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Abstract

LLMs have shown remarkable success in lan-
guage modelling due to scaling laws found in
model size and the hidden dimension of the
model’s text representation. Yet, we demon-
strate that compressed representations of text
can yield better performance in LLM-based re-
gression tasks. In this paper, we compare the
relative performance of embedding compres-
sion in four different signal-to-noise contexts:
financial return prediction, health outcome pre-
diction, writing quality assessment and review
scoring. Our results show that compressing em-
beddings, in a minimally supervised manner us-
ing an autoencoder’s hidden representation, can
mitigate overfitting and improve performance
on noisy tasks, such as financial return predic-
tion; but that compression reduces performance
on tasks that have high causal dependencies be-
tween the input and target data. Our results
suggest that the success of interpretable com-
pressed representations, such as sentiment, may
be due to a regularising effect.

1 Introduction

Modern machine learning research increasingly re-
lies on LL.Ms to handle complex real-world tasks
(Lin et al., 2025; Rahimikia and Drinkall, 2024,
Huang et al., 2024). Recent progress in LLM per-
formance has largely come from scaling models’
parameters, training dataset size and the expressiv-
ity of the LLLM via the model’s hidden dimension
(Kaplan et al., 2020). In recent years the hidden
dimension has scaled from a standard representa-
tion size of 768 dimensions (Devlin et al., 2019)
to up to 16384 (Grattafiori et al., 2024), and pos-
sibly higher in some large closed-source models.
While it is not clear whether the relationship be-
tween model scaling and linguistic performance
will hold indefinitely (Xue et al., 2023), it is gen-
erally accepted that modelling language requires a
high-dimensional representation space (Grattafiori
et al., 2024). This has meant that LLMs have very

strong formal linguistic competence (Mahowald
et al., 2024). However, some machine learning
tasks, like stock returns prediction tasks, have in-
herently low signal-to-noise relationships between
the input and output (Sawhney et al., 2020), which
we will refer to as "noisy" tasks in this paper. In the
case of predicting stock returns from news, noise
arises not only from uninformative articles or weak
causality between the article and the stock price
but can also come from delayed reactions, market
efficiency, and unpredictable macroeconomic influ-
ences (Antweiler and Frank, 2004; Mantilla-Garcia
and Vaidyanathan, 2017). In such noisy research
areas, the link between dimensionality and perfor-
mance is unclear, and feature selection or compres-
sion can act as a regularising component (Tian and
Zhang, 2022). When input dimensionality is too
large, models risk overfitting by memorising noise
rather than learning meaningful patterns. On the
other hand, a low-dimensional embedding might
underfit by losing critical high-order interactions.
This paper explores the relationship between text-
embedding dimensionality and downstream perfor-
mance in tasks where the signal is noisy, focusing
on tasks with a differing signal-to-noise ratio.

Not all tasks are well-suited to purely genera-
tive LLMs; many tasks benefit more from super-
vised machine learning (Tang et al., 2024), where
labelled data guide classification or regression out-
comes by identifying robust dependencies between
input text and target outputs (Johan Berggren et al.,
2019). Generative models often require extensive
computational resources and large datasets (Hoff-
mann et al., 2022), creating obstacles under compu-
tational or data constraints. Problems also emerge
when using the output from generative models
in larger architectures that fuse textual data with
other modalities, such as numerical or structured
information (Drinkall et al., 2025), since gener-
ative models can produce unpredictable outputs
(Wu et al., 2022) and are relatively weak at com-



plex multivariate numerical reasoning (Liu et al.,
2024). Discriminative models are also better able
to model a probabilistic distribution with a limited
run of data, since generative models can overfit to
the training distribution (Lee et al., 2022; Carlini
et al., 2023). As such, it is often preferable to use
the embedding representations from LLMs as in-
put features for a conventional neural network in
regression-based tasks as opposed to passing all of
the numerical and textual data into a prompt.

There has been work investigating how well text
embeddings perform in regression tasks (Tang et al.,
2024), but none have investigated the degree to
which the noise of a task affects the optimal di-
mensionality of the text representation. This is
despite the widespread adoption and success of
interpretable, compressed representations of text
in financial return prediction tasks like sentiment
(Fazlija and Harder, 2022), emotion (Tilly et al.,
2021), and topics (Drinkall et al., 2022; Garcia-
Méndez et al., 2023). While many papers have
shown that these compressed representations can
perform better than raw text embeddings, this pa-
per investigates the degree to which this is due to
regularisation rather than the true value of the fea-
tures. We consider the internal representation from
an autoencoder, and show that interpretable fea-
tures such as sentiment or emotion do not deliver
an improvement beyond the minimally supervised
autoencoder latent representation.

This paper has the following contributions:

1. Provides some evidence for a link between
the optimal representational dimensionality
of text in a regression task and the signal-to-
noise ratio of the dataset.

2. Demonstrates that gains attributed to inter-
pretable features (e.g., emotion, sentiment)
in financial returns tasks may stem from rep-
resentational compression, rather than from
inherently superior feature sets.

3. Identifies the optimal dimensionality in sev-
eral downstream tasks.

4. A financial news stock returns dataset released
under an academic license.!

2 Datasets

To explore the relationship between the signal-to-
noise ratio and the optimal dimensionality of the

'To be included in final version.

text representation in a regression task, we com-
pare four domains of conceivable regression tasks.
Stock market return prediction using news articles
is a notoriously noisy domain (Black, 1986) since a
significant proportion of the news articles are likely
to not contain any useful information (Antweiler
and Frank, 2004). Health outcome prediction is
also a noisy task, with length of stay reflecting
many latent factors (bed flow, comorbidities, dis-
charge logistics etc.) that are only partially men-
tioned in nursing notes. We contrast these noisy
domains to customer review and writing quality
datasets, which both have a stronger connection
between the regression input and the target value.

2.1 Low Signal Datasets

Financial Returns. We combine two data
sources to form the financial dataset: CRSP daily
price data and news articles. For the 50 most traded
U.S. stocks, we use the closing bid/ask average as
the daily price. The daily return is defined as the
percentage increase between the previous and the
next day’s closing price. This return is the regres-
sion model’s target. We use the next and previous
day’s data as opposed to the current day’s price to
be sure that the publication of the article intersected
the two prices and thus avoid including samples
where the article was published after the market’s
closing time. The underlying assumption is that the
news content either causes or reflects the observed
price change. More details about the dataset are
reported in §B.1.

Health Outcomes. For the health outcome pre-
diction, we used the MIMIC-III dataset (Johnson
et al., 2016a,b) and extracted the first nursing notes
from a patient entering the hospital to try to pre-
dict the length of stay. Since duration is always
positive and log-normal, we apply a log transform
to achieve a normal distribution for the target vari-
able. In addition to the signal being indirectly af-
fected by latent factors, nursing notes are clinician-
dependent and can be highly variable, adding lex-
ical and stylistic noise that can obscure whatever
predictive signal does exist. This task is less noisy
than financial return prediction, but for the preced-
ing reasons, a slight dislocation remains between
the input text and the ultimate target variable. More
details about this dataset are outlined in §B.2.

2.2 High Signal Datasets

To compare the degree to which noise affects the
optimal dimensionality of a task we selected a
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dataset with a high causal dependency between the
input data and target information. Written product
reviews are directly linked to the score assigned to
the review, therefore we use the following datasets:
Yelp Reviews (Zhang et al., 2015), App Reviews
and Amazon Reviews (McAuley and Leskovec,
2013). Writing quality is a more ambiguous task
but there is still a direct link between the input text
and the target which also makes it a good candidate
for comparison against more noisy tasks — as such
we use the ELL English Grading dataset (Franklin
et al., 2022). Details of each dataset are in §B.6.

3 Methodology

Given the success of generative LLMs, much of
the recent research on downstream tasks has fo-
cused on how to use LLMs in a prompting set-
ting (Chang et al., 2024). However, there are
some domains where encoder-based LLMs are
better suited: embedding tasks have been domi-
nated by LLMs pre-trained with bi-directional at-
tention (Song et al., 2020) or uni-directional at-
tention followed by bi-directional fine-tuning (Lee
et al., 2024; BehnamGhader et al., 2024). Like-
wise, recent work shows that generative models
perform worse on word meaning comprehension
than encoder-based LLMs (Qorib et al., 2024). As
such, we encode the textual information using all-
mpnet-base-v2 (Song et al., 2020; Reimers and
Gurevych, 2019), an encoder-based model fine-
tuned using a contrastive objective function on a
series of sentence similarity tasks. The model is
widely used and competitive on the MTEB bench-
mark (Muennighoff et al., 2023). The results were
consistent across different models (§E).

3.1 Input Processing and Chunking

Each textual input z is tokenized into a sequence of
tokens (t1,to,...,tr). To handle variable-length
inputs, we split the token sequence into M chunks,
each of length at most C, where C' is the maximum
context window of the model. If the final chunk is
shorter than C, it is padded; similarly, sequences
with fewer than M chunks are padded, ensuring
each batch element has uniform shape [M, C]. Af-
ter chunking, we pass the sequences through a pre-
trained language model to produce token-level em-
beddings, and then mean-pool across the final layer
token representations of all of the chunks to pro-
duce v; € RUM, Where dpjy is the size of the
LLM’s hidden dimension. The target features are
standardized to enable easier interpretation.

3.2 Dimensionality Reduction

To obtain a lower-dimensional representation, we
train an autoencoder consisting of an encoder FE :
Rm —y R9 and a decoder D : R% — RAm
where d, is the size of the autoencoder’s hidden
dimension, and LAg is the loss:

Z; = E(Vz‘), \A/'i = D(ZZ)
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The training runs for 100 epochs with early
stopping if validation loss does not improve for
5 epochs. After training, we use the encoder F
to compress all embeddings v; into z; € R% and
vary d, to identify the optimal compression ratio.
This methodology outperforms other compression
techniques (§E), but the overall performance profile
shown in §4 is consistent across methodologies.

Our methodology is compared to popular tech-
niques used in stock returns analysis, like emotion
and sentiment scores. We take the softmax outputs
from DistilRoBERTa models that have been fine-
tuned on sentiment and emotion classification tasks
and pass the outputs into the regression model. This
enables us to compare their relative performance
to infer whether their strong performance is due to
regularisation or valuable feature selection.

3.3 Regression Model

For the regression task, we use a random forest
model as it is robust and widely used (Breiman,
2001; Roy and Larocque, 2012), which simplifies
the experimental setup so that focus can be directed
to the compression methodology. For the same
reason, we use the default parameters. We also
tried a two-layer MLP in line with Tang et al. (2024)
(§C), which did not learn the financial returns task.

4 Results

We report results with the Huber loss (Huber, 1964),
which combines the robustness to outliers of MAE
with the sensitivity to small errors and smooth gra-
dients of MSE, removing the outlier bias that can
dominate MSE. The significance level of d, = x is
determined using a T-Test (Student, 1908) between
the Huber error distributions of the best performing
latent dimension d; and d, = x.

By varying the hidden dimension of the autoen-
coder d, and then passing the input into our re-
gression model, Figure 1 shows that the optimal
dimensionality on the financial returns task is 8, but
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Figure 1: Huber Loss on the fin. returns task for dif-

ferent d, values. The performance of sentiment and

emotion is also reported. The significance of each result

compared to the best d, is displayed using blue (p > .05),
(p<.0l) and (p < .05) colours.

that there is not a statistically significant difference
between a d = 8 and d, € {4,16,32}. There
is also a significant difference between d; = 8
and d, € {1,2,128,256,512}. The result shows
that the optimal dimensionality is significantly less
than dppm, showing that for this noisy task some
dimensionality reduction is necessary.

Figure 1 also reports the performance of com-
pressing the text representation into a class proba-
bility vector of sentiment and emotion scores. Both
representations do not exceed the expected perfor-
mance of the autoencoder features at their respec-
tive dimensions d,. Despite the reported success
of emotion and sentiment features in similar tasks
(Tilly et al., 2021; Fazlija and Harder, 2022) the
findings of this work suggest that some of this per-
formance improvement can be explained due to
the regularising effect of dimensionality reduction
rather than the inherent value of the features.

4.1 Impact of Noise

To compare the extent to which noise affects the op-
timal dimensionality of a task, we test on different
domains. Fig. 2 shows that for the financial returns
and health outcomes tasks, there is a convex rela-
tionship between loss and dimensionality, whereas
it approximates a negative exponential in strong
signal tasks; the performance does not deteriorate
at high dimensions. The large difference in error
distributions between the different tasks suggests
that input dimensionality is a key parameter for
regression-based tasks. Also, in all domains, the
performance reaches 10% of the minimum loss at
a much smaller dimension than dyjm. The dimen-
sion at which this performance is achieved can be
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Figure 2: Huber loss averaged over Review, English
Writing, and Financial Returns
tasks - granular performance in §D. The y-axis repre-
sents the loss of each task as a percentage of the maxi-
mum and minimum loss on that task. The performance
without any compression is marked with the dashed line.

called the "intrinsic dimension", which ranges be-
tween 4 and 32 for all tasks. This suggests that the
pertinent signals for regression tasks in general can
be compressed to a lower dimension and achieve
strong performance. For architectures that have
poor time complexity as a function of input length,
this is an important finding.

5 Conclusion

Our results suggest that for tasks with high noise,
coarser and lower-dimensional features improve
performance. The result implies that researchers
should consider the noise of a task when making
decisions about the dimensionality of text. In partic-
ular, the results highlight the importance of dimen-
sionality reduction in financial returns prediction
tasks, with an optimal autoencoder latent dimen-
sion of d, = 8. The lack of statistical significance
for d, € {4,16,32} suggests some flexibility in
choosing the dimensionality, while extreme values
lead to significant performance deterioration. It
is also clear that the results are consistent across
domains, with smaller but comparable effects seen
in health outcome prediction tasks. It seems that
coarse features are more performant than the de-
fault granular LLLM representation in such regres-
sion tasks. The findings also indicate that sentiment
and emotion-based representations do not provide
inherent advantages over learned latent features
in financial contexts, implying that their previous
success in similar tasks may be attributed to regular-
isation effects rather than intrinsic informativeness.



6 Limitations

Although our findings demonstrate the importance
of reducing dimensionality in high-noise tasks,
some limitations should be noted. Firstly, by using
real tasks, it is difficult to measure the intensity of
the noise in each task. The lack of a "noise" metric
limits the extent to which we can analyse the de-
gree and type of the relationship between noise and
dimensionality. However, by using a diverse array
of task types, we aim to have minimised the prob-
lems associated with this point. Secondly, while
we aimed to keep the modelling process simple to
not distract from the main thrust of the paper, data
compression, a future research direction could be
to apply the findings to more complex models.
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A Future Work

Future research could explore adaptive dimension-
ality compression methods that dynamically adjust
based on the signal-to-noise ratio; however, to do
this, a measure of signal-to-noise is required before
processing the input features. Researchers could
also use this framework to assess the relative per-
formance of new text encoding methodologies in
regression tasks to make sure that the value does
not just come from model regularisation.

B Dataset Details
B.1 Stock Returns Dataset

As outlined in the main section of the paper, this
dataset was curated for this paper. Most of the

dataset details are outlined in Section 2.1, but
this section contains the details that are missing.
We source news articles via CommonCrawl News
(Hamborg et al., 2017), scraping articles from Ya-
hoo Finance. Using a pre-trained named entity
recognition BERT model (Tjong Kim Sang and
De Meulder, 2003; Devlin et al., 2019), we ex-
tract all mentioned organisations, then filter them
through a dictionary of company synonymous and
abbreviations to identify target companies. We then
apply another filter to make sure that only one of
the target companies is mentioned in each sample
to reduce the noise slightly. The test set is the
whole of 2023, which contains 17,810 articles, and
the training and validation sets are defined using
a temporal split, which takes the last 10% of data
between 2017 and 2022. The resultant training and
validation sets contain 30,115 and 3,346 samples,
respectively.

B.2 Health Outcomes Dataset

The health outcomes dataset uses the "Nursing"
and "Nursing/other" categories from the NO-
TEEVENTS.csv in the MIMIC-III database (Gold-
berger et al., 2000; Johnson et al., 2016a,b). Using
the patient IDs, we select the first entry for each
patient and remove all entries that are less than 100
tokens. To determine the length of stay, we retrieve
the admission and discharge times (ADMITTIME
and DISCHTIME) from the ADMISSIONS.csv, and
then link with the appropriate nursing notes using
the patient ID. The dataset consists of 40,543 sam-
ples, and we perform a random train-val-test split
of 85.5:4.5:10.

The first author completed the necessary training
course "CITI Data or Specimens Only Research",
and the research application was approved by the
MIT Laboratory for Computational Physiology, In-
stitute for Medical Engineering and Science. The
research conducted in this paper complies with the
license outlined in §H. The data was previously
collected, anonymised and does not include NHS
data. As a result, it complies with the authors’
institution’s ethical policy.

B.3 Yelp Reviews Dataset

The Yelp dataset (Zhang et al., 2015) consists of
700k Yelp reviews with a star rating between 1
and 5. There are 650k training samples and 50k
testing samples, and the split is taken from the
Huggingface dataset Yelp/yelp_review_full.
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Figure 3: The normalised Huber loss of each dataset that makes up the result in Figure 2. "raw" appears in the same
location as 768 in the plot since this is the dimension of the non-compressed embedding of the all-mpnet-base-v2.

B.4 App Reviews Dataset

This App Review dataset contains reviews of 395
Android applications, covering 629 versions. It
provides the review and the star rating between 1
and 5, and user-reported issues in English. The
dataset consists of 288k samples and we perform a
random train-val-test split of 85.5:4.5:10. The data
came from the sealuzh/app_reviews Huggingface
dataset.

B.5 Amazon Reviews Dataset

The Amazon Reviews dataset (McAuley and
Leskovec, 2013) consists of 568k fine food reviews
collected from Amazon over a period of more than
10 years, up to October 2012. Each review includes
a product ID, user ID, profile name, rating (1-5),
helpfulness votes, timestamp, summary, and full
text. The data came from the Huggingface dataset
Jjhan21/amazon-food-reviews-dataset, which did
not contain any predefined train-test splits so we
performed a random train-test split of 85.5:4.5:10.

B.6 Writing Quality Dataset

The writing quality dataset (Franklin et al., 2022)
comes from a Kaggle competition set up by Van-
derbilt University. The competition aimed to im-
prove automated feedback tools for English Lan-
guage Learners (ELLs) by developing language
proficiency models using real student essays. The

dataset assesses English text over six criteria: co-
hesion, syntax, vocabulary, phraseology, grammar
and conventions. We report the results of cohesion,
vocabulary, and grammar. The dataset consists of
3.91k samples and we perform a random train-val-
test split of 85.5:4.5:10.

C MLP

The configuration for the unsuccessful MLP is out-
lined in this section. The model was not able to
learn the financial returns task for any dimensional
input. The inadequate overall performance and
high variance in prediction errors meant that no
statistically significant conclusions could be drawn.
We believe that this negative result will aid other
researchers in this area. The compressed embed-
dings z; serve as inputs to an MLP with hidden
dimension dpp:

h") =D, (c(WWz; + b)),
h® = D, (c(WEhW 1 b®)),
g; = WOR® 4 p®),

where z; € R%, W) ¢ Rdmpxd:  gpd
w® W) similarly match the required dimen-
sions. Dropout D, (-) is applied with probability p,
and o(+) is the ReLU activation. We optimize the
Huber loss with § = 1.0:
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Lieg = ¥ Z HuberLoss(y;, 7i,0).
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Most targets y; are close to zero, so we apply
target standardisation and stop training when vali-
dation loss does not improve for 5 epochs, restoring
the best model state.

D Individual Dataset Results

Figure 3 shows the performance of each dataset
that makes up the averaged result in Figure 2.
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Figure 5: Raw loss for the different compression
methodologies: Autoencoder, UMAP, PCA,

. Initial embedding created using all-mpnet-base-
v2.

To determine whether the findings in this pa-
per were consistent across compression methodolo-
gies, we compared the performance distribution to

multiple commonly used compression algorithms:
PCA (Mackiewicz and Ratajczak, 1993), Kernel-
PCA (Scholkopf et al., 1997) with an RBF kernel
to capture non-linear dependencies, and UMAP
(Mclnnes et al., 2018) as a popular modern com-
parison. Figure 5 shows that the autoencoder is
the best methodology on the financial returns task,
and justifies its use in the main body of the paper.
The other methodologies exhibit very poor perfor-
mance, but have the same performance profile.

E.1 Model Comparison

The results of all-mpnet-base-v2 are reported in
the paper, because it is a highly performant model
which is widely used in the community. In order to
understand if the results of this paper are model ag-
nostic, we also tested the performance of different
architectures. The first comparison model was Ope-
nATl’s text-embedding-3-small, which represents an
industry standard. The second comparison model
was intfloat/multilingual-e5-large-instruct, the best
model below 1B parameters on the MTEB leader-
board (Enevoldsen et al., 2025). Figure 4 shows
that both models display a similar performance
profile to all-mpnet-base-v2. Interestingly, the op-
timal dimensionality is largest for fext-embedding-
3-small. While the model size is unknown as it is
closed source, the hidden size of the residual stream
representations is the largest of the three models,
suggesting that it could likely be the largest of the
three models. Future work should look into how
model size effects the optimal dimensionality of a
regression task.



F Autoencoder Visualisation

Downstream performance on regression tasks pro-
vides insight into the quality of the autoencoder’s
compression. However, Figure 6 offers a more di-
rect comparison between the autoencoder’s input
and output embeddings, v; and V;, respectively.
The figure displays the cosine similarity between
the raw (v;) and reconstructed (v;) embeddings for
different hidden dimensions. The graph provides
us with a further understanding of the reconstruc-
tive process; it seems that a d, = 256 is the point
at which performance reaches an asymptote. It
also implies that there is some semantic loss at the
optimal dimensions in Figure 2.
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Figure 6: Cosine similarity between v; and v; on the
financial returns dataset.

G Feature Comparison

To understand whether the autoencoder latent di-
mensions were capturing features similar to the
emotion and sentiment representations, we encoded
the test set of the financial returns task using the
emotion/sentiment models used in Section 3.2 and
a trained autoencoder with d, equal to the number
of emotions/sentiments.

To determine whether the encoding types were
similar we identified the feature pair with the
largest absolute correlation across all of the test
samples. The maximum Pearson correlation co-
efficient between the latent encoding and senti-
ment was 0.2312 and for emotion it was 0.2796.
Both scores are low and show that the autoencoder
does not compress the text into any single emo-
tion/sentiment feature.

We also wanted to test whether the autoen-
coder was compressing the text to contain emo-
tion/sentiment information through a combination
of the features, so we used Canonical Correlation
Analysis (CCA) (Weenink, 2003) to determine the
correlation between a linear combination of both

10

feature sets. We fitted the CCA model to the la-
tent features and the emotion/sentiment features to
maximise the correlation between the two sets. The
maximum canonical Pearson correlation coefficient
between the two sets was 0.4644 for emotion and
0.3011 for sentiment. While there is some positive
correlation between the two sets, the result is weak
and suggests that the encoding methodologies ex-
tract different signals. This result suggests that a
mixture of the two methodologies could lead to bet-
ter performance still and that neither compression
technique is optimal, which is an exciting finding
for future research.

H Licenses

The data has been used for exclusively academic
and research purposes and as a result, complies
with the Terms of Use for CRSP. The news infor-
mation was taken from Commoncrawl News dat-
acrawl, with is released under a permissive Apache
2.0 license.

The dataset released alongside this paper is li-
censed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International (CC
BY-NC-SA 4.0) License, allowing for academic
sharing and adaptation while prohibiting commer-
cial use. Researchers may use the dataset under
Fair Use/Dealing law, as it is intended for non-
commercial research and study, aligning with legal
exemptions for academic purposes. By applying
this license, we ensure open academic access and
maintain compliance with Fair Use (US) and Fair
Dealing (UK) provisions. Fair Use/Dealing per-
mits the use of copyrighted material for academic
purposes because it serves the public interest by
enabling research, study, education, and transfor-
mative analysis without unfairly impacting the orig-
inal work’s commercial value.

The MIMIC-III database is released by MIT-
LCP under PhysioNet’s Restricted Data Use Agree-
ment, which permits research use provided that
users complete human-subjects/HIPAA training,
keep the data secure and confidential, never attempt
re-identification, do not redistribute the raw data,
and share any publication-related code openly. The
terms of this license and use agreement have been
kept during the research outlined in this paper.
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