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Abstract

Learning meaningful representations from multimodal spatial transcriptomics1

data—which integrates histology images with gene expression—is a fundamental2

challenge in biological vision. Spatial transcriptomics provides this data, enabling3

the mapping of the transcriptome onto tissue sections. This paper presents a thor-4

ough survey of representation learning in spatial omics, critically comparing over5

40 deep learning frameworks. We group these models by the core tasks their6

learned representations are designed to solve: cell type deconvolution, spatial7

domain identification, gene expression imputation, 3D tissue reconstruction, and8

cell-cell interaction simulation. Special attention is given to the dominant architec-9

tures for representation learning in this domain, including graph neural networks,10

contrastive learning, and multimodal fusion methods. We evaluate representative11

models such as ADCL, CellMirror, and MuST for the scalability, interpretability,12

and biological impact of their learned embeddings. The survey also addresses13

common challenges that hinder representation learning, including spatial noise,14

modality imbalance, and low-resolution data. Finally, we outline future directions15

centered on building foundation models for spatial biology and improving 3D align-16

ment. This review provides a critical guide for researchers developing foundational17

and task-specific representations from multimodal spatial data.18

1 Introduction19

Spatial transcriptomics (ST) has emerged as a transformative modality by integrating histology20

images with spatially resolved gene expression profiles, an achievement recognized when it was21

named Nature Methods’ “Method of the Year” in 2020. This multimodal view enables researchers to22

link tissue morphology with molecular states, advancing our understanding of development, disease,23

and therapeutic response. For computational biology and computer vision, ST poses a unique set24

of challenges and opportunities. Unlike natural image tasks, spatial omics data are multimodal25

(images, gene counts, spatial coordinates), heterogeneous, and often limited in scale. Extracting26

meaningful representations that capture both morphological structure and molecular context is27

therefore a fundamental challenge.28

The rapid evolution of this field has been driven by artificial intelligence. In just a few years, the29

computational landscape has matured from initial clustering algorithms to sophisticated architectures30

for representation learning, including graph neural networks (GNNs), contrastive learning, and31

multimodal transformers. Early landmark tools like SpaGCN began leveraging GNNs to integrate32

modalities, while others like Tangram used deep learning to register single-cell data onto spatial maps.33

The timeline in Figure S1 illustrates this accelerated development, highlighting the key architectural34

shifts that have defined the field.35
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In this paper, we survey recent advances in representation learning for spatial transcriptomics, with36

an emphasis on key modeling approaches across core tasks like cell type deconvolution, domain37

identification, and 3D reconstruction. We also examine the computational challenges that arise38

from multimodal data and discuss future opportunities to build foundation models that generalize39

across tissues and scales. Our goal is to provide a critical guide for researchers in the Imageomics40

community developing AI-driven methods to create interpretable and clinically relevant biological41

vision systems.42

2 A Survey of Representation Learning Models43

The field of AI-enhanced spatial transcriptomics can be organized into six core tasks, each addressing44

a key challenge in representation learning. These tasks range from resolving cellular composition45

within low-resolution spots to reconstructing entire 3D tissue architectures. Our full analysis is based46

on a comprehensive review of over 40 frameworks. Table 1 provides a comprehensive, side-by-side47

comparison of over 20 representative models, detailing the specific techniques, data modalities, and48

frameworks for each.49

2.1 Cell Type Deconvolution50

Deconvolution methodologies aim to computationally unmix the gene expression signals from51

heterogeneous cell types within a single ST spot.52

• ADCL Zhang and Zhang [2023]: Integrates multi-head graph attention networks (MHGAT)53

and variational autoencoders (VAE) with dual-contrastive learning, outperforming previous54

models on resolution and accuracy.55

• MHDGAT Chen et al. [2024b]: Deploys a multi-head dynamic GAT network fused with56

optimal transport, efficiently leveraging both spatial and transcriptional information and57

utilizing cell type labels.58

• MACD Huang et al. [2024]: Combines masked autoencoders and adversarial learning to59

align latent representations from simulated and real data, achieving robust inference even60

under domain shift.61

• CellMirror Xia et al. [2023] : Applies interpretable spatial graph-based contrastive learning62

with single-cell RNA-seq references, resolving finer cell-type subpopulations in mixed ST63

spots.64

• TransST Liu et al. [2025]: Uses transfer learning from reference datasets with a Markov65

random field prior to boost segmentation and denoising in low-resolution or noisy spatial66

data.67

2.2 Spatial Domain Identification68

These models segment tissues into spatially coherent domains by learning representations that69

integrate gene expression, spatial coordinates, and sometimes histology.70

• GCNCL Liang et al. [2024]: Adapts feature-spatial balances for each sample using GCNs,71

improving robustness in domain detection.72

• stBERT Wang et al. [2024]: Brings transformer-based masked modeling and transfer learning73

to spatial contexts, achieving state-of-the-art tissue boundary delineation.74

• vGraphST Li et al. [2023]: Blends graph variational autoencoders with contrastive learning75

for simultaneous clustering and denoising.76

• spGCLF Chen et al. [2024a]: Applies contrastive learning with dual denoising for noisy77

data and cross-slice transfer.78

• SSGCN Du et al. [2024]: A multi-scale GCN with adaptive reweighting for domain segmen-79

tation at various tissue resolutions.80

• HexCNN Gao et al. [2022]: Employs hexagonal convolutional kernels to better model81

regular spatial spot grids, improving domain classification and noise resilience.82
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2.3 Gene Expression Imputation and Prediction83

Methods in this category either fill in missing gene expression values (imputation) or predict expres-84

sion patterns directly from histology images (prediction).85

• CC + O2U Leng et al. [2023]: Use GNNs and semi-supervised error-resistant modules for86

improved tumor microenvironment analysis.87

• stMCDI Li et al. [2024] is a state-of-the-art imputation framework that uses a masked88

conditional diffusion model, guided by a GNN encoder, to recover missing gene values89

while preserving the original data distribution.90

• HisToSGE Shi et al. [2024] predicts high-resolution spatial gene expression directly from91

H&E histology images using a large-scale pretrained pathology model and a multi-head92

attention module to integrate spatial coordinates.93

• BG-TRIPLEX Qu et al. [2024], EGDNN Yang et al. [2023], and STFormer Zhan et al.94

[2024] combine advanced attention and exemplar learning to improve gene prediction from95

imaging data.96

2.4 3D Tissue Reconstruction97

These frameworks focus on aligning and integrating multiple 2D ST slices to create cohesive 3D98

tissue atlases.99

• SPACEL Xu et al. [2023] is a modular deep learning library featuring components for100

deconvolution (Spoint), 2D domain identification (Splane), and automated 3D reconstruction101

(Scube) that aligns and stacks slices into a continuous 3D model.102

• OptiGraph3D Zhang et al. [2024] is a hybrid framework that integrates pivot-driven103

registration to align slices, an ADMM-based solver for deconvolution, and a multi-head104

graph attention network to reconstruct the 3D tissue structure.105

• STG3Net Fang et al. [2024]: Uses masked graph autoencoders and anchor-based correction106

for robust batch integration across multiple slices or samples, enhancing accuracy and107

consistency in composite tissue atlases.108

2.5 Cell-Cell Interaction Inference109

These models aim to decode the complex signaling networks and interactions between cells in their110

spatial context.111

• SpaCCC Ji et al. [2024] is a novel framework that leverages Large Language Models112

(LLMs) to infer cell-cell communication by encoding cell types and their spatial context into113

natural language prompts, enabling zero-shot, knowledge-enhanced interaction prediction.114

• Hypergraph Wavelets Sun et al. [2025] generalizes standard graphs to hypergraphs to model115

higher-order cellular niches. It uses hypergraph diffusion wavelets to capture multi-scale116

spatial patterns, revealing distinct cellular communities associated with disease progression.117

2.6 Drug Discovery and Target Identification118

This emerging area uses spatially resolved transcriptomic maps to guide therapeutic strategies.119

• STADS Karaaslanli et al. [2023] is a graph-based framework that integrates ST data with120

pharmacogenomic evidence from the L1000 Connectivity Map to rank and recommend121

drugs for repositioning.122

• Radiopharmaceutical Modeling Hong et al. [2023] integrates ST data with pharmacoki-123

netic and dosimetry modeling (solving PDEs) to enable in silico screening of radiopharma-124

ceutical therapies and prioritize targets.125
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3 Challenges and Open Problems126

Despite rapid progress, the clinical and biological translation of AI-powered spatial transcriptomics127

remains hindered by several interlocking challenges. A central issue is the trade-off between spatial128

resolution and molecular depth: sequencing-based ST aggregates multiple cells per spot, while129

imaging-based approaches achieve subcellular resolution at the cost of limited gene panels and130

technical complexity. On the computational side, many multimodal fusion frameworks exhibit131

modality bias, where transcriptional signals dominate and underutilize morphological or spatial132

features. Progress is also slowed by data scarcity—most public ST datasets are small, heterogeneous,133

and organ-specific, making overfitting and poor generalization common; a summary of commonly134

used datasets is provided in Table S1 in the supplementary material. Tissue heterogeneity and batch135

effects further complicate the definition of consistent, biologically meaningful domains, while multi-136

slice registration and 3D reconstruction remain technically daunting. Beyond performance, issues137

of interpretability and validation are particularly pressing: state-of-the-art GNNs, transformers,138

and contrastive frameworks often act as “black boxes,” offering limited biological explainability. At139

the same time, the absence of gold-standard annotated datasets forces reliance on proxies such as140

scRNA-seq overlap or histology concordance, introducing subjectivity and limiting reproducibility.141

Finally, as spatial data integrates genomics, histology, and metadata, privacy, ethics, and regulatory142

compliance emerge as critical but unresolved obstacles, with no clear guidelines yet defined for143

AI-based spatial omics technologies.144

4 Future Directions145

The field is advancing toward a new phase of scalable, generalizable, and clinically viable spatial146

intelligence, with several transformative trends on the horizon. First, the development of foundation147

models for spatial biology—large transformer-based encoders pretrained on diverse tissues and148

modalities—promises universal backbones for downstream tasks, enabling zero- and few-shot transfer149

learning. Second, the rise of multi-omic integration will allow ST to be co-analyzed with scRNA-150

seq, ATAC-seq, proteomics, and histology, using graph learning and contrastive objectives to capture151

regulatory circuits across scales. Third, LLM-augmented discovery is emerging, with systems like152

SpaCCC showing how large language models can perform zero-shot inference of cell–cell interactions153

and drug repurposing, accelerating translational insights directly from spatial data. Beyond modeling,154

privacy-preserving federated learning pipelines will allow hospitals and labs to benefit from shared155

model updates without moving sensitive patient data. Finally, the paradigm of human–AI co-analysis156

is gaining traction: interactive visualization platforms and collaborative annotation systems will157

empower experts and machine intelligence to jointly interpret tissue architectures. Collectively, these158

directions point to a future where AI-driven ST moves beyond experimental research and becomes159

a cornerstone of precision medicine and Imageomics—turning multimodal biological images into160

interpretable, trustworthy, and clinically actionable knowledge.161

5 Conclusion162

The combination of deep learning and spatial transcriptomics with modern AI has revolutionized163

our ability to decode tissue architecture with unprecedented molecular and spatial precision. Com-164

putational models now enable critical advances such as cell-type deconvolution, spatial domain165

identification, 3D tissue reconstruction, and cell–cell interaction modeling. Yet major challenges166

remain, including limited resolution, data scarcity, modality imbalance, lack of interpretabil-167

ity, and unresolved issues of privacy and regulation. Addressing these barriers will require the168

development of scalable, explainable, and multimodal frameworks, supported by large annotated169

datasets and rigorous validation pipelines. The field is now shifting towards foundation models170

and translational use cases that bridge computational innovation with clinical practice. Success171

will depend on deep collaboration between computational, biological, and clinical communities,172

ensuring that AI-driven spatial transcriptomics evolves into a scalable, trustworthy, and clinically173

impactful system. This trajectory aligns with the broader Imageomics vision of discovering biological174

knowledge from images using AI.175
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A Supplemental material258

A.1 Images259

Figure S1: Timeline of key innovations in spatial transcriptomics models from 2020-2025, showing
the progression from graph-based methods to transfer learning, transformers, and multimodal archi-
tectures.

Figure S2: The AI-powered pipeline for spatial transcriptomics. This diagram illustrates the full
lifecycle from tissue profiling to biological insight, highlighting where specific deep learning models
intervene in preprocessing, deconvolution, domain identification, 3D reconstruction, interaction
modeling, and drug targeting.
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Figure S3: An overview of how histology images and gene expression data are combined in spatial
transcriptomics. The process involves dividing tissue images into patches, linking them with spatial
gene expression, constructing tensors, and segmenting regions. A deep graph neural network is then
applied to learn representations, which are clustered to reveal spatial domains within the tissue.

A.2 Datasets260

The table below summarizes the key datasets used by these models, including their sources, sample261

composition, and usage.262

Table S1: Summary of spatial transcriptomics datasets used in benchmarking and modeling across recent studies.

Dataset Name Data Source / Accession Sample Size and Tis-
sue

Benchmarking Use Technical Details

Prostate Cancer (Vi-
sium) – PC1 (acinar) &
PC2/PC3 (adenocarci-
noma)

10x Genomics Visium
(PC1); Mendeley Data

3 slides (2 patients; pri-
mary prostate tumors)

Used in Hong et al. (2024)
for RPT dosimetry modeling

10x Visium (~55 µm spots;
~3–5K spots/slice)

Human DLPFC (Visium) Public 10x Genomics
dataset (Lieber Institute)

12 serial cortical slices
(adult human prefrontal
cortex)

Used by Fang et al. and
Zhang et al. for multi-slice
integration / 3D reconstruc-
tion

10x Visium (~55 µm hex
grid; ~3K spots/slice)

Human embryonic heart
(Stereo-seq)

Published dataset (9-week
human embryo)

Multiple sections (em-
bryonic heart)

Used by Zhang et al. for 3D
tissue reconstruction

BGI Stereo-seq (high-res
~0.5 µm spots)

Adult mouse brain
(Stereo-seq)

Published dataset 35 sections (adult
mouse brain)

Used by Fang et al. for multi-
slice integration

Stereo-seq (cellular resolu-
tion)

Mouse embryo brain
(Stereo-seq)

Published dataset
(E9.5–E11.5 mouse)

3 sections (embryonic
brain)

Used by Fang et al. for multi-
slice integration

Stereo-seq (cellular resolu-
tion)

Various (Visium; Slide-
seqV2; Stereo-seq)

Mixed public datasets Human/mouse tissues
(multiple studies)

Used by Zang et al. to evalu-
ate MuST integration

Visium; Slide-seqV2; Stereo-
seq platforms

CRC Charting cohort (Vi-
sium)

Internal (Zhan et al.
2024)

Colorectal cancer resec-
tions (histology + ST)

Used to train/test STFormer 10x Visium with H&E histol-
ogy

CRC Intestine cohort (Vi-
sium)

External (Zhan et al.
2024)

Colorectal cancer resec-
tions

Used as external test set for
STFormer

10x Visium with H&E histol-
ogy
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