | b)Oh(x | b′)

|Oh(x | b)−Oh(x | b′)|

=

(∑
s∈Sh

Eh(x | s)
Oh(x | b′)

|b(s)− b′(s)|

)
+

Eh(x | b)
Oh(x | b)Oh(x | b′)

|Oh(x | b)−Oh(x | b′)|

(8)

25

Let E be the set of x ∈ Xh such that Eh(x | b) ≤ δ−1/3Oh(x | b). Then the quantity ξ defined in Eq.
(5) satisfies the following bound, where the expectation is over the randomness of x ∼ Oh(· | b):

E[ξ1[x ∈ E]] =
∑
x∈E

Oh(x | b)TV(Bh(b;x),Bh(b
′;x))

∥∥∥∥ Bh(b;x)

Bh(b′;x)

∥∥∥∥
∞

=

∥∥∥∥ bb′
∥∥∥∥
∞

∑
x∈E

Oh(x | b′)TV(Bh(b;x),Bh(b
′;x))

≤
∥∥∥∥ bb′
∥∥∥∥
∞

(
(1− δ)δ

∑
x∈E

Õh(x | ϕ(x))Eh(x | b)
Oh(x | b)

|b(ϕ(x))− b′(ϕ(x))|+ δ
∑
x∈E

|Eh(x | b)− Eh(x | b′)|

+ δ
∑
x∈E

∑
s∈Sh

Eh(x | s)|b(s)− b′(s)|+ δ
∑
x∈E

Eh(x | b)
Oh(x | b)

|Oh(x | b)−Oh(x | b′)|

)

≤
∥∥∥∥ bb′
∥∥∥∥
∞

(
(1− δ)δ2/3

∑
x∈E

Õh(x | ϕ(x))|b(ϕ(x))− b′(ϕ(x))|+ δ
∑
x∈E

|Eh(x | b)− Eh(x | b′)|

+ δ
∑
x∈E

∑
s∈Sh

Eh(x | s)|b(s)− b′(s)|+ δ2/3
∑
x∈E

|Oh(x | b)−Oh(x | b′)|

)

≤ 4δ2/3TV(b, b′)

∥∥∥∥ bb′
∥∥∥∥
∞

(9)

where the second equality is by Lemma D.1; the first inequality bounds each term
TV(Bh(b;x),Bh(b

′;x)) using Eqs. (6) to (8); the second inequality uses the definition of E ; and the
final inequality uses the data processing inequality for kernels Eh and Oh. Additionally,

Pr[x ̸∈ E] =
∑

x∈Xh\E

Oh(x | b) =
∑
x∈Xh

Oh(x | b)1
[
Oh(x | b)
Eh(x | b)

< δ1/3
]
≤ δ1/3

∑
x∈Xh

Eh(x | b) = δ1/3

(10)
since Eh(· | b) is a distribution. It follows that

Pr

[
ξ > 4δ1/3TV(b, b′)

∥∥∥∥ bb′
∥∥∥∥
∞

]
≤ Pr

[
ξ1[x ∈ E] > 4δ1/3TV(b, b′)

∥∥∥∥ bb′
∥∥∥∥
∞

]
+ Pr[x ̸∈ E]

≤ 2δ1/3

where the second inequality applies Markov’s inequality to Eq. (9) for the first term, and Eq. (10) for
the second term. This proves the second claim of the lemma statement. To prove the first claim, note
that Eh(x | b) ≤ δ−1Oh(x | b) for all x ∈ Xh. Thus, modifying the calculation from Eq. (9) (this
time summing over all x ∈ Xh instead of x ∈ E) gives

E[ξ] =
∑
x∈Xh

Oh(x | b)TV(Bh(b;x),Bh(b
′;x))

∥∥∥∥ B(b;x)B(b′;x)

∥∥∥∥
∞

≤ 4TV(b, b′)

∥∥∥∥ bb′
∥∥∥∥
∞

as needed.

The following result, which shows that the error metric decays with high probability under a belief
update, is straightforward consequence of Lemma D.2 and the data processing inequality.
Corollary D.1. Fix h ∈ {2, . . . ,H}. Let b, b′ ∈ ∆(Sh−1) with b ≪ b′. For any action ah−1 ∈ Ah−1,
with expectation over xh ∼ (Oh)

⊤Ph(ah−1) · b,
E[D⋆(Uh(b; ah−1, xh)∥Uh(b

′; ah−1, xh))] ≤ 4D⋆(b∥b′)
and

Pr[D⋆(Uh(b; ah−1, xh)∥Uh(b
′; ah−1, xh)) > 4δ1/3D⋆(b∥b′)] ≤ 2δ1/3.

Proof. By applying Lemma D.2 with Ph(ah−1) · b and Ph(ah−1) · b′,
E[D⋆(Uh(b; ah−1, xh)∥Uh(b

′; ah−1, xh))] = Exh∼(Oh)⊤Ph(ah−1)·b[D⋆(Bh(Ph(ah−1) · b;xh)∥Bh(Ph(ah−1) · b′;xh))]

≤ 4D⋆(Ph(ah−1) · b∥Ph(ah−1) · b′)
≤ 4D⋆(b∥b′)

26

where the final inequality uses the fact that TV(Th(a) · b,Th(a) · b′) ≤ TV(b, b′) and
∥∥∥ Th(a)·b
Th(a)·b′

∥∥∥
∞

≤∥∥ b
b′

∥∥
∞ by the data processing inequality (Lemma C.1). Similarly, the second claim of Lemma D.2

gives that

Pr
[
D⋆(Uh(b; ah−1, xh)∥Uh(b

′; ah−1, xh)) > 4δ1/3D⋆(Ph(ah−1) · b∥Ph(ah−1) · b′)
]
≤ 2δ1/3

and therefore

Pr
[
D⋆(Uh(b; ah−1, xh)∥Uh(b

′; ah−1, xh)) > 4δ1/3D⋆(b∥b′)
]
≤ 2δ1/3

by again applying the data processing inequality as above.

We now can prove our main belief contraction result (which includes Theorem 3.2 as a special case)
by iteratively applying Corollary D.1. The main technical detail is to verify that the observations are
indeed drawn from the true belief states, which relies on Lemma C.2.
Theorem D.1. There is a universal constant CD.1 > 1 with the following property. Fix an executable
policy π, indices 1 ≤ h < h + L ≤ H , and distributions D,D′ ∈ ∆(Sh). Then for any partial
history (x1:h, a1:h−1) it holds that

Esh∼D′Eπ[TV(bapx
h+L(xh+1:h+L, ah:h+L−1;D′),bapx

h+L(xh+1:h+L, ah:h+L−1;D)) | sh] ≤ (CD.1δ)
L/9

∥∥∥∥D′

D

∥∥∥∥
∞

where the inner expectation is over partial trajectories (xh+1:h+L, ah:h+L−1) drawn from policy π
with the environment initialized in state sh at step h.

As a consequence, it holds for any partial history (x1:h, a1:h−1) that

Eπ[TV(bh+L(x1:h+L, a1:h+L−1),b
apx
h+L(xh+1:h+L, ah:h+L−1;D))] ≤ (CD.1δ)

L/9

∥∥∥∥bh(x1:h, a1:h−1)

D

∥∥∥∥
∞

where the expectation is over trajectories drawn from π conditioned on the partial history
(x1:h, a1:h−1).

Proof. We first observe that the second claim follows from the first claim by setting D′ :=
bh(x1:h, a1:h−1). Indeed, conditioned on (x1:h, a1:h−1), the law of sh is precisely bh(x1:h, a1:h−1)
(Lemma C.2), so drawing (xh+1:h+L, ah:h+L−1) conditioned on (x1:h, a1:h−1) is equivalent to
first drawing sh ∼ bh(x1:h, a1:h−1) and then drawing (xh+1:h+L, ah:h+L−1) from the POMDP
initialized at sh. Moreover, by the recursive definitions of b and bapx, we have

bh+L(x1:h+L, a1:h+L−1) = bapx
h+L(xh+1:h+L, ah:h+L−1;bh(x1:h, a1:h−1)).

It remains to prove the first claim. Fix (x1:h, a1:h−1). For 0 ≤ t ≤ L, define the random variable

Xt := 4−tD⋆(b
apx
h+t(xh+1:h+t, ah:h+t−1;D′)∥bapx

h+t(xh+1:h+t, ah:h+t−1;D))

where (xh+1:h+L, ah:h+L−1) is drawn by sampling sh ∼ D′, initializing the POMDP at sh, and then
rolling out with policy π (to be precise, the action distribution at step h+ t is π(x1:h+t, a1:h+t−1)).
Note that the roll-out does not resample xh, which is already fixed. Recall that D⋆(p∥q) :=

TV(p, q)
∥∥∥p
q

∥∥∥
∞

, so that TV(p, q) ≤ D⋆(p∥q) ≤
∥∥∥p
q

∥∥∥
∞

for any distributions p, q. Then

X0 = D⋆(b
apx
h (∅;D′)∥bapx

h (∅;D))

= D⋆(D′∥D)

≤
∥∥∥∥D′

D

∥∥∥∥
∞

.

Moreover,

TV(bapx
h+L(xh+1:h+L, ah:h+L−1;D′),bapx

h+L(xh+1:h+L, ah:h+L−1;D))

≤ min(D⋆(b
apx
h+L(xh+1:h+L, ah:h+L−1;D′)∥bapx

h+L(xh+1:h+L, ah:h+L−1;D)), 1)

≤ 4L min(XL, 1) (11)

27

since TV(p, q) ≤ 1 for any distributions p, q. Fix 0 < t ≤ L and condition on
(xh+1:h+t−1, ah:h+t−2), which determines Xt−1. The conditional distribution of ah+t−1 is
then π(x1:h+t−1, a1:h+t−2), and for any fixed ah+t−1 the conditional distribution of xh+t is
(Oh+t)

⊤Ph+t(ah+t−1) · bapx
h+t−1(xh+1:h+t−1, ah:h+t−2;D′) by Lemma C.2 (applied to the mod-

ified POMDP that is initialized to a latent state sh ∼ D′ immediately before the action ah is taken; for
this POMDP bapx

h+t−1(xh+1:h+t−1, ah:h+t−2;D′) is the true belief state). Recall that by definition,

bapx
h+t(xh+1:h+t, ah:h+t−1;D′) = Uh+t(b

apx
h+t−1(xh+1:h+t−1, ah:h+t−2;D′), ah+t−1, xh+t)

and

bapx
h+t(xh+1:h+t, ah:h+t−1;D) = Uh+t(b

apx
h+t−1(xh+1:h+t−1, ah:h+t−2;D), ah+t−1, xh+t).

By Corollary D.1, it holds in expectation (resp., in probability) over xh+t, conditioned on the prior
history, that

E[Xt] = 4−tE[D⋆(b
apx
h+t(xh+1:h+t, ah:h+t−1;D′)∥bapx

h+t(xh+1:h+t, ah:h+t−1;D))]

≤ 41−tD⋆(b
apx
h+t−1(xh+1:h+t−1, ah:h+t−2;D′)∥bapx

h+t−1(xh+1:h+t−1, ah:h+t−2;D))

= Xt−1

and similarly
Pr[Xt > δ1/3Xt−1] ≤ 2δ1/3.

Since these bounds hold for any fixed ah+t−1 ∈ Ah, they also hold in expectation (resp.,
in probability) over the joint draws of ah+t−1 and xh+t, conditioned on any realization of
(xh+1:h+t−1, ah:h+t−2). Thus, E[Xt | Xt−1] ≤ Xt−1 and Pr[Xt > δ1/3Xt−1 | Xt−1] ≤ 2δ1/3

both hold almost surely. We can now apply Lemma C.5 to the sequence (X0, . . . , XL) with parame-
ters S :=

∥∥∥D′

D

∥∥∥
∞

and ε := 2δ1/3; we get that

E[min(XL, 1)] ≤ E[min(XL, S)] ≤ 2 · 3L2L/3δL/9

∥∥∥∥D′

D

∥∥∥∥
∞

.

Combining this bound with Eq. (11), and setting CD.1 to be a sufficiently large constant, completes
the proof.

Remark D.1. Any δ-perturbed Block MDP is γ-observable with γ = 1− 2δ (Definition B.4): for
any h ∈ [H], we have Oh = (1− δ)Õh + δEh, and thus given any b, b′, we have∥∥O⊤

h b−O⊤
h b

′∥∥
1
=
∥∥∥(1− δ)Õ⊤

h (b− b′) + δE⊤
h (b− b′)

∥∥∥
1

≥ (1− δ)
∥∥∥Õ⊤

h (b− b′)
∥∥∥
1
− δ

∥∥E⊤
h (b− b′)

∥∥
1

≥ (1− δ) ∥b− b′∥1 − δ ∥Eh∥op ∥b− b′∥1
≥ (1− 2δ) ∥b− b′∥1

because Õh satisfies the block property. It was shown in [24, Theorem 4.7] that, for any γ-observable
POMDP P , the belief contraction error can be bounded as εcontracth (π;L) ≤ (1− γ4/240)L · O(S).
However, substituting in γ := 1− 2δ, we see that due to the constant factor of 240, this bound does
not asymptotically improve as δ decreases — indeed, it is never better than (1− 1/240)L · O(S) —
and moreover is vacuous for L = o(logS).

D.2 Approximate Decodability

In this section we prove Proposition 4.1, restated below as Proposition D.1, which states that
for δ-perturbed Block MDPs with deterministic latent transitions, the decodability error decays
exponentially. The proof is somewhat analogous to that of Theorem D.1; the key difference is that the
claim that the transitions do not increase decodability error is only true for deterministic transitions
(whereas the analogous claim for belief contraction error is unconditionally true).

For notational convenience, we make the following definition of the “ℓ∞ variance” V∞(b) for a given
distribution b.

28

Definition D.4. For any set S and distribution b ∈ ∆(S), define V∞(b) := 1− ∥b∥∞.

The following lemma shows that the ℓ∞ variance contracts by poly(δ) with high probability under
the Bayes operator.

Lemma D.3. Let δ > 0, and suppose that P is a δ-perturbed Block MDP with deterministic latent
transitions (but potentially stochastic initial state). Fix h ∈ [H] and b ∈ ∆(Sh). Draw x ∼ Oh(· | b).
Then E[V∞(Bh(b;x))] ≤ min(V∞(b), δ) and

Pr[V∞(Bh(b;x)) > δ1/3V∞(b)] ≤ 3δ1/3.

Proof. Pick any s⋆ ∈ Sh such that bs⋆ = ∥b∥∞, and hence
∑

s∈Sh\{s⋆} b(s) = V∞(b). Then

E[V∞(Bh(b;x))] =
∑
x∈Xh

Oh(x | b)
(
1−max

s∈Sh

Bh(b;x)(s)

)
=
∑
x∈Xh

min
s∈Sh

(Oh(x | b)− b(s)Oh(x | s))

=
∑
x∈Xh

min
s∈Sh

∑
s′∈Sh\{s}

b(s′)Oh(x | s′) (12)

where the second equality is by the definition Bh(b;x)(s) :=
b(s)Oh(x|s)
Oh(x|b) (Definition B.1). First, Eq.

(12) implies that

E[V∞(Bh(b;x))] ≤
∑
x∈Xh

∑
s′∈Sh\{s⋆}

b(s′)Oh(x | s′) =
∑

s′∈Sh\{s⋆}

b(s′) = V∞(b),

where the first equality uses the fact that Oh(· | s′) is a distribution for any fixed s′. Next, Eq. (12)
implies that

E[V∞(Bh(b;x))] ≤
∑
x∈Xh

∑
s′∈Sh\{ϕ(x)}

b(s′)Oh(x | s′)

= δ
∑
x∈Xh

∑
s′∈Sh\{ϕ(x)}

b(s′)Eh(x | s′)

= δ
∑
s′∈Sh

b(s′)
∑

x∈Xh:ϕ(x)̸=s′

Eh(x | s′)

≤ δ
∑
s′∈Sh

b(s′)

≤ δ. (13)

This, together with the preceding bound, proves the first claim of the lemma. Now consider the event
that ϕ(x) = s⋆. Since Oh(x | b) ≥ (1− δ)b(ϕ(x))Õh(x | ϕ(x)), we have

Pr[ϕ(x) ̸= s⋆] = 1−
∑

x∈Xh:ϕ(x)=s⋆

Oh(x | b) ≤ 1−(1−δ)b(s⋆) = 1−(1−δ)(1−V∞(b)) ≤ δ+V∞(b).

(14)

29

Moreover, by an analogous calculation as Eq. (12),

E[V∞(Bh(b;x))1[ϕ(x) = s⋆]] =
∑

x∈Xh:ϕ(x)=s⋆

Oh(x | b)
(
1−max

s∈Sh

Bh(b;x)(s)

)
=

∑
x∈Xh:ϕ(x)=s⋆

min
s∈Sh

(Oh(x | b)− b(s)Oh(x | s))

≤
∑

x∈Xh:ϕ(x)=s⋆

Oh(x | b)− b(s⋆)Oh(x | s⋆)

=
∑

x∈Xh:ϕ(x)=s⋆

∑
s∈Sh\{s⋆}

b(s)Oh(x | s)

= δ
∑

x∈Xh:ϕ(x)=s⋆

∑
s∈Sh\{s⋆}

b(s)Eh(x | s)

≤ δV∞(b).

It follows that

Pr[V∞(Bh(b;x)) > δ1/3V∞(b)] ≤ Pr[V∞(Bh(b;x))1[ϕ(x) = s⋆] > δ1/3V∞(b)] + Pr[ϕ(x) ̸= s⋆]

≤ δ2/3 + δ + V∞(b)

by Markov’s inequality and Eq. (14). To conclude, we distinguish two cases. If V∞(b) ≤ δ1/3, then
we get

Pr[V∞(Bh(b;x)) > δ1/3V∞(b)] ≤ δ2/3 + δ + δ1/3 ≤ 3δ1/3

as needed. Otherwise, V∞(b) > δ1/3, so

Pr[V∞(Bh(b;x)) > δ1/3V∞(b)] ≤ Pr[V∞(Bh(b;x)) > δ2/3] ≤ δ1/3

by Markov’s inequality and Eq. (13). This completes the proof.

Using Lemma D.3 and the assumption of deterministic latent dynamics, it is straightforward to show
that the ℓ∞ variance contracts by poly(δ) with high probability under the belief update operator:
Corollary D.2. Let δ > 0, and suppose that P is a δ-perturbed Block MDP with determin-
istic latent transitions (but potentially stochastic initial state). Fix h ∈ [H] and b ∈ ∆(Sh).
For any action ah−1 ∈ Ah−1, with expectation over xh ∼ (Oh)

⊤Ph(ah−1) · b, it holds that
E[V∞(Uh(b; ah−1, xh))] ≤ V∞(b) and

Pr[V∞(Uh(b; ah−1, xh)) > δ1/3V∞(b)] ≤ 3δ1/3.

Proof. From Definition B.1, we have for any xh that Uh(b; ah−1, xh) = Bh(Ph(ah−1) · b;xh).
Applying Lemma D.3 to the distribution Ph(ah−1) · b (observe that xh is indeed distributed according
to Oh(· | Ph(ah−1) · b)), we get E[V∞(Uh(b; ah−1, xh))] ≤ V∞(Ph(ah−1) · b) and

Pr[V∞(Uh(b; ah−1, xh)) > δ1/3V∞(Ph(ah−1) · b)] ≤ 3δ1/3.

To complete the proof, it suffices to show that V∞(Ph(ah−1) · b) ≤ V∞(b). Indeed, since the
transitions are deterministic, the matrix Ph(ah−1) ∈ R|Sh|×|Sh−1| satisfies that every column is a
standard basis vector. Identify any s⋆ ∈ Sh−1 with bs⋆ = ∥b∥∞. Then there is some sh ∈ Sh with
Ph(ah−1)sh,s⋆ = Ph(sh | s⋆, ah−1) = 1. But then the entry of Ph(ah−1) · b indexed by sh is at least
bs⋆ . So indeed V∞(Ph(ah−1) · b) ≤ V∞(b).

We can now prove the following restatement of Proposition 4.1.
Proposition D.1. There is a universal constant CD.1 > 1 so that the following holds. Let δ > 0,
and suppose that P is a δ-perturbed Block MDP with deterministic latent transitions (but potentially
stochastic initial state). Fix any executable policy π and index h ∈ [H]. It holds that

Eπ[V∞(bh(x1:h, a1:h−1))] ≤ min(δ, (CD.1δ)
(h−1)/9).

30

Proof. Define a sequence of random variables Xt := V∞(bt(x1:t, a1:t−1)) for 1 ≤ t ≤ h, where
(x1:h, a1:h−1) is a random trajectory drawn from policy π. We have X1 ≤ 1 almost surely. By the
same argument as in Theorem D.1 (except using Corollary D.2 rather than Corollary D.1), we have
for all 1 < t ≤ h that E[Xt | Xt−1] ≤ Xt−1 and Pr[Xt > δ1/3Xt−1 | Xt−1] ≤ 3δ1/3 hold almost
surely. Thus, Lemma C.5 applied to (X1, . . . , Xh) with parameters S := 1 and ε := 3δ1/3 implies
that

E[Xh] = E[min(Xh, 1)] ≤ 2 · 3h−13(h−1)/3δ(h−1)/9 ≤ (CD.1δ)
(h−1)/9

so long as CD.1 is sufficiently large. Additionally, we know that b1(x1) = B1(P1;x1) so

E[X1] = Eπ[V∞(B1(P1;x1))] ≤ δ

by Lemma D.3 and the fact that x1 has distribution O1(· | P1). Thus, E[Xt] ≤ δ for all
1 ≤ t ≤ h.

D.3 Misspecification Lower Bound for Stochastic Dynamics

In this section we prove the following restatement of Proposition 5.1, which shows that in a δ-
perturbed Block MDP with general (stochastic) latent transitions, the misspecification of the optimal
latent policy with respect to the class of executable policies can be as large as Ω(δH) (for δ ≤ 1/H).
This implies an analogous lower bound on decodability error, i.e. it cannot improve exponentially
as h increases, unlike the case of deterministic latent transitions. Moreover, it shows a fundamental
source of (horizon-dependent) error that is not mitigated by increasing the frame-stack L: since the
following bound applies to all executable policies, it also applies to the class of L-step executable
policies for any L.

Proposition D.2. Let δ > 0 and H ∈ N. There is a δ-perturbed Block MDP P with horizon H such
that the optimal latent policy πlatent satisfies

min
π∈Π

TV(Pπlatent

,Pπ) ≥ Ω(min(1, δH))

where Π is the class of executable policies.

Proof. We define P as follows. For all h ∈ [H], define the latent state space and observation space
to be Sh := Xh := {0, 1}; also define Ah := {0, 1}. Let the initial distribution and latent transition
dynamics at each step be uniformly random (independent of the previous state and action). For each
h ∈ [H], define the reward function Rh : Sh ×Ah → [0, 1] be defined by Rh(s, a) =

1
H1[s = a].

Define the observation distribution Oh : Sh → ∆(Sh) so that Oh(s | s) = 1 − δ and Oh(1 − s |
s) = δ.

It is clear that P is a δ-perturbed Block MDP. Under the trajectory distribution Pπlatent

induced by
the optimal latent policy πlatent, it holds that ah = sh for all h ∈ [H] with probability 1. However,
for any executable policy π, for any step h and history τ1:h−1 = (s1:h−1, x1:h−1, a1:h−1), it holds
that Prπ[ah = sh | τ1:h−1] ≤ 1− δ since the prior history is independent of sh, and the conditional
distribution sh | xh has only 1− δ mass on xh. Thus,

Prπ[∀h ∈ [H] : ah = sh] ≤ (1− δ)H .

If δ ≥ 1/H then (1 − δ)H ≤ e−1 ≤ 1 − Ω(1). Otherwise, (1 − δ)H ≤ 1 − Ω(δH). Thus,
TV(Pπ,Pπlatent

) ≥ Ω(min(1, δH)) as claimed.

E Omitted Proofs for Expert Distillation

E.1 Misspecification Bounds for Composed Policies

In this section we prove upper bounds on the misspecification of a latent policy (with respect to
certain executable policies obtained by composing the latent with some belief state) in terms of
instance-dependent error metrics. The first main result is Lemma E.3 (a restatement of Lemma 3.1),
where the upper bound is in terms of decodability error (Definition 3.1) and error in approximating

31

the true belief state. The second main result is Lemma E.4, where the decodability error term is
replaced by action-prediction error (Definition 6.1).

To prove Lemma E.3, it is convenient to first analyze the policy that samples a state from the true
belief state induced by the current history, and then samples an action from πlatent accordingly. The
key technical observation, below, encapsulates the intuition that resampling a near-deterministic
random variable is likely to yield the same realization.
Lemma E.1. Let PY,Ynuis be a joint distribution over random variables (Y, Ynuis). Let PZ|Y be a
conditional distribution. Define QZ as follows. Resample Y ′ ∼ PY and then sample Z ∼ PZ|Y ′ .
Then

TV(PY,YnuisPZ|Y ,PY,YnuisQZ) ≤ 2V∞(PY).

Additionally,
TV(PY,YnuisPZ|Y ,PY,YnuisQZ) ≤ 2V∞(PZ).

Proof. Consider the process where we draw (Y, Ynuis) ∼ PY,Ynuis , Z ∼ PZ|Y , and Y ′ ∼ PY . If
Y ′ = Y then we set Z ′ = Z; otherwise we sample Z ′ ∼ PZ|Y ′ . Then (Y, Ynuis, Z) is distributed
according to PY,YnuisPZ|Y , and (Y, Ynuis, Z

′) is distributed according to PY,YnuisQZ . Thus, we have
defined a coupling. Moreover,

Pr[(Y, Ynuis, Z) ̸= (Y, Ynuis, Z
′)] ≤ Pr[Y ̸= Y ′]

≤ 2Pr[Y ̸= argmax
y

PY (y)]

= 2V∞(PY)

as needed for the first claim. For the second claim,

Pr[(Y, Ynuis, Z) ̸= (Y, Ynuis, Z
′)] ≤ Pr[Z ̸= Z ′]

= 2V∞(PZ)

as needed.

Lemma E.2. Let πlatent ∈ Πlatent be a latent (Markovian) policy and define the executable policy π
by

π(x1:h, a1:h−1) := πlatent ◦ bh(x1:h, a1:h−1).

Then

TV(Pπlatent

,Pπ) ≤ 2

H∑
h=1

Eπ[V∞(bh(x1:h, a1:h−1))].

Proof. For each 1 ≤ h ≤ H + 1 let π ◦h πlatent denote the policy that follows π for the first h− 1
actions and subsequently follows πlatent. Since π ◦1 πlatent = πlatent and π ◦H+1 πlatent = π, it
suffices to show that, for each h ∈ [H],

TV(Pπ◦hπ
latent

,Pπ◦h+1π
latent

) ≤ 2Eπ[V∞(bh(x1:h, a1:h−1))].

Observe that both distributions have the same conditional distributions over
(sh+1:H , xh+1:H , ah+1:H) given (s1:h, x1:h, a1:h). By this fact and the data processing inequality,

TV(Pπ◦hπ
latent

,Pπ◦h+1π
latent

) = TV(Pπ◦hπ
latent

X,Y,Ynuis,Z
,Pπ◦h+1π

latent

X,Y,Ynuis,Z
)

where X = (x1:h, a1:h−1), Y = sh, Ynuis = s1:h−1, and Z = ah. Both distributions have the same
marginal over (X,Y, Ynuis). The distribution of Y |X is precisely bh(x1:h, a1:h−1) by Lemma C.2
and the fact that π is executable. In the former distribution, ah is generated by sampling from
πlatent(sh). In the latter distribution, ah is generated by sampling s′h ∼ bh(x1:h, a1:h−1) and then
sampling from πlatent(s′h). Thus, the conditions of Lemma E.1 are met (after conditioning out X),
and we get

TV(Pπ◦hπ
latent

,Pπ◦h+1π
latent

) ≤ 2Eπ[V∞(bh(x1:h, a1:h−1))]

as needed.

We now prove the following restatement of Lemma 3.1.

32

Lemma E.3. Let πlatent ∈ Πlatent be a latent (Markovian) policy and let b̃1:H be a collection of
functions b̃h : X h ×Ah−1 → ∆(Sh). Define the executable policy π̃ by

π̃(x1:h, a1:h−1) := πlatent ◦ b̃h(x1:h, a1:h−1).

Then

TV(Pπlatent

,Pπ̃) ≤
H∑

h=1

Eπ
[
2V∞(bh(x1:h, a1:h−1)) +

∥∥∥bh(x1:h, a1:h−1)− b̃h(x1:h, a1:h−1)
∥∥∥
1

]
and

TV(Pπlatent

,Pπ̃) ≤
H∑

h=1

Eπ [2V∞(bh(x1:h, a1:h−1))]+Eπ̃
[∥∥∥bh(x1:h, a1:h−1)− b̃h(x1:h, a1:h−1)

∥∥∥
1

]
where π(x1:h, a1:h−1) := πlatent ◦ bh(x1:h, a1:h−1).

Proof. We can couple Pπ and Pπ̃ so that at any step h, if the trajectories have thus far been the same
sequence (x1:h, a1:h−1), then the probability that they choose different actions ah is at most∥∥∥bh(x1:h, a1:h−1)− b̃h(x1:h, a1:h−1)

∥∥∥
1
.

By a standard hybrid argument, it follows that

TV(Pπ,Pπ̃) ≤
H∑

h=1

Eπ
[∥∥∥bh(x1:h, a1:h−1)− b̃h(x1:h, a1:h−1)

∥∥∥
1

]
and also

TV(Pπ,Pπ̃) ≤
H∑

h=1

Eπ̃
[∥∥∥bh(x1:h, a1:h−1)− b̃h(x1:h, a1:h−1)

∥∥∥
1

]
.

Combining with Lemma E.2 completes the proof.

The preceding lemma used the intuition that if the latent state is near-deterministic when conditioned
on the observation/action history, then resampling it is unlikely to change it. The following lemma
uses the intuition that if the action is near-deterministic (which is likely when the action-prediction is
small) when conditioned on the action/observation history, then resampling the latent state — and
subsequently resampling the action conditioned on this resampled latent state — is unlikely to change
the action, though it may have changed the state.

Lemma E.4. Let πlatent ∈ Πlatent be a latent (Markovian) policy and let b̃1:H be a collection of
functions b̃h : X h ×Ah−1 → ∆(Sh). Define the executable policy π̃ by

π̃(x1:h, a1:h−1) := πlatent ◦ b̃h(x1:h, a1:h−1).

Then

TV(Pπlatent

,Pπ̃) ≤
H∑

h=1

Eπ
[
2εact;π

latent

h (π) +
∥∥∥πlatent ◦ bh(x1:h, a1:h−1)− πlatent ◦ b̃h(x1:h, a1:h−1)

∥∥∥
1

]
where π(x1:h, a1:h−1) := πlatent ◦ bh(x1:h, a1:h−1).

Proof. As with the proof of Lemma E.3, it suffices to show that

TV(Pπlatent

,Pπ) ≤
H∑

h=1

Eπ
[
2εact;π

latent

h (π)
]
.

The proof is identical to that of Lemma E.3 except for using the second claim of Lemma E.1 instead
of the first.

33

E.2 Analysis of Forward for L-step Executable Policies

In this section we describe the (slightly modified) Forward imitation learning algorithm [62], applied
to the problem of distilling an expert latent policy πlatent to an L-step executable policy π̂ ∈ πL. We
first formally derive the expression for the policy learned in the infinite-sample limit (Lemma E.5),
and then prove Theorem E.1 (the regret bound for this policy, restated as Theorem 4.1). Finally, we
prove a finite-sample guarantee for the modified Forward algorithm (Theorem E.2), using the same
ideas together with a standard finite-sample analysis for Maximum Likelihood Estimation [20].

Forward with L-step random actions. For a latent Markovian policy πlatent ∈ Πlatent and a
parameter L ∈ [H], the (modified) Forward algorithm computes an L-step executable policy
π̂ = π̂1:H as follows. For h = 1, . . . ,H:

1. Draw n trajectories τ i = (si1:H , xi
1:H , ai1:H) from the policy π̂1:h−L−1 ◦h−L Unif(A) (which

follows π̂ until step h− L− 1 and subsequently plays uniformly random actions).
2. Compute

π̂h := argmax
πh∈ΠL

h

1

n

n∑
i=1

log πh(π
latent
h (sh) | xmax(1,h−L+1):h, amax(1,h−L):h−1).

Above, ΠL
h is the set of L-step conditional distributions πh : X h−L+1:h×Ah−L:h−1 → ∆(A). Note

that the standard Forward algorithm is identical except that it draws data from π̂1:h−1 at step h.
The modified algorithm is simpler to analyze since the random actions do not bias the conditional
distribution of the latent state at step h given the partial history (xh−L+1:h, ah−L:h−1), so this
distribution can be directly related to an approximate belief state with appropriate prior (Lemma C.3).

For notational convenience, let π̃ denote the policy obtained from the above algorithm in the infinite-
sample limit, i.e. at step h we define

π̃h := argmax
πh∈ΠL

h

Eπ̃1:h−L−1◦h−LUnif(A)
[
log πh(π

latent
h (sh) | xmax(1,h−L+1):h, amax(1,h−L):h−1)

]
.

The following lemma gives a closed-form expression for this policy.
Lemma E.5. It holds for all h ∈ [H] that

π̃h(· | xh−L+1:h, ah−L:h−1) =

{
πlatent
h ◦ bapx

h (xh−L+1:h, ah−L:h−1; d
π̃
h−L) if h > L

πlatent
h ◦ bh(x1:h, a1:h−1) otherwise

so long as Πh contains this conditional distribution.

Proof. We have for each h > L that
π̃h = argmax

πh∈Πh

Eπ̃1:h−L−1◦h−LUnif(A)
[
log πh(π

latent
h (sh) | xh−L+1:h, ah−L:h−1)

]
.

Since population-level maximum likelihood minimizes KL divergence, we get

π̃h(ah | xh−L+1:h, ah−L:h−1) =
∑

sh∈Sh

πlatent
h (ah | sh) · Pπ̃1:h−L−1◦h−LUnif(A)[sh | xh−L+1:h, ah−L:h−1]

=
∑

sh∈Sh

πlatent
h (ah | sh) · bapx

h (xh−L+1:h, ah−L:h−1; d
π̃1:h−L−1◦h−LUnif(A)
h−L)(sh)

=
∑

sh∈Sh

πlatent
h (ah | sh) · bapx

h (xh−L+1:h, ah−L:h−1; d
π̃
h−L)(sh)

where the second equality uses Lemma C.3. The application of this lemma uses the fact that
π̃1:h−L−1 ◦h−L Unif(A) plays actions at steps h− L, . . . , h− 1 that are uniformly random. This
proves the lemma in the case h > L. The case h ≤ L is analogous but uses Lemma C.2 instead of
Lemma C.3.

Theorem E.1. Suppose that the POMDP P is a δ-perturbed Block MDP with deterministic transitions,
and fix L ∈ N. Let πlatent ∈ Πlatent be a latent (Markovian) policy, and let π̃ be the policy computed
by Forward with L-step random actions, in the infinite-sample limit. Then

J(πlatent)− J(π̃) ≤ TV(Pπlatent

,Pπ̃) ≤ O(δ) + (CD.1δ)
L/9SH.

34

Proof. Define the executable policy π by π(x1:h, a1:h−1) := πlatent ◦ bh(x1:h, a1:h−1). By
Lemma E.3 and the closed-form expression for π̃ (Lemma E.5), we have

TV(Pπlatent

,Pπ̃) ≤
H∑

h=1

Eπ[2V∞(bh(x1:h, a1:h−1))]

+

H∑
h=L+1

Eπ̃
[∥∥∥bh(x1:h, a1:h−1)− bapx

h (xh−L+1:h, ah−L:h−1; d
π̃
h−L

∥∥∥
1

]
.

By Proposition D.1 and the fact that π is executable, the first term can be bounded as

H∑
h=1

Eπ[2V∞(bh(x1:h, a1:h−1))] ≤
H∑

h=1

min
(
δ, (CD.1δ)

(h−1)/9
)

≤ O(δ).

Next, for each h ∈ {L+ 1, . . . ,H}, we can bound

Eπ̃
[∥∥∥bh(x1:h, a1:h−1)− bapx

h (xh−L+1:h, ah−L:h−1; d
π̃
h−L)

∥∥∥
1

]
≤ (CD.1δ)

L/9Eπ̃

[∥∥∥∥∥bh(x1:h, a1:h−1)

dπ̃h−L

∥∥∥∥∥
∞

]

≤ (CD.1δ)
L/9Eπ̃

[∑
s∈Sh

bh(x1:h, a1:h−1)(s)

dπ̃h−L(s)

]

= (CD.1δ)
L/9

∑
s∈Sh

1

dπ̃h−L(s)
Eπ̃[bh(x1:h, a1:h−1)(s)]

= (CD.1δ)
L/9

∑
s∈Sh

1

dπ̃h−L(s)
Eπ̃
[
Pπ̃[sh = s | x1:h, a1:h−1]

]
= (CD.1δ)

L/9
∑
s∈Sh

dπ̃h−L(s)

dπ̃h−L(s)

= (CD.1δ)
L/9S

where the first inequality uses Theorem D.1 (and the fact that π̃ is an executable policy), and the
second equality uses Lemma C.2 (and the fact that π̃ is an executable policy). Putting everything
together, we get

TV(Pπlatent

,Pπ̃) ≤ O(δ) + (CD.1δ)
L/9SH

as claimed.

E.3 Finite-sample guarantee

Theorem E.2. There is a constant CE.2 > 0 with the following property. Let δ, η, εopt > 0
and suppose that the POMDP P is a δ-perturbed Block MDP with deterministic transitions. If
n ≥ CE.2X

LA3L+1H2ε−2
opt log(Hn/η), the output π̂ of the modified Forward algorithm with n

samples per step satisfies, with probability at least 1− η,

J(πlatent)− J(π̂) ≤ TV(Pπlatent

,Pπ̂) ≤ O(δ) + (CD.1δ)
L/9SH + εopt.

Moreover, π̂ can be computed in time poly(n,H,XL, AL).

Proof. By a standard analysis of the log-loss for unconstrained distribution classes,
π̂h(xmax(1,h−L+1):h, amax(1,h−L):h−1) is precisely the empirical distribution of πlatent

h (sih) over
the data i ∈ [n] with (xi

max(1,h−L+1):h, a
i
max(1,h−L):h−1) = (xmax(1,h−L+1):h, amax(1,h−L):h−1).

Thus, π̂ can be computed in the stated time complexity.

35

To prove the claimed statistical bound, fix h ∈ [H]. Let G = {gπh
: πh ∈ ΠL

h} de-
note the family of distributions indexed by ΠL

h , where gπh
is the joint distribution of τh =

(xmax(1,h−L+1):h, amax(1,h−L):h−1) and πh(τh) over trajectories drawn from π̂1:h−L−1 ◦h−L

Unif(A). Also let g⋆ denote the joint distribution of τh and πlatent
h (sh) over trajectories drawn

from π̂1:h−L−1 ◦h−L Unif(A). Then g⋆ = gπ̂⋆
h
∈ G where

π̂⋆
h(· | xh−L+1:h, ah−L:h−1) =

{
πlatent
h ◦ bapx

h (xh−L+1:h, ah−L:h−1; d
π̂
h−L) if h > L

πlatent
h ◦ bh(x1:h, a1:h−1) otherwise

by the same argument as in Lemma E.5. Moreover, gπ̂h
is precisely the Maximum Likelihood

Estimation (MLE) estimate over distribution class G with n samples from g⋆. Thus, we can compare
π̂h and π̂⋆

h using a standard analysis for MLE, e.g. [20, Proposition B.1]: we can bound the log-
covering number of G (with discretization error ε := 1/(Hn)) by XLAL+1 log(1/ε), so we get with
probability at least 1− η/H that

TV(g⋆, gπ̂h
) = Eπ̂1:h−L−1◦h−LUnif(A)[TV(π̂⋆

h(· | τh), π̂h(· | τh)]

≤ O

(√
XLAL+1 log(Hn/η)

n

)
where τh := (xmax(1,h−L+1):h, amax(1,h−L):h−1)). By change-of-measure, it follows that

Eπ̂1:h−1 [TV(π̂⋆
h(· | τh), π̂h(· | τh)] ≤ O

(
AL ·

√
XLAL+1 log(Hn/η)

n

)
≤ εopt

H
(15)

where the final inequality holds by the theorem assumption that n ≥
CE.2X

LA3L+1H2ε−2
opt log(Hn/η), so long as CE.2 is a sufficiently large constant. Next,

we observe that

TV(Pπlatent

,Pπ̂)

≤
H∑

h=1

Eπ̂[TV(πlatent
h (sh), π̂h(τh))]

≤
H∑

h=1

Eπ̂[TV(πlatent
h (sh), π̂

⋆
h(τh))] +

H∑
h=1

Eπ̂[TV(π̂⋆
h(τh), π̂h(τh))]

≤
H∑

h=1

Eπ[2V∞(bh(x1:h, a1:h−1))] +

H∑
h=L+1

Eπ̂
[∥∥∥bh(x1:h, a1:h−1)− bapx

h (xh−L+1:h, ah−L:h−1; d
π̂
h−L)

∥∥∥
1

]

+

H∑
h=1

Eπ̂[TV(π̂⋆
h(τh), π̂h(τh))]

where the final inequality is by Lemma E.3. As in Theorem E.1, the first term can be bounded by
O(δ) and the second term can be bounded by (CD.1δ)

L/9S. By Eq. (15) and a union bound over
h ∈ [H], the third term is at most εopt with probability at least 1− η. Substituting these bounds into
the above expression completes the proof.

F Omitted Proofs for Reinforcement Learning

In this section we prove Corollary 3.1, stated formally below.
Corollary F.1. There is a reinforcement learning algorithm that, for any given δ, β ∈ (0, 1/3) and
L ∈ N, and any δ-perturbed Block MDP P , learns a policy πrl satisfying

J(π⋆)− J(πrl) ≤ (C3.2δ)
L/18 · poly(S,X,H)

with probability at least 1− β and in time (XA/δ)O(L) · poly(H,S, log(1/β)).

36

Proof. Recall from Remark D.1 that any δ-perturbed Block MDP P is (1 − 2δ)-observable
(Definition B.4). Also, by Theorem D.1, P satisfies (ε;ϕ,L)-belief contraction for any ϕ > 0
and L ∈ N with ε := (CD.1δ)

L/9 · ϕ−1. Thus, we can invoke Theorem B.1 with γ := 1/3

and ε := (CD.1δ)
L/18

√
3C⋆H5S7/2X2, where C⋆ is as defined in Theorem B.1. The choice

of ϕ in Theorem B.1 indeed satisfies ε = (CD.1δ)
L/9 · ϕ−1, so P satisfies (ε;ϕ,L)-belief

contraction, and thus the algorithm BaSeCAMP [23] produces an executable policy π̂ that satisfies
J(π⋆)− J(π̂) ≤ ε · poly(S,X,H) in time poly((AX)L, H, S, ε−1, log(β−1)). Substituting in the
choice of ε completes the proof.

G A Motivating Toy Model for Smoothing

Adding to the discussion from Section 6, we informally discuss a theoretical toy model in which
smoothing the expert may decrease (a metric version of) action-prediction error and thus improve
final performance. Consider a horizon-1 POMDP where the state and action spaces have metrics dS
and dA, and the reward function R is binary-valued. For each latent state s, let G(s) be the set of
“good” actions, i.e. G(s) := {a ∈ A : R(s, a) = 1}, and let D(s) be the diameter of G(s). Suppose
that the following natural assumptions hold:

1. The map s 7→ G(s) is dS → dA Lipschitz. That is, perturbing s by ε (with respect to metric dS)
only perturbs the set G(s) by O(ε) (with respect to metric dA).

2. Under any observation, the posterior on states is “ε-local” with respect to dS , i.e. contained in an
ε-ball.

With no smoothing, the optimal expert may, for each s, play an arbitrary action in G(s), so the “metric”
action-prediction error (i.e. expected dispersion of actions played by the expert, conditioned on an
observation) can be as large as O(ε) + maxs D(s). However, suppose the environment has motor
noise. In particular, suppose the support of the noise is an η-radius ball (with respect to dA) around
the chosen action. Then for each s, the optimal policy is forced to the “interior” of G(s), i.e. not
within η of the boundary, effectively equivalent to decreasing the diameter of G(s) by η. Moreover,
if η ≳ ε, then for any two states s, s′ in the posterior of observation o, the actions chosen by the
optimal policy will lie in both G(s) and G(s′), so (under mild additional structural assumptions, e.g.
convexity of G(s) in Euclidean space) distillation should produce an optimal policy.

Of course, if η is too large, the “interior" of some of the G(s) sets becomes empty, i.e. the optimal
policy cannot play a robustly good action. As a result, it may play arbitrary actions for these states,
so the action prediction error can become large again (and the policy value decreases).

H Supplemental Materials for Experiments

In Appendix H.1 we present details for our empirical test of whether perfect decodability holds in
image-based locomotion tasks. In Appendix H.3 we present figures omitted from the main body of
the paper. In Appendix H.4 we include hyperparameter choices and details about compute resources.

H.1 Misspecification of Decodability in Practice

For each of the three tasks (walker-run, humanoid-walk, and dog-walk), we collect 2000 tra-
jectories from the expert latent policy, and for each L ∈ {1, 2, 3, 4, 5} we train a model directly
mapping from L observations xh−L+1:h to the state sh, by minimizing mean-squared error. We then
evaluate the validation error of the model on 100 trajectories collected from the same policy and plot
the per-timestep error in Figure 5. We normalize the states with the trajectory mean and standard
deviation of the combined dataset. Note that the error is composed with three parts: 1) error due to
model capacity; 2) using fixed-length frame-stacks instead of the whole history; 3) inherent failure of
perfect decodability. We observe that the trained model is able to achieve a small error in the later
timesteps, which suggests that error 1, model capacity error, is (likely) small. However, the error
is large in the initial timesteps. As error 2 does not exist for steps h ≤ L, it follows that error 3 is
non-trivial, i.e., perfect decodability fails.

37

Figure 5: Per timestep validation error of the state-prediction model for different choices of frame-
stack L ∈ {1, 2, 3, 4, 5}. The model is trained to predict the state given the most recent L observations.
We present the average error across 5 random seeds.

Ablation. To investigate whether the error at initial timesteps is due to parameter sharing, we also
tried to train non-stationary models (i.e., one model for each timestep) or using weighted loss with
higher weights for the initial timesteps, but neither approach significantly changed the results.

Conclusions. We conjecture that the higher error at early timesteps is due to a nearly uniform
distribution for the initial state distribution, where states that induce occlusion may be quite likely. In
later time-steps, the observations along the expert trajectory are in a more stable regime and thus may
introduce less occlusion (and hence be more likely to correspond to a unique latent state). Finally,
we observe that even at later time-steps there is still significant prediction error. While this could
potentially be due to model capacity error, it nevertheless demonstrates impracticality of learning a
perfect decoder, and it roughly corresponds with task difficulty (humanoid-walk and dog-walk are
harder than walker-run).

Source of the error. One may naturally wonder if the error is caused by unpredictable state
components that are irrelevant to decision-making (one example could be the absolute position of the
agent, but in the environments that we test on, absolute coordinates are actually not part of the latent
space). If this is the case, then the error would not negatively impact the performance of the policy
distilled from the latent expert.

One piece of evidence against this hypothesis is that the action-prediction error is indeed non-trivial
for our tasks of interest (c.r. Figure 9), which suggests that the error is not only due to irrelevant
components. In addition, we take a more detailed look at the state prediction error and identify the
components that contribute most to the error. With the same setup as in Figure 5, we compute the
mean squared error for each coordinate of the state, averaged over the whole trajectories, and present
the top 5 and bottom 5 coordinates in Table 1. We see that the coordinates that contribute most to the
error are mostly angular velocities of limbs, which are indeed hard to predict from images. On the
other hand, the coordinates that contribute least to the error are mostly joint angles or balance point
coordinates, which are easier to predict from images. From first principles, all of these coordinates
are crucial for the optimal policy, providing additional confirmation that the error is not only due to
irrelevant components.

Table 1: (Left) Top 5 and (right) bottom 5 coordinates contributing to state prediction error.

Coordinates Error

left_ankle_y angular velocity 0.82
left_hip_x angular velocity 0.81

right_shoulder1 angular velocity 0.69
right_shoulder2 angular velocity 0.67
right_ankle_y angular velocity 0.64

Coordinates Error

left_elbow joint angle 0.006
balance point z 0.020
balance point y 0.034
balance point x 0.044

left_knee joint angle 0.045

H.2 Imitating a Smoother Expert under Deterministic Latent Dynamics

In Section 6, we showed that under stochastic latent dynamics, imitating a smoother expert (which is
trained under higher motor noise) can lead to better performance. A natural question is whether this
phenomenon also exists under deterministic latent dynamics. Theoretically, the answer is no as we
showed in Theorem E.1 that with enough framestack, imitating the non-smoothed expert can already
be optimal under deterministic latent dynamics. That said, it remains unclear if smoothing the expert

38

can help improve the performance in practice. To answer this question, we conduct experiments in
the same setup as in Section 6, but with motor noise σ = 0 when performing expert distillation. We
vary the motor noise level used to train the latent expert over {0.1, 0.2, 0.3, 0.4, 0.5}, and we use a
framestack of size 3.

We present the results in Figure 6. We see that imitating a smoother expert does not lead to better
performance in this case, and the best performance is achieved by imitating the non-smoothed expert
(c.r., Figure 1). This corroborates our theoretical findings.

Figure 6: Performance of DAgger on the validation dataset for the humanoid-walk and dog-walk
environments with motor noise σ = 0, as the noise level for the training environment (i.e. the
environment in which the latent expert was trained) varies over {0.1, 0.2, 0.3, 0.4, 0.5}.

39

H.3 Omitted Figures

H.3.1 Belief contraction with/without motor noise

Figure 7: Belief contraction error with respect to the framestack L = {2, 3, 4, 5} on all tasks. For
each framestack L, we use train a Gaussian parametrized neural network to predict the belief with
L framestack input. We compute the KL distance to the output of an L = 10 network (serving as
an approximation of the true belief), averaged over a validation dataset with 100 episodes of data.
The orange plot denotes the decrease in KL divergence between two numbers of framestacks. We
repeat the experiment for 5 times and plot the mean and standard deviation. We observe that the
belief contraction error decreases (although not as fast as predicted by the theory) as the number of
framestack increases.

Figure 8: Belief contraction error with respect to the framestack L = {2, 3, 4, 5} on humanoid-walk
tasks, with and without motor noise. For each framestack L, we train a Gaussian parametrized neural
network to predict the belief with L framestack input. We compute the KL distance to the output
of an L = 10 network (serving as an approximation of the true belief), averaged over a validation
dataset with 100 episodes of data. The orange plot denotes the decrease in KL divergence between
two numbers of framestacks. We repeat the experiment for 5 times and plot the mean and standard
deviation. We observe that very similar belief contraction phenomena occur with or without the
motor noise.

H.3.2 Action prediction error with smoothed experts

40

Figure 9: Comparison of the (estimated) action-prediction error of the latent policy on the validation
dataset for the humanoid-walk and dog-walk environments with motor noise σ = 0.2, as the noise
level for the training environment (i.e. the environment in which the latent expert was trained)
varies over {0.1, 0.2, 0.3, 0.4, 0.5}. The action-prediction error was estimated using MSE as a proxy
(normalized by dimension of the action space, as detailed in Section 2). We observe that imitating
the latent expert that is trained on the same noise level does not yield the smallest prediction error.
Moreover, policies with lower action-prediction error also broadly have higher performance (Figure 4).

H.4 Experiment Details

Hyperparameters for state prediction models. The hyperparameters used and considered for the
belief/state prediction models (both deterministic and Gaussian parametrized), corresponding to the
experiments in Sections 3.1 and 5.2, in Table 2. For the neural network architecture, we use the
same cnn block prescribed in [22], followed by a three layer neural network with ReLU activation.
The architecture remains the same for the policies, and the hyperparameter hidden size refers to the
hidden size of the feedforward part of the neural network.

Table 2: Hyperparameters for belief prediction models.

Final value Considered Values

Minibatch size 256 128, 256
Learning rate 1e-4 1e-3, 2e-4, 1e-4

Optimizer Adam Adam
Number of epochs 100 25, 50, 100
Hidden layer size 512 128, 256, 512

Hyperparameters for expert distillation. The hyperparameters of BC and DAgger are provided
in Table 3 and Table 4 respectively. Note that the only exception is that DAgger is run for 6500
episodes in the motor noise 0.1 and 0.3 experiment because it converges slower than the rest of the
experiments.

Table 3: Hyperparameters for BC.

Final value Considered Values

Minibatch size 256 128, 256
Learning rate 1e-4 1e-3, 2e-4, 1e-4

Optimizer Adam Adam
Number of episodes 2000 1000, 2000, 5000
Number of epochs 1000 100, 500, 1000
Hidden layer size 256 128, 256, 512

Hyperparameters for RL. The hyperparameters for RL follows the original hyperparameters
prescribed in [22], and we train for 50000 episodes.

Computation details. All of our experiments are run with 1 L40S GPU with 8 threads of CPU.

41

Table 4: Hyperparameters for DAgger.

Final value Considered Values

Minibatch size 256 128, 256
Learning rate 1e-4 1e-3, 2e-4, 1e-4

Optimizer Adam Adam
Number of episodes 5 2, 5, 10, 20
Number of iterations 5000 1000, 2000, 5000, 100000

Number of gradient step per iteration 50 20, 50, 100
Hidden layer size 256 128, 256, 512

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We provide both theoretical and empirical evidence on how approximate decodability
and belief contraction explain the algorithmic trade-off between expert distillation and RL.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a discussion on the limitations of the work in the final section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

42

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: We explicitly state our assumptions and provide proofs to all of our theoretical
results.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss all details of the experiments, including hyperparameters.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

43

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: We did not provide the code in the supplemental material as the algorithms we
implemented are standard ones, and we provide all hyperparameters in Appendix H.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We discussed how to generate the training and validation data, and our choice of
optimizers.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All of our results include error bars.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

44

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: We include our compute details in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: Our paper does not incur significant societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.

45

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: Our paper does not leverage existing dataset or codebases.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

46

paperswithcode.com/datasets

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

47

Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.

48

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Approximate Decodability and Belief Contraction
	Prior Work: Perfectly Decodable POMDPs
	Errors in POMDPs
	The Perturbed Block MDP

	Distillation is Competitive for Deterministic Dynamics
	Theoretical Analysis under Deterministic Dynamics
	Empirical Analysis under Deterministic Dynamics

	RL Outperforms Distillation for Stochastic Dynamics
	Theoretical Analysis under Stochastic Dynamics
	Experimental Analysis under Stochastic Dynamics

	Towards Better Distillation: Imitating a Smoother Expert
	Additional Related Work
	Theoretical literature
	Empirical literature

	Additional Preliminaries
	Belief states
	Decodability and -Observability

	Technical Lemmas
	Omitted Proofs for Perturbed Block MDP
	Belief Contraction
	Approximate Decodability
	Misspecification Lower Bound for Stochastic Dynamics

	Omitted Proofs for Expert Distillation
	Misspecification Bounds for Composed Policies
	Analysis of Forward for L-step Executable Policies
	Finite-sample guarantee

	Omitted Proofs for Reinforcement Learning
	A Motivating Toy Model for Smoothing
	Supplemental Materials for Experiments
	Misspecification of Decodability in Practice
	Imitating a Smoother Expert under Deterministic Latent Dynamics
	Omitted Figures
	Experiment Details

