
A Differentiable Formulation for Uncertain Pose Estimation
during Contact

Jeongmin Lee*, Minji Lee*, and Dongjun Lee

Abstract— For many robotic manipulation and contact tasks,
it is crucial to accurately estimate uncertain object poses,
for which certain geometry and sensor information are fused
in some optimal fashion. Previous results for this problem
primarily adopt sampling-based or end-to-end learning meth-
ods, which yet often suffer from the issues of efficiency and
generalizability. In this paper, we propose a novel framework
for modeling and solving this uncertain pose estimation problem
in differentiable form. To this end, we first devise a new type
of geometric definition which is versatile and can provide
differentiable contact features. In conjunction with this, we
develop an efficient bi-level algorithm to solve the problem.
Several scenarios are implemented to demonstrate how the
proposed framework can improve existing methods.

I. INTRODUCTION

In this paper, we present a novel differentiable framework
which estimates the uncertain pose in contact tasks from
sensor measurements. Our framework has a wide range of ap-
plications, from simple external impact localization to inter-
active manipulation such as peg-in-hole assembly. The main
contribution of this paper is two-fold: 1) a new geometry
representation based on a prescribed support function with
differentiable contact features and their efficient computation
algorithm; and 2) an efficient bi-level solution scheme based
on differentiable optimization for uncertain pose estimation
problem. The proposed methods are validated against both
in simulation and experiment, demonstrating the efficacy of
our differentiable framework for contact tasks.

Multiple studies have explored the identification of un-
certainty in interaction, using a range of sensors such as
vision, tactile, and force/torque (FT). These studies typically
utilize learning-based frameworks to encode the relevant
information. For example, [1] combines vision and FT sensor
information using self-supervised learning. In [2], a certain
action is performed to acquire FT measurements when
contact occurs, and the plotted results are passed through
neural network to estimate of the peg pose. For tactile sensor,
the work [3] estimates the pose of grasped object using
neural network and [4] perform tracking of extrinsic contact
between object and environment based on neural contact
fields. These methods are still lacking in their exploitation of
the dynamic/kinematic structures of the problems, and data
must be collected and learned again as the use cases expands.

Model-based methods that address geometry and sensor
information together have been primarily relied on sampling
strategies. For instance, contact particle filter (CPF) [5],
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[6] presents the way for external contact localization using
proprioceptive sensors or force sensors. Object grasp pose
estimation method is also conducted in [7] on the extension
of CPF. Similarly, [8] presents the Bayesian framework
for multi-modal fusion. These sampling-based methods may
struggle with estimating poses in the case involving multiple
contacts or steps. Recently, [9] and [10] develop the opti-
mization based extrinsic contact sensing frameworks using
various structured constraints. In comparison to above works,
we aim for a differentiable formulation that can be applied
to more general geometric types.

II. PROBLEM FORMULATION

The main purpose of this paper is to develop the differ-
entiable and general-purposed framework for uncertain pose
estimation in interaction. We define the basic structure of the
problem as follows:

Problem 1 (Uncertain Pose Estimation in Contact):
Given the measurement γ ∈ Rnγ , estimate uncertain pose
parameter ξ ∈ Rnξ through following optimization problem:

min
ξ,f∈C

1

2

∥∥∥∥∥∥γ −
m(ξ)∑
k=1

Pk(ξ)fk

∥∥∥∥∥∥
2

Σ−1

s.t. gk(ξ) ≥ 0, (gk(ξ))
+fk = 0 ∀k

(1)

where m is the number of collision, gk ∈ R, fk ∈ R3,
Pk ∈ Rnγ×3 are the gap, contact force, and contact mapping
matrix (to the measurement) for the k-th contact. Note that
Pk is a function of the contact witness points and normal.
Also, ∥ · ∥2Σ−1 is the Mahalanobis distance defined under the
covariance matrix Σ, (·)+ = max(·, 0), and C denotes the
friction cone set:

C = C1 × · · · × Cm
Ck = {fk | µkfk,n ≥ ∥fk,t∥}

(2)

with µ, n, t being the friction coefficient1, subscripts for the
normal and tangential direction.

Here, the measurement γ is typically the FT or joint torque
sensor value. It can also be a stack of measurements rather
than a single measurement. Problem 1 can be interpreted as
finding the most likely pose and contact force for the given
sensor measurement. It has wide-ranging applications in
robotics including grasp pose identification, object tracking,
and external contact localization and is easily extensible.
However, there are several challenges to solving a problem:

1In practice, it is difficult to accurately know the friction coefficient value,
so the rough upper value is mainly used.
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Fig. 1: Comparison of geometry obtained by the proposed support
function and the naive softmax support function based on exponen-
tial. Vertex set is defined as {[1, 1], [1,−1], [−1, 1], [−1,−1]}.

1) the problem is non-linear with multiple complementarity
constraints, and 2) the differentiability of m, g, P is ambigu-
ous, making it difficult to find a proper gradient direction to
optimize.

III. DIFFERENTIABLE CONTACT FEATURES VIA
PRESCRIBED SUPPORT FUNCTION

A. Prescribing Support Function

For given set and direction, the support function [11]
describes a distance to the supporting hyperplane. We model
the geometry by prescribing the support function, based on
the following theorem:

Theorem 1 ( [11]): If h : R3 → R is a sublinear function
i.e., a function that satisfies:

Positive homogeneity: h(λx) = λh(x) ∀λ ≥ 0, x ∈ R3

Subadditivity: h(x+ y) ≤ h(x) + h(y) ∀x, y ∈ R3

then there is a unique convex body with this support function.
This theorem implies the one-to-one relationship between a
sublinear function and correspoding convex body.

The question remained is then how to define the prescribed
form of the support function. We first consider the set of ver-
tices i.e., v1, · · · , vn ∈ R3. This vertex set can be determined
by the user or obtained from data such as mesh or point
cloud. As it will be generalized under SE(3) transformation
in Sec. III-B), here we assume that the origin is inside the
convex hull of the vertices. Then we can easily find that the
support function of the geometry defined as a convex hull is
written as

h(x) = max
(
vT1 x, · · · , vTn x

)
(3)

which is discontinuous. Instead of using the max operator, we
consider using a smoothed version of (3) which can be used
for differentiable contact feature computation. The proposed
function form is as follows:

h(x) =

(
n∑

i=1

{
max(vTi x, 0)

}p) 1
p

(4)

where p > 2. Equation (4) is similar to the p-norm function,
but the abs(·) is replaced by max(·, 0), which naturally culls
negative elements. Then Theorem 2 summarizes an important
property of (4).
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Fig. 2: Visualization of geometries represented by the prescribed
support function (4). From left to right, p = 5, 10, 20, 40 are used.

Theorem 2: Given vertex set v1, · · · , vn, the function (4)
is sublinear and twice-differentiable on R3 \ 0.

Proof: Positive homegeneity is trivial. Subadditivity can
be shown as

h(x) + h(y) =

(
n∑

i=1

{
(vTi x)

+
}p) 1

p

+

(
n∑

i=1

{
(vTi y)

+
}p) 1

p

≥

(
n∑

i=1

{
(vTi x)

+ + (vTi y)
+
}p) 1

p

≥

(
n∑

i=1

{
(vTi (x+ y))+

}p) 1
p

= h(x+ y)

using the Minkowski inequality, where max(·, 0) is simpli-
fied as (·)+. Therefore, the function is sublinear. Twice-
differentiablity can be easily verified by using the fact that

n∑
i=1

{
(vTi x)

+
}p

> 0

for x ∈ R3 \ 0 as the origin is inside the vertex set.
The properties in Theorem 2 is crucial, as it ensures that

any (4) always corresponds to some convex geometry - note
from Fig. 1 that other classes of support function are not
necessarily able to do so. Fig. 2 depicts various smoothed
geometries generated by the support function (4). We can
find that smoothness of the geometry can be easily adjusted
using p while retaining convexity and differentiability.

B. Support Point and SE(3) Transformation

Support point s(x) can be derived as follows:

s(x) = s(x) + xT ds

dx
=

dh

dx
(5)

since xT ds
dx = 0 holds from the homogeneity. By computing

support points (5) for various x direction, we can visualize
the corresponding shape of geometry.

The aforementioned support function and point can be
generalized for SE(3) transformation. Given h and config-
uration vector q ∈ R7 (i.e., position and quaternion), the
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Fig. 3: Visualization of the condition in (7). Support points (red
points) on both bodies extended by the growth factor should meet
exactly (blue point).

support function h̄ and support point s̄ for q and x can be
derived as follows:

h̄(q, x) = h(R(q)Tx) + p(q)Tx

s̄(q, x) = R(q)s(R(q)Tx) + p(q)
(6)

where p(q) ∈ R3 and R(q) ∈ SO(3) are the translation and
rotation by q.

C. Contact Feature Computation

We compute the contact features based on the growth
distance (GD) model [12]. Combined with our geometry defi-
nition described above, we present an efficient unconstrained
formulation.

1) Unconstrained nonlinear equation: Our unconstrained
formulation employs the solution variables as x (i.e., normal
vector) and growth factor σ ∈ R, resulting in 4 dimensions.
Then the conditions that the solution must satisfy are: 1) the
two support points of each body corresponding to x coincide
exactly when extended to σ; and 2) the normal vector x has
unit norm. These can be written as:

F (x, σ, q) =

[
σ(s̄i − s̄j) + (1− σ)(pi − pj)

∥x∥2 − 1

]
= 0 (7)

for given bodies i and j where s̄i = s̄i(x, qi), s̄j =
s̄j(−x, qj) and p = p(q). See Fig. 3 for visualization. The
contact detection process is then reduced to solve (7) with
respect to x, σ given the configuration qi and qj . Note that
the formulation is of fixed dimension (i.e., 4) regardless of
the number of vertices used in the geometries.

2) Newton solver: Theorem 2 ensures that h is twice-
differentiable everywhere. Therefore we can always compute
the Jacobian of F in (7) as follows:

J =

[
∂F

∂x
,
∂F

∂σ

]
=

[
σ
(

ds̄i
dx +

ds̄j
dx

)
y

2xT 0

]
y = Risi(R

T
i x)−Rjsj(−RT

j x)

(8)

and (8) can be applied to Newton-type algorithm to solve
nonlinear equation in (7). Specifically, we utilize the trust-
region-dogleg method [13] to achieve stable convergence
property. Due to the simple structure of (4), ds̄

dx is also very
easy to compute, much like s.

D. Feature Differentiation

After obtaining the contact features, the differential values
can be computed and used to obtain the gradients for P
and g. The conciseness of our GD model solver also makes

the process of obtaining contact feature differentiation very
efficient. Applying implicit differentiation to the nonlinear
equation (7), we get

∂F ∗

∂q
+ J∗

[
dx∗

dq
;
dσ∗

dq

]
= 0 (9)

where the superscript ∗ denotes the value at the solution.
As J∗ is only a 4 × 4 matrix (and its factorization have
already been computed in the solver step), we can obtain
differentiation of contact normal and growth factor (and
consequently, witness points) very efficiently.

IV. BI-LEVEL SOLVER

A. Predefined Number of Contact

Despite this, we have differentiable formulation for P (ξ)
and g(ξ), still the number of contacts m(ξ) can change
discretely. We address this issue by decomposing two in-
teracting objects into m1 and m2 convex geometries, each
of which is represented using the method described in
Sec. III. Accordingly, we can predefine the collision number
as constant, i.e., m(ξ) = m = m1m2. Note that we can
suppress contact forces for inactive contact by imposing the
constraint (gk(ξ))+fk = 0.

B. Bi-level Formulation

1) Low-level problem: For the fixed ξ, problem (1) re-
duces to find the optimal contact force f∗ as

min
f∈C

1

2
∥γ − P (ξ)f∥2Σ−1 s.t. (gk(ξ))+fk = 0 (10)

which is a second-order cone programming (SOCP). Since
(10) is a convex problem, it is possible to obtain the global
optimum efficiently. Additionally, the problem is independent
for each touch step, which allows for parallel computation.

2) Differentiation: In terms of differentiable optimization
[], the derivative of the solution to (10) with respect to the
target parameter ξ can be obtained. For better smoothness,
we put constraint (gk(ξ))+fk = 0 into a quadratic penalty
term, and utilize the smoothed friction cone.

3) High-level problem: By substituting the obtained low-
level solution f∗ and handling the gap constraint gk(ξ) ≥
0 as penalty functions, we can formulate the high-level
problem as

min
ξ

1

2
∥γ − P (ξ)f∗∥2Σ−1 +

k1
2

m∑
k=1

(
(−gk(ξ))

+
)2

(11)

where k1 is the penalty coefficient to penalize penetration
between objects. We can find that (11) is a non-linear least
squares problem with differentiable error terms. Hence, we
can use off-the-shelf algorithms such as the Gauss-Newton
method to solve the problem, which also shows good conver-
gence in practice. Note that the framework can be extended
by augmenting it with additional cost terms on ξ.

Since the problem (11) is non-convex, there can be mul-
tiple local minimum. To enhance the ability of our gradient-
based algorithm to discover global minimum, we adopt a
strategy of sampling the initial pose parameters and selecting
the optimal value from among them after optimization.
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Fig. 4: Snapshots of simulation results of peg-in-hole manipulation
using our uncertain pose estimation framework in online. Different
colors are used to represent convex-decomposed shapes.

V. RESULTS AND EVALUATIONS

A. Peg-in-Hole

The proposed framework is tested on estimating the un-
certain grasp pose (i.e., the pose of the peg with respect to
the gripper) in peg-in-hole assembly task. Here, the uncertain
parameter ξ ∈ R3 is the parameterized grasp pose and the
measurement is from the force/torque sensor on gripper.

The experiment employs two distinct peg geometries: a
rectangular prism and a hexagonal prism. The rectangular
prism has eight vertices, while the hexagonal prism has
twelve vertices. As shown in Fig. 4, the hole is decomposed
into a total of 4 and 6 convex geometries, and the predefined
numbers of collisions m are 4 and 6, respectively.

For the evaluation, we first collect simulation data (FT
measurement, ground-truth grasp pose) in a contact situation
using the original geometry. Here, the data accumulated over
three contacts (i.e., γ ∈ R18) is used. The identification
is then performed using the proposed differentiable contact
feature, with three initial samples. For the baseline, we
implement the particle filter (PF)-based method similar to
[7]. The PF solves the high-level problem by using the grasp
pose as particles with sampling strategy. For the low-level
problem for each particle, we take the same methodology of
our framework for better performance. Also, the number of
particles is 25 (PF25) and 50 (PF50).

The comparison results are summarized in Table. I. A
total of ten datasets and two different amount of noise
(standard deviations 0.1 and 0.001) are used. The results
clearly demonstrate that the proposed method outperforms
the particle filter-based method in terms of accuracy and ef-
ficiency. This demonstrates how, our gradient-based method
can quickly converge to the solution. Simulation snapshots
of peg-in-hole assembly with online estimation are shown in
Fig. 4.

B. Real World Experiment: Dish Placing

We deploy our framework in a dish placement task for
experimental validation in the real world. The manipulator

Noise Low High
Methods Ours PF25 PF50 Ours PF25 PF50

Rect

AT 9.22 44.1 89.1 10.7 43.7 89.3
APE 4.54 1.91 2.08 3.34 1.99 2.22
ARE 3.72 1.06 0.94 2.47 0.83 1.16
AC 5.74 -0.912 -0.66 2.03 -0.70 -0.19

Hexa

AT 18.6 100 197 16.6 99.4 192
APE 3.71 2.21 2.37 3.87 2.47 2.34
ARE 2.58 0.87 1.10 2.50 1.06 1.07
AC 3.28 -0.59 0.36 1.66 0.46 0.19

TABLE I: Evaluation results for the peg-in-hole assembly task. AT:
average computation time (ms). APE/ARE/AC: position error (m),
rotation error (rad) and cost value are converted using (− log(·))
and averaged, therefore bigger is better.

Fig. 5: Experimental demonstration of our framework in dish
placing task. Top left: A human gives an arbitrary grasp pose. Top
right: The robot estimates the uncertainty through interaction with
the ground. Bottom left: Placing succeeded by proper estimation.
Bottom right: Three dishes are successfully placed in a row.

is built with Franka Emika Panda and a parallel gripper, and
ATI Gamma is utilized as the FT sensor. Three different
dishes are used, with a narrow-spaced dish rack. Test is
conducted as follow: a human makes the gripper to grasp
the dish in an arbitrary pose, and the robot identifies the
uncertain grasp pose through interaction with the ground.
The uncertain grasp parameter is modeled in 3-dimension
and the dishes are represented by a smoothed convex hull
of mesh with a prescribed support function. Our framework
is successfully applied to enable successful performance of
dish placement tasks - see Fig. 5 for experiment snapshots.

VI. CONCLUSIONS

In this paper, we propose a differentiable uncertain pose
estimation framework for interactive robot tasks. Prescribed
support function based geometry definition is first presented
to make it possible to express differentiable contact features.
This is then combined with differentiable optimization to
create an efficient bi-level algorithm for solving the pose
estimation problem. Implementation shows how well our
method can outperform sampling-based approaches. One of
a promising direction for future work will be a combination
with more diverse sensors.
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