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Figure 1: We propose KaRF, a novel weakly-supervised method for local color editing of neural
radiance fields. KaRF constructs a two-stage Kolmogorov-arnold Networks-based Radiance Fields,
which achieves precise region segmentation and efficient local recoloring tasks. Our method enables
accurate and natural local color editing of arbitrary regions within 3D scenes, while also supporting
one-to-many or many-to-one editing mappings, greatly enhancing the flexibility and expressiveness
of local color editing.

Abstract

Recent advancements have suggested that neural radiance fields (NeRFs) show
great potential in color editing within the 3D domain. However, most existing
NeRF-based editing methods continue to face significant challenges in local re-
gion editing, which usually lead to imprecise local object boundaries, difficulties
in maintaining multi-view consistency, and over-reliance on annotated data. To
address these limitations, in this paper, we propose a novel weakly-supervised
method called KaRF for local color editing, which facilitates high-fidelity and
realistic appearance edits in arbitrary regions of 3D scenes. At the core of the
proposed KaRF approach is a unified two-stage Kolmogorov-Arnold Networks
(KANs)-based radiance fields framework, comprising a segmentation stage fol-
lowed by a local recoloring stage. This architecture seamlessly integrates geometric
priors from NeRF to achieve weakly-supervised learning, leading to superior per-
formance. More specifically, we propose a residual adaptive gating KAN structure,
which integrates KAN with residual connections, adaptive parameters, and gat-
ing mechanisms to effectively enhance segmentation accuracy and refine specific
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editing effects. Additionally, we propose a palette-adaptive reconstruction loss,
which can enhance the accuracy of additive mixing results. Extensive experiments
demonstrate that the proposed KaRF algorithm significantly outperforms many
state-of-the-art methods both qualitatively and quantitatively. Our code and more
results are available at: https://github.com/PaiDii/KARF.git.

1 Introduction

Neural Radiance Fields (NeRFs) [30] are capable of constructing high-quality 3D scenes and ren-
dering fine-grained and photorealistic novel views by fusing 2D multi-view images with camera
pose information. With its implicit representation-driven 3D scene modeling capability, NeRF has
been successfully applied in various domains [16, 13, 38] and scenes [32, 2, 39]. Nevertheless, the
effective utilization of the 3D scene neural representation learned by NeRF to achieve precise local
editing while maintaining a high degree of realism remains a critical frontier for further exploration.
This challenge arises from the fully connected architecture used by NeRF, where adjusting a single
parameter triggers global changes across all parameters, making the precise extraction of local regions
in scene space extremely complex. Meanwhile, under the constraints of cross-view consistency,
performing detailed and natural edits is also subject to significant limitations.

To address the challenges of NeRF local color editing, one class of methods focuses on image
segmentation models, achieving local editing by distilling 2D semantic features into 3D feature fields
[23, 20]. However, this category of methods often leads to color bleeding in non-edited regions.
Other methods acquire local regions through point cloud projection [24] or voxel expansion followed
by point cloud extraction [33, 17]. Due to the discrete nature of point clouds and the fixed volume
of voxels, these methods have limited ability to accurately delineate the contours of local objects.
Additionally, these methods struggle to distinguish between the approximate colors of objects, which
limits their potential applications in the field of local editing.

Bearing the above concerns in mind, in this paper, we propose KaRF, a novel weakly-supervised
method for local color editing by leveraging the efficient approximation ability and outstanding
nonlinear expressive power of Kolmogorov-Arnold Networks (KANs) [27]. To the best of our
knowledge, this is the first work to apply KAN to NeRF-based realistic editing for arbitrary regions.
Using only one or three coarse, automatically generated masks per scene with no manual refinement,
the proposed KaRF approach achieves consistent and precise local color editing effects, as shown
in Figure 1. Specifically, we model local color editing as a unified two-stage process comprising
segmentation and local recoloring. To this end, we propose a residual adaptive gating KAN structure
that accurately segments arbitrary regions and performs localized optimization in accordance with
user-specified color requirements. By incorporating geometric neural representations derived from
the pre-trained NeRF, our proposed KaRF approach effectively addresses inconsistencies, low
quality, and under-sampling masks or additive mixing weights from multi-view inputs. To further
enhance model flexibility and training stability, we introduce multidimensional adaptive parameters.
Based on this structure, we build radiance field models tailored to each stage and design a palette-
adaptive reconstruction loss during the local recoloring stage to ensure a coherent distribution of
the base colors in 3D space. Finally, KaRF forms an integrated, high-quality editing approach that
seamlessly combines segmentation and local recoloring. The significant contributions of this paper
are summarized as follows:

(1) We propose the KaRF framework for local color editing, which enables users to selectively
recolor arbitrary regions while requiring minimal guiding information.

(2) We propose a novel residual adaptive gating KAN structure and a palette-adaptive recon-
struction loss to achieve precise segmentation and local recoloring.

(3) Extensive experiments demonstrate that the proposed KaRF algorithm significantly outper-
forms many state-of-the-art methods both qualitatively and quantitatively.

2 Related Work

2.1 Segmentation in NeRF

NeRF segmentation tasks aim to generate high-precision and multi-view consistent segmentation
masks, which are usually classified into two categories: feature-alignment-based methods [12, 18, 21]
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and 2D model-based methods [31, 7]. Feature-alignment-based methods constructed view-consistent
segmentation clusters by aligning 2D visual features with additional features fields. For instance,
Semantic-NeRF [40] extended sparse semantic labels into dense semantic annotations by jointly
encoding geometric, appearance, and semantic information. NeRF-SOS [12] integrated appearance
features and geometric information into the segmentation field to produce segmentation masks.
Conversely, 2D model-based approaches leveraged existing image segmentation priors to guide and
constrain the generation of 3D segmentation masks. For example, the MVSeg module in SPIn-NeRF
[31] and SA3D [7] generated multi-view consistent segmentation masks based on foundational 2D
segmentation models [6, 19]. However, SPIn-NeRF suffered from noisy outputs due to insufficient
integration of 3D information, whereas SA3D tended to generate segmentation masks with blurred
boundaries under conditions of significant viewpoint variation. Compared to the aforementioned 2D
model-based approaches, our approach exhibits superior performance in terms of both segmentation
accuracy and consistency.

2.2 Color Editing in NeRF

Color editing tasks aim to modify the visual attributes of objects (e.g., color, hue, and brightness) while
maintaining photorealistic fidelity. Previous works [34, 3, 4] combined NeRF with physics-based
rendering to explicitly decompose properties such as reflectance, geometry, and lighting, enabling
realistic scene reconstruction and flexible control under varying lighting conditions. On the other hand,
Upst-NeRF [10] and SttcNeRF [9] focused on optimizing NeRF, concentrating mainly on preserving
geometric details and texture consistency of the scene under stylization constraints. However, recent
advanced approaches, such as PaletteNeRF [23, 36] and RecolorNeRF [14] applied palette-based
color editing to NeRF to achieve multi-view consistent and realistic effects. By optimizing palettes
and decomposing color layers, enabling intuitive recoloring and high-fidelity editing of complex
scenes. To further extend local editing capabilities, ICENeRF [24] enabled local recoloring in NeRFs
by decoupling the perceptual optimization of color MLP weights. However, this method can struggle
with precise local color control, and its foreground mask requirement scales with the number of
colors being edited. IReNe [28] improves local editing speed by fine-tuning the last layer of its color
MLP to learn local colors. Nevertheless, it can suffer from color bleeding in occluded situations
and requires precise manual maps and new reference images for multiple edits. LAENeRF [33],
through color layers decomposition based on ray termination points and voxel-based region expansion,
achieved realistic editing of local regions. However, voxel expansion may result in imprecise region
selection, which may affect subsequent appearance editing. In contrast, KaRF demonstrates superior
localization and multi-view consistency in color editing.

3 Preliminary

KAN. Multilayer perceptrons (MLPs) [15] have become the cornerstone of numerous modern
neural networks. Recently, Kolmogorov-Arnold Networks (KANs) [27] have been introduced as an
alternative to MLPs. They are based on the Kolmogorov-Arnold representation theorem [22], which
asserts that a sum of compositions of several univariate functions can represent any multivariate
continuous function. Consequently, both MLPs and KANs can be regarded as models that utilize
functional compositions and combinations to express complex mappings. In MLPs, however, the
functions are represented by fixed activation functions applied to nodes, while the combinations are
achieved through linear weight matrices connecting neurons. In contrast, the functions in KANs are
learnable univariate functions on edges, while the nodes perform simple addition operations. The
overall structure of an N -layer KAN is defined as:

KAN(X) = (ΦN−1 ◦ΦN−2 ◦ · · · ◦Φ1 ◦Φ0)X, (1)

where Φl denotes the l-th layer within the KAN model and is composed of 1D learnable activation
functions (ϕ):

Φ = {ϕj,i} i = 1, 2, . . . nin, j = 1, 2, . . . nout, (2)

where nin and nout are the number of input and output nodes in a single KAN layer, respectively.
The computation from layer l to layer l + 1 in the KAN model can be represented in the following
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Figure 2: Overview of KaRF. We employ a pre-trained NeRF [30] to extract the output of its
density MLP (i.e., 3D point density σ and multi-channel features fprior ∈ R256 containing scene
prior knowledge). Subsequently, the NeRF parameters are frozen, and a two-stage training process
is initiated: 1) Segmentation stage. Utilizing multi-view images and an initial set of 1-3 coarse
segmentation masks generated by point-prompted SAM [19], we generate consistent masks by
constructing a KAN-based segmentation radiance fields, which is supervised by LSeg. These refined
masks are then passed to the next stage. 2) Local recoloring stage. We adopt the strategy from
LoCoPalette [8] to compute convex hulls for the masks and perform layer decomposition, thereby
obtaining initial palettes and weights. These parameters are then fed into a KAN-based recoloring
radiance fields, aimed at the fine-grained reconstruction of weights in 3D space and the adaptive
optimization of the palettes. This stage is supervised by LWeight and LPalette. The trained palettes and
weights enable users to interactively composite the scene by directly modifying colors in the palettes.

matrix form:

Xl+1 =


ϕl,1,1(·) ϕl,1,2(·) . . . ϕl,1,nl(·)
ϕl,2,1(·) ϕl,2,2(·) . . . ϕl,2,nl(·)

...
...

...
...

ϕl,nl+1,1(·) ϕl,nl+1,2(·) . . . ϕl,nl+1,nl(·)


︸ ︷︷ ︸

Φl

Xl, (3)

where Xl ∈ Rnl represents the input to layer l, and Xl+1 ∈ Rnl+1 is the resulting output of the
same layer. ϕ(·) denotes a learnable univariate function, parameterized as a B-spline curve [11] with
learnable coefficients. Each ϕl,j,i(·) models the relationship between the j-th output node and the
i-th input node in layer l, enabling flexible, non-linear mappings between neurons. Mathematically,
ϕ(·) can be expressed as:

ϕ(·) = wbb(·) + wsξ(·), (4)
where b(·) = silu(·) and ξ(·) = spline(·) =

∑
k ckBk(·). For more details on KAN, please refer to

[27]. Due to the superior representation performance for complex nonlinear mappings, KANs can
describe complex mappings with fewer parameters, demonstrating superior approximation capabilities
and offering greater flexibility and efficiency compared to MLPs. Furthermore, the use of simple
functional combinations makes the internal mechanisms of KANs more interpretable.

4 Methodology

In this section, we describe the details of KaRF (Sec. 4.1), followed by an introduction to the
two-stage process of local color editing (Sec. 4.2) and the optimization strategies for each stage (Sec.
4.3). Figure 2 illustrates an overview of our two-stage pipeline.

4.1 KaRF

In NeRF [30], the inductive bias introduced through staged network design effectively constrains the
solution space for complex function fitting, providing accurate geometric structure and appearance
priors for NeRF-based downstream tasks (e.g., segmentation, color editing), thereby enabling higher-
quality outputs in post-processing. Building on this, KANs [27], with their exceptional nonlinear
expressive power, are particularly well-suited for fitting complex mappings. Leveraging this strength
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Figure 3: Our network structure. Our KAN-based segmentation radiance fields utilize positional
encodings γ(x) and prior features fprior to output a per-point probability distribution s ∈ [0, 1]Nk

over Nk predefined classes. Subsequently, our KAN-based recoloring radiance fields then incorporate
the viewing direction γ(d) in addition to the aforementioned inputs, predicting a per-point weight
vector w ∈ [0, 1]Np corresponding to a palette P̂ containing Np colors. Both s and w are volume
rendered to yield a per-pixel segmentation map Ŝ and weight maps Ŵ .

and the priors from NeRF, we have constructed a versatile model centered around KAN, with its
major components as follows:

• GRBFKAN layers. B-spline functions, owing to their piecewise polynomial nature, exhibit
inherent advantages in modeling smooth functions. However, in scenarios involving high-frequency
spatial details (e.g., specular highlights or abrupt color transitions), such as local color editing, the
representational accuracy of B-splines can be constrained. In view of this, we replace B-spline
functions in vanilla KAN [27] with Gaussian Radial Basis Functions (GRBFs) [5]. GRBFs, utilizing
Gaussian kernels, possess a key advantage in the adaptability of their scale parameters, enabling
them to more effectively approximate color details characterized by drastic local changes or sharp
features. Specifically, each KAN in KARF is composed of GRBFKAN layers, in which the response
value of each GRBF within these layers depends on the Euclidean distance between the input and
its respective center point ci. This mechanism not only endows the model with excellent non-linear
approximation capabilities and greater flexibility but also, in some cases, leads to improvements in
computational performance [26]. Within this framework, ξ(x) is represented as a GRBF function
with N centers as follows:

ξ(x) =

N∑
i=1

wi exp

(
−∥x− ci∥2

2h2

)
, (5)

where wi denotes the trainable weight, and h represents the bandwidth of the Gaussian kernel, which
modulates the dispersion of the function and controls its response range.

• Residual Adaptive Gating KAN. Although stacking multiple layers of KAN can enhance the non-
linear expressive capacity of the network, it leads to training instability and increases computational
overhead. Consequently, we propose a KAN-based residual adaptive gating structure, illustrated
in Figure 3. This structure, serving as a component designed for the segmentation and recoloring
radiance fields, is capable of dynamically and finely adaptively regulating the feature flow.

Specifically, we first employ a computationally efficient two-layer KAN as the backbone network.
This backbone is designed to capture critical geometric structures and appearance representations from
the input data at a limited computational cost, thereby extracting the backbone non-linear features fh.
Subsequently, to achieve fine-grained control over the feature flow, we designed a gating module.
This module internally embeds a linear layer and a KAN layer, which are utilized to learn a context-
dependent gating vector fg , for dynamically modulating the feature flow. However, considering the
inherent heterogeneity among different feature channels, a singular fg exhibits limitations in channel-
specific regulation. To address this, we designed a trainable channel-wise adaptive operator β ∈ R256.
This operator performs element-wise selective activation and suppression on fg , thereby empowering
the network with the capability to differentially process distinct semantic channels. Furthermore,
shallow features fq, extracted by the linear layer within the gating module, are combined with a
learnable modulation factor α ∈ R and injected into the main feature flow. This approach aims to
enhance training stability and convergence speed. Ultimately, the update process for the backbone
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features can be formalized by the following expression:

f
′

h = Sigmoid(α) · fq + SiLU(βfg) · fh, (6)

where the enhanced backbone features f
′

h are then concatenated with positional encoding γ(x), and
fed into an output head, constructed from a single KAN layer, to produce the final segmentation mask
or color weights.

4.2 Local Color Editing

Segmentation stage. During the geometric modeling stage of NeRF [30], density σ and multi-channel
features fprior are generated to characterize the scene, with the latter encoding prior information
about the structure and appearance of the scene. Building on this foundation, we propose fine-grained
KAN-based segmentation radiance fields, which leverage inconsistent and geometrically coarse 2D
segmentation masks (typically one for forward-facing scenes and three for 360◦ scenes) generated
by Segment Anything Model (SAM) [19] to generate 3D segmentation results that exhibit refined
boundary textures and multi-view consistency.

Specifically, we formalize scene segmentation as a view-invariant spatial mapping function. This
function maps positional encodings γ(x) and prior features fprior (derived from a pre-trained NeRF)
to a per-point probability distribution s using a softmax activation:

softmax
(
Fs(γ(x),fprior)

)
→ s, (7)

where Fs represents our residual adaptive gating KAN in segmentation stage. The design of Fs aims
to ensure that the resulting segmentation exhibits consistent geometric structure.

Following this, s and σ (obtained from a pre-trained NeRF) are integrated via overall fine volumetric
rendering to assign a semantic label to each pixel in the segmentation map Ŝ:

Ŝ = argmax
k

(
Nfine∑
i=1

Ti (1− exp(−σiδi)) si

)
, where Ti = exp

−
i−1∑
j=1

σjδj

 , (8)

where Nfine denotes the number of fine sampling points, δi is the distance between sample i and
sample i+1 and k denotes a class index. Notably, our method supports multi-class weakly-supervised
segmentation by simply expanding the channel dimension of the output head. This flexibility also
broadens the applicability of our local color editing.

Local Recoloring stage. This stage comprises two essential steps: palette extraction and layer
decomposition. In the palette extraction step, directly leveraging spatial-level color distribution for
segmentation can result in global color inconsistencies from certain viewpoints, such as the abrupt
appearance of red elements in a predominantly green scene. To address this, we first perform fine-
grained segmentation of the scene and then extract the palette from the segmented objects, thereby
ensuring spatial color consistency. The layer decomposition step aims to construct KAN-based
recoloring radiance fields, which, through simple dimensional concatenation, can be decomposed
into multi-dimensional radiance layers weighted by solid colors to enhance recoloring flexibility.

Unlike other 3D recoloring methods [23, 14, 33] that follow the strategy introduced by [35], we
employ the LoCoPalette [8] approach to one or three segmented foreground objects to derive the
palette P = {p1, p2, ..., pNP

} and 2D sparse weight maps W = {w1, w2, ..., wNP
}. An output

color C is composited from these components using the expression:

C =

{
NP∑
i=0

wipi

∣∣∣∣∣ wi ∈ W and pi ∈ P

}
, (9)

where NP represents the number of base colors in P . We leverage W as supervisory signals, enabling
the generated results to effectively reduce the impact of primary color variations on non-primary
colors. Additionally, background regions learn to select only a black base color, effectively isolating
them from the recoloring process.

The local recoloring stage requires the viewing direction γ(d) as an additional input, because
lighting conditions and specular reflection intensity vary across different viewpoints. To this end, the
recoloring radiance fields learn a mapping from γ(x), γ(d), and fprior to a per-point weight vector
w:

Fw

(
γ(x), γ(d),fprior

)
→ w, (10)

6



Fe
rn

B
on

sa
i

Scenes KaRFSA3DLAENeRFAnnotations

Figure 4: Qualitative comparison with NeRF segmentation methods. Zoom-in views are highlighted
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where Fw represents our residual adaptive gating KAN in local recoloring stage.

Subsequently, we synthesize the RGB image by employing a volume rendering formula analogous
to Eq. (8), along with Eq. (9). We observe that, although the global color scheme of local objects
remains consistent, color inaccuracies persist due to variations in specular reflection effects (e.g., the
distinction between deep blue and light blue). Therefore, we propose a palette-adaptive reconstruction
loss, which mitigates the impact of viewpoint-induced color discrepancies:

LPalette =
∑
r∈R

∥∥∥Ŵ (r) · P̂ −Cgt(r)
∥∥∥2
2
, (11)

where R represents the sampled rays within a training patch, Cgt denotes the RGB ground truth of the
segmentated scene, Ŵ (r) is the predicted view-dependent weight for ray r, and P̂ is the learnable
view-invariant palette initialized by P . This design assigns the task of learning all corresponding
diffuse, highlight, and shadow effects to the weights Ŵ (r). Our palette P̂ , in addition to providing
the base colors, also allows for the input of randomly initialized colors for greater flexibility.

Based on this strategy, the generated weights exhibit multi-view consistency. Therefore, by only
modifying the trained palette, we can directly composite locally recolored scenes. Subsequently,
the masks obtained during the segmentation stage are utilized to directly replace the corresponding
regions in the rendered views, thereby achieving a faithful restoration of the scene. For scenes with
multiple classes, a single, shared palette and unified weight maps are used. The distinct color of each
object is then controlled by its specific learned weights within the unified weight maps.

4.3 Optimization

Segment Loss. We compute the multi-class cross-entropy loss between the predicted segmentation
map Ŝl and the 2D segmentation map Sl generated by SAM [19] to encourage consistency between
the rendered segmentation objects and the provided segmentation map in terms of the primary object.
Here, 1 ≤ l ≤ Nk denotes the class index:

LSeg = −
∑
r∈R

Nk∑
l=1

Sl(r) log(Ŝl(r)). (12)

Weight Loss. We calculate the L2 difference between the predicted weights Ŵ and the 2D sparse
weights W to learn the main distribution of the weights, gradually optimizing the prominence of
different colors within the scene objects:

LWeight =
∑
r∈R

∥∥∥Ŵ (r)−W (r)
∥∥∥2
2
. (13)

Total Loss. We optimize the overall pipeline by jointly minimizing the two losses mentioned above
along with the palette-adaptive reconstruction loss:

LTotal = λSegLSeg + λEdit(λPLPalette + λWLWeight), (14)
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Figure 5: Qualitative comparison with NeRF local color editing methods. The red boxes show the
error of the comparison methods on the background.

Table 1: Quantitative comparison with NeRF segmentation methods.

Scenes MVSeg [31] SA3D [7] KaRF
IoU(%)↑ Acc(%)↑ IoU(%)↑ Acc(%)↑ IoU(%)↑ Acc(%)↑

Orchids 92.7 98.8 87.9 97.8 93.2 98.9
Leaves 94.9 99.7 97.5 99.9 97.2 99.9
Fern 94.3 99.2 97.3 99.6 97.6 99.7

Room 95.6 99.4 90.4 98.6 98.3 99.8
Horns 92.8 98.7 95.4 99.2 95.4 99.2

Fortress 97.7 99.7 98.4 99.8 98.2 99.7
Fork 87.9 99.5 89.8 99.6 84.4 99.3
Truck 85.2 95.1 96.1 98.7 96.9 98.9
Lego 74.9 99.2 90.9 99.7 91.3 99.7
Mean 90.7 98.8 93.7 99.2 94.7 99.5

where λSeg and λEdit are set to zero during different stages, while λP and λW are hyperparameters for
the loss weights.

5 Experimental Results

Datasets. We test KaRF on three different types of datasets: NeRF-Synthetic [30], a 360◦ bounded
synthetic dataset; Mip-NeRF 360 [1], a 360◦ unbounded real-world dataset; and LLFF [29], a
bounded real-world forward-capture dataset.

Implementation Details. In the geometric modeling stage, we use the Adam optimizer with a
learning rate of 5e-5, updating based on 2048 rays per iteration, for a total of 120k iterations. For
other stages, we use a learning rate of 5e-4 with 1024 rays per update. The segmentation stage
involves 7k iterations, while the local recoloring stage involves 10k iterations, during which the
learnable palette P is trained only during the final 3k iterations. The hyperparameters λP and λW are
set to 1 and 1e-1, respectively. All experiments are conducted on a single Nvidia RTX 4090 GPU.

5.1 Qualitative Evalution

Segmentation. By providing rough reference views of the target object, our proposed KaRF approach
can generate fine-grained novel view masks. As illustrated in Figure 4, we compare the proposed
KaRF with SA3D [7] and LAENeRF [33] methods in both forward-facing and 360◦ scenarios, where
the second column represents our one or three annotated reference views. The comparison shows that
LAENeRF often includes unnecessary objects, as indicated by the red box. Although SA3D shows
some advantages in modeling local features, it still struggles with capturing fine texture details of
objects, as shown in the yellow box. Additional details are available in the supplementary material.

Local Recoloring. Figure 5 presents a comparison of our proposed KaRF method with LAENeRF
[33], ICENeRF [24] and PaletteNeRF [23] equipped with the LSeg module [25] across three different
datasets. It is worth noting that the results of ICENeRF are taken from its publication [24]. From the
experimental results, it is evident that our proposed KaRF method can accurately change the color
of the segmented regions without introducing unnecessary color bleeding or artifacts beyond the
segmentation boundaries. For example, in the kitchen scene, when recoloring the lego, ICENeRF
and PaletteNeRF exhibit noticeable artifacts in the tabletop area. Meanwhile, LAENeRF employs
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Table 2: Quantitative comparison with NeRF local color editing methods.

Datasets PNF(with LSeg) [23] ICENeRF [24] LAENeRF [33] KaRF
MSE↓ MSE↓ MSE↓ MSE↓

LLFF [29] 0.0056 0.0075 0.0020 0.0002
Blender [30] 0.0031 - 0.0030 0.0003
Mip360 [1] 0.0027 - 0.0033 0.0002

Mean 0.0038 0.0075 0.0028 0.0002

Table 3: Quantitative comparison of short-range and long-range consistency after local recoloring.

Consistency Dataset PNF(with LSeg) [23] LAENeRF [33] KaRF
LPIPS↓ RMSE↓ LPIPS↓ RMSE↓ LPIPS↓ RMSE↓

Short-range

LLFF [29] 0.115 0.066 0.110 0.061 0.100 0.058
Blender [30] 0.206 0.239 0.209 0.238 0.201 0.234
Mip360 [1] 0.228 0.103 0.228 0.095 0.218 0.090

Mean 0.183 0.136 0.182 0.131 0.173 0.127

Long-range

LLFF [29] 0.235 0.161 0.233 0.147 0.227 0.145
Blender [30] 0.353 0.358 0.356 0.380 0.350 0.361
Mip360 [1] 0.529 0.266 0.541 0.253 0.508 0.243

Mean 0.372 0.262 0.377 0.260 0.362 0.250

Multi-view Consistency
37.9% 34.4%

Visual Quality

27.7%

65.7% 20.3%14.0%

Ours PaletteNeRF LAENeRF

Figure 6: User study results.

a voxel-based segmentation approach, which generates artifacts near the lego, as shown in the red
box. Moreover, our proposed KaRF approach excels in maintaining the consistency and plausibility
of color adjustments. In the horns scene, our proposed approach better preserves the gloss and tone
transitions of the material. In contrast, LAENeRF, due to its limited base colors, modifies similar but
distinct colors simultaneously, as it cannot achieve sparse weight decomposition. Other competing
methods often result in color deviations after recoloring, especially in reflective areas.

5.2 Quantitative Evalution

Segmentation. We follow SA3D [7] to use the weakly-supervised dataset provided by SPIn-NeRF
[31] to compare our proposed KaRF approach with the MVSeg module in SPIn-NeRF and the
SA3D. As shown in Table 1, KaRF achieves the highest average Intersection over Union (IoU) and
Accuracy (Acc) across all scenes. This demonstrates the superior segmentation capabilities and
robust understanding of scene geometry achieved by our model. For a fair comparison, we follow the
SPIn-NeRF benchmark protocol, and the values of SPIn-NeRF and SA3D are taken from [7].

Local Recoloring. To measure unintended changes in non-edited regions, similar to LAENeRF [33],
we compute the mean squared error (MSE) by comparing these regions in the original image against
their state after our recoloring. In Table 2, we present three scenes from three different datasets and
compare our proposed KaRF approach with ICENeRF [24], LAENeRF [33] and PaletteNeRF [23]
equipped with the LSeg module [25]. It is worth noting that the values of ICENeRF on the LLFF
dataset are from its original publication [24], and thus, the foreground mask we use is consistent with
that of ICENeRF. Experimental results demonstrate that our approach outperforms other competing
methods. This superiority arises from our direct use of precise masks from the segmentation stage to
extract palettes and weights for specific local regions, thereby effectively shielding non-segmented
areas from being altered during the recoloring process.

To evaluate multi-view consistency, we select pairs of views with intervals of 1 and 7 under short-
range and long-range conditions, respectively. Table 3 presents the LPIPS [37] and RMSE results
across various scenes after local recoloring with KaRF, PaletteNeRF [23] with the LSeg module [25],
and LAENeRF [33]. As can be seen, KaRF achieves the best performance in terms of consistency.

5.3 User Study

We conduct a user study comparing our method with PaletteNeRF [23] and LAENeRF [33]. Forty-
four participants are presented with pairs of recolored images and videos and asked to make selections
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Figure 7: The impact of GRBFKAN. We compare the composite results for the palettes and weights
generated by MLP, B-Spline KAN, and GRBFKAN. The red boxes highlight the composition
differences.

Table 4: The impact of residual adaptive gating KAN structure.

Datasets w/o All w/ Gate w/o Res w/ All
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

LLFF [29] 32.77 0.961 33.24 0.964 33.50 0.966 33.52 0.966
Blender [30] 37.54 0.960 38.30 0.980 38.68 0.984 38.95 0.988
Mip360 [1] 30.81 0.931 30.79 0.937 31.02 0.948 31.63 0.952

Mean 33.71 0.951 34.11 0.960 34.40 0.966 34.70 0.969

w/o w/GT

Le
go

Figure 8: The impact of LPalette. The red boxes highlight the composition differences.

based on visual quality and view consistency. A total of 528 votes are collected, as shown in Figure 6.
The results indicate a clear preference for our method, which is consistently rated as more visually
consistent and for its higher quality of local color editing.

5.4 Ablation Studies

Impact of GRBFKAN. Figure 7 shows GRBFKAN outperforming B-Spline KAN and MLP in
palette and weight generation and composition. Unlike MLP, which tends to learn global patterns
while ignoring local colors, and B-Spline KAN, which tends to smooth out sharp color details,
GRBFKAN learns richer color gradations from identical spatial-level palette and weight inputs,
yielding compositions more faithful to the original scenes.

Impact of Residual Adaptive Gating KAN. We compare the local recoloring results of stacking
only KAN layers (w/o All), introducing gating KAN alone (w/ Gate), introducing gating and the
adaptive operator G without residual connections (w/o Res), and including all components (w/ All), as
shown in Table 4. The results demonstrate that our complete structure achieves the best performance
in terms of both PSNR and SSIM. Furthermore, the overall structure with residual connections also
demonstrates significant improvement in terms of convergence speed and loss.

Impact of LPalette. It can be observed in Figure 8 that the model without the palette-adaptive
reconstruction loss (w/o LPalette) exhibits a noticeable deviation in the color reproduction of local
regions when compared to the original scene.

6 Conclusion

We have proposed KaRF, a novel weakly-supervised NeRF local color editing method that leveraged
the KAN. By designing a unified two-stage framework, our proposed KaRF approach effectively
achieved both scene segmentation and realistic editing functionalities. Innovatively, we have in-
troduced KAN-based task-specific radiance fields and designed the residual adaptive gating KAN
structure, which significantly enhances the computational efficiency and accuracy of the model.
Extensive experimental results have demonstrated that the proposed KaRF algorithm outperforms
many state-of-the-art methods for segmentation and local recoloring tasks in terms of both visual
performance and quantitative metrics.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of this paper are fully reflected in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: We discuss limitations in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide ample proof in the paper and supplementary material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The method and experimental details in the paper are sufficiently.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: It’s not open access yet, but it will be soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We illustrate these details sufficiently.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have mentioned in the experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We will provide societal impacts in the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t have that risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we mention and properly respect.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

17

paperswithcode.com/datasets


Answer: [No]

Justification: It’s not open access yet, but it will be soon.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this paper does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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