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Abstract

Learning meaningful representations from multimodal spatial transcriptomics data,
which integrates histology images with gene expressions, is a fundamental chal-
lenge in biological vision. Spatial transcriptomics provides this data, enabling the
mapping of the transcriptome onto tissue sections. This paper presents a thorough
survey of representation learning in spatial omics, critically comparing over 40
deep learning frameworks. We group these models by the core tasks their learned
representations are designed to solve: cell type deconvolution, spatial domain
identification, gene expression imputation, 3D tissue reconstruction, and cell-cell
interaction simulation. Special attention is given to the dominant architectures for
representation learning in this domain, including graph neural networks, contrastive
learning, and multimodal fusion methods. We evaluate representative models such
as ADCL, CellMirror, and MuST for the scalability, interpretability, and biological
impact of their learned embeddings. The survey also addresses common challenges
that hinder representation learning, including spatial noise, modality imbalance,
and low-resolution data. Finally, we outline future directions centered on building
foundation models for spatial biology and improving 3D alignment. This review
provides a critical guide for researchers developing foundational and task-specific
representations from multimodal spatial data.

1 Introduction

Spatial transcriptomics (ST) has emerged as a transformative modality by integrating histology
images with spatially resolved gene expression profiles, an achievement recognized when it was
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named Nature Methods’ “Method of the Year” in 2020. This multimodal view enables researchers to
link tissue morphology with molecular states, advancing our understanding of development, disease,
and therapeutic response. For computational biology and computer vision, ST poses a unique set
of challenges and opportunities. Unlike natural image tasks, spatial omics data are multimodal
(images, gene counts, spatial coordinates), heterogeneous, and often limited in scale. Extracting
meaningful representations that capture both morphological structure and molecular context is
therefore a fundamental challenge.

The rapid evolution of this field has been driven by artificial intelligence. In just a few years, the
computational landscape has matured from initial clustering algorithms to sophisticated architectures
for representation learning, including graph neural networks (GNNs), contrastive learning, and
multimodal transformers. Early landmark tools like SpaGCN began leveraging GNNSs to integrate
modalities, while others like Tangram used deep learning to register single-cell data onto spatial maps.
The timeline in Figure [ST|illustrates this accelerated development, highlighting the key architectural
shifts that have defined the field.

In this paper, we survey recent advances in representation learning for spatial transcriptomics, with
an emphasis on key modeling approaches across core tasks like cell type deconvolution, domain
identification, and 3D reconstruction. We also examine the computational challenges that arise
from multimodal data and discuss future opportunities to build foundation models that generalize
across tissues and scales. Our goal is to provide a critical guide for researchers in the Imageomics
community developing Al-driven methods to create interpretable and clinically relevant biological
vision systems.

2 A Survey of Representation Learning Models

The field of Al-enhanced spatial transcriptomics can be organized into six core tasks, each addressing
a key challenge in representation learning. These tasks range from resolving cellular composition
within low-resolution spots to reconstructing entire 3D tissue architectures. Our full analysis is based
on a comprehensive review of over 40 frameworks. Table[I| provides a comprehensive, side-by-side
comparison of over 20 representative models, detailing the specific techniques, data modalities, and
frameworks for each.

2.1 Cell Type Deconvolution

Deconvolution methodologies aim to computationally unmix the gene expression signals from
heterogeneous cell types within a single ST spot.

* ADCL|Zhang and Zhang|[2023]]: Integrates multi-head graph attention networks (MHGAT)
and variational autoencoders (VAE) with dual-contrastive learning, outperforming previous
models on resolution and accuracy.

* MHDGAT |Chen et al.|[2024b]: Deploys a multi-head dynamic GAT network fused with
optimal transport, efficiently leveraging both spatial and transcriptional information and
utilizing cell type labels.

* MACD Huang et al.|[2024]: Combines masked autoencoders and adversarial learning to
align latent representations from simulated and real data, achieving robust inference even
under domain shift.

» CellMirror Xia et al.[[2023] : Applies interpretable spatial graph-based contrastive learning
with single-cell RNA-seq references, resolving finer cell-type subpopulations in mixed ST
spots.

e TransST |Liu et al.|[2025]]: Uses transfer learning from reference datasets with a Markov
random field prior to boost segmentation and denoising in low-resolution or noisy spatial
data.

2.2 Spatial Domain Identification

These models segment tissues into spatially coherent domains by learning representations that
integrate gene expression, spatial coordinates, and sometimes histology.
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* GCNCL [Liang et al.|[2024]: Adapts feature-spatial balances for each sample using GCNs,
improving robustness in domain detection.

» stBERT Wang et al.[[2024]]: Brings transformer-based masked modeling and transfer learning
to spatial contexts, achieving state-of-the-art tissue boundary delineation.

* vGraphST|Li et al.{[2023]]: Blends graph variational autoencoders with contrastive learning
for simultaneous clustering and denoising.

* spGCLF |Chen et al.|[2024a]]: Applies contrastive learning with dual denoising for noisy
data and cross-slice transfer.

* SSGCN|Du et al.|[2024]: A multi-scale GCN with adaptive reweighting for domain segmen-
tation at various tissue resolutions.

* HexCNN |Gao et al.| [2022]]: Employs hexagonal convolutional kernels to better model
regular spatial spot grids, improving domain classification and noise resilience.

2.3 Gene Expression Imputation and Prediction

Methods in this category either fill in missing gene expression values (imputation) or predict expres-
sion patterns directly from histology images (prediction).

* CC + O2U|Leng et al.|[2023]: Use GNNs and semi-supervised error-resistant modules for
improved tumor microenvironment analysis.

* stMCDI |Li et al.| [2024] is a state-of-the-art imputation framework that uses a masked
conditional diffusion model, guided by a GNN encoder, to recover missing gene values
while preserving the original data distribution.

* HisToSGE Shi et al.[[2024]] predicts high-resolution spatial gene expression directly from
H&E histology images using a large-scale pretrained pathology model and a multi-head
attention module to integrate spatial coordinates.

* BG-TRIPLEX |Qu et al.|[2024], EGDNN |Yang et al.|[2023]], and STFormer Zhan et al.
[2024] combine advanced attention and exemplar learning to improve gene prediction from
imaging data.

2.4 3D Tissue Reconstruction

These frameworks focus on aligning and integrating multiple 2D ST slices to create cohesive 3D
tissue atlases.

* SPACEL Xu et al.|[2023]] is a modular deep learning library featuring components for
deconvolution (Spoint), 2D domain identification (Splane), and automated 3D reconstruction
(Scube) that align and stack slices into a continuous 3D model.

* OptiGraph3D Zhang et al.| [2024] is a hybrid framework that integrates pivot-driven
registration to align slices, an ADMM-based solver for deconvolution, and a multi-head
graph attention network to reconstruct the 3D tissue structure.

* STG3Net Fang et al.|[2024]: Uses masked graph autoencoders and anchor-based correction
for robust batch integration across multiple slices or samples, enhancing accuracy and
consistency in composite tissue atlases.

2.5 Cell-Cell Interaction Inference

These models aim to decode the complex signaling networks and interactions between cells in their
spatial context.

* SpaCCC |Ji et al|[2024] is a novel framework that leverages Large Language Models
(LLMs) to infer cell-cell communication by encoding cell types and their spatial context into
natural language prompts, enabling zero-shot, knowledge-enhanced interaction prediction.

* Hypergraph Wavelets|Sun et al. [2025] generalize standard graphs to hypergraphs to model
higher-order cellular niches. It uses hypergraph diffusion wavelets to capture multi-scale
spatial patterns, revealing distinct cellular communities associated with disease progression.



2.6 Drug Discovery and Target Identification
This emerging area uses spatially resolved transcriptomic maps to guide therapeutic strategies.

» STADS [Karaaslanli et al.| [2023] is a graph-based framework that integrates ST data with
pharmacogenomic evidence from the L1000 Connectivity Map to rank and recommend
drugs for repositioning.

» Radiopharmaceutical Modeling Hong et al.|[2023] integrates ST data with pharmacoki-
netic and dosimetry modeling (solving PDEs) to enable in silico screening of radiopharma-
ceutical therapies and prioritize targets.

2.7 A unified evaluation and taxonomy framework

To move beyond a descriptive listing, we outline a compact task-centric framework that ties together
all surveyed models. As illustrated in the Al-powered pipeline in supplemental material Figure [S2}
the taxonomy links each stage—from deconvolution to interaction modeling—to its evaluation axis:
standard task metrics, dataset diversity, and robustness probes. This structure provides a simple,
reproducible way to compare methods and forms the basis for the small meta-analysis summarized in
the supplemental material.

To provide a compact comparative view, we conducted a brief meta-analysis of five representative
cell-type deconvolution models (2023-2025) focusing on their architectural innovations, performance
highlights, and interpretability trade-offs. Details are summarized in supplemental material Table[S2]

3 Challenges and Open Problems

Despite rapid progress, the clinical and biological translation of Al-powered spatial transcriptomics
remains hindered by several interlocking challenges. A central issue is the trade-off between spatial
resolution and molecular depth: sequencing-based ST aggregates multiple cells per spot, while
imaging-based approaches achieve subcellular resolution at the cost of limited gene panels and
technical complexity. On the computational side, many multimodal fusion frameworks exhibit
modality bias, where transcriptional signals dominate and underutilize morphological or spatial
features. Progress is also slowed by data scarcity: Most public ST datasets are small, heterogeneous,
and organ-specific, making overfitting and poor generalization common; a summary of commonly
used datasets is provided in Table [ST]in the supplementary material.

Tissue heterogeneity and batch effects further complicate the definition of consistent, biologically
meaningful domains, while multi-slice registration and 3D reconstruction remain technically daunting.
Beyond performance, issues of interpretability and validation are particularly pressing: state-of-
the-art GNNgs, transformers, and contrastive frameworks often act as “black boxes,” offering limited
biological explainability. At the same time, the absence of gold-standard annotated datasets forces
reliance on proxies such as scRNA-seq overlap or histology concordance, introducing subjectivity
and limiting reproducibility. Finally, as spatial data integrate genomics, histology and metadata,
privacy, ethics, and regulatory compliance emerge as critical but unresolved obstacles, with no
clear guidelines defined yet for Al-based spatial omics technologies.

Furthermore, bridging research models with clinical use requires validation beyond benchmarking.
We suggest two practical evaluation tracks. First, retrospective concordance studies, using cohorts
with matched ST and orthogonal assays (IHC, IF, or scRNA-seq), can measure agreement between
model output, pathologist annotations, and molecular ground truth, identifying cases where Al
predictions could refine diagnostic interpretation. Second, operational reproducibility tests should
examine model stability across sample preparation methods and scanners, with clear calibration steps
for deployment. Together, these tracks provide a feasible blueprint for future real-world validation
and can guide laboratory collaborations seeking to assess translational readiness.

In addition, interpretability is vital for clinical trust. Common strategies include attention maps that
show model focus on histological regions, saliency or gradient methods (Grad-CAM, Integrated
Gradients) to reveal key image features, and GNN explainers that highlight influential cells or spatial
edges. Concept based or counterfactual tests link human-readable traits to predictions. Combining
these approaches provides a practical baseline for transparent and verifiable spatial models.



4 Future Directions

The field is advancing toward a new phase of scalable, generalizable, and clinically viable spatial
intelligence, with several transformative trends on the horizon. First, the development of foundation
models for spatial biology, large transformer-based encoders pretrained on diverse tissues and
modalities, promises universal backbones for downstream tasks, enabling zero-shot and few-shot
transfer learning. Second, the rise of multi-omic integration will allow ST to be co-analyzed with
scRNA-seq, ATAC-seq, proteomics, and histology, using graph learning and contrastive objectives
to capture regulatory circuits across scales. Third, LLM-augmented discovery is emerging, with
systems like SpaCCC showing how large language models can perform zero-shot inference of
cell—cell interactions and drug repurposing, accelerating translational insights directly from spatial
data.

Beyond modeling, privacy-preserving federated learning pipelines will allow hospitals and labs
to benefit from shared model updates without moving sensitive patient data. Finally, the paradigm
of human-AlI co-analysis is gaining traction: interactive visualization platforms and collaborative
annotation systems will empower experts and machine intelligence to jointly interpret tissue architec-
tures. Collectively, these directions point to a future where Al-driven ST moves beyond experimental
research and becomes a cornerstone of precision medicine and Imageomics, turning multimodal
biological images into interpretable, trustworthy, and clinically actionable knowledge.

Building on the unified pipeline outlined in Figure [S2] these directions can be translated into concrete
research roadmaps that guide community progress. In the near term (0-3 years), the focus should be
on creating open, multi-platform pretraining corpora and standardized benchmarks that unify data
formats and evaluation metrics. Mid-term goals (3—7 years) include federated infrastructures that
enable secure cross-institutional learning and transparent leaderboards, while the longer horizon
emphasizes clinically grounded validation studies where Al-driven predictions are prospectively
reviewed by pathologists. These milestones convert the field’s high-level ambitions into practical,
measurable deliverables for the spatial transcriptomics community.

5 Conclusion

The combination of deep learning and spatial transcriptomics with modern Al has revolutionized
our ability to decode tissue architecture with unprecedented molecular and spatial precision. Com-
putational models now enable critical advances such as cell-type deconvolution, spatial domain
identification, 3D tissue reconstruction, and cell-cell interaction modeling. Yet major challenges
remain, including limited resolution, data scarcity, modality imbalance, lack of interpretability,
and unresolved issues of privacy and regulation. Addressing these barriers will require the develop-
ment of scalable, explainable, and multimodal frameworks, supported by large annotated datasets
and rigorous validation pipelines. The field is now shifting towards foundation models and trans-
lational use cases that bridge computational innovation with clinical practice. Success will depend
on deep collaboration between computational, biological, and clinical communities, ensuring that
Al-driven spatial transcriptomics evolves into a scalable, trustworthy, and clinically impactful system.
This trajectory aligns with the broader Imageomics vision of discovering biological knowledge from
images using Al This is a short survey covering only the most essential and representative works in
the area. Due to page limitations in the workshop, several relevant studies could not be included; we
plan to extend this into a more exhaustive version in a forthcoming paper.
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A Supplemental material

A.1 Images

Innovation Timeline of Spatial Transcriptomics Models (2020-2025)
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Figure S1: Timeline of key innovations in spatial transcriptomics models from 2020-2025, showing

the progression from graph-based methods to transfer learning, transformers, and multimodal archi-
tectures.
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Figure S2: The Al-powered pipeline for spatial transcriptomics. This diagram illustrates the full
lifecycle from tissue profiling to biological insight, highlighting where specific deep learning models
intervene in preprocessing, deconvolution, domain identification, 3D reconstruction, interaction
modeling, and drug targeting.
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Figure S3: An overview of how histology images and gene expression data are combined in spatial
transcriptomics. The process involves dividing tissue images into patches, linking them with spatial
gene expression, constructing tensors, and segmenting regions. A deep graph neural network is then
applied to learn representations, which are clustered to reveal spatial domains within the tissue.

A.2 Datasets

The table below summarizes the key datasets used by these models, including their sources, sample
composition, and usage.



Table S1: Summary of spatial transcriptomics datasets used in benchmarking and modeling across recent studies.

Dataset Name Data Source / Accession Sample Size and Tis- Benchmarking Use Technical Details
sue

Prostate  Cancer (Vi- 10x Genomics Visium 3 slides (2 patients; pri- Used in Hong et al. (2024) 10x Visium (~55um spots;

sium) — PC1 (acinar) & (PC1); Mendeley Data mary prostate tumors) for RPT dosimetry modeling ~3-5K spots/slice)

PC2/PC3  (adenocarci-

noma)

Human DLPFC (Visium) Public 10x Genomics 12 serial cortical slices Used by Fang et al. and 10x Visium (~55um hex
dataset (Lieber Institute) (adult human prefrontal Zhang et al. for multi-slice grid; ~3K spots/slice)

cortex) integration / 3D reconstruc-
tion

Human embryonic heart Published dataset (9-week Multiple sections (em- Used by Zhang et al. for 3D BGI Stereo-seq (high-res
(Stereo-seq) human embryo) bryonic heart) tissue reconstruction ~0.5 pm spots)
Adult mouse  brain Published dataset 35 sections (adult Used by Fang et al. for multi- Stereo-seq (cellular resolu-
(Stereo-seq) mouse brain) slice integration tion)
Mouse embryo brain Published dataset 3 sections (embryonic Used by Fang et al. for multi- Stereo-seq (cellular resolu-
(Stereo-seq) (E9.5-E11.5 mouse) brain) slice integration tion)
Various (Visium; Slide- Mixed public datasets Human/mouse tissues Used by Zang et al. to evalu- Visium; Slide-seqV2; Stereo-
seqV2; Stereo-seq) (multiple studies) ate MuST integration seq platforms
CRC Charting cohort (Vi- Internal (Zhan et al. Colorectal cancer resec- Used to train/test STFormer 10x Visium with H&E histol-
sium) 2024) tions (histology + ST) ogy
CRC Intestine cohort (Vi- External (Zhan et al. Colorectal cancer resec- Used as external test set for 10x Visium with H&E histol-
sium) 2024) tions STFormer ogy

A.3 Meta-analysis of Representative Deconvolution Models

Table S2 provides a concise meta-analysis comparing five leading spatial transcriptomics deconvolu-
tion frameworks. Each entry synthesizes its core methodological idea, major strengths, improvements
over prior work, and observed limitations as reported in recent literature (2023-2025). This table com-
plements the main survey by highlighting how successive models balance interpretability, robustness
to noise, and generalization across heterogeneous tissues.

Table S2: Meta-analysis of representative spatial transcriptomics deconvolution models (2023-2025). The table
summarizes each model’s core idea, reported strengths, comparative improvements, and practical limitations.

Model Core Idea Key Strength Improvement Over Pros Cons
Prior
Cell2location / Bayesian/ GNN decon- Simple  mapping  of Limited spatial context, Easy to use, widely Poor resolution, weak
GraphST (baseline) volution scRNA to ST data struggles with noise adopted noise handling
ADCL (Zhang Dual contrastive GNN Captures both spatial More  adaptive  and Strong interpretabil- Requires careful
2023) + VAE framework topology and  gene interpretable than ity, adaptive learning training, —moderate
variance Cell2location or compute
GraphST
MHDGAT + OT Dynamic graph atten- High accuracy in low- Outperforms Tangram / Excels on noisy or Computationally in-
(Chen 2024) tion + optimal trans- resolution data DestVI in mapping tasks low-res ST data tensive (OT)
port fusion
MACD (Huang Masked autoencoder + Robust to noisy and het- Beats six top deconvo- Strong generalization, Adversarial training
2024) adversarial alignment erogeneous datasets lution models in PCC / top quantitative met- harder to stabilize
SSIM metrics rics
CellMirror  (Xia Contrastive GNN with Biologically explainable Adds interpretability Highlights ~ marker Needs high-quality
2023) interpretable markers embeddings missing in GraphST and genes, interpretable scRNA-seq reference
DestVI data
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