Artificial Intelligence for Spatial Transcriptomics: A Scoping Review of Architectures and Models

Anonymous Author(s)

Affiliation Address email

Abstract

Learning meaningful representations from multimodal spatial transcriptomics data—which integrates histology images with gene expression—is a fundamental challenge in biological vision. Spatial transcriptomics provides this data, enabling the mapping of the transcriptome onto tissue sections. This paper presents a thorough survey of representation learning in spatial omics, critically comparing over 40 deep learning frameworks. We group these models by the core tasks their learned representations are designed to solve: cell type deconvolution, spatial domain identification, gene expression imputation, 3D tissue reconstruction, and cell-cell interaction simulation. Special attention is given to the dominant architectures for representation learning in this domain, including graph neural networks, contrastive learning, and multimodal fusion methods. We evaluate representative models such as ADCL, CellMirror, and MuST for the scalability, interpretability, and biological impact of their learned embeddings. The survey also addresses common challenges that hinder representation learning, including spatial noise, modality imbalance, and low-resolution data. Finally, we outline future directions centered on building foundation models for spatial biology and improving 3D alignment. This review provides a critical guide for researchers developing foundational and task-specific representations from multimodal spatial data.

9 1 Introduction

2

3

5

6

9

10

11

12

13

14 15

16

17

18

- Spatial transcriptomics (ST) has emerged as a transformative modality by integrating histology 20 images with spatially resolved gene expression profiles, an achievement recognized when it was 21 named Nature Methods' "Method of the Year" in 2020. This multimodal view enables researchers to 22 link tissue morphology with molecular states, advancing our understanding of development, disease, 23 and therapeutic response. For computational biology and computer vision, ST poses a unique set 24 of challenges and opportunities. Unlike natural image tasks, spatial omics data are multimodal 25 (images, gene counts, spatial coordinates), heterogeneous, and often limited in scale. Extracting 26 meaningful representations that capture both morphological structure and molecular context is 27 therefore a fundamental challenge. 28
- The rapid evolution of this field has been driven by artificial intelligence. In just a few years, the computational landscape has matured from initial clustering algorithms to sophisticated architectures for representation learning, including graph neural networks (GNNs), contrastive learning, and multimodal transformers. Early landmark tools like SpaGCN began leveraging GNNs to integrate modalities, while others like Tangram used deep learning to register single-cell data onto spatial maps. The timeline in Figure S1 illustrates this accelerated development, highlighting the key architectural shifts that have defined the field.

- In this paper, we survey recent advances in representation learning for spatial transcriptomics, with an emphasis on key modeling approaches across core tasks like cell type deconvolution, domain 37 identification, and 3D reconstruction. We also examine the computational challenges that arise 38 from multimodal data and discuss future opportunities to build foundation models that generalize 39 across tissues and scales. Our goal is to provide a critical guide for researchers in the Imageomics 40 community developing AI-driven methods to create interpretable and clinically relevant biological
- vision systems.

41

53

54

55

56

57

58

59

60

61

62

63 64

65

66 67

71

72

73

74

75

76

79

81

82

2 A Survey of Representation Learning Models 43

The field of AI-enhanced spatial transcriptomics can be organized into six core tasks, each addressing a key challenge in representation learning. These tasks range from resolving cellular composition within low-resolution spots to reconstructing entire 3D tissue architectures. Our full analysis is based on a comprehensive review of over 40 frameworks. Table 1 provides a comprehensive, side-by-side 47 comparison of over 20 representative models, detailing the specific techniques, data modalities, and 48 frameworks for each. 49

2.1 Cell Type Deconvolution

- Deconvolution methodologies aim to computationally unmix the gene expression signals from 51 heterogeneous cell types within a single ST spot. 52
 - ADCL Zhang and Zhang [2023]: Integrates multi-head graph attention networks (MHGAT) and variational autoencoders (VAE) with dual-contrastive learning, outperforming previous models on resolution and accuracy.
 - MHDGAT Chen et al. [2024b]: Deploys a multi-head dynamic GAT network fused with optimal transport, efficiently leveraging both spatial and transcriptional information and utilizing cell type labels.
 - MACD Huang et al. [2024]: Combines masked autoencoders and adversarial learning to align latent representations from simulated and real data, achieving robust inference even under domain shift.
 - CellMirror Xia et al. [2023]: Applies interpretable spatial graph-based contrastive learning with single-cell RNA-seq references, resolving finer cell-type subpopulations in mixed ST
 - TransST Liu et al. [2025]: Uses transfer learning from reference datasets with a Markov random field prior to boost segmentation and denoising in low-resolution or noisy spatial data.

Spatial Domain Identification 68

- These models segment tissues into spatially coherent domains by learning representations that 69 70 integrate gene expression, spatial coordinates, and sometimes histology.
 - GCNCL Liang et al. [2024]: Adapts feature-spatial balances for each sample using GCNs, improving robustness in domain detection.
 - stBERT Wang et al. [2024]: Brings transformer-based masked modeling and transfer learning to spatial contexts, achieving state-of-the-art tissue boundary delineation.
 - vGraphST Li et al. [2023]: Blends graph variational autoencoders with contrastive learning for simultaneous clustering and denoising.
 - spGCLF Chen et al. [2024a]: Applies contrastive learning with dual denoising for noisy data and cross-slice transfer.
 - SSGCN Du et al. [2024]: A multi-scale GCN with adaptive reweighting for domain segmentation at various tissue resolutions.
 - HexCNN Gao et al. [2022]: Employs hexagonal convolutional kernels to better model regular spatial spot grids, improving domain classification and noise resilience.

Table 1: Survey of the rapidly evolving landscape of representation learning models for spatial transcriptomics, a key challenge in biological vision. The table compares over 40 frameworks from 2023-2025 across core tasks such as cell type deconvolution, 3D reconstruction, and multimodal fusion. We summarize the primary techniques, input data modalities, and computational frameworks to provide a benchmark for developing the next generation of foundational models. Abbreviations: **GNN** (Graph Neural Network), **VAE** (Variational Autoencoder), **GCN** (Graph Convolutional Network), **OT** (Optimal Transport), **LLM** (Large Language Model).

Method (Year)	Type	Technique Used	Input Modality	Resolution	Framework
SPACEL (2023)	Deep learning integrated framework	MLP + Probabilistic model (Spoint), GCN + adversarial training (Splane) differential evolution (Scube)	Expression (seq-based ST); multi-slice	Visium (~55–100 µm) to single-cell (~1–2 µm) (e.g. MERFISH/Stereo-sea)	MLP, GCN, adversarial network, evolutionary algorithm
SpaGCAC (2024)	Graph DL – spatial domain identification	GAT (graph attention) with adaptive feature balancing, contrastive loss	Expression + Coordinates	Visium (~55 µm)	GNN (Graph Attention Net-
TME-DeNoise (2023)	Semi-supervised learning –	Variational graph autoencoder with contrastive pretraining	Expression + Histology	Visium (~55 µm)	GNN (VGAE with con- trastive loss)
MAFN (2023)	Deep multi-view clustering	View-specific encoders, attention-based fusion of expression + image features iont ontimization	Expression + H&E images	Visium (~55 µm)	Multi-branch CNN + fusion network
stBERT (2023)	Transformer-based transfer	BERT-like pretraining on ST slices, fine-tuning for domain classification	Expression (Visium slices)	Visium (~55 µm)	Transformer (pretrained on spatial data)
UPSST (2023)	Unsupervised GNN – tissue do- main ID	Hierarchical graph autoencoder with adaptive clustering and reconstruction	Expression + Coordinates	Visium (~55 µm)	GNN (graph autoencoder +
ADCL (2023)	Deep deconvolution (contrastive)	Dual-contrastive framework (spot vs. pseudo-spot) using VAE architecture	Expression (spots)	Visium (~55 µm)	VAE + contrastive learning
STADS (2023)	Spatial drug repurposing (framework)	PREDICT algorithm on cell-type signatures; graph model on L 1000 profiles + ST spots	Expression + drug targets + cell profiles	Visium (~55 µm)	GNN + matrix factorization
SpaCCC (2024)	LLM-based multi-modal com-	Large language model for cell-cell dialogue simulation, graph-based feature fusion	Expression + scRNA-seq + cell	Various (e.g. Slide-seqV2 ~10 µm)	Transformer (LLM) + Graph Neural Network
MHDGATOT (2024)	GNN + optimal transport de-	graph bead dynamic GAT to build cell graph, fused with Gronov-Wasserstein OT	Expression + Coordinates + scRNA-seg	Visium (~55 µm)	GNN (multi-head) + optimal
HisToSGE (2024)	Gene expression prediction	CNN with spatial transformer on H&E to predict missing	H&E image + spot coordinates	Histology resolution (subcellular)	CNN + Spatial Transformer
MACD (2024)	(ST→Histology) Adversarial NN deconvolution	gene expression Two-stage CNN: cell type classifier followed by GAN to	Simulated & real ST spots	Visium (~55 µm)	CNN + GAN
stMCDI (2024)	Imputation (conditional diffu-	refine proportions Masked gene modeling with spatial encoding, condi-	Expression + Coordinates	Visium (~55 µm)	Conditional diffusion model
STG3Net (2024)	sion) Spatial domain ID & batch cor-	tioned diffusion U-Net Encoder-decoder with clustering embedding, uses SCE	Expression (batch-integrated	Visium (~55 µm)	+ GNN MLP + clustering loss
SGAEC (2023)	rection GNN + VAE + contrastive	+ triplet loss for consistency Spatial GNN autoencoder with contrastive and KL losses	slices) Expression + Coordinates +	Visium (~55 µm)	GNN (VGAE) + contrastive
MVCLST (2024)	learning Multi-view graph contrastive	for clustering Graph encoders on co-expression and spatial graphs,	Histology Expression + multiple views	Visium (~55 µm)	learning GNNs with multi-loss (re-
spGCLF (2024)	learning Deep graph contrastive learn-	adaptive attention for modality weighting Two GNN views (expression vs. spatial graph), DGCNN,	Expression + Coordinates	Visium (~55 µm)	construction, contrastive) GNN (denoising contrastive)
SSGCN (2024)	ing GNN with adaptive reweight-	with denoising contrastive loss Multi-scale GCN with learnable reweighting of graph	Expression + Coordinates	Visium (~55 µm)	GNN (adaptive GCN) + spec-
DGT (2024)	ing Domain-guided transfer clus-	edges, clustering via MCL Optimize label distributions with Wasserstein and self-	Expression + multiple ST	Visium (~55 µm)	tral clustering MLP + optimal transport
RepGraph (2024)	tering Representational graph learn-	training loss across domains Graph clustering in latent space via Wasserstein distance;	datasets Expression + H&E image	Visium (~55 µm)	GNN with OT clustering
STCC (2024)	ing Consensus clustering (STCC)	integrates histology graph Rotation-invariant smoothing + ensemble clustering to appears downin detection	Expression + Coordinates (Vi-	Visium (~55 µm)	Ensemble + graph smoothing
TransST (2025)	Transfer learning spatial factor-	Zeroange Communication and Jacob ST to segment unlabeled improve via MRF	Histology images + pretrained	Histology (subcellular)	CNN (U-net) + transfer via
FaST (2025)	Spatial Transcriptomics Pipeline (FaST)	Multi-step: fast alignment and counting (STAR), segmentation, integration (Scanpy)	Raw Visium sequencing data	Visium (~55 µm)	Software pipeline (Python tools)

2.3 Gene Expression Imputation and Prediction

84 Methods in this category either fill in missing gene expression values (imputation) or predict expression patterns directly from histology images (prediction).

- CC + O2U Leng et al. [2023]: Use GNNs and semi-supervised error-resistant modules for improved tumor microenvironment analysis.
- stMCDI Li et al. [2024] is a state-of-the-art imputation framework that uses a masked conditional diffusion model, guided by a GNN encoder, to recover missing gene values while preserving the original data distribution.
- **HisToSGE** Shi et al. [2024] predicts high-resolution spatial gene expression directly from H&E histology images using a large-scale pretrained pathology model and a multi-head attention module to integrate spatial coordinates.
- BG-TRIPLEX Qu et al. [2024], EGDNN Yang et al. [2023], and STFormer Zhan et al. [2024] combine advanced attention and exemplar learning to improve gene prediction from imaging data.

97 2.4 3D Tissue Reconstruction

86

87

88

89

90

91

92

93

94

95

96

100

101

102

103

104

105

106

107

108

109

112

113

114

115

117

123

124

125

- These frameworks focus on aligning and integrating multiple 2D ST slices to create cohesive 3D tissue atlases.
 - **SPACEL** Xu et al. [2023] is a modular deep learning library featuring components for deconvolution (Spoint), 2D domain identification (Splane), and automated 3D reconstruction (Scube) that aligns and stacks slices into a continuous 3D model.
 - OptiGraph3D Zhang et al. [2024] is a hybrid framework that integrates pivot-driven registration to align slices, an ADMM-based solver for deconvolution, and a multi-head graph attention network to reconstruct the 3D tissue structure.
 - STG3Net Fang et al. [2024]: Uses masked graph autoencoders and anchor-based correction for robust batch integration across multiple slices or samples, enhancing accuracy and consistency in composite tissue atlases.

2.5 Cell-Cell Interaction Inference

- These models aim to decode the complex signaling networks and interactions between cells in their spatial context.
 - **SpaCCC** Ji et al. [2024] is a novel framework that leverages Large Language Models (LLMs) to infer cell-cell communication by encoding cell types and their spatial context into natural language prompts, enabling zero-shot, knowledge-enhanced interaction prediction.
 - Hypergraph Wavelets Sun et al. [2025] generalizes standard graphs to hypergraphs to model higher-order cellular niches. It uses hypergraph diffusion wavelets to capture multi-scale spatial patterns, revealing distinct cellular communities associated with disease progression.

118 2.6 Drug Discovery and Target Identification

- This emerging area uses spatially resolved transcriptomic maps to guide therapeutic strategies.
- **STADS** Karaaslanli et al. [2023] is a graph-based framework that integrates ST data with pharmacogenomic evidence from the L1000 Connectivity Map to rank and recommend drugs for repositioning.
 - Radiopharmaceutical Modeling Hong et al. [2023] integrates ST data with pharmacokinetic and dosimetry modeling (solving PDEs) to enable *in silico* screening of radiopharmaceutical therapies and prioritize targets.

3 Challenges and Open Problems

127 Despite rapid progress, the clinical and biological translation of AI-powered spatial transcriptomics 128 remains hindered by several interlocking challenges. A central issue is the trade-off between **spatial** resolution and molecular depth: sequencing-based ST aggregates multiple cells per spot, while 129 imaging-based approaches achieve subcellular resolution at the cost of limited gene panels and 130 technical complexity. On the computational side, many multimodal fusion frameworks exhibit 131 modality bias, where transcriptional signals dominate and underutilize morphological or spatial 132 features. Progress is also slowed by **data scarcity**—most public ST datasets are small, heterogeneous, 133 and organ-specific, making overfitting and poor generalization common; a summary of commonly used datasets is provided in Table S1 in the supplementary material. Tissue heterogeneity and batch effects further complicate the definition of consistent, biologically meaningful domains, while multislice registration and 3D reconstruction remain technically daunting. Beyond performance, issues 137 of interpretability and validation are particularly pressing: state-of-the-art GNNs, transformers, 138 and contrastive frameworks often act as "black boxes," offering limited biological explainability. At 139 the same time, the absence of gold-standard annotated datasets forces reliance on proxies such as 140 scRNA-seq overlap or histology concordance, introducing subjectivity and limiting reproducibility. 141 Finally, as spatial data integrates genomics, histology, and metadata, privacy, ethics, and regulatory 142 **compliance** emerge as critical but unresolved obstacles, with no clear guidelines yet defined for AI-based spatial omics technologies.

145 4 Future Directions

The field is advancing toward a new phase of scalable, generalizable, and clinically viable spatial intelligence, with several transformative trends on the horizon. First, the development of **foundation** models for spatial biology—large transformer-based encoders pretrained on diverse tissues and modalities—promises universal backbones for downstream tasks, enabling zero- and few-shot transfer 149 learning. Second, the rise of **multi-omic integration** will allow ST to be co-analyzed with scRNA-150 seq, ATAC-seq, proteomics, and histology, using graph learning and contrastive objectives to capture 151 regulatory circuits across scales. Third, LLM-augmented discovery is emerging, with systems like 152 SpaCCC showing how large language models can perform zero-shot inference of cell-cell interactions 153 and drug repurposing, accelerating translational insights directly from spatial data. Beyond modeling, 154 155 privacy-preserving federated learning pipelines will allow hospitals and labs to benefit from shared model updates without moving sensitive patient data. Finally, the paradigm of **human–AI co-analysis** 156 is gaining traction: interactive visualization platforms and collaborative annotation systems will 157 empower experts and machine intelligence to jointly interpret tissue architectures. Collectively, these 158 directions point to a future where AI-driven ST moves beyond experimental research and becomes 159 a cornerstone of precision medicine and Imageomics—turning multimodal biological images into 160 interpretable, trustworthy, and clinically actionable knowledge. 161

162 5 Conclusion

The combination of deep learning and spatial transcriptomics with modern AI has revolutionized 163 our ability to decode tissue architecture with unprecedented molecular and spatial precision. Com-164 putational models now enable critical advances such as cell-type deconvolution, spatial domain 165 identification, 3D tissue reconstruction, and cell-cell interaction modeling. Yet major challenges 166 remain, including limited resolution, data scarcity, modality imbalance, lack of interpretabil-167 ity, and unresolved issues of privacy and regulation. Addressing these barriers will require the development of scalable, explainable, and multimodal frameworks, supported by large annotated 169 datasets and rigorous validation pipelines. The field is now shifting towards foundation models 170 and translational use cases that bridge computational innovation with clinical practice. Success 171 172 will depend on deep collaboration between computational, biological, and clinical communities, ensuring that AI-driven spatial transcriptomics evolves into a scalable, trustworthy, and clinically 173 impactful system. This trajectory aligns with the broader Imageomics vision of discovering biological knowledge from images using AI.

References

- Xiang Chen, Junnan Yu, and Min Li. spgclf: a versatile deep graph contrastive learning framework for spatial transcriptomics analysis. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 497–502. IEEE, 2024a.
- Yuqi Chen, Feng Yang, Peng Jiang, Yuan Wang, Qiang Zhang, and Juan Liu. Deconvolution of
 spatial transcriptomics data based on multi-head dynamic gat and optimal transport. In 2024
 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 609–612. IEEE,
 2024b.
- Wenhui Du, Chunyang Chai, Yujie Gu, Shuang Hao, and Huiyan Sun. Ssgcn: A spatial domain identification framework based on graph convolutional neural network with adaptively reweighting edges. In 2024 12th International Conference on Bioinformatics and Computational Biology (ICBCB), pages 19–26. IEEE, 2024.
- Donghai Fang, Fangfang Zhu, and Wenwen Min. Multi-slice spatial transcriptomics data integration analysis with stg3net. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 509–514. IEEE, 2024.
- Jing Gao, Fa Zhang, Kai Hu, and Xuefeng Cui. Hexagonal convolutional neural network for spatial
 transcriptomics classification. In 2022 IEEE International Conference on Bioinformatics and
 Biomedicine (BIBM), pages 200–205. IEEE, 2022.
- J Hong, S Bae, L Cavinato, K Erlandsson, H Choi, and K Shi. Pharmacokinetic and dosimetry
 modeling of radiopharmaceutical therapy using spatial transcriptomics in microenvironment.
 In 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International
 Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD), pages 1–1. IEEE,
 2023.
- Lin Huang, Xiaofei Liu, Shunfang Wang, and Wenwen Min. Masked adversarial neural network for cell type deconvolution in spatial transcriptomics. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 619–622. IEEE, 2024.
- Boya Ji, Liwen Xu, and Shaoliang Peng. Spaccc: Large language model-based cell-cell communication inference for spatially resolved transcriptomic data. *bioRxiv*, pages 2024–02, 2024.
- Abdullah Karaaslanli, Yijun Guo, Haodong Liang, Ziyin Huang, and Lana X Garmire. Stads: Spatial transcriptomics to aid drug-reposition recommendation. In *2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, pages 2737–2740. IEEE, 2023.
- Jiake Leng, Yiyan Zhang, Xiang Liu, Yiming Cui, Junhan Zhao, and Yongxin Ge. Error-robust and label-efficient deep learning for understanding tumor microenvironment from spatial transcriptomics. *IEEE Transactions on Circuits and Systems for Video Technology*, 2023.
- Cuiyuan Li, Kai Hu, Fa Zhang, and Xuefeng Cui. Variational clustering and denoising of spatial
 transcriptomics. In 2023 IEEE International Conference on Bioinformatics and Biomedicine
 (BIBM), pages 281–286. IEEE, 2023.
- Xiaoyu Li, Wenwen Min, Shunfang Wang, Changmiao Wang, and Taosheng Xu. Masked conditional
 diffusion model with gnn for spatial transcriptomics data imputation. In 2024 IEEE International
 Conference on Bioinformatics and Biomedicine (BIBM), pages 2164–2169. IEEE, 2024.
- Xuena Liang, Junliang Shang, Jin-Xing Liu, Chun-Hou Zheng, and Juan Wang. Enhancing spatial
 domain identification in spatially resolved transcriptomics using graph convolutional networks
 with adaptively feature-spatial balance and contrastive learning. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 2024.
- Shuo Shuo Liu, Shikun Wang, Yuxuan Chen, Anil K Rustgi, Ming Yuan, and Jianhua Hu. Transst:
 Transfer learning embedded spatial factor modeling of spatial transcriptomics data. *arXiv preprint arXiv:2504.12353*, 2025.

- Mingcheng Qu, Yuncong Wu, Donglin Di, Anyang Su, Tonghua Su, Yang Song, and Lei Fan.
 Boundary-guided learning for gene expression prediction in spatial transcriptomics. In 2024 IEEE
 International Conference on Bioinformatics and Biomedicine (BIBM), pages 445–450. IEEE, 2024.
- Zhiceng Shi, Shuailin Xue, Fangfang Zhu, and Wenwen Min. High-resolution spatial transcriptomics
 from histology images using histosge. In 2024 IEEE International Conference on Bioinformatics
 and Biomedicine (BIBM), pages 2402–2407. IEEE, 2024.
- Xingzhi Sun, Charles Xu, João F Rocha, Chen Liu, Benjamin Hollander-Bodie, Laney Goldman,
 Marcello DiStasio, Michael Perlmutter, and Smita Krishnaswamy. Hyperedge representations
 with hypergraph wavelets: applications to spatial transcriptomics. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE,
 2025.
- Ziheng Wang, Xinhe Li, Hiroaki Takada, and Ryoichi Nagatomi. stbert: a pretrained model for
 spatial domain identification of spatial transcriptomics. *IEEE Access*, 2024.
- Junjie Xia, Jiangnan Cui, Zhenyu Huang, Shuangquan Zhang, Fang Yao, Yijian Zhang, and Chunman Zuo. Cellmirror: deciphering cell populations from spatial transcriptomics data by interpretable contrastive learning. In 2023 IEEE International Conference on Medical Artificial Intelligence (MedAI), pages 165–176. IEEE, 2023.
- Hao Xu, Shuyan Wang, Minghao Fang, Songwen Luo, Chunpeng Chen, Siyuan Wan, Rirui Wang,
 Meifang Tang, Tian Xue, Bin Li, et al. Spacel: deep learning-based characterization of spatial
 transcriptome architectures. *Nature Communications*, 14(1):7603, 2023.
- Yan Yang, Md Zakir Hossain, Eric A Stone, and Shafin Rahman. Exemplar guided deep neural
 network for spatial transcriptomics analysis of gene expression prediction. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 5039–5048, 2023.
- Gan Zhan, Xiuju Du, Jing Liu, Yinhao Li, Lanfen Lin, Jingsong Li, and Yen-Wei Chen. Stformer:
 Learning to explore spot relationships for spatial transcriptomics prediction from histology of
 colorectal cancer. In 2024 46th Annual International Conference of the IEEE Engineering in
 Medicine and Biology Society (EMBC), pages 1–4. IEEE, 2024.
- Shilin Zhang and Qingchen Zhang. Adcl: an adaptive dual contrastive learning framework based on
 mhgat and vae for cell type deconvolution in spatial transcriptomics. In 2023 IEEE International
 Conference on Bioinformatics and Biomedicine (BIBM), pages 355–358. IEEE, 2023.
- Zhengqian Zhang, Binghong Chen, Jialiang Wang, Haiyu Wang, Tianshuo Yu, Junjun Ren, Mingtao Zhang, Chongyao Liu, Wei Jiang, and Yongzhuang Liu. Robust 3d reconstruction and cell-type deconvolution approach for spatial transcriptomics by hybrid graph learning and iterative computation. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1752–1757. IEEE, 2024.

258 A Supplemental material

259 A.1 Images

Figure S1: Timeline of key innovations in spatial transcriptomics models from 2020-2025, showing the progression from graph-based methods to transfer learning, transformers, and multimodal architectures.

Figure S2: The AI-powered pipeline for spatial transcriptomics. This diagram illustrates the full lifecycle from tissue profiling to biological insight, highlighting where specific deep learning models intervene in preprocessing, deconvolution, domain identification, 3D reconstruction, interaction modeling, and drug targeting.

Figure S3: An overview of how histology images and gene expression data are combined in spatial transcriptomics. The process involves dividing tissue images into patches, linking them with spatial gene expression, constructing tensors, and segmenting regions. A deep graph neural network is then applied to learn representations, which are clustered to reveal spatial domains within the tissue.

A.2 Datasets

260

The table below summarizes the key datasets used by these models, including their sources, sample composition, and usage.

Table S1: Summary of spatial transcriptomics datasets used in benchmarking and modeling across recent studies.

Dataset Name	Data Source / Accession	Sample Size and Tissue	Benchmarking Use	Technical Details
Prostate Cancer (Visium) – PC1 (acinar) & PC2/PC3 (adenocarcinoma)	(PC1); Mendeley Data		Used in Hong et al. (2024) for RPT dosimetry modeling	
Human DLPFC (Visium)			Used by Fang et al. and Zhang et al. for multi-slice integration / 3D reconstruc- tion	grid; ~3K spots/slice)
(Stereo-seq)	Published dataset (9-week human embryo) Published dataset	bryonic heart)	Used by Zhang et al. for 3D tissue reconstruction Used by Fang et al. for multi- slice integration	~0.5 µm spots)
Mouse embryo brain (Stereo-seq) Various (Visium; Slide- seqV2; Stereo-seq) CRC Charting cohort (Vi-	(E9.5–E11.5 mouse) Mixed public datasets Internal (Zhan et al.	3 sections (embryonic brain) Human/mouse tissues (multiple studies) Colorectal cancer resec-	Used by Fang et al. for multi- slice integration Used by Zang et al. to evalu-	Stereo-seq (cellular resolu- tion) Visium; Slide-seqV2; Stereo- seq platforms 10x Visium with H&E histol-
sium) CRC Intestine cohort (Visium)	2024) External (Zhan et al. 2024)	tions (histology + ST) Colorectal cancer resections	Used as external test set for STFormer	ogy 10x Visium with H&E histology