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Abstract

Text-to-image (T2I) diffusion models have achieved impressive image generation
quality and are increasingly fine-tuned for personalized applications. However,
these models often inherit unsafe behaviors from toxic pretraining data, raising
growing safety concerns. While recent safety-driven unlearning methods have
made promising progress in suppressing model toxicity, they are found to be fragile
to downstream fine-tuning, as we reveal that state-of-the-art methods largely fail to
retain their effectiveness even when fine-tuned on entirely benign datasets. To miti-
gate this problem, in this paper, we propose ResAlign, a safety-driven unlearning
framework with enhanced resilience against downstream fine-tuning. By model-
ing downstream fine-tuning as an implicit optimization problem with a Moreau
envelope-based reformulation, ResAlign enables efficient gradient estimation to
minimize the recovery of harmful behaviors. Additionally, a meta-learning strategy
is proposed to simulate a diverse distribution of fine-tuning scenarios to improve
generalization. Extensive experiments across a wide range of datasets, fine-tuning
methods, and configurations demonstrate that ResAlign consistently outperforms
prior unlearning approaches in retaining safety, while effectively preserving benign
generation capability. Our code and pretrained models are publicly available here.
. Disclaimer: This paper includes AI-generated images containing partially nude

human figures and other sensitive content, shown only for research purposes.

1 Introduction

Text-to-image (T2I) diffusion models have emerged as a dominant class of generative AI due to
their unprecedented ability to synthesize high-quality, diverse, and aesthetically compelling general
images from natural language descriptions [67, 58]. Beyond synthesizing general images, there is
also a growing interest in customizing pretrained models for personalized generation, e.g., generating
images of specific facial identities or artistic styles that are underrepresented in the original training
data [45]. This is typically achieved by fine-tuning the pretrained base model on a small reference
dataset for a few steps [69, 39, 76]. The development of several advanced fine-tuning methods
[24, 69, 20] as well as the rapid proliferation of “fine-tuning-as-a-service” platforms [5] has made
personalization widely accessible, fueling a surge in applications such as stylized avatars, fan art, and
thematic illustrations, which are becoming increasingly popular especially among younger users [74].

Yet alongside the rapid advancements of diffusion models, growing concerns have emerged regarding
their potential to generate inappropriate or harmful content (e.g., sexually explicit imagery) [13, 70].
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Due to the large-scale and web-crawled nature of their training datasets, modern T2I models inevitably
ingest amounts of harmful material during pretraining [71]. As a result, these models can repro-
duce such content either when explicitly prompted or inadvertently triggered. For example, recent
studies [70, 61, 40] based on real-world user generations demonstrate that widely-deployed models
like Stable Diffusion [67] are particularly prone to producing unsafe content, even though many of
the prompts that lead to unsafe outputs appear benign and may not be intended to generate harmful
results. These vulnerabilities not only allow malicious exploitation through direct or adversarial
prompting [79, 84], but also increase the risk of harmful unintended exposure for ordinary, benign
users [40], raising serious ethical concerns for real-world deployment. In response to these concerns,
a variety of safety-driven unlearning methods [13, 43, 83] have recently been proposed to modify the
pretrained models’ parameters in order to suppress their capacity for unsafe generation.

While existing methods have shown encouraging results in reducing model toxicity and the resulting
unlearned models are promising to be used as “safe” base models for downstream fine-tuning in
practical workflows, one natural yet largely unexplored question is whether the safety of unlearned
models remains resilient after downstream fine-tuning. Unfortunately, recent studies [56, 15] have
shown that many existing methods can be easily reversed, where fine-tuning on harmful samples for
as few as 20 steps can largely recover a model’s unsafe capability. More strikingly, our empirical
results reveal that even when fine-tuned on purely benign data, state-of-the-art unlearning methods
can regress, with the model’s harmfulness approaching its pre-unlearning state. In other words,
even entirely benign users without any malicious intent or harmful data may inadvertently trigger
a recovery of unsafe behaviors, posing unforeseen safety risks in real-world use. These findings
suggest that current methods may be significantly more brittle than previously assumed and are
largely unprepared to serve as reliably safe base models for downstream fine-tuning, underscoring
the urgent need for more resilient approaches that can withstand post-unlearning adaptation.

Towards this end, in this paper, we propose a resilient safety-driven unlearning framework dubbed
ResAlign to mitigate the aforementioned problem. The intuition behind our method is that unlearning
should not only suppress harmfulness at the current model state, but also explicitly minimize the
degree to which harmful behaviors can be regained after (simulated) downstream fine-tuning. While
conceptually simple, it is particularly challenging to develop a principled and efficient optimization
framework to realize this objective. This is because fine-tuning itself is a multi-step optimization
process, making it non-trivial to predict which update direction on the original parameters helps
minimize the regained harmfulness after downstream fine-tuning. To address this, we approximate
fine-tuning as an implicit optimization problem with a Moreau envelope formulation [52, 63], which
enables efficient gradient estimation via implicit differentiation. Besides, to ensure generalizability
against the wide variability in real-world downstream fine-tuning procedures (e.g., different datasets,
fine-tuning methods, and hyperparameters), we design a meta-learning approach that simulates a
distribution of plausible fine-tuning configurations during training, allowing the model to generalize
its resilience across a broad range of downstream adaptation scenarios. We also provide insights from
the theoretical perspective to explain the empirical effectiveness of our method.

In conclusion, our main contributions are threefold. (1) We empirically reveal that existing safety-
driven unlearning methods largely fail to retain their effectiveness after downstream fine-tuning,
even when the data does not contain unsafe content. (2) We propose ResAlign, a resilient safety-
driven unlearning framework for T2I diffusion models. By leveraging a Moreau envelope-based
approximation and a meta-learning strategy over diverse adaptation scenarios, ResAlign explicitly
accounts for and minimizes post-unlearning degradation due to downstream fine-tuning efficiently
with high generalizability. We further provide theoretical insights to help understand the empirical
effectiveness of our method. (3) Through extensive experiments, we show that ResAlign consistently
outperforms baselines in maintaining safety after fine-tuning, and generalizes well to a wide range
of advanced fine-tuning methods, datasets, and hyperparameters. It also preserves both general and
personalized generation quality well, generalizes across various diffusion models and loss functions,
and remains effective even under harmful data contamination or adaptive attacks.

2 Background & Related Work

Text-to-Image (T2I) Diffusion Models. Diffusion models are probabilistic generative models
that learn the data distribution by reversing a predefined forward noising process through iterative
denoising [22, 67]. Given a clean sample x and a predefined noise schedule {αt, σt}Tt=1, the forward
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diffusion process constructs a noisy version at timestep t as xt = αtx + σtϵ, where ϵ ∼ N (0, I).
Then, a denoising neural network ϵ̂θ parameterized by θ is trained to predict the added noise ϵ
from xt and the timestep t. In the context of text-to-image generation [67], the prediction is further
conditioned on a natural language prompt p. The model thus learns a conditional denoising function
ϵ̂θ(xt, p, t), and its training objective is to minimize the following denoising score matching loss:

Ldenoise(θ,Dtrain) = Eϵ,t,(x,p)∼Dtrain

[
wt · ∥ϵ̂θ(αtx+ σtϵ, p, t)− ϵ∥22

]
, (1)

where x is the ground-truth image, p is the text condition, t is uniformly sampled from {1, . . . , T},
and wt is a weighting factor that balances noise levels. This objective trains the model to accurately
predict how to remove noise from noisy images across different timesteps, allowing it to generate
realistic images from pure noise when conditioned on text during inference. Currently, the Stable
Diffusion series [67, 58], which operate the diffusion process in a learned latent space and are
pretrained on large-scale datasets, stands as the most widely adopted open-source model for T2I
generation. They are also increasingly fine-tuned on downstream datasets to learn and generate
concepts that are absent in their pretraining datasets for customized generation purposes [69, 57, 36].

Mitigating Unsafe Generation in T2I Models. To mitigate unsafe generation in T2I models, several
strategies have been developed recently [60, 78, 48, 13], which can be broadly categorized into
detection-based and unlearning-based. Detection-based strategies deploy external safety filters
(e.g., DNN-based harmful prompt/image detectors) to inspect and block unsafe requests [7, 48].
While effective, they do not inherently “detoxify” the diffusion model, often introducing non-
negligible additional computational and memory overhead during inference [43], and can be easily
removed once the model is open-sourced [64]. On the other hand, unlearning-based approaches
internalize safety constraints by directly modifying model parameters to reduce unsafe generation
at its source [13, 35, 43]. At a high level, given a pretrained T2I diffusion model θ ∈ Rd, existing
safety-driven unlearning approaches typically aim to optimize the model with the following objective:

θ∗ ∈ argmin
θ∈Θ

Lharmful(θ) + αR(θ), (2)

where Lharmful(θ) is a harmful loss such that minimizing it encourages the model to unlearn harmful
behaviors, and R(θ) is a utility-preserving regularization term that maintains the model’s benign
generation capabilities. The hyperparameter α > 0 is a weighting coefficient. Since the seminal work
of CA [35] and ESD [13], safety-driven unlearning has rapidly gained traction, with a growing line
of subsequent works expanding the design space across multiple dimensions including loss function
design [35, 13], sets of updated parameters [43, 13], optimization strategies [14, 83, 18], and others.

Despite this progress, a recent pioneering work [56] has identified a malicious fine-tuning issue,
where unlearned models can quickly regain harmful generative abilities after fine-tuning on a small
set of unsafe images, producing diverse outputs that resemble the quality and variety of the original
pre-unlearned model. To the best of our knowledge, the most advanced attempt to address this
issue is LCFDSD [56], which encourages separation in the latent space between clean and harmful
data distributions to increase the difficulty of recovering unsafe behaviors. However, this comes
with a notable degradation in the benign utility of the model and only brings slight improvements
over existing unlearning methods, as validated in our experiments (Sec. 4.2). To summarize, how
to effectively mitigate the post-fine-tuning resurgence of harmful capabilities in unlearned models
remains an important yet largely unaddressed problem and is worth further exploration.

3 Methodology

Motivation & Problem Formulation. Despite recent progress in safety-driven unlearning, our
experiments (Sec. 4.2) reveal that many state-of-the-art methods fail to retain their effectiveness after
downstream fine-tuning, even when the adaptation data is entirely benign (instead of solely with
harmful data). We speculate that this fragility stems from their objective formulation (Eq. (2)): they
primarily focus on suppressing harmful behaviors at the current parameter state, without accounting
for nearby regions in the parameter space that may be reached through downstream fine-tuning. As a
result, the local neighborhood of the unlearned model may still be vulnerable, such that even benign
gradient signals during fine-tuning can inadvertently push the model into toxic regions and erode its
safety. Motivated by this observation, we aim to learn model parameters that are not only safe in their
current state, but also lie in regions of the parameter space where safety is preserved under downstream
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fine-tuning. In other words, we seek to explicitly penalize the increase in harmfulness loss caused by
(simulated) downstream fine-tuning during unlearning. Formally, given a pretrained T2I diffusion
model parameterized by θ ∈ Rd, we propose the following resilient unlearning objective:

θ∗ ∈ argmin
θ∈Θ

Lharmful(θ) + αR(θ) + β
[
Lharmful(θ

∗
FT)− Lharmful(θ)

]
, (3)

where θ∗FT = ADAPT(θ,DFT, C) represents the parameters obtained by adapting θ on dataset DFT
with configuration C. For example, if C is the standard gradient descent for T steps with a learn-
ing rate of η, then we have θ∗FT = θ − η

∑T−1
t=0 ∇θ(t)LFT(θ

(t),DFT), where LFT represents the
standard diffusion denoising loss and θ(i) indicates the model parameters at the i-th step with
θ(0) = θ. α and β are hyperparameters that balance the three terms. In this paper, we follow
previous works [85, 83] and instantiate Lharmful(θ) as the negative denoising score matching loss
on a set of inappropriate prompt-image pairs and R(θ) as the distillation loss that minimizes the
difference of noise prediction between the current model and the original model ϵ̂θ0 on a set of
preservation prompts, i.e., Lharmful(θ) = −Eϵ,t,(x,p)∼Dharmful [wt · ∥ϵ̂θ(αtx+ σtϵ, p, t)− ϵ∥22] and
R(θ) = Eϵ,t,(x0,p)∼Dpreserve [wt · ∥ϵ̂θ(xt, p, t)− ϵ̂θ0(xt, p, t)∥22]. Note that our method is also com-
patible with other designs of these losses, as long as they offer similar utility (see results in Sec. 5).

Efficient Hypergradient Approximation via Implicit Differentiation. To optimize the resilient
unlearning objective in Eq. (3), one natural idea is to use gradient-based optimization. Thus, we take
gradients with respect to θ and rearrange terms. This yields the following expression:

(1− β)∇θLharmful(θ) + α∇θR(θ) + β∇θLharmful(θ
∗
FT). (4)

The first two terms in Eq. (4) are standard and can be easily computed via backpropagation.
The difficulty lies in the last term, i.e., the hypergradient ∇θLharmful(θ

∗
FT). Because θ∗FT is an

implicit function of θ, according to the chain rule, we have ∇θLharmful(θ
∗
FT) = (∂θ∗FT/∂θ)

⊤ ·
∇θ∗

FT
Lharmful(θ

∗
FT), which involves the Jacobian ∂θ∗FT/∂θ. Since θ∗FT is typically obtained through

T -step iterative gradient descent, this derivative expands into a product of Jacobians ∂θ∗FT/∂θ =∏T−1
t=0

(
I − η∇2

θ(t)LFT(θ
(t),DFT)

)
, where ∇2

θ(t)LFT(θ
(t),DFT) is the Hessian matrix of the fine-

tuning loss w.r.t. θ(t). As such, direct computation requires storing and backpropagating through the
entire trajectory and their Hessian matrices, which is computationally and memory-prohibitive.

To address this issue, inspired by recent work in bilevel optimization [47, 16, 81, 63], we approximate
fine-tuning as an implicit optimization over the Moreau envelope [52] of the loss. Specifically, we
approximately regard the solution of downstream fine-tuning (i.e., the resulting parameters θ∗FT) as
the minimizer of the following Moreau envelope (ME) [52, 16, 63], i.e.,

θ∗FT ∈ argmin
θ′

LFT(θ
′,DFT) +

1

2γ
∥θ′ − θ∥2, (5)

where γ (set as 1 in this paper) is a proximity coefficient [63]. Intuitively, when fine-tuning diffusion
models, we typically start from a strong pretrained base model and only take a few gradient steps. This
implicitly restricts the solution θ∗FT to remain near θ, making it well-approximated by the minimizer of
the proximal objective in Eq. (5). As a result, θ∗FT naturally satisfies the first-order optimality condition,
i.e., ∇θ∗

FT(θ)
LFT(θ

∗
FT,DFT)+

1
γ (θ

∗
FT − θ) = 0 according to the Karush-Kuhn-Tucker theorem [34, 63].

Since θ∗FT is implicitly defined as a function of θ through this optimality condition, we apply the
implicit function theorem to differentiate both sides with respect to θ. Then, by right-multiplying
both sides by ∇θ∗

FT
Lharmful(θ

∗
FT), we can derive the following equation (details in Appendix A):(

∇2
θ∗

FT
LFT(θ

∗
FT,DFT) +

1

γ
I

)
· ∇θLharmful(θ

∗
FT) =

1

γ
∇θ∗

FT
Lharmful(θ

∗
FT) (6)

Let A := ∇2
θ∗

FT
LFT + 1

γ I , x := ∇θLharmful(θ
∗
FT), and b := 1

γ∇θ∗
FT
Lharmful, we observe from Eq. (6)

that ∇θLharmful(θ
∗
FT) is essentially the solution to the linear system Ax = b, which can be efficiently

solved using the Richardson iteration method [66] (setting the relaxation parameter as ω = γ = 1):

x(k+1) = γb− γ∇2
θ∗

FT
LFT(θ

∗
FT,DFT) · x(k), (7)

with initialization x(0) = 0. Lastly, we take the final iterate x(K) as the implicit gradient
∇θLharmful(θ

∗
FT) and plug it into Eq. (3), which enables end-to-end gradient-based optimization.
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Our approach has the following advantages. First, computing the implicit gradient ∇θLharmful(θ
∗
FT)

only depends on the final fine-tuned parameters θ∗FT and the local Hessian-vector product ∇2
θFT

LFT · x.
This product can be efficiently computed as a Hessian-vector product (HVP), which is readily sup-
ported in modern autodiff frameworks such as PyTorch (via backward-mode automatic differentiation),

Algorithm 1 GETHYPERGRAD

1: Input: Base parameters θ, downstream fine-tuned model
θ∗FT, loss functions LFT,Lharmful, proximity coefficient γ,
number of steps K

2: Output: Hypergradient∇θLharmful(θ
∗
FT)

3: x(0) ← 0, b← 1
γ
∇θFTLharmful(θFT)

4: for k = 0 to K − 1 do
5: Compute Hessian-vector product∇2

θFT
LFT(θFT) ·x(k)

via iterative solver and reverse-mode autodiff
6: x(k+1) ← γb− γ∇2

θFT
LFT(θFT) · x(k)

7: end for
8: Return x(K)

without explicitly forming or inverting any
second-order Hessian matrices. Besides, as
the gradient is entirely determined by θ∗FT,
there is no need to store the intermediate
models during fine-tuning, which signifi-
cantly reduces memory overhead. Finally,
we observe that the Richardson iteration
used to approximate the implicit gradient
(i.e., Eq. (7)) converges quickly within a
few steps (5 in this paper), enabling effi-
cient training for large-scale diffusion mod-
els. The algorithm procedure for obtaining
the hypergradient is placed in Alg. 1.

Cross-configuration Generalization via Meta Learning. So far, we have successfully derived
a trajectory-independent hypergradient based on a Moreau envelope approximation, which can be
efficiently computed as long as θ∗FT is available. However, this requires access to the downstream
fine-tuning configuration C and dataset DFT during unlearning time, which is typically infeasible. A
natural workaround is to use a fixed proxy configuration to simulate downstream fine-tuning during
training. Yet, such models carry a risk of overfitting to the fixed simulated configuration [49], which
may hinder generalization to other settings, especially those unseen during training.

Algorithm 2 ResAlign
1: Input: Initial model parameters θ0, number of outer loop iterations

I , number of inner loop iterations J , dataset D, distribution over
configurations π(C), loss functions LFT,Lharmful,R, learning rate
η, hyperparameters α, β, γ,K

2: Output: Final unlearned model parameters θI
3: for i = 0 to I − 1 do ▷ Outer Loop
4: gi ← (1− β)∇θiLharmful(θi) + α∇θiR(θi)
5: for j = 1 to J do ▷ Inner Loop
6: Sample data DFT ∼ D and configuration C ∼ π(C)
7: θ∗FTi,j

← ADAPT(θi,DFT, C)
8: gi,j ← GETHYPERGRAD(θi, θ

∗
FTi,j

,LFT,Lharmful, γ,K)
9: end for

10: gi ← gi +
β
J

∑J
j gi,j ▷ Aggregate hypergradients

11: θi+1 ← θi − η · gi
12: end for
13: Return θI

To this end, we draw inspiration
from meta-learning [10, 63, 53]
to improve the cross-configuration
generalization of ResAlign. Dif-
ferent from conventional meta-
learning that aims to enable fast
few-shot adaptation, we aim to
train a model whose resilience gen-
eralizes across a distribution of
downstream fine-tuning datasets
and configurations. Specifically,
we treat the fine-tuning configura-
tion C (including loss function, op-
timizer, learning rate, and number
of steps) and data sampling DFT as
meta-variables. During each inner
loop iteration, we sample a batch
of data DFT ∼ D and configuration
C ∼ π(C) from the pool of these meta-variable choices. Then, we run an adaptation process to
obtain the fine-tuned model θ∗FT = ADAPT(θ,DFT, C) and use Alg. 1 to compute a hypergradient
with respect to θ. This process is repeated for J iterations, which gives us a pool of hypergradients
reflecting the model’s unlearning dynamics under diverse fine-tuning regimes. Then, these hyper-
gradients are aggregated and used to update the base model parameters in our outer loop iterations.
Following previous works [10, 49], a first-order approximation is used for efficiency. Overall, this
meta-generalization mechanism encourages the base model to resist re-acquiring harmful capabil-
ities under a diverse set of plausible fine-tuning conditions while avoiding overfitting to a specific
simulation configuration. The overall algorithm procedure is summarized in Alg. 2.

Theoretical Insights. As we will show in experiments, despite introducing only a conceptually
simple term, our ResAlign consistently improves safety resilience across a wide range of downstream
fine-tuning scenarios. To better understand the (potential) underlying mechanism behind ResAlign’s
empirical effectiveness, in this section, we provide a qualitative theoretical analysis, as follows:

Proposition 1. Let θ ∈ Rd and θ∗FT ∈ Rd denote the parameters of the base model and the fine-tuned
model, respectively. Assume the harmful loss Lharmful is twice differentiable around θ, the parameter
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difference of the two models ξ ∈ Rd is small and can be regarded as a scaled version of a unit
random variable z ∈ Rd with scaling factor σ ∈ R, i.e., ξ = σz. If we exploit the second-order
Taylor expansion around model parameters and ignore higher-order terms, we have:

argmin
θ

E
[
Lharmful(θ

∗
FT)− Lharmful(θ)

]
≈ argmin

θ
Tr(∇2

θLharmful(θ)), (8)

where Tr(∇2
θLharmful(θ)) =

∑d
i=1

∂2Lharmful(θ)

∂θ2
i

is trace of the Hessian matrix of Lharmful w.r.t. θ.

In general, Proposition 1 shows that our additional term can be regarded as an implicit penalty on the
trace of the Hessian of the harmfulness loss with respect to θ. The trace of the Hessian is a well-known
indicator of the overall curvature of the loss landscape [29, 11], where larger values reflect sharper
minima that are highly sensitive to parameter perturbations, while smaller values correspond to
flatter and more stable regions. Interestingly, prior works in generalization and robustness [32, 11]
have shown that SGD-style optimizers tend to lead models to sharp minima, i.e., regions in the loss
landscape with high curvature that are sensitive to parameter perturbations. This connection offers a
potential explanation for the fragility of existing unlearning methods: since they do not explicitly
regularize the curvature of the harmfulness loss, the resulting models, while appearing safe at their
current parameter state, may lie in locally sharp and unstable regions of the loss landscape. In such
regions, even ordinary parameter updates, like those induced by benign fine-tuning, can result in
disproportionately large shifts in harmful loss, thereby inadvertently reactivating harmful capabilities.
In contrast, our ResAlign introduces an implicit penalty on the trace of the Hessian of the harmfulness
loss, encouraging convergence to flatter regions of the loss surface. This may help reduce the model’s
sensitivity to downstream updates and thereby improves its resilience to post-unlearning fine-tuning.
We provide a proof of Proposition 1 and further discussion in Appendix A.

4 Experiments

4.1 Experimental Setup

Baselines & Diffusion Models. We compare our method with 6 text-to-image diffusion models,
including SD v1.4 [67], ESD [13], SafeGen [43], AdvUnlearn [83], and two variants of LCFDSD
[56] (i.e., LCFDSD-NG and LCFDSD-LT). We directly use their provided checkpoints or run their
official code with default hyperparameters to obtain their unlearned models (see more details in
Appendix B.1). Note that the baselines are mostly implemented based on SD v1.4 and mainly focus
on the unsafe concept of sexual, and many of them do not provide extensions to other types of unsafe
content or to other model architectures. Thus, we conduct our main experiments under the same
setting to ensure a fair comparison. We also validate ResAlign on other diffusion models in Sec. 4.2.

Fine-tuning Methods & Datasets. Both standard fine-tuning and advanced personalization-tuning
methods are considered in our experiment. For standard fine-tuning, we adopt a selected subset of
two datasets: DreamBench++ [57] and DiffusionDB [75], which contain high-quality images of
human characters, artistic styles, etc. We use these datasets to serve as representatives for benign
fine-tuning. In addition, we follow [56] and use the Harmful-Imgs dataset, which consists of a
diverse set of sexually explicit prompt-image pairs, to understand the resilience of ResAlign when
the fine-tuning dataset (partially) contains inappropriate data. Beyond these, we further evaluate
the generalizability of our method under more advanced personalization-tuning methods, including
LoRA [24], DreamBooth [69], SVDiff [20], and CustomDiffusion [36], with more personalization
datasets including Pokémon [65], Dog [57], ArtBench [46], and VGGFace2-HQ [4]. Finally, we
employ the I2P [70] and Unsafe [61] datasets for measuring harmful generation capabilities, and the
COCO [3] dataset for assessing benign generation capability. More details are in Appendix B.2.

Evaluation Metrics. We assess model performance from both safety and generation quality perspec-
tives. For harmful generation capability, we report the Inappropriate Rate (IP) and Unsafe Score (US).
IP is computed by generating images from I2P dataset prompts [70] and measuring the proportion
of outputs identified as harmful, where sexual content is detected by the NudeNet detector [54].
Similarly, US is computed on images generated from the Unsafe dataset [61] prompts with another
pretrained NSFW classifier (i.e., MHSC [61]). A lower IP (↓) and US (↓) indicate weaker unsafe
tendencies, meaning the model poses less risk of misuse and is less likely to expose benign users
to inappropriate content [40, 70]. Note that, unlike Pan et al. [56] who evaluate model safety on
the full set of unsafe prompts, we focus on the sexual category subset in both datasets to ensure a
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Tab. 1: Evaluation across different fine-tuning settings. The results are averaged across 3 independent runs.

Model

Harmful Generation Benign Generation

Before
Fine-tuning

Fine-tuned on
DreamBench++

Fine-tuned on
DiffusionDB FID ↓ / CLIP Score ↑

/ Aesthetics Score ↑IP ↓ US ↓ IP ↓ US ↓ IP ↓ US ↓

SD v1.4 [67] 0.3598 0.1850 – – – – 16.90 / 31.17 / 6.04
ESD [13] 0.0677 0.0100 0.1661 0.0467 0.2209 0.0817 16.88 / 30.26 / 6.01
SafeGen [43] 0.1199 0.0650 0.3154 0.1167 0.3344 0.1333 17.11 / 31.11 / 5.94
AdvUnlearn [83] 0.0183 0.0033 0.1038 0.0317 0.2975 0.1233 18.31 / 29.01 / 5.90
LCFDSD-NG [56] 0.0788 0.0150 0.2238 0.0867 0.2474 0.0950 47.21 / 30.09 / 5.23
LCFDSD-LT [56] 0.1833 0.0467 0.2467 0.0917 0.2832 0.1117 31.69 / 30.72 / 5.60

Ours 0.0014 0.0033 0.0186 0.0050 0.0687 0.0550 18.18 / 31.03 / 5.98

more targeted and fair comparison. For benign generation, we use FID [21], CLIP score [62], and
Aesthetics Score [37], which are widely used by previous works [56, 83], to measure the ability of
the unlearned models to generate benign concepts. Finally, we also follow previous work [20, 69] to
use CLIP-I and CLIP-T [69], as well as DINO score [55] to measure the performance of our model
in generating personalized concepts after fine-tuning. More details are presented in Appendix B.3.

Implementation Details. By default, we initialize our model using SD v1.4 and train it following
Alg. 2. For our meta-learning, the distribution of configurations π(C) includes the learning rates
of [1 × 10−4, 1 × 10−5, 1 × 10−6], the steps of [5, 10, 20, 30], the fine-tuning loss (i.e., LFT) of
both standard denoising loss and the prior-preserved denoising loss [69], the algorithm of both full-
parameter fine-tuning and LoRA [24], and the optimizer of both SGD and Adam. For each adaptation
simulation, we select a random combination of the above configurations to form C. Some abnormal
configurations (e.g., large learning rates combined with large training steps) are empirically excluded
to ensure training stability. The outer loop learning rate is set to 2× 10−4. Training is performed on a
single NVIDIA RTX A100 GPU until convergence, which typically requires ∼ 1 GPU hour. During
training, the peak and average memory consumption are ∼ 56 GB and ∼ 24 GB, respectively. In our
evaluation, all fine-tuning is full-parameter fine-tuning on the respective dataset for 200 steps with a
batch size of 1 and a learning rate of 1× 10−5 by default (more details in Appendix B.4). To reduce
randomness, all main fine-tuning experiments are repeated three times with different random seeds
(i.e., three independent runs), and we report the averaged results. Besides, we also report the standard
error of the mean in our figures as the error area to help understand the statistical significance of our
results. More details on dataset selection and implementation are available in Appendix B.

4.2 Experimental Results

Main Results. We begin by evaluating the resilience of unlearned models under standard fine-tuning.
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Fig. 1: Visualization of harmful generation. Baseline
methods largely lose their effectiveness after fine-tuning
while our method retains safety. The black blocks are
added by the authors to avoid disturbing readers.

As shown in Tab. 1, before downstream adapta-
tion, all methods are able to significantly reduce
the inherent toxicity of the pretrained SD v1.4
model, as reflected by their lower IP and US
scores. However, after fine-tuning on both be-
nign datasets, all baselines universally encounter
notable resurgence of harmful behaviors, even
matching the levels of the original unaligned
SD v1.4 (e.g., AdvUnlearn on DiffusionDB and
SafeGen on both datasets). We also provide
some visualization examples showing how dif-
ferent models react to inappropriate prompts be-
fore and after fine-tuning in Fig. 1. These facts
indicate that existing unlearning techniques of-
fer limited robustness when subjected to down-
stream adaptation, even when the dataset does
not explicitly contain harmful samples. In contrast, our ResAlign consistently outperforms all base-
lines by a notable margin. Beyond safety, we also compare the impact of unlearning methods on
benign content generation, with quantitative results reported in the rightmost column of Tab. 1 and
qualitative results in Fig. 3. While some baselines incur noticeable degradation in FID, CLIP score,
or aesthetic quality (e.g., LCFDSD), our method introduces minimal performance drop and remains
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Tab. 2: Evaluation on different personalization settings. The results are averaged across 3 independent runs.

Setting (Personalization Method + Dataset) Method Harmful Gen. Personalized Generation

IP ↓ US ↓ CLIP-T ↑ CLIP-I ↑ DINO ↑

DreamBooth [69] + Dog [69] SD v1.4 0.3645 0.1883 0.2671 0.9532 0.8763
Ours 0.0021 0.0000 0.2631 0.9466 0.8605

CustomDiffusion [36] + ArtBench [46] SD v1.4 0.3416 0.1900 0.2668 0.6024 0.1611
Ours 0.0011 0.0000 0.2702 0.6171 0.1785

LoRA [24] + Pokémon [65] SD v1.4 0.3269 0.1683 0.3178 0.6544 0.4549
Ours 0.0032 0.0033 0.3175 0.6512 0.4332

SVDiff [20] + VGGFace2-HQ [4] SD v1.4 0.3244 0.1567 0.2491 0.6108 0.5672
Ours 0.0050 0.0033 0.2451 0.5826 0.5510

competitive with the original SD v1.4 and most baselines. This indicates that ResAlign not only
ensures stronger safety resilience but also preserves the benign generative capability of the model.

We further analyze the learning dynamics of different methods across various fine-tuning steps. As

(a) DreamBench++ (b) DiffusionDB

Fig. 2: Evaluation across different fine-tuning steps.

can be seen in Fig. 2, baseline methods
show notable fluctuations and a rapid in-
crease in IP with only a small number of
fine-tuning steps, suggesting that their un-
learning is brittle in the weight space. Re-
sAlign, on the other hand, maintains a con-
sistently low level of IP even after exten-
sive fine-tuning (e.g., up to 500 steps), with
remarkably smaller fluctuations. These re-
sults collectively confirm that our method
not only suppresses harmful behavior effec-
tively but also allows the unlearned model
to better withstand re-acquisition of unsafe capabilities under realistic downstream fine-tuning steps.

Effectiveness across More Fine-tuning Methods & Datasets. Beyond standard full-parameter fine-
tuning, we further evaluate whether ResAlign remains resilient under more advanced personalization
tuning methods, and whether it continues to support benign fine-tuning for downstream tasks.

SD v1.4 LCFDSD-NG Ours SD v1.4 Ours

General Generation Personalized Generation
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Fig. 3: Visualization results on benign generation. Our un-
learned model maintains both general and personalized gener-
ation capability similar to the original SD v1.4.

As shown in Tab. 2, our method consis-
tently maintains strong resilience across all
four fine-tuning techniques and datasets.
Specifically, the IP and US scores remain
close to pre-fine-tuning levels, demonstrat-
ing that ResAlign effectively prevents the
re-emergence of harmful behavior under
these advanced specialized adaptation set-
tings, including those unseen during train-
ing (e.g., SVDiff and CustomDiffusion).
At the same time, our model achieves com-
parable, and in some cases even slightly
higher (e.g., on ArtBench), CLIP-I, CLIP-
T, and DINO scores compared to the original SD v1.4. These quantitative results, as well as the
qualitative visualization results in Fig. 3 suggest that our method well preserves the personalization
capability of the unlearned model, i.e., ResAlign does not interfere with benign downstream tasks.

Effectiveness across More Fine-tuning Configurations. We also assess whether our method
remains effective under other fine-tuning hyperparameters. Specifically, we test two commonly varied
settings: learning rate and optimizer. We still use the DreamBench++ and DiffusionDB dataset and
apply LoRA fine-tuning with different learning rate and optimizer settings. As shown in Tab. 3 and 4,
ResAlign continues to perform well across these configurations, maintaining low harmfulness across
different settings. This can be attributed to our meta-learning strategy, which exposes the model to a
distribution of configurations, thereby improving generalization to a broad range of potential configs.

Effectiveness on Contaminated Data. We further consider a challenging scenario where the fine-
tuning data is either intentionally or inadvertently contaminated with unsafe content. To evaluate this,
we mix our datasets with the Harmful-Imgs dataset [56] at varying contamination ratios, and use
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Tab. 3: Effectiveness of ResAlign under various fine-tuning learning rates.
Adapt. refers to an adaptive learning rate scheduler that initiates at 5× 10−3

and gradually decays using cosine annealing down to the minimum learning
rate of 1× 10−6. The reported metric is IP after fine-tuning.

Dataset 1× 10−3 5× 10−4 1× 10−4 5× 10−5 1× 10−5 5× 10−6 Adapt.

DreamBench++ 0.018 0.002 0.004 0.004 0.001 0.002 0.011
DiffusionDB 0.059 0.053 0.043 0.054 0.069 0.044 0.059

Tab. 4: Effectiveness of Re-
sAlign under various fine-
tuning optimizers. The met-
ric is IP after fine-tuning.

Optimizer DB++ Diff.DB

SGD 0.0004 0.0118
Adam 0.0014 0.0687

AdamW 0.0026 0.0478

this contaminated data to fine-tune the unlearned models. As shown in Fig. 4, all methods exhibit
increasing levels of harmfulness as the proportion of unsafe data rises. Notably, most baselines
experience a steep degradation, with their IP approaching that of the original SD v1.4 when 20% or
more of the data is unsafe. In contrast, ResAlign maintains significantly lower harmfulness scores
across all contamination levels, demonstrating better resilience even in this challenging scenario.

Overall, we argue perfect resilience against harmful data is inherently difficult-if not impossible-
as, an adversary can, after all, treat the recovery of unsafe behavior as a new learning task [8],
which pretrained diffusion models are adept at due to their strong generalization and few-shot

(a) DreamBench++ (b) DiffusionDB

Fig. 4: Evaluation on contaminated data.

learning capability [69, 36]. Despite this,
we believe the mitigation and insights
provided by ResAlign are non-trivial and
meaningful. It not only achieves notably
better suppression of harmfulness recovery
under benign fine-tuning, which is domi-
nant in real-world use cases, but also raises
the cost of adversaries by making the re-
acquisition of unsafe behaviors harder. We
hope our work motivates further investiga-
tion into this underexplored yet impactful
regime and inspires future strategies that
enhance robustness against regaining unlearned harmful capabilities during downstream adaptation.

Generalizability across More Diffusion Models. By design, our method is model-agnostic and can
be readily applied to diverse diffusion architectures. To further verify the applicability of ResAlign

Tab. 5: Effectiveness of ResAlign across
more diffusion models. The metric is IP.

Model No FT DB++ Diff.DB

SD v2.0 0.004 0.031 0.078
SDXL 0.033 0.044 0.059
AnythingXL 0.015 0.062 0.087
PonyDiffusion 0.023 0.045 0.067

across a wider range of models, we evaluate it on both
official diffusion models (Stable Diffusion v2.0 [1] and
SDXL [58]) and two widely adopted community variants
(AnythingXL [80] and PonyDiffusion [59]). Specifically,
we first initialize with its corresponding checkpoint and
apply ResAlign to unlearn sexual harmful concepts. We
then evaluate the safety of each unlearned model (No FT)
and subsequently perform LoRA fine-tuning on Dream-
Bench++ and DiffusionDB to assess its safety after downstream fine-tuning. As summarized in Tab. 5,
ResAlign consistently achieves low harmful generation rates across all architectures and fine-tuning
datasets, demonstrating its strong generality and effectiveness across different diffusion models.

Tab. 6: Effect of components.

Component Metric

Hyper. Meta. (D) Meta. (C) IP ↓ FID ↓
− − − 0.2266 18.24
✓ − − 0.1826 18.07
✓ ✓ − 0.0322 18.35
✓ ✓ ✓ 0.0186 18.18

0 1 2 3 4
Regularization Strength ( )

0.03

0.04

0.05

IP

Fig. 5: Effect of γ.

Ablation Study. We further con-
duct an ablation study and hyper-
parameter analysis on the Dream-
Bench++ dataset. From Tab. 6,
we can see that every compo-
nent contributes to our ResAlign,
with hypergradient approxima-
tion (Hyper.) helping reduce regained harmfulness and meta-learning on dataset (Meta. (D)) and
configurations (Meta. (C)) notably mitigates overfitting and enhance generalization.

Hyperparameter Analyses. Finally, we analyze the effects of some key hyperparameters intro-
duced in our experiments. The first hyperparameter is the number of sampled configurations J
used in the meta-learning process. As shown in Tab. 7, the overall safety after fine-tuning im-
proves as the number of sampled configurations increases. This aligns with intuition, since more
meta-learned configurations provide a better estimate of the hypergradient and avoids overfitting,
albeit at the cost of longer training time. Interestingly, we observe that increasing J from 1 to
3 provides a notable boost in IP, while further increasing it to 5 yields only marginal additional
gains, possibly because J = 3 already provides sufficiently generalizable hypergradients. Besides,
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Tab. 7: Effect of the number of sampled
configurations J . The metric is IP after
fine-tuned on DiffusionDB.

J 1 3 5

Performance (IP) 0.092 0.068 0.054
Training time (min) 43.5 58.2 73.9

γ controls the degree of proximity to the base model. To
study its impact, we train ResAlign using different γ and
evaluate the corresponding model’s IP after being fine-tuned
on DreamBench++. A larger γ can better approximate the
ground-truth fine-tuned model, yet also leads to higher insta-
bility due to larger variance in hypergradient approximation,
as shown in Fig. 5. Overall, our method is stable when γ is
in a reasonable range (i.e., 0 ∼ 1). Thus, a relatively wide range of γ can be selected for ResAlign.

5 Discussion

Comparison with More Baselines. In addition to the baselines discussed in Tab. 1, we further
compare ResAlign with two additional relevant methods. The first is IMMA [85], which employs
a bi-level optimization framework to prevent the model from learning certain concepts. Although

Tab. 8: Comparison with other related & con-
current works. The metric is IP after fine-tuning.

Method DB++ Diff.DB

IMMA [85] 0.0752 0.1321
Meta-Unlearning [15] 0.1128 0.1515

Ours 0.0186 0.0687

originally designed to prevent unauthorized personal-
ized learning, it can also be adapted to our safety-driven
unlearning setting for evaluation. The second is the con-
current work Meta-Unlearning [15], which introduces
a meta-objective that penalizes the norm of harmful
gradients and encourages conflicts between harmful
and benign gradients, thereby slowing down relearning
harmful concepts while also encouraging the model to
“deconstruct” its benign utility when fine-tuned on harmful data. As shown in Tab. 8, while both
methods achieve better results than the baselines in Tab. 1, they remain less effective than ResAlign.
We attribute this to two main factors. First, both IMMA and Meta-Unlearning adopt a first-order
approximation, which essentially treats the hypergradient’s Jacobian as an identity matrix. This
simplification may be less accurate than our ME-based approximation. Second, both methods use
fixed datasets and configuration when simulating fine-tuning, which may be less generalizable than
our cross-configuration meta learning design. We provide further discussions on more related work
in Appendix D and empirical comparisons with additional baselines in Appendix C.2.

Alternative Design. In our main experiments, we adopt the negative denoising score matching
loss as Lharmful (i.e., performing gradient ascent on harmful data), owing to its simplicity and strong
empirical effectiveness. However, as observed in prior studies [82, 85, 41] and our experiments (e.g.,
Fig. 1), this GA-style loss may cause the model to generate distorted, mosaic-like output images for
harmful or semantically related prompts, which may negatively affect user experience to some extent.

Tab. 9: Effectiveness on ResAlign when combined
with unlearning loss from ESD [13] and CA [35].

Method No FT DB++ Diff.DB

ResAlign + ESD 0.0610 0.0820 0.1182
ResAlign + CA 0.1230 0.1611 0.1665

Fortunately, ResAlign is a loss-agnostic framework.
Users who prefer generating safe yet semantically
meaningful images under unsafe prompts can easily
employ alternative unlearning objectives. To validate
this hypothesis, we replace Lharmful with the unlearn-
ing losses from ESD and CA to train the correspond-
ing unlearned models, and evaluate their safety both
immediately after unlearning (No FT) and after LoRA fine-tuning on DreamBench++ and Diffu-
sionDB. As shown in Tab. 9, ResAlign can still mitigate the post-fine-tuning safety rebound for
these methods. Notably, the IP before and after unlearning is higher than that of the gradient ascent
version, possibly because the ESD and CA losses are more difficult to optimize. We provide further
discussions in Appendix E.5 and encourage future work to explore more advanced unlearning losses.

6 Conclusion

This paper proposes ResAlign, a novel unlearning framework designed to enhance the resilience
of unlearned diffusion models against downstream fine-tuning. Through a Moreau envelope-based
reformulation and a meta-learning strategy, ResAlign effectively suppresses the recovery of harmful
behaviors while maintaining benign generation capabilities. The effectiveness of ResAlign is validated
through extensive experiments across various datasets and fine-tuning setups, and also qualitatively
explained from a theoretical perspective. We hope our work can raise community’s attention to the
resilience of unlearning methods and encourage further research into more robust strategies.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and scopes.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have claimed the limitations of our work in Appendix E.6.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have included the assumptions along with our proposition and included the
complete proof as well as more discussions in Appendix A.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the detailed configurations as well as the methodology in
our paper and Appendix to reproduce the claims and results. Moreover, our code as well as
the checkpoints for reproducing our main results are made public.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In our paper, all datasets used in this paper (e.g., DiffusionDB and Dream-
Bench++) are all opensourced and available for public access.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have introduced the detailed experimental settings and implementation
details in our main paper and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In our paper, all fine-tuning experiments are independently repeated for 3 times
with different random seeds and we report the avaraged results. Moreover, in Figures, we
also provide the standard error of the mean as the error area, which is a widely-used method
to illustrate statistical significance of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have introduced our used resources and the expected training time in our
implementation details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm our results follow the NeurIPS Code of Ethics https://neurips.
cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We included the ethics statement and discussions on social impact in the
Appendix E.7.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks, as the paper aims to defend against harmful
generation in diffusion models instead of introducing safety risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We confirm all used assets are properly cited or credited, and the licenses are
properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Please refer to our code repository for details.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Omitted Proofs & Derivations

A.1 Omitted Derivation for Eq. (6)

Recall that we approximate the parameters obtained via finite-step fine-tuning from a pretrained
model using the following Moreau envelope (ME) formulation:

θ∗FT ∈ argmin
θ′

LFT(θ
′,DFT) +

1

2γ
∥θ′ − θ∥2 (9)

As θ∗FT is the minimizer of the above optimization problem, it satisfies the following first-order
optimality condition according to the KKT theorem:

∇θ′LFT(θ
∗
FT,DFT) +

1

γ
(θ∗FT − θ) = 0 (10)

Define a function F (θ′, θ) = ∇θ′LFT(θ
′,DFT) +

1
γ (θ

′ − θ). The optimality condition implies that
F (θ∗FT, θ) = 0. Since θ∗FT is implicitly defined as a function of θ through this equation, we can apply
the Implicit Function Theorem (IFT) to compute how θ∗FT changes with respect to θ. Specifically, IFT
states that if F (θ′, θ) = 0 and ∇θ′F is invertible at θ∗FT, then:

∂θ∗FT

∂θ
= −

(
∂F

∂θ′

)−1

· ∂F
∂θ

(11)

We compute the two Jacobians of F as follows:

∂F

∂θ′
= ∇2

θ′LFT(θ
∗
FT,DFT) +

1

γ
I,

∂F

∂θ
= − 1

γ
I (12)

Substituting into Eq. (11), we obtain:

∂θ∗FT

∂θ
=

(
∇2

θ′LFT(θ
∗
FT,DFT) +

1

γ
I

)−1

· 1
γ
I (13)

Now consider the loss function Lharmful(θ
∗
FT). By the chain rule:

∇θLharmful(θ
∗
FT) =

(
∂θ∗FT

∂θ

)⊤

· ∇θ∗
FT
Lharmful(θ

∗
FT) (14)

Then, since the Jacobian matrix is symmetric (as it involves the inverse of a symmetric positive
definite matrix), we simplify:

∇θLharmful(θ
∗
FT) =

(
∇2

θ′LFT(θ
∗
FT,DFT) +

1

γ
I

)−1

· 1
γ
· ∇θ∗

FT
Lharmful(θ

∗
FT) (15)

Finally, multiplying both sides by the inverse term’s denominator yields:(
∇2

θ∗
FT
LFT(θ

∗
FT,DFT) +

1

γ
I

)
· ∇θLharmful(θ

∗
FT) =

1

γ
∇θ∗

FT
Lharmful(θ

∗
FT) (16)

Noting that θ′ is evaluated at its optimal value θ∗FT, we equivalently write ∇2
θ′LFT(θ

∗
FT,DFT) as

∇2
θ∗

FT
LFT(θ

∗
FT,DFT) for clarity. This concludes the derivation.

A derivation similar to ours was presented by Rajeswaran et al. [63] in the context of meta-learning.
Specifically, they model the lower-level transfer (or adaptation) step in meta-learning as a proximal
regularized optimization process, which is conceptually similar to our Moreau envelope-based
formulation. This allows them to compute the meta-gradients with respect to the meta-parameters
through implicit differentiation, a technique that shares structural similarity with our derivation
above. However, while the underlying mathematical tools overlap, our goals and problem settings are
fundamentally distinct. We provide more detailed discussions in Appendix D.
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A.2 Omitted Proof for Proposition 1

Proof. Prior works have shown that fine-tuning typically induces only small parameter changes to
the pretrained parameters [36]. Therefore, we regard the fine-tuned parameters as the pretrained
parameters plus a sufficiently small additive perturbation, i.e., θ∗FT = θ + ξ, where ξ = σz2. By the
second-order Taylor expansion around θ and dropping higher-order terms:

Lharmful(θ
∗
FT) = Lharmful(θ + ξ)

≈ Lharmful(θ) +∇θLharmful(θ)
⊤ξ +

1

2
ξ⊤∇2

θLharmful(θ)ξ. (17)

Because z is a unit random variable, we have E[z] = 0. Then, taking expectation over z, we obtain:

E [Lharmful(θ
∗
FT)− Lharmful(θ)] ≈ σ∇θLharmful(θ)

⊤E[z] +
σ2

2
E
[
z⊤∇2

θLharmful(θ)z
]

=
σ2

2
· E

[
z⊤∇2

θLharmful(θ)z
]
. (18)

To compute this expectation, we use the fact that for any symmetric matrix H and random vector z
with E[zz⊤] = 1

dI , we have:

E[z⊤Hz] = Tr(E[zz⊤]H) = Tr
(
1

d
I ·H

)
=

1

d
Tr(H). (19)

Applying this to H = ∇2
θLharmful(θ), we obtain:

E
[
z⊤∇2

θLharmful(θ)z
]
=

1

d
Tr

(
∇2

θLharmful(θ)
)
. (20)

Hence, substituting into Eq. (18), we obtain the following expression:

E [Lharmful(θ
∗
FT)− Lharmful(θ)] ≈

σ2

2d
· Tr

(
∇2

θLharmful(θ)
)
. (21)

Since the term σ2

2d is a constant independent of θ, minimizing the expected regained harmful loss is
equivalent to minimizing the trace of the Hessian matrix:

argmin
θ

E [Lharmful(θ
∗
FT)− Lharmful(θ)] ≈ argmin

θ
Tr

(
∇2

θLharmful(θ)
)
. (22)

Thus, we finished the proof.

Lharmful
LFT

θ∗
unlearn

θθ∗
FT

θ∗′

unlearn

θ∗′

FT

L

Fig. 6: Illustration of the impact of (benign)
fine-tuning on harmful loss for flat (left) and
sharp (right) minima.

Remarks & Discussions. Proposition 1 suggests that our
proposed additive term implicitly penalizes the trace of
the Hessian of the harmful loss near the unlearned model
parameters. In doing so, it encourages the optimization
process not only to minimize the harmful loss, but also
to favor solutions with flatter local geometry, i.e., regions
with lower curvature. This intuition is illustrated in Fig. 6.
While prior unlearning methods aim to reduce Lharmful,
they typically rely on standard SGD-based optimizers,
which are known to prefer sharp local minima [32]. As
a result, these methods may converge to parameter re-
gions such as θ′∗unlearn that, although locally optimal, are
highly sensitive to downstream perturbations. As a result,
even benign fine-tuning, which aims to optimize only the
benign loss LFT (i.e., aim to push θ′∗unlearn to θ′∗FT), may inad-
vertently push the model back into regions of high harmful
loss, reactivating undesired behaviors.

2Here, unlike many previous works that restrictively assume z to follow a specific distribution (e.g., Gaussian
or uniform on the sphere), or confining analysis to first-order approximations like the Neural Tangent Kernel
(NTK) [38], we only assume the additive perturbation is a scaled unit random variable, i.e., any distribution
satisfying E[z] = 0 and E[zz⊤] = 1

d
I , which is a milder and more flexible assumption.
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In contrast, our ResAlign method implicitly promotes flatter optima3 (e.g., θ∗unlearn in the figure). These
flatter solutions are more resilient to subsequent fine-tuning: local updates to minimize LFT induce
smaller changes in Lharmful, thereby reducing the risk of unlearning failure. This perspective suggests
that the fragility of prior unlearning methods may arise not from the nature of the downstream data
itself, but from the sharpness of the solutions they converge to.

With that being said, we acknowledge that our proposition, like other analyses based on Taylor
expansions and additive perturbation models [30, 11], may become less accurate in scenarios involving
large parameter shifts (e.g., very large learning rates or very long fine-tuning schedules), or when
the perturbation lacks a well-behaved distribution. Nonetheless, in practice, particularly in the
diffusion model fine-tuning setting, small learning rates and moderate step sizes are commonly used
to preserve generative quality and prevent overfitting [69], which supports the validity of the small
perturbation assumption. Moreover, since our meta-learning process is performed over diverse data
sampling and configurations, modeling ξ as an isotropic random variable is a reasonable abstraction.
As one of the earliest attempts to theoretically understand the interplay between unlearning and
subsequent fine-tuning, our analysis is meant to provide a qualitative, approximate explanation rather
than definitive conclusions. We hope our work can inspire the community to pursue deeper and
more precise theoretical investigations into the robustness of unlearning under realistic deployment
conditions.

B Detailed Experimental Settings

B.1 More Details on Unlearned Models

In our main experiments, we evaluate our method against 6 text-to-image diffusion models, including
the vanilla Stable Diffusion v1.4 [67] and 5 state-of-the-art baselines for unsafe concept erasure: ESD
[13], SafeGen [43], AdvUnlearn [83], and two variants of LCFDSD [56] (i.e., LCFDSD-NG and
LCFDSD-LT). Below are brief introductions and implementation details of these unlearned models:

• SD v1.4 [6]: Stable Diffusion (SD) v1.4 is a classical text-to-image latent diffusion model trained
on the LAION-2B-en dataset, a large-scale web-scraped collection of image-text pairs. While
this dataset enables the model to learn a broad range of visual concepts, it has only undergone
rudimentary filtering. As a result, it contains a significant amount of inappropriate content, which
can lead the model to reproduce or amplify harmful or undesired concepts during generation [70],
making it suitable to serve as a valuable baseline for evaluating text-to-image models’ inherent
toxicity [83, 70]. In our experiments, we directly use the model checkpoint provided by CompVis4.

• ESD [13]: ESD is a concept erasure method that fine-tunes the text-to-image diffusion model’s
weights to unlearn undesired concepts by matching the noise of the target concept to that of
the negative guidance noise. In our main experiments, we directly use its provided pretrained
“diffusers-nudity-ESDu1-UNET.pt” checkpoint5, which have unlearned the nudity concept from
the SD v1.4 model, for evaluation.

• SafeGen [43]: SafeGen is a vision-only unlearning method that specifically targets the sexual
category. It works by fine-tuning the diffusion model’s self-attention layers using an unsafe-blurred
image dataset to mosaic unsafe generation. In our work, we directly load their officially released
SafeGen-Pretrained-Weights model hosted on HuggingFace via DiffusionPipeline for evaluation6.

• AdvUnlearn [83]: AdvUnlearn is currently the state-of-the-art safety-driven unlearning method to
defend against adversarial prompts. It is built upon the unlearning loss of ESD and additionally in-
corporate an adversarial training paradigm to discover and defend against adversarially perturbed un-
safe concepts. In our experiments, we directly load the “AdvUnlearn_Nudity_text_encoder_full.pt”

3Note that the trace in Proposition 1 represents the sum of the eigenvalues of the Hessian of the harmful loss.
Therefore, the minimizer of this trace does not necessarily indicate the curvature to be uniformly small across
all directions. It could also some eigenvalues significantly positive or negative as long as their sum remains
small. However, since our meta-learning process simulates and optimizes over multiple directions of fine-tuning
updates, we expect that the obtained solution corresponds to a region where the harmful gradients are relatively
small, at least along the meta-learned directions.

4https://huggingface.co/CompVis/stable-diffusion-v1-4
5https://erasing.baulab.info/weights/esd_models/NSFW/
6https://huggingface.co/LetterJohn/SafeGen-Pretrained-Weights
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checkpoint released by the authors7, which erases sexual-related concepts by fine-tuning the text
encoder of the Stable Diffusion v1.4 model for evaluation.

• LCFDSD [56]: LCFDSD is a safety-driven unlearning method designed to defend against harmful
fine-tuning, with the goal of mitigating the resurgence of unsafe behaviors when a model is
subsequently fine-tuned on harmful data. The method is motivated by the insight that increasing
the separation between the latent distributions of clean and harmful data can make it more difficult
for the model to learn unsafe content. To achieve this, LCFDSD fine-tunes the original diffusion
model using a distribution separation loss, coupled with an additional KL regularization loss. The
original paper proposes two variants for implementing the distribution separation loss: Noise
Guidance (NG) and Latent Transformation (LT). We reproduced the results using the official
code provided by the authors8. Specifically, we adopted the “Safety Reinforcement” setting
described in their paper, which initializes the model with an unlearned checkpoint provided by
ESD (“diffusers-nudity-ESDu1-UNET.pt”), and then applies NG and LT for further training.

B.2 More Details on Fine-tuning Datasets & Methods

Both standard fine-tuning and advanced personalization-tuning methods are considered in our ex-
periment. For standard fine-tuning, three datasets are involved: DreamBench++ [57], DiffusionDB
[75], and Harmful-Imgs [56]. Besides, for advanced personalization-tuning, Pokémon [65], Dog [57],
ArtBench [46], and VGGFace2-HQ [4] are utilized. Below are their details:

• DreamBench++ [57]: DreamBench++ is a recently introduced dataset specifically designed for
evaluating personalized generation. It consists of 360 high-quality, novel text-image pairs collected
from various real-world platforms, such as objects, living subjects, and artistic styles that did
not or barely appeared in the pretraining dataset of SD. These pairs can be used for downstream
fine-tuning to enable text-to-image diffusion models to learn and generate novel concepts (i.e.,
customized generation), such as new objects and unique styles. In our experiments, we aim to
simulate a general, benign novel concept learning scenario, so we randomly sample 100 images
from the “human” and “style” categories, respectively. The DreamBench++ dataset is certified to
contain no harmful images (e.g., sexually explicit content) by the publisher [57].

• DiffusionDB [75]: DiffusionDB is a large-scale dataset constructed from real-world user in-
teractions on public Stable Diffusion Discord channels. It comprises 14 million high-quality,
human-authored text-image pairs that reflect authentic user preferences and cover a broad spectrum
of content, including photorealistic portraits, real-world objects, and stylized, dreamlike imagery.
We select 100 text-image pairs from the dataset for our fine-tuning evaluation.

• Harmful-Imgs [56]: Harmful-Imgs is a dataset composed of 452 sexually explicit text-image pairs.
Introduced in prior work [56], it is primarily used to simulate harmful fine-tuning scenarios in
diffusion models, where the downstream dataset is contaminated with inappropriate data. In our
experiments (Fig. 4), we randomly sample sexually explicit images from this dataset and use them
to replace clean images in the first two datasets (i.e., DiffusionDB and DreamBench++) at varying
contamination ratios ranging from 0% to 100%. This setup allows us to simulate different levels
of harmful data injection, enabling controlled evaluation of a model’s resilience and safety under
compromised fine-tuning conditions.

Besides standard fine-tuning, we also evaluate ResAlign on advanced personalization datasets and
methods, introduced as follows:

• Pokémon [65]: Pokémon contains 833 high-quality images of Pokémon characters, and each
image has a corresponding text caption generated by caption model BLIP [42]. In our experiments,
we use LoRA [24] to fine-tune the diffusion model to learn the styles from the Pokémon dataset.
The configurations follow the official script provided by HuggingFace9. After fine-tuning, the
personalized model can generate images in Pokémon anime style.

• Dog [69]: Dog contains a set of 5 images of dogs in a specific breed that is not present in the
original SD’s training dataset. In our experiments, we use DreamBooth [69] to fine-tune the

7https://github.com/OPTML-Group/AdvUnlearn
8https://github.com/matrix0721/LCFDSD
9https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py
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diffusion model and learn the characteristics of this specific dog. The configurations follow the
official script provided by HuggingFace10. After personalization learning on this dataset, the model
is able to generate this specific dog with a special identifier (e.g., “a [V*] dog”).

• ArtBench [46]: ArtBench is a dataset consisting of 60,000 artworks spanning 10 distinct artistic
styles and genres. It is widely used to evaluate a model’s ability to learn and generate images
in specific artistic styles. In our experiments, we use CustomDiffusion [36] to fine-tune the
diffusion model on ArtBench. The training configurations follow the official script provided by
HuggingFace11. Following the recommendations, we randomly sample 50 images from the same
genre to serve as the training data. We repeat the process with three randomly selected genres and
report the average performance across them. After learning on this dataset, the model is able to
generate images in the same artistic style with a special identifier (e.g., “an artwork in [V*] style”).

• VGGFace2-HQ [4]: VGGFace2-HQ is a high-quality human face dataset derived from the original
VGGFace2. It contains a diverse set of identities with high-resolution facial images and is commonly
used to evaluate personalized face generation and identity preservation capabilities in generative
models. In our experiments, we use SVDiff [20] to fine-tune the diffusion model on VGGFace2-
HQ. The training configurations follow the official script provided by the paper’s authors12. The
resulting model learns to generate identity-specific faces, i.e., “a [V*] face” will generate a face
that closely resembles a particular identity in the training dataset. The reported results are averaged
across three randomly selected identities.

B.3 More Details on Evaluation Metrics

In our experiments, we adopt a comprehensive set of metrics to evaluate the performance of unlearned
models across three key dimensions: safety, benign generation quality, and personalized generation
capability. First, to assess a model’s unsafe generation tendency, we use two metrics: Inappropriate
Rate (IP) and Unsafe Score (US). Below are their introduction and implementation details:

• IP [70]: Inappropriate Rate (IP) is calculated by generating images using prompts from the I2P
dataset [70]. I2P consists of prompts collected from real-world online forums, where users shared
prompts that happened to generate harmful images. Notably, only about 1.5% of the full set of
4702 prompts are explicitly labeled as toxic as analyzed in [70], indicating that the harmfulness
often stems from the model’s own unsafe generalization rather than from obviously unsafe inputs.
In our main paper, we focus on the sexual category within I2P, selecting all 931 relevant prompts.
The IP score is then defined as the average proportion of images flagged as inappropriate across all
generated images. A lower IP indicates lower risk of generating harmful content.

• US [61]: Unsafe Score (US), on the other hand, is evaluated using prompts from the Unsafe dataset
[61], with outputs assessed by a pretrained NSFW classifier MHSC [61]. The overall procedure is
similar to the evaluation of IP. Note that the original Unsafe dataset is not classified into different
categories. To focus on the sexual category, we filter the dataset by generating images for each
prompt and select a subset of 200 prompts that have the highest averaged sexually unsafe probability
as rated by MHSC. This subset is used in our experiments to evaluate the unsafe score.

Second, we evaluate the model’s ability to generate general benign content using three widely adopted
metrics computed on the COCO dataset [3]. To ensure reproducibility and reduce computational
overhead, we follow Zhang et al. [83] and adopt their publicly released subset of 10,000 randomly
sampled text-image pairs from COCO for evaluation.

• FID [21]: Fréchet Inception Distance (FID) measures the distributional distance between generated
and real images. A lower FID score indicates higher realism and visual quality. For each text–image
pair in the evaluation set, we use the caption to generate an image with the evaluated model, and
compute the FID between the generated and corresponding ground-truth images. This metric
quantifies how well the unlearned model retains its ability to produce realistic, benign content.

• CLIP Score [62]: The CLIP score assesses semantic alignment between generated images and their
text prompts using the CLIP model [62]. A higher score indicates stronger text–image consistency.

10https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py
11https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion/train_custom_diffusion.py
12https://github.com/mkshing/svdiff-pytorch/blob/main/train_svdiff.py
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We use the same 10,000 captions as in the FID computation, generate corresponding images, and
calculate the average cosine similarity between CLIP embeddings of each image–caption pair.

• Aesthetic Score [37]: The aesthetic score evaluates visual appeal using a pretrained neural aesthetic
predictor trained on human-labeled preferences. Higher scores correspond to greater visual quality
and human alignment. Following the same evaluation protocol, we generate 10,000 images and
compute their aesthetic scores. The final score is obtained by averaging over all generated images.

Finally, to evaluate the model’s performance in generating personalized content after fine-tuning, we
adopt the following metrics:

• CLIP-I and CLIP-T [69]: These two metrics are widely used to evaluate the quality of personalized
generation. CLIP-I measures the semantic similarity between the generated image and the reference
images (i.e., the training set images), while CLIP-T assesses the alignment between the generated
image and its associated textual prompt. A higher CLIP-I score indicates better identity/feature
preservation, whereas a higher CLIP-T score reflects stronger text-image alignment, suggesting
better text controllability and reduced overfitting to visual appearance alone. The evaluation
prompts and protocols follow the DreamBooth paper [69].

• DINO Score [55]: DINO score is a recent metric derived from self-supervised vision transformers.
It measures feature-level similarity between generated and reference images, and is particularly
useful for capturing fine-grained structural and identity details in personalized generation tasks.

These metrics offer a comprehensive evaluation of the unlearned model’s behavior across safety,
general generation quality, and personalized fine-tuning effectiveness. Overall, a model with higher
CLIP Score, Aesthetic Score, CLIP-I, CLIP-T, and DINO Score, and lower IP, US, and FID is favored,
as it indicates better ability in generating fidelity-preserved, human preference-aligned general images,
stronger personalized generation capability, and reduced risk of producing harmful or unsafe content.

B.4 More Implementation Details

We used three datasets for training ResAlign, each serving a distinct objective. First, the harmful
dataset Dharmful is used to compute the harmful loss Lharmful. We constructed this dataset by selecting
150 unsafe prompts from existing unsafe datasets (e.g., NSFW-56k [43]). Second, the preservation
dataset Dpreserve is used to compute the regularization term R(θ). For this dataset, we selected 140
benign prompts from COCO-Objects and CelebA-HQ. Finally, to simulate downstream fine-tuning
data, we constructed the fine-tuning simulation dataset DFT by randomly sampling 100 prompts from
a prompt pool selected from DiffusionDB, NSFW-56k, and Dharmful. For all datasets, we generated
corresponding images for each prompt to form text–image pairs. We manually refined and reformatted
some prompts to ensure consistency across all datasets. Notably, DiffusionDB is utilized in multiple
contexts throughout our work. To avoid data leakage and overfitting, we manually verified that there
is no overlap between any of the subsets used for different purposes. Additionally, gradient clipping
and adaptive hyperparameter scheduling are also used to stabilize training.

For evaluation, unless otherwise stated, our fine-tuning is based on the official script provided by
diffusers13, whose default configuration is full-parameter fine-tuning on the UNet parameters with
learning rate of 1× 10−5, a batch size of 1, and training step of 200, using AdamW [50] optimizer
with default hyperparameters. For methods such as AdvUnlearn and Receler, where the unlearning
is performed on modules (e.g., text encoder or auxiliary adapters) rather than on the UNet, we
include these modules during downstream fine-tuning as well. This ensures a fair and comprehensive
assessment of each method’s worst-case resilience.

C More Experimental Results

C.1 Results on Adversarial Attacks & Potential Adaptive Attacks

While defending against adversarial attacks and adaptive attacks is not the primary focus of this work,
we evaluate ResAlign’s effectiveness when faced with several well-established attack strategies for
unlearned diffusion models and explore a potential adaptive attack strategy to understand whether
ResAlign can be easily bypassed or compromised with minimal effort.

13https://github.com/huggingface/diffusers/blob/main/examples/text_to_image
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Results on Existing Adversarial Attacks. We first evaluate the robustness of ResAlign against
several existing adversarial attacks, including SneakyPrompt [79], MMA-Diffusion [77], and Unlearn-
DiffAtk [84], which is specifically designed against unlearned diffusion models. To comprehensively

Tab. 10: Evaluation on existing adversarial attacks.

Attack ESD AdvUnlearn Ours

SneakyPrompt 13.78% 3.57% 0.51%
MMA-Diffusion 26.00% 1.60% 1.50%
UnlearnDiffAtk 83.05% 24.58% 33.90%

assess robustness under different threat models,
we consider both black-box and white-box sce-
narios. In the black-box setting, we directly
utilize the adversarial prompt benchmarks from
SneakyPrompt and MMA-Diffusion. For each ad-
versarial prompt, we generate 3 images using the
target model. A prompt is considered successful if at least one of the generated images is flagged as
unsafe by the NudeNet detector. We follow prior work [77] and report the metric ASR-3, defined as
the percentage of prompts for which at least one unsafe image is produced. In the white-box setting,
we adopt the evaluation protocol of UnlearnDiffAtk [84], which involves using gradient information
from the unlearned model to iteratively optimize adversarial prompts for maximum reactivation
of harmful behaviors. This allows us to assess ResAlign’s robustness under a strong, white-box
adversarial setup, and we report the ASR metric, evaluated as the ratio of final successful optimized
prompts as rated by NudeNet detector. As shown in Tab. 10, although ResAlign is not specifically
designed to defend against adversarial prompts, it achieves a high level of robustness. Our method
significantly outperforms ESD and is even comparable to AdvUnlearn, the state-of-the-art approach
explicitly targeting adversarial prompt defense. Moreover, it is feasible to combine AdvUnlearn with
our ResAlign unlearned model, which we verify can reduce the attack success rate of UnlearnDiffAtk
to 8.47%. We will extend our method to defend against adversarial prompts in our future work.

Discussion on Adaptive Attacks. We further investigate whether ResAlign can be bypassed by
adaptive strategies. Intuitively, ResAlign constrains the local loss landscape around the current
unlearned parameters (see Eq. 5 and Proposition 1), which weakens harmful-gradient signals under
fine-tuning. We thus evaluate two representative adaptive strategies that aim to escape this subspace.

First, we study a parameter-space escape attack, which augments the downstream fine-tuning ob-
jective with a term that actively pushes parameters away from the current solution: Ladaptive(θ

′) =
LFT(θ

′;DFT) − λ∥θ′ − θ∥p, where we consider p ∈ {1, 2} and set λ = 0.5. The intuition is that
Tab. 11: Results of the parameter-space escape attack.
The reported metric is IP after fine-tuning.

Setting DreamBench++ DiffusionDB Harmful-Imgs

p = 1 0.0294 0.0523 0.2381
p = 2 0.0283 0.0512 0.2402

by encouraging the optimizer to move far from
θ, the model may escape the resilient region
induced by ResAlign and thus recover harmful
capability. However, as shown in Tab. 11, both
variants fail to meaningfully bypass ResAlign,
as their IP scores remain largely comparable to
those obtained from standard fine-tuning.

Second, we evaluate a progressive relearning attack inspired by [17], which hypothesizes that gradu-
ally exposing the model from clean to increasingly unsafe data may reopen memory pathways and
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Fine-tuning Steps
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0.3
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Ours

Fig. 7: Evaluation results of the
progressive relearning attack.

strengthen recovery. To simulate this, we split the 200-step fine-
tuning into 4 equal stages: the first two use benign datasets (Dream-
Bench++ and CelebA-HQ), the third stage uses a relatively safer
subset of Harmful-Imgs (bottom 50% as ranked by NudeNet), and
the final stage uses the full Harmful-Imgs set. As shown in Fig. 7, we
observe that while this strategy brings better IP increase than single
datasets, the IP does not substantially increase until the final stage
where explicit harmful images are introduced, indicating the pro-
gressive schedule alone cannot meaningfully circumvent ResAlign
without access to sufficient harmful data. Overall, we conclude that
it is non-trivial to effectively bypass ResAlign through simple adaptive modifications to the loss
function or data exposure schedule in the absence of sufficient harmful data.

C.2 Comparison with Additional Baselines.

To further strengthen our evaluation, we additionally compare ResAlign with 3 recent unlearning
methods: RACE [33], RECE [18], and Receler [25]. As summarized in Tab. 12, while these
methods achieve strong pre-fine-tuning safety performance, they consistently exhibit noticeable
rebounds in toxicity after downstream fine-tuning on both DreamBench++ and DiffusionDB. Two key
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observations can be drawn from these results. First, the post-fine-tuning safety degradation remains
a universal issue across all evaluated methods, including these newly proposed ones, suggesting
that current unlearning methods generally lack resilience under downstream fine-tuning. Second,

Tab. 12: Comparison with additional base-
lines. We report the results averaged over
three independent runs. The metric is IP.

Method No FT DreamBench++ DiffusionDB

RACE 0.031 0.127 0.217
RECE 0.043 0.074 0.116
Receler 0.063 0.142 0.183

stronger pre-fine-tuning safety does not necessarily imply
better post-fine-tuning resilience. For example, RACE
achieves low initial IP but suffers notable safety deterio-
ration after fine-tuning. These findings further corroborate
our central conclusion: existing unlearning approaches
primarily optimize for immediate safety rather than long-
term resilience, underscoring the importance of developing
frameworks like ResAlign that explicitly address this gap.
We hope these results can inspire future work toward more resilient safety alignment methods.

C.3 More Ablation Study & Hyperparameter Analysis Results

Effect of Meta Learning. To further verify the effectiveness of our meta-learning design, we
conduct an ablation study by varying the diversity of fine-tuning algorithms used during meta-training.

Tab. 13: Effect of meta-learning. The metric is IP.

Training Config Full Param. LoRA LyCORIS SVDiff

Full Param. only (w/o ML) 0.028 0.084 0.074 0.043
LoRA only (w/o ML) 0.096 0.045 0.069 0.047
Full Param. + LoRA (w/ ML) 0.030 0.051 0.054 0.036

Specifically, we train ResAlign with and
without meta learning, yet with different
parameter selection schemes. The results
are summarized in Tab. 13. From these
results, two insights can be drawn. First,
without meta-learning, ResAlign tends to
overfit to the specific fine-tuning algorithm seen during training. For example, although LoRA and
LyCORIS share similar structures, a model trained only on LoRA performs poorly when applied
to LyCORIS, consistent with prior findings that single-configuration hypergradients can overfit to
local settings [49, 44]. Second, incorporating multiple configurations during meta-learning (e.g., Full
Param. + LoRA) not only improves in-distribution performance but also enhances cross-algorithm
generalization, even to unseen fine-tuning methods such as SVDiff. These results confirm that
meta-learning effectively mitigates overfitting and yields more generalizable hypergradients.

Effect of β. We further study the effect of the regularization weight β, which controls the relative

Tab. 14: Effect of β. The metric is IP after fine-tuning.

β 0.1 0.3 0.5 0.7 0.9 1.0

DreamBench++ 0.094 0.038 0.046 0.018 0.017 0.160
DiffusionDB 0.181 0.096 0.069 0.083 0.061 0.241

strength of the resilience regularization
term in ResAlign. As shown in Tab. 14,
a very small β leads to insufficient regu-
larization, whereas an excessively large β
(close to 1.0) may cause the model to over-
look current harmfulness signals and lead
to unstable training. Nevertheless, ResAlign remains robust within a wide and practical range
(e.g., β ∈ [0.3, 0.9]), consistently achieving strong safety performance on both DreamBench++ and
DiffusionDB. This demonstrates that ResAlign is not overly sensitive to the choice of β.

0 1 2 3 4
Regularization Strength ( )

0.05

0.10

IP

Fig. 8: Effect of γ.

Effect of γ on DiffusionDB dataset. In the main paper, we evaluated the
impact of different values of γ on our ResAlign’s performance using the
DreamBench++ dataset. In this section, we also conduct the ablation study
on the DiffusionDB dataset. As shown in Fig. 8, a similar trend is observed
on the DiffusionDB dataset. This supports our conclusion that ResAlign
achieves stable resilience to downstream fine-tuning across a wide range of
γ values, indicating that ResAlign is not overly sensitive to the choice of this hyperparameter.

C.4 Computational Efficiency

Tab. 15: Comparison of computational cost.
Method Avg. VRAM (GB) Training Time (min)

ESD 12.4 14.3
AdvUnlearn 29.4 210.3
LCFDSD-NG 20.3 38.4
Meta-Unlearning 35.7 725.4
ResAlign (Ours) 25.4 58.2

We further compare the computational cost of
ResAlign with representative baselines in terms
of both training time and average GPU mem-
ory usage. As shown in Tab. 15, our method
achieves a favorable balance between efficiency
and performance. Specifically, ResAlign re-
quires comparable average memory to most full-
parameter fine-tuning baselines (e.g., LCFDSD-NG). Notably, although our peak GPU memory
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usage temporarily doubles (compared to average GPU memory usage) during Hessian-vector product
computation, this overhead occurs only briefly. Overall, ResAlign remains computationally practical
and well-suited for real-world unlearning applications.

D More Related Work

D.1 Flat-Minima Optimization and Hessian Trace Regularization

As discussed in Proposition 1, our ResAlign implicitly imposes a regularization on the trace of the
Hessian of the harmful loss, possibly encouraging the model to converge to flatter regions of the
loss landscape. This connects our work to the broader literature on Hessian-based regularization and
flat-minima optimization, which has been broadly studied in optimization and generalization theories.

Classical approaches such as Hutchinson’s estimator [29], Lanczos approximation [72], and Cheby-
shev polynomial methods [9] have been proposed to approximate or minimize the trace of the Hessian.
These techniques have found applications in diverse areas including convex optimization and phys-
ical simulation. However, they typically rely on stochastic or numerical estimators that are either
non-differentiable or computationally intensive to differentiate through, making direct optimization
of the Hessian trace largely impractical for modern large-scale neural networks.

In deep learning, several works have explored indirect flatness optimization, such as Sharpness-Aware
Minimization [11] and Entropy-SGD [2], which aim to improve generalization by favoring flat
minima in the loss landscape. Yet, they are primarily designed for classification tasks and have not
been extensively studied for diffusion models or investigated from the perspective of safety resilience.

Our work differs in both motivation and mechanism. Rather than explicitly minimizing the Hessian
trace or relying on costly curvature estimation, ResAlign achieves a similar flatness-inducing effect
implicitly through a simple resilient unlearning objective. This design efficiently regularizes the
harmful loss landscape toward flatter regions without introducing direct Hessian computations,
making it particularly well-suited for large-scale diffusion models and safety-driven unlearning.

D.2 Meta Learning and Bi-level Optimization

Meta-learning, or “learning to learn,” is a classical paradigm in machine learning that aims to
train a meta-model capable of rapidly adapting to new tasks with limited data [10, 63]. The high-
level idea is to learn across multiple tasks such that the resulting meta-parameters encode general
learning dynamics that transfer efficiently to unseen scenarios. Unlike conventional meta-learning,
whose primary goal is to improve few-shot adaptation, our work leverages meta-learning to enhance
the generalizability of hypergradient estimation and to mitigate overfitting to a specific simulated
fine-tuning configuration.

Meta-learning can also be formulated as a bi-level optimization problem, where the outer optimization
updates the meta-parameters to achieve better generalization across tasks, and the inner optimization
represents task-specific adaptation. From this perspective, our framework is closely related to bi-level
optimization and its variants that estimate the hypergradient (or “meta-gradient”) connecting the two
levels. A central challenge in such formulations lies in efficiently computing this hypergradient. To
address this, prior works have developed approximate implicit differentiation (AID) methods that
estimate gradients through the optimality condition of the inner problem [19, 31]. Our method can be
viewed as a special instance of AID derived under the Moreau envelope-based reformulation, which
enables efficient hypergradient estimation without unrolling fine-tuning trajectories.

As acknowledged in Appendix A, iMAML [63] is, to the best of our knowledge, the most technically
related prior work to ours, which also introduces a proximity term in the inner optimization to
regularize the update w.r.t. the base parameters. However, our work differs in two key aspects. First,
the optimization objective fundamentally diverges: iMAML aims to improve few-shot generalization,
whereas we aim to mitigate the recovery of harmful behaviors during downstream fine-tuning. Second,
iMAML requires explicitly enforcing the proximity term during the inner optimization of each fine-
tuning task, which inherently constrains the optimization dynamics of the lower-level task. In contrast,
our method does not require any modification to the downstream fine-tuning loss. Instead, we treat
the fine-tuned model as the minimizer of an ME objective when estimating the hypergradient. This
design, facilitated by the properties of diffusion models (see more analyses in Appendix E.1), allows
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ResAlign to impose no constraints on the choice of downstream loss, making it broadly applicable.
Beyond these key aspects, our work also differs in the technique for solving the linear system, and
has proposed a cross-configuration meta learning technique.

D.3 Defending against Harmful Fine-tuning

The degradation of safety alignment after downstream fine-tuning has recently emerged as an
important and actively studied phenomenon. Most existing research [26, 23, 68, 73, 28, 27] focuses
on large language models, where researchers have explored various strategies to mitigate such
degradation, including interventions during pretraining, safety-aligned fine-tuning, and controlled
data filtering or objective design. Among them, Booster [28] is most relevant to our work, which
works by estimating the effect of a single-step harmful fine-tuning update on model safety and
employs a first-order approximation to compute a defensive gradient update.

In contrast, research on defending against harmful fine-tuning in diffusion models remains largely
underexplored. To the best of our knowledge, besides the methods discussed in Sec. 2 (e.g., LCFDSD),
the concurrent work Meta-Unlearning [15] is also directly related to our scenario. Additionally, while
works such as IMMA [85] and SOPHON [8] were originally developed for preventing diffusion
models from learning specific tasks or concepts, their underlying mechanisms can also be adapted to
enhance resilience against safety degradation after fine-tuning.

The key distinction between our approach and these existing methods lies in how the hypergradient is
estimated and how the downstream fine-tuning configurations are selected. Specifically, our frame-
work introduces (i) a principled implicit differentiation based on the Moreau envelope approximation,
and (ii) cross-configuration generalization via meta-learning. These two components jointly enable
ResAlign to more accurately capture the higher-order interactions between model parameters and
downstream fine-tuning dynamics, leading to improved resilience against harmful behavior recovery.
We provide further discussion and experimental comparisons in Appendix E.1 and Sec. 5.

E More Discussion

E.1 Discussion on Other Approximations

In this section, we discuss our choice of the Moreau envelope–based approximation for estimating
the hypergradient. In our early trials, we also explored several other viable alternatives. The first
is the first-order approximation widely adopted by previous works [85, 28, 15, 8], which directly
assumes the Jacobian satisfies ∂θ∗

FT
∂θ ≈ I , thus simplifying the hypergradient as ∇θLharmful(θ

∗
FT) ≈

∇θ∗
FT
Lharmful(θ

∗
FT). Although computationally efficient, this approach yields substantially degraded

performance compared to our ME method (IP: 0.16 vs. 0.07 on DiffusionDB), as it neglects the
higher-order interactions between base and fine-tuned parameters. Besides, we also considered
unrolled differentiation [51], which computes the hypergradient by backpropagating through the
full fine-tuning trajectory. While theoretically accurate, it is computationally prohibitive for large
diffusion models. For instance, on SD v1.4, a single A100 GPU can only unroll up to 3 steps, far
too few to capture meaningful fine-tuning dynamics. Finally, our ME-based approximation models
the fine-tuned parameters as the minimizer of a ME objective and applies implicit differentiation to
estimate the hypergradient by solving a linear system via Richardson iteration. This approach only
requires access to the final fine-tuned model, making it configuration-agnostic and highly scalable.
Empirically, it is nearly as fast as the first-order method (approximately 58 min vs. 50 min) but
delivers much better alignment performance. We thus finally adopt ME-based approximation.

One key underlying insight behind our ME-based approximation is that pretrained diffusion models
typically require only small parameter updates to adapt to downstream tasks [36], and in some cases
(e.g., Textual Inversion [12]), updating even a single embedding can suffice. Hence, viewing the
fine-tuned model as the minimizer of a task-specific objective regularized by proximity to the base
model aligns closely with the real fine-tuning behavior of modern diffusion models. This makes our
approach both practical and theoretically well-suited for this defense scenario.
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E.2 Discussion on the Diversity of Meta Learning Configurations

A key principle underlying our design is to maintain both the dataset and configuration pool as
diverse and representative as possible, which is crucial for the meta-learned update to generalize to
unseen fine-tuning scenarios. This motivates us to propose the meta-learning technique. Currently,
our implementation of ResAlign serves as a prototype to validate the effectiveness of the proposed
meta-learning mechanism, and we adopt several representative fine-tuning configurations widely used
in the diffusion community, such as standard LoRA-based and DreamBooth-style setups. This already
provides strong generalization across real-world downstream tasks without evident overfitting (e.g.,
anime style transfer, object and face personalization, and art style learning, as shown in Tab. 1-4).
Moreover, our framework is flexible-users can readily customize the dataset and configuration pool to
better match their target domain. For instance, in avatar personalization tasks that primarily involve
human faces and small learning rates, incorporating more face-related data and sampling smaller
learning-rate configurations during meta-learning would likely yield better results.

To validate whether enriching configurations enhance our generalization, we have expanded our
configuration pool to include a broader range of fine-tuning algorithms (e.g., LoRA with varying
hyperparameters, LyCORIS, and QLoRA) and objective functions (e.g., SVDiff and CustomDiffu-
sion losses). This integration is straightforward since our ME-based estimation only requires the
final fine-tuned model, imposing no assumptions on the underlying optimization or configuration.
Preliminary results indicate that this extension can further improve robustness—for instance, on
DoRA+DiffusionDB, the updated model achieves an improved post-fine-tuning IP of 0.048 compared
to 0.069 in the original setup. Future work can further expand the meta-learning pool and systemati-
cally investigate the interactions among different fine-tuning configurations, which may lead to even
more effective and broadly generalizable meta-learned updates in ResAlign.

E.3 Discussion on ResAlign’s Effectiveness on Contaminated Data

Recall that our experiments in Fig. 4 show that ResAlign can also mitigate harmfulness rebound even
when exposed to contaminated or harmful data during downstream fine-tuning. This phenomenon can
possibly be theoretically explained by Proposition 1, which shows that ResAlign effectively imposes
a penalty on the trace of the Hessian (i.e., the second-order derivatives) of the harmful loss with
respect to model parameters. Intuitively, this encourages the model to converge to a locally flatter
region of the loss landscape for the harmful objective. Ideally, around the optimized parameters, the
first-order gradients of the harmful loss would be small in most directions. Consequently, even when
the model encounters harmful samples, the gradient signals that could re-enable harmful behaviors
remain weak, making it difficult for downstream fine-tuning to substantially increase harmfulness. In
practice, achieving a perfectly flat region where all harmful gradients vanish is largely unrealistic due
to the stochasticity of diffusion training and the high-dimensional landscape. Nonetheless, ResAlign
empirically suppresses the harmful recovery to some extent, as reflected by the consistently lower IP
observed even under contaminated conditions.

E.4 On Instance-level and Concept-level Unlearning

Our work focuses on safety-driven unlearning, which aims to reduce model toxicity and unsafe
generations. In the existing literature, such unlearning can be achieved through two complementary
paradigms: (i) instance-wise unlearning [56, 43], which directly unlearns certain unsafe instances
from the model (e.g., through gradient ascent or reinforcement learning-based preference optimization
on a collected dataset), and (ii) concept-level unlearning [13, 14], which suppresses specific semantic
concepts (e.g., “nudity” or “violence”) by aligning or perturbing their corresponding representations.
While these two strategies differ in implementation, both have been shown to effectively mitigate
harmful behaviors and can generalize to unseen unsafe prompts. For example, our evaluation
metrics (i.e., IP and US) are measured on prompts completely disjoint from the training set, yet both
instance-level and concept-level approaches substantially reduce unsafe generations, suggesting that
instance-level unlearning can also imply broader concept-level mitigation.

Importantly, our proposed ResAlign framework is loss-agnostic and can seamlessly incorporate either
instance-level or concept-level unlearning objectives. As reported in Tab. 9, applying ResAlign on
concept-level losses can also improve their post-fine-tuning safety, demonstrating that our framework
generalizes across unlearning paradigms. Moreover, our experiments reveal that all existing unlearn-
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ing baselines suffer from a significant safety drop after downstream fine-tuning, regardless of the
paradigm of their unlearning objectives. This observation highlights a fundamental and underexplored
challenge in safety-driven unlearning, i.e., the lack of resilience to downstream adaptation, which
ResAlign takes an early yet meaningful step toward addressing.

E.5 Discussion on Side Effects and Artifact Patterns

While ResAlign achieves strong safety resilience, we also observe several characteristic failure
patterns associated with the use of the GA loss for unlearning. Specifically, GA may induce over-
rejection behaviors, where the model rejects prompts that are safe in intent but semantically similar
to unsafe ones seen during unlearning. Importantly, this phenomenon is not necessarily detrimental.
In some cases, even semantically safe prompts can inadvertently yield unsafe generations, and such

(a)-(b) muscle-like distortions 
on human bodies

(c)-(d) globally incomplete 
denoising

(e)-(f) global grid-shaped 
destructive streaks

(g)-(h) localized wavy or 
scale-like mosaic patterns

Fig. 9: Visualization results on rejection ar-
tifact patterns observed in our experiments.

conservative refusal can effectively prevent these failures
from occurring. Besides possible over-rejection, during
repeated experiments, we find that even under identical
configurations, the rejection patterns may vary across train-
ing runs. As shown in Fig. 9, besides the global wavy or
scale-like mosaic artifacts across the entire image as shown
in Fig. 1, typical artifact patterns also include (but are not
limited to): (a)–(b) muscle-like distortions on human bod-
ies, (c)–(d) incomplete global denoising, (e)–(f) wave- or
grid-shaped destructive streaks, (g)–(h) localized wavy
or scale-like mosaic patterns on human bodies. While
these artifacts effectively suppress unsafe content, we ac-
knowledge that some of them may negatively impact user
experience or even cause discomfort (e.g., for individuals with trypophobia). Thus, we strongly
encourage practitioners to consider this side effect brought by GA, and carefully evaluate model
behaviors before real-world deployment. User discretion is also recommended.

For users who prefer safer yet more visually coherent outputs, substituting the GA-based loss with a
milder unlearning objective (e.g., ESD’s loss) can alleviate such over-rejection behaviors, as even
rejected attempts will be given a safe image instead. We encourage future research to systematically
study these patterns and develop better loss designs that balance safety with user experience.

E.6 Limitations & Future Work

Our work still has the following limitations, which we aim to address in future work. First, our
approach requires simulating fine-tuning during the unlearning process, which introduces additional
computational overhead. However, the total cost remains within a practical range (less than one GPU
hour for a full run in our main experiments), which is significantly more efficient than retraining
a model from scratch. In real-world scenarios, users can choose methods that best balance their
needs for resilience and safety given their computational budget. Second, our Moreau envelope-based
approximation is inherently an approximation. Nevertheless, our experiments show that it is robust to
long fine-tuning steps and a wide range of learning rates, and it outperforms methods based on first-
order approximations. As discussed in the main paper, obtaining fully accurate hypergradients would
require tracking and computing full Hessian matrix products, which is computationally prohibitive
for diffusion models. Future work could explore more accurate yet efficient estimation strategies.
Third, we acknowledge that when the downstream fine-tuning dataset is entirely composed of toxic
data, both our method and existing baselines inevitably experience an increase in harmfulness. We
believe that perfect resilience under such adversarial conditions is intrinsically difficult, given the
strong generalization and few-shot capabilities of modern diffusion models. Nonetheless, our method
demonstrates stronger resilience compared to baselines, maintaining relatively low IP even under fully
toxic fine-tuning. Fourth, similar to previous works, the NSFW classifiers used in our experiments are
not perfectly accurate, and there might be false negatives or false positives. However, as all methods
are evaluated under the same setting, the results are still fair and comparable to a large extent. We
hope future work can build more accurate classification models. Finally, while we designed and
evaluated adversarial & adaptive attacks and demonstrated ResAlign’s robustness against them, we
recognize that stronger or more sophisticated attacks may emerge in the future. Developing robust
defenses against such potential threats remains an important direction for future work.
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E.7 Ethics Statement & Broader Impact

This work aims to address the safety challenges of text-to-image diffusion models, particularly
their vulnerability to unsafe behavior inherited from toxic pretraining data and re-emerging during
downstream fine-tuning. Our proposed method, ResAlign, is designed specifically to improve the
resilience of safety-driven unlearning techniques, helping to mitigate the unintended recovery of
harmful behaviors when models are fine-tuned on downstream data. We have carefully reviewed and
ensured that our research adheres to the NeurIPS Ethics Guidelines for Authors14. All experiments
are conducted using publicly available datasets and established benchmarks under their original
licenses, or are constructed from filtered or recombined subsets of these datasets, ensuring no new
unsafe content is introduced. All illustrated potentially sensitive outputs in this paper have sensitive
regions carefully masked for viewer protection. We do not release any attack-related tools or data;
any derived resources will be made available through gated access upon request. We will responsibly
notify relevant developers if future findings reveal potential vulnerabilities. This work is intended
solely for defensive and safety-enhancing purposes; we do not endorse or support any offensive
or unethical applications. We believe that our contributions will help advance the trustworthy and
responsible development of generative AI technologies.

14https://neurips.cc/public/EthicsGuidelines
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