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Abstract001

LLMs have shown remarkable success in lan-002
guage modelling due to scaling laws found in003
model size and the hidden dimension of the004
model’s text representation. Yet, we demon-005
strate that compressed representations of text006
can yield better performance in LLM-based re-007
gression tasks. In this paper, we compare the008
relative performance of embedding compres-009
sion in four different signal-to-noise contexts:010
financial return prediction, health outcome pre-011
diction, writing quality assessment and review012
scoring. Our results show that compressing em-013
beddings, in a minimally supervised manner us-014
ing an autoencoder’s hidden representation, can015
mitigate overfitting and improve performance016
on noisy tasks, such as financial return predic-017
tion; but that compression reduces performance018
on tasks that have high causal dependencies be-019
tween the input and target data. Our results020
suggest that the success of interpretable com-021
pressed representations, such as sentiment, may022
be due to a regularising effect.023

1 Introduction024

Modern machine learning research increasingly re-025

lies on LLMs to handle complex real-world tasks026

(Lin et al., 2025; Rahimikia and Drinkall, 2024;027

Huang et al., 2024). Recent progress in LLM per-028

formance has largely come from scaling models’029

parameters, training dataset size and the expressiv-030

ity of the LLM via the model’s hidden dimension031

(Kaplan et al., 2020). In recent years the hidden032

dimension has scaled from a standard representa-033

tion size of 768 dimensions (Devlin et al., 2019)034

to up to 16384 (Grattafiori et al., 2024), and pos-035

sibly higher in some large closed-source models.036

While it is not clear whether the relationship be-037

tween model scaling and linguistic performance038

will hold indefinitely (Xue et al., 2023), it is gen-039

erally accepted that modelling language requires a040

high-dimensional representation space (Grattafiori041

et al., 2024). This has meant that LLMs have very042

strong formal linguistic competence (Mahowald 043

et al., 2024). However, some machine learning 044

tasks, like stock returns prediction tasks, have in- 045

herently low signal-to-noise relationships between 046

the input and output (Sawhney et al., 2020), which 047

we will refer to as "noisy" tasks in this paper. In the 048

case of predicting stock returns from news, noise 049

arises not only from uninformative articles or weak 050

causality between the article and the stock price 051

but can also come from delayed reactions, market 052

efficiency, and unpredictable macroeconomic influ- 053

ences (Antweiler and Frank, 2004; Mantilla-García 054

and Vaidyanathan, 2017). In such noisy research 055

areas, the link between dimensionality and perfor- 056

mance is unclear, and feature selection or compres- 057

sion can act as a regularising component (Tian and 058

Zhang, 2022). When input dimensionality is too 059

large, models risk overfitting by memorising noise 060

rather than learning meaningful patterns. On the 061

other hand, a low-dimensional embedding might 062

underfit by losing critical high-order interactions. 063

This paper explores the relationship between text- 064

embedding dimensionality and downstream perfor- 065

mance in tasks where the signal is noisy, focusing 066

on tasks with a differing signal-to-noise ratio. 067

Not all tasks are well-suited to purely genera- 068

tive LLMs; many tasks benefit more from super- 069

vised machine learning (Tang et al., 2024), where 070

labelled data guide classification or regression out- 071

comes by identifying robust dependencies between 072

input text and target outputs (Johan Berggren et al., 073

2019). Generative models often require extensive 074

computational resources and large datasets (Hoff- 075

mann et al., 2022), creating obstacles under compu- 076

tational or data constraints. Problems also emerge 077

when using the output from generative models 078

in larger architectures that fuse textual data with 079

other modalities, such as numerical or structured 080

information (Drinkall et al., 2025), since gener- 081

ative models can produce unpredictable outputs 082

(Wu et al., 2022) and are relatively weak at com- 083
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plex multivariate numerical reasoning (Liu et al.,084

2024). Discriminative models are also better able085

to model a probabilistic distribution with a limited086

run of data, since generative models can overfit to087

the training distribution (Lee et al., 2022; Carlini088

et al., 2023). As such, it is often preferable to use089

the embedding representations from LLMs as in-090

put features for a conventional neural network in091

regression-based tasks as opposed to passing all of092

the numerical and textual data into a prompt.093

There has been work investigating how well text094

embeddings perform in regression tasks (Tang et al.,095

2024), but none have investigated the degree to096

which the noise of a task affects the optimal di-097

mensionality of the text representation. This is098

despite the widespread adoption and success of099

interpretable, compressed representations of text100

in financial return prediction tasks like sentiment101

(Fazlija and Harder, 2022), emotion (Tilly et al.,102

2021), and topics (Drinkall et al., 2022; García-103

Méndez et al., 2023). While many papers have104

shown that these compressed representations can105

perform better than raw text embeddings, this pa-106

per investigates the degree to which this is due to107

regularisation rather than the true value of the fea-108

tures. We consider the internal representation from109

an autoencoder, and show that interpretable fea-110

tures such as sentiment or emotion do not deliver111

an improvement beyond the minimally supervised112

autoencoder latent representation.113

This paper has the following contributions:114

1. Provides some evidence for a link between115

the optimal representational dimensionality116

of text in a regression task and the signal-to-117

noise ratio of the dataset.118

2. Demonstrates that gains attributed to inter-119

pretable features (e.g., emotion, sentiment)120

in financial returns tasks may stem from rep-121

resentational compression, rather than from122

inherently superior feature sets.123

3. Identifies the optimal dimensionality in sev-124

eral downstream tasks.125

4. A financial news stock returns dataset released126

under an academic license.1127

2 Datasets128

To explore the relationship between the signal-to-129

noise ratio and the optimal dimensionality of the130

1To be included in final version.

text representation in a regression task, we com- 131

pare four domains of conceivable regression tasks. 132

Stock market return prediction using news articles 133

is a notoriously noisy domain (Black, 1986) since a 134

significant proportion of the news articles are likely 135

to not contain any useful information (Antweiler 136

and Frank, 2004). Health outcome prediction is 137

also a noisy task, with length of stay reflecting 138

many latent factors (bed flow, comorbidities, dis- 139

charge logistics etc.) that are only partially men- 140

tioned in nursing notes. We contrast these noisy 141

domains to customer review and writing quality 142

datasets, which both have a stronger connection 143

between the regression input and the target value. 144

2.1 Low Signal Datasets 145

Financial Returns. We combine two data 146

sources to form the financial dataset: CRSP daily 147

price data and news articles. For the 50 most traded 148

U.S. stocks, we use the closing bid/ask average as 149

the daily price. The daily return is defined as the 150

percentage increase between the previous and the 151

next day’s closing price. This return is the regres- 152

sion model’s target. We use the next and previous 153

day’s data as opposed to the current day’s price to 154

be sure that the publication of the article intersected 155

the two prices and thus avoid including samples 156

where the article was published after the market’s 157

closing time. The underlying assumption is that the 158

news content either causes or reflects the observed 159

price change. More details about the dataset are 160

reported in §B.1. 161

Health Outcomes. For the health outcome pre- 162

diction, we used the MIMIC-III dataset (Johnson 163

et al., 2016a,b) and extracted the first nursing notes 164

from a patient entering the hospital to try to pre- 165

dict the length of stay. Since duration is always 166

positive and log-normal, we apply a log transform 167

to achieve a normal distribution for the target vari- 168

able. In addition to the signal being indirectly af- 169

fected by latent factors, nursing notes are clinician- 170

dependent and can be highly variable, adding lex- 171

ical and stylistic noise that can obscure whatever 172

predictive signal does exist. This task is less noisy 173

than financial return prediction, but for the preced- 174

ing reasons, a slight dislocation remains between 175

the input text and the ultimate target variable. More 176

details about this dataset are outlined in §B.2. 177

2.2 High Signal Datasets 178

To compare the degree to which noise affects the 179

optimal dimensionality of a task we selected a 180
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dataset with a high causal dependency between the181

input data and target information. Written product182

reviews are directly linked to the score assigned to183

the review, therefore we use the following datasets:184

Yelp Reviews (Zhang et al., 2015), App Reviews185

and Amazon Reviews (McAuley and Leskovec,186

2013). Writing quality is a more ambiguous task187

but there is still a direct link between the input text188

and the target which also makes it a good candidate189

for comparison against more noisy tasks – as such190

we use the ELL English Grading dataset (Franklin191

et al., 2022). Details of each dataset are in §B.6.192

3 Methodology193

Given the success of generative LLMs, much of194

the recent research on downstream tasks has fo-195

cused on how to use LLMs in a prompting set-196

ting (Chang et al., 2024). However, there are197

some domains where encoder-based LLMs are198

better suited: embedding tasks have been domi-199

nated by LLMs pre-trained with bi-directional at-200

tention (Song et al., 2020) or uni-directional at-201

tention followed by bi-directional fine-tuning (Lee202

et al., 2024; BehnamGhader et al., 2024). Like-203

wise, recent work shows that generative models204

perform worse on word meaning comprehension205

than encoder-based LLMs (Qorib et al., 2024). As206

such, we encode the textual information using all-207

mpnet-base-v2 (Song et al., 2020; Reimers and208

Gurevych, 2019), an encoder-based model fine-209

tuned using a contrastive objective function on a210

series of sentence similarity tasks. The model is211

widely used and competitive on the MTEB bench-212

mark (Muennighoff et al., 2023). The results were213

consistent across different models (§E).214

3.1 Input Processing and Chunking215

Each textual input x is tokenized into a sequence of216

tokens (t1, t2, . . . , tL). To handle variable-length217

inputs, we split the token sequence into M chunks,218

each of length at most C, where C is the maximum219

context window of the model. If the final chunk is220

shorter than C, it is padded; similarly, sequences221

with fewer than M chunks are padded, ensuring222

each batch element has uniform shape [M,C]. Af-223

ter chunking, we pass the sequences through a pre-224

trained language model to produce token-level em-225

beddings, and then mean-pool across the final layer226

token representations of all of the chunks to pro-227

duce vi ∈ RdLLM . Where dLLM is the size of the228

LLM’s hidden dimension. The target features are229

standardized to enable easier interpretation.230

3.2 Dimensionality Reduction 231

To obtain a lower-dimensional representation, we 232

train an autoencoder consisting of an encoder E : 233

RdLLM → Rdz and a decoder D : Rdz → RdLLM , 234

where dz is the size of the autoencoder’s hidden 235

dimension, and LAE is the loss: 236

zi = E(vi), v̂i = D(zi). 237

LAE =
1

N

N∑
i=1

∥vi − v̂i∥2. 238

The training runs for 100 epochs with early 239

stopping if validation loss does not improve for 240

5 epochs. After training, we use the encoder E 241

to compress all embeddings vi into zi ∈ Rdz and 242

vary dz to identify the optimal compression ratio. 243

This methodology outperforms other compression 244

techniques (§E), but the overall performance profile 245

shown in §4 is consistent across methodologies. 246

Our methodology is compared to popular tech- 247

niques used in stock returns analysis, like emotion 248

and sentiment scores. We take the softmax outputs 249

from DistilRoBERTa models that have been fine- 250

tuned on sentiment and emotion classification tasks 251

and pass the outputs into the regression model. This 252

enables us to compare their relative performance 253

to infer whether their strong performance is due to 254

regularisation or valuable feature selection. 255

3.3 Regression Model 256

For the regression task, we use a random forest 257

model as it is robust and widely used (Breiman, 258

2001; Roy and Larocque, 2012), which simplifies 259

the experimental setup so that focus can be directed 260

to the compression methodology. For the same 261

reason, we use the default parameters. We also 262

tried a two-layer MLP in line with Tang et al. (2024) 263

(§C), which did not learn the financial returns task. 264

2654 Results 266

We report results with the Huber loss (Huber, 1964), 267

which combines the robustness to outliers of MAE 268

with the sensitivity to small errors and smooth gra- 269

dients of MSE, removing the outlier bias that can 270

dominate MSE. The significance level of dz = x is 271

determined using a T-Test (Student, 1908) between 272

the Huber error distributions of the best performing 273

latent dimension d∗z and dz = x. 274

By varying the hidden dimension of the autoen- 275

coder dz and then passing the input into our re- 276

gression model, Figure 1 shows that the optimal 277

dimensionality on the financial returns task is 8, but 278
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Figure 1: Huber Loss on the fin. returns task for dif-
ferent dz values. The performance of sentiment and
emotion is also reported. The significance of each result
compared to the best dz is displayed using blue (p > .05),
orange (p < .01) and yellow (p < .05) colours.

that there is not a statistically significant difference279

between a d∗z = 8 and dz ∈ {4, 16, 32}. There280

is also a significant difference between d∗z = 8281

and dz ∈ {1, 2, 128, 256, 512}. The result shows282

that the optimal dimensionality is significantly less283

than dLLM, showing that for this noisy task some284

dimensionality reduction is necessary.285

Figure 1 also reports the performance of com-286

pressing the text representation into a class proba-287

bility vector of sentiment and emotion scores. Both288

representations do not exceed the expected perfor-289

mance of the autoencoder features at their respec-290

tive dimensions dz. Despite the reported success291

of emotion and sentiment features in similar tasks292

(Tilly et al., 2021; Fazlija and Harder, 2022) the293

findings of this work suggest that some of this per-294

formance improvement can be explained due to295

the regularising effect of dimensionality reduction296

rather than the inherent value of the features.297

4.1 Impact of Noise298

To compare the extent to which noise affects the op-299

timal dimensionality of a task, we test on different300

domains. Fig. 2 shows that for the financial returns301

and health outcomes tasks, there is a convex rela-302

tionship between loss and dimensionality, whereas303

it approximates a negative exponential in strong304

signal tasks; the performance does not deteriorate305

at high dimensions. The large difference in error306

distributions between the different tasks suggests307

that input dimensionality is a key parameter for308

regression-based tasks. Also, in all domains, the309

performance reaches 10% of the minimum loss at310

a much smaller dimension than dLLM. The dimen-311

sion at which this performance is achieved can be312

Figure 2: Huber loss averaged over Review, English
Writing, Health Outcomes and Financial Returns
tasks - granular performance in §D. The y-axis repre-
sents the loss of each task as a percentage of the maxi-
mum and minimum loss on that task. The performance
without any compression is marked with the dashed line.

called the "intrinsic dimension", which ranges be- 313

tween 4 and 32 for all tasks. This suggests that the 314

pertinent signals for regression tasks in general can 315

be compressed to a lower dimension and achieve 316

strong performance. For architectures that have 317

poor time complexity as a function of input length, 318

this is an important finding. 319

5 Conclusion 320

Our results suggest that for tasks with high noise, 321

coarser and lower-dimensional features improve 322

performance. The result implies that researchers 323

should consider the noise of a task when making 324

decisions about the dimensionality of text. In partic- 325

ular, the results highlight the importance of dimen- 326

sionality reduction in financial returns prediction 327

tasks, with an optimal autoencoder latent dimen- 328

sion of dz = 8. The lack of statistical significance 329

for dz ∈ {4, 16, 32} suggests some flexibility in 330

choosing the dimensionality, while extreme values 331

lead to significant performance deterioration. It 332

is also clear that the results are consistent across 333

domains, with smaller but comparable effects seen 334

in health outcome prediction tasks. It seems that 335

coarse features are more performant than the de- 336

fault granular LLM representation in such regres- 337

sion tasks. The findings also indicate that sentiment 338

and emotion-based representations do not provide 339

inherent advantages over learned latent features 340

in financial contexts, implying that their previous 341

success in similar tasks may be attributed to regular- 342

isation effects rather than intrinsic informativeness. 343
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6 Limitations344

Although our findings demonstrate the importance345

of reducing dimensionality in high-noise tasks,346

some limitations should be noted. Firstly, by using347

real tasks, it is difficult to measure the intensity of348

the noise in each task. The lack of a "noise" metric349

limits the extent to which we can analyse the de-350

gree and type of the relationship between noise and351

dimensionality. However, by using a diverse array352

of task types, we aim to have minimised the prob-353

lems associated with this point. Secondly, while354

we aimed to keep the modelling process simple to355

not distract from the main thrust of the paper, data356

compression, a future research direction could be357

to apply the findings to more complex models.358
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A Future Work597

Future research could explore adaptive dimension-598

ality compression methods that dynamically adjust599

based on the signal-to-noise ratio; however, to do600

this, a measure of signal-to-noise is required before601

processing the input features. Researchers could602

also use this framework to assess the relative per-603

formance of new text encoding methodologies in604

regression tasks to make sure that the value does605

not just come from model regularisation.606

B Dataset Details607

B.1 Stock Returns Dataset608

As outlined in the main section of the paper, this609

dataset was curated for this paper. Most of the610

dataset details are outlined in Section 2.1, but 611

this section contains the details that are missing. 612

We source news articles via CommonCrawl News 613

(Hamborg et al., 2017), scraping articles from Ya- 614

hoo Finance. Using a pre-trained named entity 615

recognition BERT model (Tjong Kim Sang and 616

De Meulder, 2003; Devlin et al., 2019), we ex- 617

tract all mentioned organisations, then filter them 618

through a dictionary of company synonymous and 619

abbreviations to identify target companies. We then 620

apply another filter to make sure that only one of 621

the target companies is mentioned in each sample 622

to reduce the noise slightly. The test set is the 623

whole of 2023, which contains 17,810 articles, and 624

the training and validation sets are defined using 625

a temporal split, which takes the last 10% of data 626

between 2017 and 2022. The resultant training and 627

validation sets contain 30,115 and 3,346 samples, 628

respectively. 629

B.2 Health Outcomes Dataset 630

The health outcomes dataset uses the "Nursing" 631

and "Nursing/other" categories from the NO- 632

TEEVENTS.csv in the MIMIC-III database (Gold- 633

berger et al., 2000; Johnson et al., 2016a,b). Using 634

the patient IDs, we select the first entry for each 635

patient and remove all entries that are less than 100 636

tokens. To determine the length of stay, we retrieve 637

the admission and discharge times (ADMITTIME 638

and DISCHTIME) from the ADMISSIONS.csv, and 639

then link with the appropriate nursing notes using 640

the patient ID. The dataset consists of 40,543 sam- 641

ples, and we perform a random train-val-test split 642

of 85.5:4.5:10. 643

The first author completed the necessary training 644

course "CITI Data or Specimens Only Research", 645

and the research application was approved by the 646

MIT Laboratory for Computational Physiology, In- 647

stitute for Medical Engineering and Science. The 648

research conducted in this paper complies with the 649

license outlined in §H. The data was previously 650

collected, anonymised and does not include NHS 651

data. As a result, it complies with the authors’ 652

institution’s ethical policy. 653

B.3 Yelp Reviews Dataset 654

The Yelp dataset (Zhang et al., 2015) consists of 655

700k Yelp reviews with a star rating between 1 656

and 5. There are 650k training samples and 50k 657

testing samples, and the split is taken from the 658

Huggingface dataset Yelp/yelp_review_full. 659
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Figure 3: The normalised Huber loss of each dataset that makes up the result in Figure 2. "raw" appears in the same
location as 768 in the plot since this is the dimension of the non-compressed embedding of the all-mpnet-base-v2.

B.4 App Reviews Dataset660

This App Review dataset contains reviews of 395661

Android applications, covering 629 versions. It662

provides the review and the star rating between 1663

and 5, and user-reported issues in English. The664

dataset consists of 288k samples and we perform a665

random train-val-test split of 85.5:4.5:10. The data666

came from the sealuzh/app_reviews Huggingface667

dataset.668

B.5 Amazon Reviews Dataset669

The Amazon Reviews dataset (McAuley and670

Leskovec, 2013) consists of 568k fine food reviews671

collected from Amazon over a period of more than672

10 years, up to October 2012. Each review includes673

a product ID, user ID, profile name, rating (1–5),674

helpfulness votes, timestamp, summary, and full675

text. The data came from the Huggingface dataset676

jhan21/amazon-food-reviews-dataset, which did677

not contain any predefined train-test splits so we678

performed a random train-test split of 85.5:4.5:10.679

B.6 Writing Quality Dataset680

The writing quality dataset (Franklin et al., 2022)681

comes from a Kaggle competition set up by Van-682

derbilt University. The competition aimed to im-683

prove automated feedback tools for English Lan-684

guage Learners (ELLs) by developing language685

proficiency models using real student essays. The686

dataset assesses English text over six criteria: co- 687

hesion, syntax, vocabulary, phraseology, grammar 688

and conventions. We report the results of cohesion, 689

vocabulary, and grammar. The dataset consists of 690

3.91k samples and we perform a random train-val- 691

test split of 85.5:4.5:10. 692

C MLP 693

The configuration for the unsuccessful MLP is out- 694

lined in this section. The model was not able to 695

learn the financial returns task for any dimensional 696

input. The inadequate overall performance and 697

high variance in prediction errors meant that no 698

statistically significant conclusions could be drawn. 699

We believe that this negative result will aid other 700

researchers in this area. The compressed embed- 701

dings zi serve as inputs to an MLP with hidden 702

dimension dmlp: 703

h(1) = Dp

(
σ(W (1)zi + b(1))

)
, 704

705

h(2) = Dp

(
σ(W (2)h(1) + b(2))

)
, 706

707

ŷi = W (3)h(2) + b(3), 708

where zi ∈ Rdz , W (1) ∈ Rdmlp×dz , and 709

W (2),W (3) similarly match the required dimen- 710

sions. Dropout Dp(·) is applied with probability p, 711

and σ(·) is the ReLU activation. We optimize the 712

Huber loss with δ = 1.0: 713
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(a) Writing quality tasks (b) Financial Returns

Figure 4: Performance comparison of all-mpnet-base-v2, multilingual-e5-large-instruct, and text-embedding-3-
small on different domain tasks.

Lreg =
1

N

N∑
i=1

HuberLoss(yi, ŷi, δ).714

Most targets yi are close to zero, so we apply715

target standardisation and stop training when vali-716

dation loss does not improve for 5 epochs, restoring717

the best model state.718

D Individual Dataset Results719

Figure 3 shows the performance of each dataset720

that makes up the averaged result in Figure 2.721

E Generalisation of Findings722

E.0.1 Compression Comparison723

Figure 5: Raw loss for the different compression
methodologies: Autoencoder, UMAP, PCA, Kernel-
PCA. Initial embedding created using all-mpnet-base-
v2.

To determine whether the findings in this pa-724

per were consistent across compression methodolo-725

gies, we compared the performance distribution to726

multiple commonly used compression algorithms: 727

PCA (Maćkiewicz and Ratajczak, 1993), Kernel- 728

PCA (Schölkopf et al., 1997) with an RBF kernel 729

to capture non-linear dependencies, and UMAP 730

(McInnes et al., 2018) as a popular modern com- 731

parison. Figure 5 shows that the autoencoder is 732

the best methodology on the financial returns task, 733

and justifies its use in the main body of the paper. 734

The other methodologies exhibit very poor perfor- 735

mance, but have the same performance profile. 736

E.1 Model Comparison 737

The results of all-mpnet-base-v2 are reported in 738

the paper, because it is a highly performant model 739

which is widely used in the community. In order to 740

understand if the results of this paper are model ag- 741

nostic, we also tested the performance of different 742

architectures. The first comparison model was Ope- 743

nAI’s text-embedding-3-small, which represents an 744

industry standard. The second comparison model 745

was intfloat/multilingual-e5-large-instruct, the best 746

model below 1B parameters on the MTEB leader- 747

board (Enevoldsen et al., 2025). Figure 4 shows 748

that both models display a similar performance 749

profile to all-mpnet-base-v2. Interestingly, the op- 750

timal dimensionality is largest for text-embedding- 751

3-small. While the model size is unknown as it is 752

closed source, the hidden size of the residual stream 753

representations is the largest of the three models, 754

suggesting that it could likely be the largest of the 755

three models. Future work should look into how 756

model size effects the optimal dimensionality of a 757

regression task. 758
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F Autoencoder Visualisation759

Downstream performance on regression tasks pro-760

vides insight into the quality of the autoencoder’s761

compression. However, Figure 6 offers a more di-762

rect comparison between the autoencoder’s input763

and output embeddings, vi and v̂i, respectively.764

The figure displays the cosine similarity between765

the raw (vi) and reconstructed (v̂i) embeddings for766

different hidden dimensions. The graph provides767

us with a further understanding of the reconstruc-768

tive process; it seems that a dz = 256 is the point769

at which performance reaches an asymptote. It770

also implies that there is some semantic loss at the771

optimal dimensions in Figure 2.772

Figure 6: Cosine similarity between vi and v̂i on the
financial returns dataset.

G Feature Comparison773

To understand whether the autoencoder latent di-774

mensions were capturing features similar to the775

emotion and sentiment representations, we encoded776

the test set of the financial returns task using the777

emotion/sentiment models used in Section 3.2 and778

a trained autoencoder with dz equal to the number779

of emotions/sentiments.780

To determine whether the encoding types were781

similar we identified the feature pair with the782

largest absolute correlation across all of the test783

samples. The maximum Pearson correlation co-784

efficient between the latent encoding and senti-785

ment was 0.2312 and for emotion it was 0.2796.786

Both scores are low and show that the autoencoder787

does not compress the text into any single emo-788

tion/sentiment feature.789

We also wanted to test whether the autoen-790

coder was compressing the text to contain emo-791

tion/sentiment information through a combination792

of the features, so we used Canonical Correlation793

Analysis (CCA) (Weenink, 2003) to determine the794

correlation between a linear combination of both795

feature sets. We fitted the CCA model to the la- 796

tent features and the emotion/sentiment features to 797

maximise the correlation between the two sets. The 798

maximum canonical Pearson correlation coefficient 799

between the two sets was 0.4644 for emotion and 800

0.3011 for sentiment. While there is some positive 801

correlation between the two sets, the result is weak 802

and suggests that the encoding methodologies ex- 803

tract different signals. This result suggests that a 804

mixture of the two methodologies could lead to bet- 805

ter performance still and that neither compression 806

technique is optimal, which is an exciting finding 807

for future research. 808

H Licenses 809

The data has been used for exclusively academic 810

and research purposes and as a result, complies 811

with the Terms of Use for CRSP. The news infor- 812

mation was taken from Commoncrawl News dat- 813

acrawl, with is released under a permissive Apache 814

2.0 license. 815

The dataset released alongside this paper is li- 816

censed under the Creative Commons Attribution- 817

NonCommercial-ShareAlike 4.0 International (CC 818

BY-NC-SA 4.0) License, allowing for academic 819

sharing and adaptation while prohibiting commer- 820

cial use. Researchers may use the dataset under 821

Fair Use/Dealing law, as it is intended for non- 822

commercial research and study, aligning with legal 823

exemptions for academic purposes. By applying 824

this license, we ensure open academic access and 825

maintain compliance with Fair Use (US) and Fair 826

Dealing (UK) provisions. Fair Use/Dealing per- 827

mits the use of copyrighted material for academic 828

purposes because it serves the public interest by 829

enabling research, study, education, and transfor- 830

mative analysis without unfairly impacting the orig- 831

inal work’s commercial value. 832

The MIMIC-III database is released by MIT- 833

LCP under PhysioNet’s Restricted Data Use Agree- 834

ment, which permits research use provided that 835

users complete human-subjects/HIPAA training, 836

keep the data secure and confidential, never attempt 837

re-identification, do not redistribute the raw data, 838

and share any publication-related code openly. The 839

terms of this license and use agreement have been 840

kept during the research outlined in this paper. 841
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