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Abstract

Measuring geometric similarity between high-dimensional network representations
is a topic of longstanding interest to neuroscience and deep learning. Although
many methods have been proposed, only a few works have rigorously analyzed their
statistical efficiency or quantified estimator uncertainty in data-limited regimes.
Here, we derive upper and lower bounds on the worst-case convergence of standard
estimators of shape distance—a measure of representational dissimilarity proposed
by Williams et al. [30]. These bounds reveal the challenging nature of the problem
in high-dimensional feature spaces. To overcome these challenges, we introduce
a new method-of-moments estimator with a tunable bias-variance tradeoff. We
show that this estimator achieves superior performance to standard estimators,
particularly in high-dimensional settings. Thus, we lay the foundation for a rigorous
statistical theory for high-dimensional shape analysis, and we contribute a new
estimation method well-suited to practical scientific settings.

1 Introduction

Many approaches have been proposed to quantify similarity in neural network representations.
Some popular methods include canonical correlations analysis [21], centered kernel alignment
[CKA; 13], representational similarity analysis [RSA; 14], and shape metrics [30]. Each of these
approaches takes in a set of high-dimensional measurements from two networks—e.g., hidden layer
activations or measured biological responses—and outputs a (dis)similarity score. Shape distances
additionally satisfy the triangle inequality, thus enabling downstream algorithms for clustering and
nearest-neighbor regression that leverage metric space structure [30]. These measures have numerous
applications including comparisons of artificial and biological systems [10, 24], comparisons of
neural activity across different animal species [15], quantifying how hidden layer activity differs
across deep network architectures [18, 19], and many more [see 11, for review]

In many practical settings, these measures must be estimated over a finite set of sampled networks
inputs. However, with the noteworthy exception of research on RSA [4, 22, 28], there is little work on
quantifying uncertainty (e.g. through confidence intervals) on estimators of representational similarity.
This poses a serious obstacle to adoption of these methods, particularly in experimental neuroscience
where there is a hard limit on the number of conditions that can be feasibly sampled [23, 29].

We address these concerns in the context of measuring shape distances between neural representa-
tions [Fig. 1; 30]. First we obtain analytic upper and lower bounds on the accuracy of typical “plug-in
estimates” of shape distance as as a function of the number of samples, M , and the dimension of the
representation, N . We then propose a new method-of-moments estimator with an explicit and tunable
tradeoff between estimator bias and variance to overcome the limitations of the plug-in estimator.
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Figure 1: (A) Classical shape distances [9] can be used to provide a rotation-invariant distance
between neural representations [30]. Given two labelled points clouds in N -dimensional space (left
and middle), the distance is computed after an optimal orthogonal transformation is chosen to align
the point clouds (right). In this visual example the point clouds trace out a low-dimensional manifold.
(B) Heatmap shows the covariances (Σii,Σjj) and cross-covariance (Σij) of the 3D representations
in panel A. Shape distances can be re-expressed in terms of these quantities (see eq. 2.5, 2.6). (C)
Our ability to estimate the shape distance is related to M , the number of stimuli. As M increases (left
to right) the number of sampled points along the underlying manifold increases, and we are better
able to resolve shape differences between the representations.

2 Results

We begin by reviewing generalized shape distances and the standard plug-in estimator (extended
background can be found in App. A) Based on our theoretical characterization of the plug-in
estimator in App. B, we find that plug-in estimates rapidly converge onto their expected value, but
the expected error decays moderately slowly (i.e. the estimators have low variance and high bias).
We thus introduce a method-of-moments estimator with tunable bias (Sec. 2.2) to overcome these
shortcomings. We characterize the behavior of both estimators on synthetic (Sec. 2.3) and neural data
(App. D.2). Finally, we discuss the implications of our results in Sec. 3.

2.1 Problem Setting

We consider initially a simple setting where each neural network is a deterministic map (for the
stochastic setting, see appendix A.2). A collection of K neural systems can then be viewed as a set
of functions, each denoted hi : Z 7→ RN for i ∈ {1, . . . ,K}. Here, Z is a feature space and N can
be interpreted as the number of neurons in each system (e.g. the size of a hidden layer in an artificial
network, or the number of recorded neurons in a biological experiment).

Motivated by the shape theory literature [9, 30], we consider estimating the Procrustes size-and-
shape distance, ρ, and Riemannian shape distance, θ, between neural representations. Let hi and hj

denote neural systems that are mean-centered and bounded:

E[hi(z)] = E[hj(z)] = 0 and ∥hi(z)∥2, ∥hj(z)∥2 < B
√
N almost surely. (2.1)

for some constant B > 0. Here, the expectations are taken over z ∼ P , for some distribution P over
network inputs. The Procrustes and Riemannian shape distances can be defined [App. D in 30]:

ρ(hi, hj) = min
Q∈O(N)

√
E∥hi(z)−Qhj(z)∥22 (2.2)

θ(hi, hj) = min
Q∈O(N)

cos−1

(
E[hi(z)

TQhj(z)]√
E[hi(z)Thi(z)]E[hj(z)Thj(z)]

)
(2.3)

where O(N) denotes the set of N ×N orthogonal matrices.
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It is well-known that the optimal orthogonal alignment in eqs. (2.2) and (2.3) can be identified in
closed form (App. A). Leveraging this, we can use the covariance and cross-covariance matrices,

Σii = E[hi(z)hi(z)
T] , Σjj = E[hj(z)hj(z)

T] , Σij = E[hi(z)hj(z)
T], (2.4)

to reformulate the squared Procrustes distance and cosine shape similarity:

ρ2(hi, hj) = Tr[Σii] + Tr[Σjj ]− 2∥Σij∥∗ (2.5)

cos θ(hi, hj) =
∥Σij∥∗√

Tr[Σii] Tr[Σjj ]
(2.6)

where ∥Σij∥∗ denotes the nuclear norm (or Shatten 1-norm) of the cross-covariance matrix.

Suppose we are given M independent and identically distributed network inputs z1, . . . ,zM ∼ P .
We can estimate the generalized shape distances by substituting the empirical covariances:

Σ̂ii =
1
M

M∑
m=1

hi(zm)hi(zm)T, Σ̂jj =
1
M

M∑
m=1

hj(zm)hj(zm)T, Σ̂ij =
1
M

M∑
m=1

hi(zm)hj(zm)T

(2.7)
to approximate the true covariances appearing in eqs. (2.5) and (2.6). Thus,

ρ̂2(hi, hj) = Tr[Σ̂ii] + Tr[Σ̂jj ]− 2∥Σ̂ij∥∗ (2.8)

cos θ̂(hi, hj) =
∥Σ̂ij∥∗√

Tr[Σ̂ii] Tr[Σ̂jj ]
(2.9)

define plug-in estimators for the squared Procrustes and cosine Riemannian shape distances.

2.2 A new estimator with controllable bias

The plug-in estimator of ∥Σij∥∗ has low variance but large and slowly decaying bias (see theorems
B.2 and B.1). Here we develop an alternative estimator that is nearly unbiased.

First, note that the eigenvalues of ΣijΣ
T
ij correspond to the squared singular values of Σij . Thus,

Tr[(ΣijΣ
T
ij)

1/2] = ∥Σij∥∗, and so we can reduce our problem to estimating the trace of (ΣijΣ
T
ij)

1/2,
which is symmetric. Leveraging ideas from a well-developed literature [1], we proceed to define the
pth moment of this matrix as:

Wp = Tr[(ΣijΣ
T
ij)

p] =

N∑
n=1

λp
n (2.10)

where λ1, . . . , λN denote the eigenvalues of ΣijΣ
T
ij . Now, for any function f : R 7→ R and

symmetric matrix S with eigenvalues λ1, . . . , λN , we define1 Tr[f(S)] =
∑

i f(λi). So long as f is
reasonably well-behaved, we can approximate it using a truncated power series with P terms. Thus,
with S = ΣijΣ

T
ij and f(x) =

√
x:

∥Σij∥∗ = Tr[(ΣijΣ
T
ij)

1/2] ≈
N∑

n=1

P∑
p=0

γpλ
p
n =

P∑
p=0

γp

N∑
n=1

λp
n =

P∑
p=0

γpWp (2.11)

where γ0, . . . , γP are scalar coefficients.

In summary, we can estimate ∥Σij∥∗ by (a) specifying an estimator of the top eigenmoments,
W1, . . . ,WP , and (b) specifying a desired set of scalar coefficients γ0, . . . , γP . To estimate the
eigenmoments, we adapt procedures described by Kong and Valiant [12] to obtain unbiased estimates
for each moment, Ŵ1, . . . , ŴP (see App. C). To select the scalar coefficients, we propose an
optimization procedure that trades off between bias and variance in the estimate of ∥Σij∥∗. Our
starting point is the usual bias-variance decomposition:

E
[(

∥Σij∥∗ −
∑

p γpŴp

)2]
=
(
E
[
∥Σij∥∗ −

∑
p γpŴp

])2
+ Var

[∑
p γpŴp

]
. (2.12)

1This is a common convention to extend scalar functions [see e.g. 20, sec. 1.2.6].
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Figure 2: Validation of estimator on synthetic data. (A) The moment based estimator (orange)
compared to plug-in estimator (blue) in simulation with standard deviation bars calculated across
simulations. Estimators are evaluated at 20 linearly spaced ground truth similarity score values. (B)
Effect of increasing sample size when moment estimator is constrained to have a bias less than 5
%. (C) Effect of increasing dimensionality. (D) Demonstration of conservative confidence intervals
that account for variance and maximal bias of moment estimator. We do not include CIs for the plug
in estimator (implied by theorem B.1) because for small sample sizes, the theoretical bounds on
estimator bias always contain far more than the entire allowable interval ([0, 1]).

Since E[Ŵp] = Wp =
∑

n λ
p
n, the first term above (i.e. the “bias”) simplifies and is upper-bounded:(

E
[
∥Σij∥∗ −

∑
p γpŴp

])2
=
(∑

n

(
λ
1/2
n −

∑
p γpλ

p
n

))2
≤ max

0≤x≤1

(
N
(
x1/2 −

∑
p γpx

p
))2

The inequality follows from replacing each term in the sum over n with the worst case approximation
error of the polynomial expansion (given here as the maximization over x). Thus, we seek to:

minimize
γ0,...,γP

max
0≤x≤1

(
N
(
x1/2 −

∑
p γpx

p
))2

+
∑

p,p′ γpγp′Cov(Ŵp, Ŵp′). (2.13)

We estimate Cov(Ŵp, Ŵp′) by bootstrapping—i.e. the empirical covariance of these statistics across
re-sampled datasets where z1:M are sampled with replacement. Given this estimate of covariance,
eq. (2.13) can be cast as a convex quadratic program and the maximal bias can be bounded to a user
defined limit at the expense of variance (see App. C.2). We use the maximal bias (eq. 2.13, term 1)
and variance (eq. 2.13, term 2) to form approximate confidence intervals (see App. C.3).

2.3 Validation on synthetic data

We validate our method-of-moments estimator (section 2.2) on simulated representations jointly
sampled from a multivariate normal distribution. We consider estimating the cosine shape similarity,
cos θ, defined in eq. 2.6. Our estimator of ∥Σij∥∗ is the principle novelty; thus, it is informative to
understand its properties in isolation. To achieve this, in our experiments we use the ground truth
covariance of Ŵp (instead of an estimate from a bootstrap) and use the ground truth values of Tr[Σii]
and Tr[Σjj ]. To draw data for our simulations, we set the eigenvalues of the Σii and the singular
values of Σij to a ground truth nuclear norm and similarity score. To demonstrate the estimators
accuracy across the space of orthogonal transformations we apply a random orthogonal rotation
matrix to each population’s covariance in each new parameter setting.

We first compared the bias of the plug-in estimator to that of the moment-based estimator across a
range of ground truth shape similarity values (Fig. 2A). As expected from our intuition discussed
in App. B.1, the plug-in estimator (blue line) tends to grossly inflate estimated similarity when
ground truth similarity is low (left side of plot). The moment-based estimator (orange line), in
contrast, performs reasonably well over the full range of simulations, at the cost of modest increases
in estimator variance (blue vs orange error bars).

Next, we fixed the ground truth similarity at 0.2 and studied the effect of sample size, M (Fig. 2B).The
moment estimator (constrained to 5% bias) maintains small bias even with small M , at the cost of
high variance (large orange error bars). Increasing M quickly reduces the variance of the estimator.
A similar story emerges when we fix M and vary the ambient dimension N (Fig. 2C). As the
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dimensionality increases, the the plug-in estimator bias quickly explodes. In contrast, the moment
estimator (here constrained to 10% bias) has roughly constant bias; however, it’s variance grows with
N . Thus our estimator bias outperforms the plug-in sample size is low and dimensionality is high.

Finally, an important property of the moment-based estimator is our ability to compute approximate
confidence intervals (CI) (see App. C.3). We demonstrate 95% CIs across simulations in Figure 2D
(shaded orange region). These CIs are conservative, the true shape score is not within the CI’s for
only 2.3% of simulations. Results on neural data can be found in App. D.2.

3 Discussion

There is a vast literature of papers that utilize or develop measures of representational similarity
between neural networks [see 11, for review], and recent works have shown interest in leveraging
representational distances that satisfy the triangle inequality [6, 7, 16, 30]. Yet, the statistical
properties of these shape distance measures appears understudied. Here, rigorously analyzed of
“plug-in” estimates of shape distance in high-dimensional, noisy, and sample-limited regimes. Our
analysis showed that these estimates (a) tend to over-estimate representational similarity when the
true similarity is small and (b) require a large number of samples, M , to overcome this bias in
high dimensional regimes. Theorems B.1 and B.2 provide precise guarantees on the worst-case
performance of plug-in estimators, which should guide the design of biological experiments and
analyses of their statistical power.

An equally important contribution of our work is to provide a practical method to (a) reduce the
bias of plug-in estimators of shape distance, (b) quantify uncertainty in shape distance estimates,
and (c) enable practicioners to explicitly trade off estimator bias and variance. When employed on a
biological dataset published by Stringer et al. [25], we find that shape similarity estimates are highly
uncertain, revealing the challenging nature of the problem in high dimensions and with noisy data.
Importantly, this degree of uncertainty is not obvious from the procedures and plug-in estimates
advertised by existing work on this subject.

Both theoretical and methodological aspects of our work may be of broader interest beyond the
immediate subject of shape distance estimation. We have seen that estimating the nuclear norm of
the cross-covariance, ∥Σij∥∗, is the key challenge in our problem. Estimating the spectrum of cross-
covariance matrices is a topic of contemporary interest [2], and further exploring the connections
between this problem and shape distance estimation is an intriguing direction. Similarly, the method-
of-moments estimator presented in section 2.2 is broadly applicable to generalized trace estimation
[1]. While others have used polynomial expansions in this context [17], a key novelty of our approach
is the selection of coefficients with a tunable parameter that explicitly trades off estimator bias and
variance. A more typical approach would be to choose these coefficients based on a Chebyshev
polynomial expansion. While elegant, we believe our procedure for tuning these coefficients will
be more relevant to scientific applications where samples are limited (such as neural data) and
practitioners desire finer-scale control.

In summary, our work is one of the first to rigorously interrogate the statistical challenges of estimating
shape distances in high-dimensional spaces. While shape distances can be well-behaved in certain
settings (e.g. in artificial networks where a very large number of inputs can be sampled), our
theoretical results and empirical observations underscore the challenging nature of this problem,
suggesting the need for carefully designed biological experiments and estimation procedures.
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A Appendix: Background on Generalized Shape Metrics

A.1 Definition of Generalized Shape Metrics

Intuitively, a measure of distance between neural representations should be invariant nuisance
symmetries in the neural representation, such as arbitrary permutations over neuron labels [5].
Representational similarity measures are typically designed to be invariant not only to permutations,
but also to rotations, reflections, translations, and isotropic scalings in neural firing rate space [13, 14].

We begin by considering a simple setting where each neural network is a deterministic map (for the
stochastic setting, see appendix A.2). A collection of K neural systems can then be viewed as a set
of functions, each denoted hi : Z 7→ RN for i ∈ {1, . . . ,K}. Here, Z is a feature space and N can
be interpreted as the number of neurons in each system (e.g. the size of a hidden layer in an artificial
network, or the number of recorded neurons in a biological experiment).2

Motivated by the shape theory literature [9, 30], we consider estimating the Procrustes size-and-
shape distance, ρ, and Riemannian shape distance, θ, between neural representations. Let hi and hj

denote neural systems that are mean-centered and bounded:

E[hi(z)] = E[hj(z)] = 0 and ∥hi(z)∥2, ∥hj(z)∥2 < B
√
N almost surely.

for some constant B > 0. Here, the expectations are taken over z ∼ P , for some distribution P over
network inputs. Our assumption that neural population rates are bounded by B

√
N can be achieved

by assuming that each neuron has a maximum firing rate equal to B. This assumption is common
in the literature and reasonable in both artificial networks (since connection weights are finite) and
biological networks (since neurons have a maximal firing rate).

The Procrustes and Riemannian shape distances can be defined [App. D in 30]:

ρ(hi, hj) = min
Q∈O(N)

√
E∥hi(z)−Qhj(z)∥22

θ(hi, hj) = min
Q∈O(N)

cos−1

(
E[hi(z)

TQhj(z)]√
E[hi(z)Thi(z)]E[hj(z)Thj(z)]

)
where O(N) denotes the set of N ×N orthogonal matrices. Again, all expectations are taken over
z ∼ P . Note that different notions of distance arise from different choices of input distribution, P .

To simplify our analysis and exposition, we will focus on estimating the squared Procrustes distance,
ρ2, and what we call the cosine shape similarity, cos θ. Thus, we ignore the square root term in
eq. (2.2) and the arccosine term in eq. (2.3), but it should be kept in mind that one must apply these
nonlinear functions to achieve a proper metric.

Properties of Shape Distance It is easy to verify that shape distances are invariant to rotations
and reflections: that is, if r : RN 7→ RN is an orthogonal transformation, then for any function
h : Z 7→ RN representing a neural system we have ρ(h, r ◦ h) = θ(h, r ◦ h) = 0, where ‘◦’ denotes
function composition. Furthermore, ρ and θ are proper metrics, meaning that:
ρ(hi, hj) = ρ(hj , hi) and ρ(hi, hj) ≤ ρ(hi, hk) + ρ(hk, hj) ∀ i, j, k ∈ {1, . . . ,K}, (A.1)

and likewise for θ. These properties are fundamental to rigorously establishing downstream analyses,
such as for clustering networks with similar representations [30].

It is well-known that the optimal orthogonal alignment appearing in eqs. (2.2) and (2.3) can be
identified in closed form. Leveraging this, we can use the covariance and cross-covariance matrices,

Σii = E[hi(z)hi(z)
T] , Σjj = E[hj(z)hj(z)

T] , Σij = E[hi(z)hj(z)
T], (A.2)

to reformulate the squared Procrustes distance and cosine shape similarity:
ρ2(hi, hj) = Tr[Σii] + Tr[Σii]− 2∥Σij∥∗

cos θ(hi, hj) =
∥Σij∥∗√

Tr[Σii] Tr[Σjj ]

2The assumption that each layer has the same number of neurons is not necessary, and only made for
convenience. For networks with dissimilar sizes, we can preprocess by zero-padding the smaller network. If
necessary, one could alternatively perform PCA on the larger network to reduce to a common dimension.
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where ∥Σij∥∗ denotes the nuclear norm (or Shatten 1-norm) of the cross-covariance matrix:

∥Σij∥∗ =

N∑
n=1

sn(Σij) (A.3)

where s1(M) ≥ · · · ≥ sN (M) ≥ 0 denote the singular values of a matrix M . Equations 2.5 and
2.6 are derived in Appendix A.3 to provide the reader with a self-contained narrative.

Plug-in Estimators Suppose we are given M independent and identically distributed network
inputs z1, . . . ,zM ∼ P . How well can we approximate the shape distances between two networks,
as a function of M? The standard approach, which was previously used in Williams et al. [30], is
to use a plug-in estimator in which one computes eqs. (2.2) and (2.3) after identifying the optimal
Q ∈ O(N). As we show in App. A.4, this is equivalent to estimating the squared Procrustes and
cosine Riemannian distances by substituting the empirical covariances:

Σ̂ii =
1
M

M∑
m=1

hi(zm)hi(zm)T, Σ̂jj =
1
M

M∑
m=1

hj(zm)hj(zm)T, Σ̂ij =
1
M

M∑
m=1

hi(zm)hj(zm)T

(A.4)
to approximate the true covariances appearing in eqs. (2.5) and (2.6). Thus,

ρ̂2(hi, hj) = Tr[Σ̂ii] + Tr[Σ̂ii]− 2∥Σ̂ij∥∗

cos θ̂(hi, hj) =
∥Σ̂ij∥∗√

Tr[Σ̂ii] Tr[Σ̂jj ]

define plug-in estimators for the squared Procrustes and cosine Riemannian shape distances. The
empirical behavior of these estimators as a function of M was only briefly characterized by Williams
et al. [30] for a pair of artificial networks trained on CIFAR-10.

A.2 Extension to stochastic networks

Thus far, we have modeled neural networks as deterministic mappings, hi : Z 7→ RN . This
assumption is not satisfied in biological data and in many artificial networks (e.g. VAEs). Here, we
briefly explain how to extend the estimators to the stochastic setting. In this setting, the response of
network i can be written as hi(z) + ϵi(z). As before, hi(z) is a deterministic mapping conditioned
on a random variable z ∼ P . The “noise” term ϵi(z) is a mean-zero random variable that, in addition
to inheriting the randomness of z, captures the stochastic elements of each forward pass through the
network (i.e. trial-to-trial variability even when the stimulus is fixed). Importantly, noise contributions
are independent and identically distributed for each pass through the network.

Given a second stochastic network with same structure, hj(z) + ϵj(z), our goal is to estimate the
shape distances eqs. (2.2) and (2.3) as before, effectively ignoring contributions of the “noise” terms
ϵi(·) and ϵj(·). Ignoring these terms is not wholly justified, since it is of great interest to quantify how
noise varies across networks [6]. Nonetheless, it is useful to develop metrics that isolate the “signal”
component of neural representations, and a full development of methods to quantify similarity in
noise structure is outside the scope of this paper.

Our basic observation is that it suffices to consider two replicates for each network input. That
is, let z′ = z where z ∼ P . Then, Σii = E[hi(z)hi(z

′)T] which can be approximated by the
slightly reformulated plug-in estimator: Σ̂ii = (1/M)

∑
m hi(zm)hi(z

′
m)T. Further, since noise

is independent across networks, i.e. ϵi(z) ⊥⊥ ϵj(z) for all z ∈ Z , the cross-covariance estimators,
including the method-of-moments estimator described in section 2.2, do not require any modification.
Here we provide several relevant derivations for generalized shape metrics. For a more thorough
review, we direct the reader to [30] for the foundational results on generalized shape metrics and [6]
for the extension to stochastic neural networks.
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A.3 Equivalence of eqs. (2.2) and (2.5); eqs. (2.3) and (2.6)

The squared Procrustes can be reformulated in terms of the covariance and cross-covariance matrices
as follows:
ρ2(hi, hj) = min

Q∈O(N)
E∥hi(z)−Qhj(z)∥22

= min
Q∈O(N)

E
[
hi(z)

Thi(z) + hj(z)
Thj(z)− 2hi(z)

TQhj(z)
]

= E
[
hi(z)

Thi(z)
]
+ E

[
hj(z)

Thj(z)
]
− 2 max

Q∈O(N)
E
[
hi(z)

TQhj(z)
]

= E
[
Tr
[
hi(z)hi(z)

T
]]

+ E
[
Tr
[
hj(z)hj(z)

T
]]

− 2 max
Q∈O(N)

E
[
Tr
[
Qhj(z)hi(z)

T
]]

= Tr
[
E
[
hi(z)hi(z)

T
]]

+Tr
[
E
[
hj(z)hj(z)

T
]]

− 2 max
Q∈O(N)

Tr
[
QE

[
hj(z)hi(z)

T
]]

= Tr [Σii] + Tr [Σjj ]− 2 max
Q∈O(N)

Tr [QΣij ]

= Tr [Σii] + Tr [Σjj ]− 2∥Σij∥∗

Similarly for the cosine Riemannian distance:

cos θ(hi, hj) = max
Q∈O(N)

(
E[hi(z)

TQhj(z)]√
E[hi(z)Thi(z)]E[hj(z)Thj(z)]

)

=
maxQ∈O(N) E

[
Tr[Qhj(z)hi(z)

T]
]√

E [Tr[hi(z)hi(z)T]]E [Tr[hj(z)hj(z)T]]

=
maxQ∈O(N) Tr

[
QE[hj(z)hi(z)

T]
]√

Tr [E[hi(z)hi(z)T]] Tr [E[hj(z)hj(z)T]]

=
maxQ∈O(N) Tr [QΣij ]√

Tr [Σii] Tr [Σjj ]
=

∥Σij∥∗√
Tr [Σii] Tr [Σjj ]

A.4 Reformulations of the Plug-in Estimator of Procrustes distance

Let z1, . . . ,zM denote a set of independently and identically distributed samples in the network input
space. Then, stack the responses of network i row-wise into a matrix Xi ∈ RM×N . Given this set
up, a common definition of Procrustes distance is [8]:

min
Q∈O(N)

1√
M

∥Xi −XjQ∥F (A.5)

Here, we have included a multiplying factor of 1/
√
M for reasons that will become clear shortly.

Aside from this factor, the quantity above is how Williams et al. [30] define the Procrustes distance.
Below, we show that the square of this quantity is indeed the plug-in estimator we defined in eq. (2.8)
in terms of the empirical covariance matrices:

min
Q∈O(N)

1

M
∥Xi −XjQ∥2F = min

Q∈O(N)

1

M

(
Tr[XT

i Xi] + Tr[XT
jXj ]− 2Tr[XiX

T
jQ]

)
= Tr

[
1
MXT

i Xi

]
+Tr

[
1
MXT

jXj

]
− 2 max

Q∈O(N)
Tr
[

1
MXiX

T
jQ
]

= Tr
[
Σ̂ii

]
+Tr

[
Σ̂jj

]
− 2 max

Q∈O(N)
Tr
[
Σ̂ijQ

]
= Tr

[
Σ̂ii

]
+Tr

[
Σ̂jj

]
− 2∥Σ̂ij∥∗

= ρ̂2(hi, hj)

B Appendix: Plug-in Estimator Theory

Here we provide a number of derivations related to the behavior of the plug-in estimator for general-
ized shape metrics. These results primarily rely on classic concentration inequalities and results from
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random matrix theory. For readers interested in further background, we provide pointers to [27] and
[26] for the concentration inequalities and [20] for the random matrix theory.

B.1 Summary of Results: Nonasymptotic bounds on the performance of plug-in estimation

First, it is straightforward to estimate Tr[Σii] and Tr[Σjj ]. Their plug-in estimators are unbiased
under our assumptions in eq. (2.1), and they rapidly converge to the correct answer. This is shown in
the following lemma, whose proof relies only on classical concentration inequalities.
Lemma B.1 (App. B.3). Under the assumptions in eq. (2.1), with probability at least 1− δ:∣∣∣Tr[Σii]− Tr[Σ̂ii]

∣∣∣ ≤ BN1/2M−1/2
√
2 log(2/δ) (B.1)

In contrast, the plug-in estimator for ∥Σij∥∗ is biased upwards (see appendix B.2) and turns out to
converge more slowly. Using the Matrix Bernstein inequality [see 26], we can show:
Lemma B.2 (App. B.4). Under the assumptions in eq. (2.1), for any M and N :

E
∣∣∣∥Σ̂ij∥∗ − ∥Σij∥∗

∣∣∣ < 2B2N2 log(2N)

3M
+

2B2N2
√
log(2N)

M1/2
(B.2)

This only upper bounds the expected error. However, the fluctuations around this expectation turn out
to be small (see App. B.5), and so we are able to combine lemmas B.1 and B.2 into the following:
Theorem B.1 (App. B.5). Under the assumptions in eq. (2.1), with probability at least 1− δ

|ρ̂2 − ρ2|
N

≤ 2B2N log(2N)

3M
+

2B2N
√
log(2N)

M1/2
+

(
B2

M1/2
+

2B

N1/2M1/2

)√
2 log

(
6

δ

)
(B.3)

Theorem B.1 states a non-asymptotic upper bound on the plug-in estimator’s error that holds with
high probability. We have expressed this bound on the squared size-and-shape Procrustes distance
normalized by 1/N , since the raw error, |ρ̂− ρ|, will tend to increase linearly with N for an uninter-
esting reason—namely, since the the Procrustes shape distance is comprised of terms like Tr[Σii] and
Tr[Σjj ]. The choice of normalization in theorem B.1 also makes the result more comparable to the
cosine shape similiarity (eq. 2.6), which is normalized by a factor,

√
Tr[Σii] Tr[Σjj ], of order N .

We can gain intuition for theorem B.1 by ignoring logarithmic factors and noticing that the second
term dominates. Then, roughly speaking, theorem B.1 says that we can guarantee the plug-in error
decreases as a function of NM−1/2. Thus, for any fixed N , we need to increase M by a factor of 4
to decrease estimation error by a factor of 2. Further, when comparing higher-dimensional neural
representations (i.e. higher N ) we need to sample more landmarks—if N increases by a factor of 2,
then M must be increased by a factor of 4 to compensate.

B.2 Summary of Results: Failure modes of plug-in estimation and a lower bound on
performance

Theorem B.1 provides a high probability upper bound on the estimation error. A natural question is
whether this upper bound is tight. To investigate, we seek an example where the plug-in estimator
performs badly. We intuited that when two neural representations are very far apart in shape space,
the plug-in estimator of shape distance should have a large downward bias. This can be understood in
two ways. First, from the definitions of ρ and θ in eqs. (2.2) and (2.3), we see that both expressions
contain a minimization over Q ∈ O(N). For large N and small M , this high-dimensional orthogonal
matrix can be “overfit” to the M observations resulting in an underestimate of distance. Second, from
the alternative formulations in eqs. (2.5) and (2.6), we see that the shape distance is large if the true
cross-covariance is “small” as quantified by the nuclear norm. In the extreme case where the singular
values of Σij are all zero, the empirical cross-covariance matrix (1/M)

∑
m hi(zm)hj(zm)T will

overestimate the nuclear norm, and therefore underestimate the shape distance. This is more severe
when M is small, since there are fewer terms in the sum to “average out” spurious correlations, which
are particularly problematic in high dimensions (i.e. when N is large).

This intuition led us to construct an example where plug-in estimation error approaches the upper
bound in theorem B.1. This is summarized in the following result.
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Theorem B.2 (Lower Bound, App. B.6). Under the assumptions in eq. (2.1), there exist neural
networks and a distribution over inputs such that in the limit that N → ∞ and M ≫ N :

|ρ̂2 − ρ2|
N

=
16B2

3π
N1/2M−1/2 (B.4)

Thus, while future work may seek to improve the upper bound in theorem B.1, we cannot hope to
improve beyond the lower bound formulated in theorem B.2. If we ignore the logarithmic factors
to gain intuition, we observe there is (roughly) a gap of N1/2 between the upper and lower bounds.
Thus, it is possible that our analysis in appendix B.1 may be conservative in terms of the ambient
dimension—specifically, the lower bound only suggests that M only needs to be increased two-fold
to compensate for a two-fold increase in N . However, in terms of the number of sampled inputs, the
rate cannot be improved beyond M−1/2.

B.3 Proof of lemma B.1

Here we show that the plug-in estimate of the total variance Tr[Σ̂ii] converges to the true variance
Tr[Σii] exponentially fast as M increases. We begin with some algebraic manipulations:∣∣∣Tr[Σii − Σ̂ii]

∣∣∣ = ∣∣∣∣Tr [Ez∼P [hi(zm)hi(zm)T]− 1
M

M∑
m=1

hi(zm)hi(zm)T
]∣∣∣∣

=

∣∣∣∣Ez∼P

[
Tr[hi(zm)hi(zm)T]

]
− 1

M

M∑
m=1

Tr[hi(zm)hi(zm)T]

∣∣∣∣
=

∣∣∣∣Ez∼P

[
Tr[hi(zm)Thi(zm)]

]
− 1

M

M∑
m=1

Tr[hi(zm)Thi(zm)]

∣∣∣∣
=

∣∣∣∣Ez∼P

[
hi(zm)Thi(zm)

]
− 1

M

M∑
m=1

hi(zm)Thi(zm)

∣∣∣∣
where we have used the property Tr[xxT] = xTx for any column vector x in the last two lines.

The main assumption we are going to make is that the neural responses are constrained to an ℓ2 ball
of radius B

√
N or equivalently hi(zm)Thi(zm) ≤ B2N for all stimuli in the support of P . Note that

this is a reasonable assumption in both biological (energy constraints) and artificial neural networks
(weight decay common).
Lemma B.3 (Bounded Random Variables are Sub-Gaussian, Wainwright [27] Example 2.4). We say
that a random variable X with mean µ is sub-Gaussian with parameter σ if:

E
[
eλ(X−µ)

]
≤ eσ

2λ2/2 for all λ ∈ R

Intuitively, this means that the tails of X fall off faster than a Gaussian. Furthermore, if X is mean
zero and supported on the interval [a, b], the X is sub-Gaussian with parameter σ = (b− a)/2.

Thus our assumption implies that each term with 1
M hi(zm)Thi(zm) is sub-Gaussian with parameter

σ = B
√
N/M . We can then immediately apply the Hoeffding bound [27, Proposition 2.5] to obtain:

P
[∣∣∣Tr[Σii − Σ̂ii]

∣∣∣ ≥ t
]
≤ 2 exp

[
− Mt2

2B2N

]
(B.5)

Analogously for term (B) we obtain:

P
[∣∣∣Tr[Σjj − Σ̂jj ]

∣∣∣ ≥ t
]
≤ 2 exp

[
− Mt2

2B2N

]
(B.6)

B.4 Proof of lemma B.2

Our main tool is the matrix Bernstein inequality, given as theorem 6.1.1 in Tropp [26]. We paraphrase
a version of the theorem here to keep our narrative self-contained.
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Theorem B.3 (Matrix Bernstein). Consider a finite sequence {S1, . . . ,SM} of independent, random
N ×N matrices. Assume that:

E
[
Sm

]
= 0 and ∥Sm∥∞ ≤ L for each index m (B.7)

where ∥Sm∥∞ = sup{∥Smv∥2 : ∥v∥2 ≤ 1} is the matrix operator norm.

Further, define the variance of the sum
∑

m Sm as:

V =
∥∥∑

mEST
mSm

∥∥
∞ =

∥∥∑
mESmST

m

∥∥
∞ (B.8)

Then:

E
[ ∥∥∑

mSm

∥∥
∞

]
≤
√
2V log(2N) +

L

3
log(2N) (B.9)

We now turn to the proof of theorem B.1. Define:

Sm =
1

M

(
hi(zm)hj(zm)T −Σij

)
(B.10)

for the sequence of network inputs {z1, . . . ,zM}. Notice that:

E
[
Sm

]
=

1

M

(
E
[
hi(zm)hj(zm)T

]
−Σij

)
=

1

M
(Σij −Σij) = 0 (B.11)

Next, due to triangle inequality, we have:

∥Sm∥∞ =
1

M

∥∥hi(zm)hj(zm)T −Σij

∥∥
∞ ≤ 1

M

∥∥hi(zm)hj(zm)T
∥∥
∞︸ ︷︷ ︸

(1)

+
1

M
∥Σij∥∞︸ ︷︷ ︸

(2)

(B.12)

Terms (1) and (2) are each upper bounded by B2N , since for term (1):∥∥hi(zm)hj(zm)T
∥∥
∞ ≤

∥∥hi(zm)hj(zm)Tv
∥∥
2

(for any vector ∥v∥2 ≤ 1) (B.13)

= hj(zm)Tv ∥hi(zm)∥2 (B.14)
≤ ∥hj(zm)∥2 ∥v∥2 ∥hi(zm)∥2 (Cauchy-Schwarz inequality) (B.15)

≤ B
√
N · 1 ·B

√
N = B2N (From assumptions in eq. 2.1) (B.16)

And for term (2):

∥Σij∥∞ =
∥∥Ehi(z)hj(z)

T
∥∥
∞ (B.17)

≤
∥∥Ehi(zm)hj(zm)Tv

∥∥
2

(for any vector ∥v∥2 ≤ 1) (B.18)

≤ E
∥∥hi(zm)hj(zm)Tv

∥∥
2

(Jensen’s inequality) (B.19)

≤ B2N (Repeat the upper bound on term 1) (B.20)

To summarize, we have:

∥Sm∥∞ ≤ 1

M

∥∥hi(zm)hj(zm)T
∥∥
∞ +

1

M
∥Σij∥∞ ≤ 2B2N

M
(B.21)

That is, we have shown that the assumptions of eq. (B.7) are satisfied with L = 2B2N/M .

Our next task is to determine an expression for the variance V defined in eq. (B.8). First, we have:

EST
mSm =

1

M2
E[hj(zm)hi(zm)Thi(zm)hj(zm)T +ΣT

ijΣij −ΣT
ijhj(zm)hi(zm)T − hi(zm)hj(zm)TΣij ]

=
1

M2
E[hj(zm)hi(zm)Thi(zm)hj(zm)T] +ΣT

ijΣij −ΣT
ijE[hj(zm)hi(zm)T]− E[hi(zm)hj(zm)T]Σij

=
1

M2
E[hj(zm)hi(zm)Thi(zm)hj(zm)T] +ΣT

ijΣij −ΣT
ijΣij −ΣT

ijΣij

=
1

M2
E[hj(zm)hi(zm)Thi(zm)hj(zm)T]−ΣT

ijΣij
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Then, by triangle inequality:

∥EST
mSm∥∞ =

1

M2
∥E[hj(zm)hi(zm)Thi(zm)hj(zm)T]−ΣT

ijΣij∥∞

≤ 1

M2
∥E[hj(zm)hi(zm)Thi(zm)hj(zm)T]∥∞︸ ︷︷ ︸

(A)

+
1

M2
∥ΣT

ijΣij∥∞︸ ︷︷ ︸
(B)

Terms (A) and (B) are each upper bounded by N2. First, taking term (A):∥∥E [hj(zm)hi(zm)Thi(zm)hj(zm)T]
∥∥
∞ ≤

∥∥E [hj(zm)hi(zm)Thi(zm)hj(zm)Tv]
∥∥
2

(for ∥v∥ ≤ 1)

≤ E
∥∥hj(zm)hi(zm)Thi(zm)hj(zm)Tv

∥∥
2

(Jensen’s)

≤ E
[
hj(zm)Tv∥hi(zm)∥22 ∥hj(zm)∥2

]
≤ E

[
∥v∥2∥hi(zm)∥22 ∥hj(zm)∥22

]
(Cauchy-Schwarz)

≤ 1 ·B2N ·B2N = B4N2 (from eq. 2.1)

For term (B), we first note that ∥ΣT
ijΣij∥∞ ≤ ∥Σij∥2∞ due to the fact that the operator norm is

submultiplicative. Then, term (B) is upper bounded by B4N2 follows readily from:

∥Σij∥∞ = ∥Ehi(z)hj(z)
T∥∞

≤ ∥Ehi(z)hj(z)
Tv∥2 (for ∥v∥ ≤ 1)

≤ E ∥hi(z)hj(z)
Tv∥2 (Jensen’s)

≤ E ∥hi(z)∥2∥hj(z)∥2∥v∥2 (Cauchy-Schwarz)

≤ B
√
N ·B

√
N · 1 = B2N (from eq. 1)

Taking these two bounds together, we have shown ∥EST
mSm∥∞ ≤ 2B4N2/M2. We are now ready

to upper bound the variance term, V , appearing in theorem B.3. Specifically, by the triangle inequality
and the bounds above, we have:

V = ∥
∑

mEST
mST

m∥∞ ≤
M∑

m=1

∥EST
mST

m∥∞ ≤ 2B4N2

M
(B.22)

With this, we are equipped to apply the matrix Bernstein inequality to obtain an upper bound on the
estimation error of the plug-in estimator. Specifically, we have:∣∣∣∥Σ̂ij∥∗ − ∥Σij∥∗

∣∣∣ ≤ ∥Σ̂ij −Σij∥∗ (reverse triangle inequality)

= ∥
∑
m

Sm∥∗

≤ N∥
∑
m

Sm∥∞

≤ N
√
2V log(2N) +

NL

3
log(2N) (theorem B.3)

≤ 2B2N2M−1/2
√
log(2N) +

2B2N2

3M
log(2N)

Where we have substituted the derived quantities L = 2B2N/M and V ≤ 2B4N2/M in the final
line.

B.5 Proof of theorem B.1

Lemma B.2 provides an upper bound on the expected value on
∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗

∣∣∣, which is the
error of our plug-in estimate of cross-covariance nuclear norm. This bound holds for any true
cross-covariance matrix Σij , provided that the constraints in eq. (2.1) are satisfied. However, this
tells us nothing about how the estimation error deviates around its expectation.

Here, we use the bounded differences inequality [27, Corollary 2.21], also called McDiarmid’s
inequality, to show that deviations around this expectation decrease exponentially fast. Thus, the
upper bound on the expected error (theorem B.1) provides accurate intuition.
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Lemma B.4 (Bounded Differences Inequality, Wainwright [27] Corollary 2.21). Consider a function
f : Rn → R. The function is said to have the bounded difference property for the kth coordinate if
there exists an Lk for which the following holds:

max
X1:n∈Rn,X′

k∈R

∣∣f(X1:n)− f(X1:k−1, X
′
k, Xk+1:n)

∣∣ ≤ Lk

Suppose f satisfies this property with L1, . . . , Ln for each coordinate respectively. Then the following
inequality holds:

P
[∣∣∣∣f(X1:n)− E[f(X1:n)]

∣∣∣∣ ≥ t

]
≤ exp

[
− 2t2∑n

i=1 L
2
i

]
(B.23)

We start by applying the reverse triangle inequality:

∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗
∣∣∣ ≤ ∥Σij − Σ̂ij∥∗ =

∥∥∥∥Σij − 1
M

M∑
m=1

hi(zm)hj(zm)T
∥∥∥∥
∗

We can bound how much this changes if we change one coordinate of the function, i.e. if
hi(z1)

Thj(z1) is replaced by hi(z̃1)
Thj(z̃1). The difference is then bounded by:

∥∥∥∥Σij − 1
M

M∑
m=1

hi(zm)hj(zm)T
∥∥∥∥
∗
−
∥∥∥∥Σij −

(
1
M

M∑
m=1

hi(zm)hj(zm)T − 1

M
hi(z1)hj(z1)

T +
1

M
hi(z̃1)hj(z̃1)

T

)∥∥∥∥
∗

≤
∥∥∥∥ 1

M

(
hi(z1)hj(z1)

T − hi(z̃1)hj(z̃1)
T
)∥∥∥∥

∗
=

1

M

∥∥hi(z1)hj(z1)
T − hi(z̃1)hj(z̃1)

T
∥∥
∗

≤ 1

M

(∥∥hi(z1)hj(z1)
T
∥∥
∗ +

∥∥hi(z̃1)hj(z̃1)
T
∥∥
∗

)
=

1

M

(∣∣hi(z1)
Thj(z1)

∣∣+ ∣∣hi(z̃1)
Thj(z̃1)

∣∣)
Finally, we can apply Cauchy-Schwartz and our assumption about the neural activations being
bounded to obtain:

1

M

(∣∣hi(z1)
Thj(z1)

∣∣+ ∣∣hi(z̃1)
Thj(z̃1)

∣∣) ≤ 1

M
(∥hi(z1)∥2∥hj(z1)∥2 + ∥hi(z̃1)∥2∥hj(z̃1)∥2)

≤ 2B2N

M

Thus we have
∑M

i=1 L
2
i =

∑M
i=1 4B

4N2/M2 = 4B4N2/M , and we can apply the bounded
differences inequality to obtain for all t ≥ 0:

P
[ ∣∣∣∣ ∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗

∣∣∣− E
∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗

∣∣∣ ∣∣∣∣ ≥ t

]
≤ 2 exp

[
− Mt2

2B4N2

]
(B.24)

For the deviation from the expectation to be in the range [−t, t] with probability 1− δ we require:

2 exp

[
− Mt2

2B4N2

]
≤ δ

Solving for t gives t ≥ B2NM−1/2
√
2 log (2/δ), and thus with probability 1 − δ the following

holds: ∣∣∣∣ ∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗
∣∣∣− E

∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗
∣∣∣ ∣∣∣∣ ≤ B2NM−1/2

√
2 log(2/δ)

To proceed we break this we use a basic identity of the absolute value: if |a− b| < c then a− b < c
and also b− a < c. Thus, with probability at least 1− δ, we have:

∥Σij∥∗ − ∥Σ̂ij∥∗ ≤ E
∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗

∣∣∣+ B2N

M1/2

√
2 log(2/δ)

≤ 2B2N2

M1/2

√
log(2N) +

2B2N2

3M
log(2N) +

B2N

M1/2

√
2 log(2/δ)
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And we also have with probability at least 1− δ, we have:

∥Σ̂ij∥∗ − ∥Σij∥∗ ≤ E
∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗

∣∣∣+ B2N

M1/2

√
2 log(2/δ)

≤ 2B2N2

M1/2

√
log(2N) +

2B2N2

3M
log(2N) +

B2N

M1/2

√
2 log(2/δ)

In the final inequalities above, we have simply plugged in our expectation bound from lemma B.2.
The relations above imply that the following holds with probability 1− δ:∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗

∣∣∣ ≤ 2N2 log(2B2N)

3M
+

2B2N2
√

log(2N)

M1/2
+

B2N

M1/2

√
2 log

(
2

δ

)
(B.25)

To complete the proof we need to combine the above tail bound with lemma B.1. By the triangle
inequality we have

|ρ̂2 − ρ2| =
∣∣∣Tr[Σ̂ii] + Tr[Σ̂jj ]− 2∥Σ̂ij∥∗ − Tr[Σ̂ii]− Tr[Σ̂jj ] + 2∥Σ̂ij∥∗

∣∣∣
=
∣∣∣Tr[Σ̂ii]− Tr[Σii] + Tr[Σ̂jj ]− Tr[Σjj ] + 2∥Σij∥∗ − 2∥Σ̂ij∥∗

∣∣∣
≤
∣∣∣Tr[Σ̂ii]− Tr[Σii]

∣∣∣+ ∣∣∣Tr[Σ̂jj ]− Tr[Σjj ]
∣∣∣+ 2

∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗
∣∣∣

Setting δ′ = δ/3 in our results for these three terms yields that the following three inequalities
independently hold with probability δ/3:

∣∣∣Tr[Σii]− Tr[Σ̂ii]
∣∣∣ ≥ BN1/2M−1/2

√
2 log(6/δ)∣∣∣Tr[Σjj ]− Tr[Σ̂jj ]

∣∣∣ ≥ BN1/2M−1/2
√

2 log(6/δ)∣∣∣∥Σij∥∗ − ∥Σ̂ij∥∗
∣∣∣ ≥ 2N2 log(2B2N)

3M
+

2B2N2
√
log(2N)

M1/2
+

B2N

M1/2

√
2 log

(
6

δ

)
By applying the union bound, we obtain that all three inequalities hold simultaneously with probability
≤ δ/3 + δ/3 + δ/3 = δ. The three reverse inequalities then hold simultaneously with probability
greater than or equal to 1− δ. Thus with probability at least 1− δ, the following holds:

|ρ̂2 − ρ2| ≤ 2B2N2 log(2N)

3M
+

2B2N2
√
log(2N)

M1/2
+

(
NB2

M1/2
+

2N1/2B

M1/2

)√
2 log

(
6

δ

)
as claimed in theorem B.1.

B.6 Proof of theorem B.2 (Lower Bound on Plug-In Estimator Error)

We derive a lower bound by constructing an explicit example where the plug-in estimator performs
badly. Specifically, we consider a scenario where two networks have entirely decorrelated, high-
variance representations. To do this, we use Rademacher random variables—a random variable R is
called a Rademacher variable if it behaves as follows:

R =

{
+1 with probability 1/2

−1 with probability 1/2
(B.26)

Now, suppose we sample M network inputs, z1, . . . ,zM ∼ P , independently. Further, let B > 0 be
the constant appearing in eq. (2.1). For m ∈ {1, . . . ,M} define

Xm =
1

B
hi(zm) and Ym =

1

B
hj(zm) (B.27)
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Note that Xm and Ym are N -dimensional random vectors. Due to eq. (2.1), we have ∥hi(z)∥2 ≤
B
√
N and ∥hj(z)∥2 ≤ B

√
N almost surely. Thus, ∥Xm∥ ≤

√
N and ∥Ym∥ ≤

√
N almost surely.

Define X = (1/B)hi(z) and Y = (1/B)hj(z) for randomly sampled z ∼ P . The case we will
consider is that X and Y are each composed of N independent Rademacher variables. One trivial
way to construct this is to suppose each z ∼ P is a random vector with 2N elements, all of which
are independent Rademacher variables scaled by a factor B > 0. Then, let hi : R2N 7→ RN be the
function which extracts the first N elements of z and let hj : R2N 7→ RN be the function which
extracts the final N elements.

Thus, we have constructed a setting where X1, . . . , XM , Y1, . . . , YM are all composed of independent
Rademacher variables. In this setting, the squared Procrustes distance is given by:

ρ2 = Tr[Σii] + Tr[Σjj ]− 2∥Σij∥∗ (B.28)

= Tr[E[hi(z)hi(z)
T]] + Tr[E[hj(z)hj(z)

T]]− 2∥E[hi(z)hj(z)
T]∥∗ (B.29)

= B2 ·
(
Tr[E[XXT]] + Tr[E[Y YT]]− 2∥E[XYT]∥∗

)
(B.30)

= B2 ·
(
E[XTX] + E[YTY ]− 2∥E[X]E[YT]∥∗

)
(B.31)

= B2 · (N +N − 0) (B.32)

= 2B2N (B.33)

where we have used the fact that X and Y are independent, mean zero, random vectors to conclude
that the cross covariance is an N ×N matrix filled with zeros. Furthermore, note that XT

mXm = N
and YT

mYm = N almost surely for all m ∈ 1, . . . ,M since they are comprised of N Rademacher
variables. Thus, the plug-in estimate of the squared Procrustes distance takes the form:

ρ̂2 = B2 ·
(
Tr[ 1

M

∑
m XmXT

m] + Tr[ 1
M

∑
m YmYT

m]− 2∥ 1
M

∑
m XmYT

m∥∗
)

(B.34)

= B2 ·
(

1
M

∑
m XT

mXm + 1
M

∑
m YT

mYm − 2∥ 1
M

∑
m XmYT

m∥∗
)

(B.35)

= B2 ·
(
N +N − 2∥ 1

M

∑
m XmYT

m∥∗
)

(B.36)

= 2B2N − 2B2∥ 1
M

∑
m XmYT

m∥∗ (B.37)

Putting these two results together, we conclude that the absolute error of the plug-in estimator is:

|ρ2 − ρ̂2| = 2B2∥ 1
M

∑
m XmYT

m∥∗ (B.38)

Now, the product of two indepedent Rademacher variables is also a standard Rademacher variable.
Thus, each element inside the matrix (1/M)

∑
m XmYT

m, is the empirical average of M independent
Rademacher variables. These matrix elements are asymptotically independent in the limit that
M → ∞. Further, the central limit theorem applies in this limit, and thus the distribution of each
matrix element approaches a Gaussian distribution N (0, 1/M).

Such random matrices are well-studied under the name of Ginibre ensembles. In the limit that
N → ∞ and the variance of each matrix element is taken to be σ2/N , the density of the singular
values takes the following form [see e.g. 20, sec. 3.1.3]:

ρ(s) =

√
4σ2 − s2

πσ2
s ∈ (0, 2σ) (B.39)

This is called the quarter circle law since if we look at the density of s it forms a quarter circle. The
nuclear norm of the matrix is N times the expected value of s with with respect to the density ρ(s).
Integrating this density, we obtain:

lim
N→∞
M≫N

∥∥ 1
M

∑
m XmYT

m

∥∥
∗ =

N

πσ2

∫ 2σ

0

s
√
4σ2 − s2 ds (B.40)

=
N

4πσ2

[
−1

3
(4σ2 − s2)3/2

]2σ
0

(B.41)

=
N

πσ2

[
1

3
(4σ2)3/2

]
=

N

πσ2

[
8

3
σ3

]
(B.42)

=
8σ

3π
N =

8

3π
N3/2M−1/2 (B.43)
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Where in the last line we have substituted σ =
√

N/M , which comes from equating σ2/N (the
variance in of each matrix element in eq. B.39) with 1/M (the variance given by the average of
M Rademacher variables under the central limit theorem). Note that the analysis above holds
asymptotically as M,N → ∞ and we keep M ≫ N so that the central limit theorem continues to
hold.

Plugging eq. (B.43) into eq. (B.38) and dividing both sides by N we arrive at the expression appearing
in theorem B.2.

C Appendix: Method-of-Moments Estimator

C.1 Derivation of method-of-moment estimator

We now turn to constructing our method-of-moments estimator of ∥Σij∥∗ =
∑N

n=1 sn(Σij), which
is required for our novel estimator of the Riemannian shape distance. We can form an unbiased
estimator of the matrix Σij by observing a single random stimuli in the two networks:

Σ̂ijm := hi(zm)hj(zm)T ∈ RN×N , E[Σ̂ijm] = Σij

Note that here the randomness comes from the selection of the stimuli, i.e. zm ∼ P ; the output of
the network is deterministic. Assuming m,m′ are distinct stimuli drawn independently from the
distribution P , we then have:

E
[
Σ̂ijmΣ̂ijm′

]
= ΣijΣ

T
ij

This means we can estimate ΣijΣ
T
ij by observing a pair of stimuli in both networks.

Tr
[
f(ΣijΣ

T
ij)
]
=

N∑
n=1

f
(
s2n(Σij)

)
=

N∑
n=1

∞∑
p=0

γps
2p
n (Σij) Taylor expansion of f(·)

=

∞∑
p=0

γp

N∑
n=1

s2pn (Σij) =

∞∑
p=0

γp Tr
[(

ΣijΣ
T
ij

)p]
Tr
[(

ΣijΣ
T
ij

)p]
=

N∑
n=1

s2pn (Σij)

=

∞∑
p=0

γpE

[
Tr

[
p∏

σ=1

Σ̂ij(2σ−1)Σ̂
T

ij(2σ)

]]
Substitute unbiased estimator for

(
ΣijΣ

T
ij

)p
≈

P∑
p=0

γpE

[
Tr

[
p∏

σ=1

Σ̂ij(2σ−1)Σ̂
T

ij(2σ)

]]
Approximate with truncated power series

Our estimator for the nuclear norm of Σij is thus:

∥̂Σij∥∗ =

P∑
p=0

γp Tr

[
p∏

σ=1

Σ̂ij(2σ−1)Σ̂
T

ij(2σ)

]
(C.1)

Note that for each element of the product we are considering the estimator based on stimuli (2σ − 1)
and (2σ); in total this estimator will use 2P unique stimuli.

C.2 Deriving the Quadratic Program

The optimization problem in eq. (2.13) takes the form:

minimize
γ

γTAγ +N2
(
max

x
f2(γ, x)

)
(C.2)
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where f(γ, x) = x1/2 −
∑

p γpx
p,

γ =

γ1...
γP

 ∈ RP , A =

Cov(Ŵ1, Ŵ1) . . . Cov(Ŵ1, ŴP )
...

...
Cov(ŴP , Ŵ1) . . . Cov(ŴP , ŴP )

 ∈ RP×P , (C.3)

Notice that f is linear in γ, and that A is symmetric, positive-definite.

We will reformulate eq. (C.2) in several steps, and ultimately obtain a quadratic program that can be
efficiently solved. First, we introduce a new optimization variable u ∈ R whose square is an upper
bound on f2(γ, x) for all x ∈ [0, 1]. Thus, the optimal γ for the problem:

minimize
γ,u

γTAγ +N2u2

subject to u2 ≥ f2(γ, x) for all x ∈ [0, 1]
(C.4)

coincides to the optimal γ solving eq. (C.2). This is essentially an epigraph reformulation of the
original problem [see 3, equation 4.11]. Notice that the objective function is quadratic in this
reformulation.

Next, we lay down a fine grid of linearly spaced test points x1, . . . , xT ∈ [0, 1]. We can then obtain a
good approximation to the solution in eq. (C.4) by solving:

minimize
γ,u

γTAγ +N2u2

subject to u2 ≥ f2(γ, xt) for all t ∈ 1, . . . , T
(C.5)

Of course, increasing T (the number of test points) improves the approximation arbitrarily well.

Finally, the constraints of the problem can be put into a form that is jointly linear in γ and u.
First, constraining u2 ≥ f2(γ, xt) is equivalent to simultaneously constraining u ≥ f(γ, xt) and
u ≥ −f(γ, xt). Then, plugging in the definition of f(γ, xt), and rearranging we have:

minimize
γ,u

γTAγ +N2u2

subject to u+
∑
p

γpx
p
t ≥ x

1/2
t for all t ∈ 1, . . . , T

u−
∑
p

γpx
p
t ≥ −x

1/2
t for all t ∈ 1, . . . , T

(C.6)

This objective is quadratic and the constraints are linear with respect to the optimized quantities. Thus,
a solution (approximated to high accuracy) can be achieved efficiently using off-the-shelf quadratic
programming solvers. To enforce the user defined bound on the bias a final two constraints are be
appended to eq. (C.6): −Nu ≥ −c and Nu ≥ −c, where c is the upper bound on the absolute bias.

C.3 Confidence intervals

To form approximate α level confidence intervals around ∥̂Σij∥∗ we use the maximal bias (eq. 2.13,
term 1) and variance (eq. 2.13, term 2) from the quadratic program’s solution:[

∥̂Σij∥∗ − z∗
√
γTAγ −Nu, ∥̂Σij∥∗ + z∗

√
γTAγ +Nu

]
,

where z∗ is the critical value of the standard normal. For confidence intervals of the similarity score
we scale this interval by the denominator of the similarity score.

D Appendix: Extended Experiments

D.1 Control of estimator bias

Here we demonstrate the bias-variance tradeoff controlled by the upper-bound on bias defined by the
user. The quadratic program in eq. (2.13) can be constrained to keep the maximal absolute bias below
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a chosen constant (Fig. 3A, extent of blue shaded area centered around true similarity score). The
actual maximal bias for a given solution to the program will then be less than or equal to the user
defined bias (cyan shaded area within blue). The expected value of the moment estimator stays within
the maximal bias, in this case on its bound (orange trace mean and SD across 5,000 simulations). The
user defined bias bound remains inactive until it is less than the MSE minimizing solution’s bias (blue
shaded area completely overlapped by cyan when user defined bias bound is less than 0.2). Variance
then begins to increase as higher order Wp terms are weighted more heavily to reduce bias (orange
standard deviation bars from simulation increase as cyan region narrows). The expected value of
the estimator converges to ground truth as it is constrained by the bias bound (dotted orange line
converges to dashed black). The plug-in estimator exceeds the maximal bias of the moment estimator
(blue trace outside of cyan shaded area).

Intuition for the method-of-moments estimator can be drawn from example plots of solutions to the
power series approximation to the square root (eq. 2.11, Fig. 3B, orange trace approximates black
dashed trace) of the squared singular values of Σ1,2 (black points all overlapping). Here we have
re-scaled the singular values on the vertical axis so that the deviation between the square root and
power series approximation is exactly the bias of the moment estimator. In the case where bias is not
constrained (associated with left most estimates in panel B) the approximation is poor (dashed-dot
orange trace does not match dashed black trace). For these eigenvalues the the deviation is near
the worst possible bias (distance from black point dashed dot orange line is nearly as far as any
other vertical deviation between the traces), this is why the estimator in panel B sits at the bound of
maximal possible bias. On the other hand when the upper bound on bias is very small (far right of B)
the approximation is very good (dashed orange overlaps dashed black) because higher order terms
are used. Yet this results in very high variance (Fig. 3B).

A B

Figure 3: Control of bias-variance tradeoff with user defined bound on bias. (A) Here the moment
based estimator is constrained to be within the user defined bias bound (blue region) and to minimize
worst case MSE (eq. (2.13)). Maximal bias can be less than the user defined bias (cyan region within
blue). As the estimator is constrained to have less bias variance increases (orange trace converges
to black dashed as SD bars widen as ). Where simulations become unstable we plot the theoretical
expected value (dotted orange). Plug-in estimator is well outside bias bounds of moment estimator
thus is more biased than moment estimator (blue trace outside cyan line). (B) Example plots of
solutions to the quadratic program’s approximation (orange traces) to square root (black dashed trace)
of the eigenvalues of Σ1,2 (black points). Re-scaling of singular values on vertical axis results in the
deviation between the polynomial and the true square root evaluated at the true eigenvalues being
exactly the bias of the associated estimates in panel A.

D.2 Validation on neural data

Here we demonstrate that the estimator performs as expected when applied to noisy non-normal data
where covariance of the Ŵp and the denominator of the similarity score must be estimated from data.
(Experiments on synthetic data verifying the estimators behave as expected can be found in App. 2.3.)
We do so by applying our estimator to neural data: calcium recordings from mouse primary visual
cortex in responses to a set of 2,800 natural images repeated twice [25]. We found that our estimator
became highly variable when applied to this data in part because of its low SNR and low number of
repeat (average SNR ≈ 0.1). We thus select neurons with the highest levels of SNR in each recording
to perform our analyses on. To assess variability of the estimates we ran independent simulations
from the same distribution by randomly sub sampling stimuli presentations within a recording into 3
disjoint sets.
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A B C D

Figure 4: Validation of estimator on neural data [25]. (A) Comparison of estimators when ground
truth similarity of neural data is set to 0. The estimator is applied to three disjoint sets of random
stimuli for each recording (n = 7). The estimated maximal bias is plotted in dark orange area and the
confidence interval, which includes bias, is plotted in light orange. (B) Same simulation as (A) except
ground truth similarity is 1.(C) Same as (B) except estimation of true similarity. (D) Estimation of
true similarity on all stimuli. (M ≈ 2, 800).

To determine the properties of the bias of our estimator requires comparison to the ground truth
value of the similarity score. In the neural data ground truth is unknown. We thus developed two
sampling schemes to set the ground truth similarity in the neural data. To set similarity to 0 we
measured similarity between different populations of neurons shown different stimuli, thus the two
populations responses are independent, thus their cross covariance is 0 so that the similarity score is 0.
To set the similarity to 1 we measured similarity between the same population of neurons shown the
same stimuli but on different trials, thus the only deviation in their responses is owing to trial-to-trial
variability, thus their tuning similarity is 1.

We applied our estimator to populations of neurons (N = 40 each) where the ground truth was zero.
We found that across recordings the moment estimator correctly indicated the similarity was near 0
(Fig. 4A, orange trace overlaps black dashed) and the confidence intervals always contained the true
similarity (light orange contains black dashed). On the other hand the plug-in estimator was upwardly
biased (blue above black dashed). Thus the moment based estimator can accurately determine when
the similarity is low in noisy neural data whereas the plug-in estimator cannot.

When ground truth similarity was 1, we found the bias of the moment estimator was worse than
that of the plug-in (Fig. 4B, blue overlaps black dashed, orange below). This is consistent with our
synthetic simulations (see Fig. 2A far right). The CIs always contained the true value but contained
nearly the entire possible range of similarity values. Thus while the average estimate is high our
confidence intervals are so wide that we do not have much information about the true similarity.

Finally, we assessed the estimators’ performance measuring the true similarity between these popula-
tions of high SNR neurons (Fig. 4C). Across recordings the moment estimator was near 0.5 but
confidence intervals were wide so there is little information about similarity even for the highest SNR
neurons (light orange extends from 0 to 1 on vertical axis). The plug-in estimator reports a higher
degree of similarity, that we heavily discount given its upward bias. When we included all stimuli
(M ≈ 2800) we obtained more accurate estimates, learning that the true similarity is most likely
between 0.25 and 0.75 (Fig. 4D). Thus small populations of well-tuned neurons in the same brain
region have only intermediate levels of representational similarity. Overall, we find noisy data is a
challenging setting for reducing the bias of shape similarity estimates.

D.3 Experimental data from Stringer et al. [25]

Neural activity in mouse primary visual cortex was recorded using a two-photon microscope while
mice were free to run on an air-floating ball. Recordings were collected across multiple depth planes
at a frequency of 2.5 or 3 Hz, with planes 30-35 µm apart. The field of view of the microscope was
selected such that 10,000 neurons could be observed within a retinotopic location on the stimulus
display.

All stimuli were presented for 0.5s with a random inter-stimulus interval between 0.3 and 1.1s
consisting of a grey-screen. The images used in the experiment were taken from the ImageNet
database, which includes categories such as birds, cats, and insects. The researchers manually

21



selected images that had a mix of low and high spatial frequencies and that did not consist of more
than 50 % uniform background. All images were uniformly contrast-normalized by subtracting the
local mean brightness and dividing by the local mean contrast. Each stimulus consisted of a different
normalized image from the ImageNet database, with 2,800 different images used in total. The same
image was displayed on all three screens, but each screen showed the image at a different rotation.
Each of the 2,800 natural image stimuli were displayed twice in a recording in two blocks of the
same randomized order.

Calcium movie data was processed using the Suite2p toolbox to estimate spike rates of neurons. Un-
derlying neural activity was estimated using non-negative spike deconvolution (Frierich et. al., 2017).
These deconvolved traces were normalized to the mean and standard deviation of their activity during
a 30-minute period of grey-screen spontaneous activity. For further detail please see the original
study [25]. All analyses done in this paper were performed on the pre-processed data available on
figshare (https://figshare.com/articles/Recordings_of_ten_thousand_neurons_in_
visual_cortex_in_response_to_2_800_natural_images/6845348).
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