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Abstract

Ligand-based drug discovery (LBDD) relies on making use of known binders to a
protein target to find structurally diverse molecules similarly likely to bind. This
process typically involves a brute force search of the known binder (query) against a
molecular library using some metric of molecular similarity. One popular approach
overlays the pharmacophore-shape profile of the known binder to 3D conformations
enumerated for each of the library molecules, computes overlaps, and picks a set of di-
verse library molecules with high overlaps. While this virtual screening workflow has
had considerable success in hit diversification, scaffold hopping, and patent busting,
it scales poorly with library sizes and restricts candidate generation to existing library
compounds. Leveraging recent advances in voxel-based generative modelling, we
propose a pharmacophore-based generative model and workflows that address the
scaling and fecundity issues of conventional pharmacophore-based virtual screening.
We introduce VoxCap, a voxel captioning method for generating SMILES strings
from voxelised molecular representations.We propose two workflows as practical use
cases as well as benchmarks for pharmacophore-based generation: de-novo design, in
which we aim to generate new molecules with high pharmacophore-shape similarities
to query molecules, and fast search, which aims to combine generative design with
a cheap 2D substructure similarity search for efficient hit identification. Our results
show that VoxCap significantly outperforms previous methods in generating diverse
de-novo hits. When combined with our fast search workflow, VoxCap reduces com-
putational time by orders of magnitude while returning hits for all query molecules,
enabling the search of large libraries that are intractable to search by brute force.

1 Introduction

Ligand-based drug discovery (LBDD) aims to identify and develop pharmacologically active
compounds by making use of molecules that are known to interact with a given biological target
[Kurogi and Guner, 2001]. LBDD-based methods can be useful in the absence of the target’s structure
[Mason et al., 2001, González et al., 2009, Bernard et al., 2005, Loew et al., 1993], and can be
complementary to structure-based drug design when target information is present, for tasks such
as virtual screening and lead diversification [Grebner et al., 2020]. Acharya et al. [2011] presents a
detailed review of LBDD. Central to LBDD is the concept of a pharmacophore, which is defined as a
feature of a molecule, located in 3D space, that may be involved in binding [Pearlman, 1993, McNaught
et al., 1997, Chang and Swaan, 2006]. Examples include hydrogen bond donors and acceptors.

Drug discovery campaigns typically rely on pharmacophore-shape based design for finding a diverse
pool of molecules that are likely to bind to a target in the same way as a query molecule that has already
been shown to bind. Having a diverse pool of binders increases the chances of finding a molecule
that has minimal liabilities and has the potential to be optimised into a successful drug [Hawkins
et al., 2007]. This is conventionally done by running a brute force search against an existing library of
molecules to find molecules whose 3D shape and arrangement of pharmacophore features in 3D space
(i.e. pharmacophore-shape profiles) have high overlap in 3D space with the pharmacophore-shape
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profile of the query molecule [Rush et al., 2005]; such molecules are known as hits with respect to
the query molecule. The process involves three distinct steps: (i) generating conformations for the
query molecule and all molecules in the library, (ii) computing the pharmacophore-shape profiles of
these molecules, and (iii) aligning these profiles in 3D space and computing the overlap. This workflow
(particularly the steps post-conformer generation/retrieval) is typically done using software such as
OpenEye’s Rapid Overlay of Chemical Structures (ROCS) [Rush et al., 2005, OpenEye, Cadence
Molecular Sciences, 2024].

There are two main issues with the prevailing pharmacophore-based virtual screening workflows. First,
the process of aligning the query and library molecules and computing their overlap is time-consuming
and expensive. This is particularly true because this process has to be carried out for each new query
molecule in a project, of which we would ideally like there to be hundreds in the absence of major compu-
tational constraints. This bottleneck limits the number of query molecules that are screened in a typical
drug discovery project, limiting the chances of finding a binding candidate molecule with promising
properties and minimal liabilities. Second, candidate generation for any query is limited to the same set
of compounds that is the existing library. The practical advantage of library screening is that molecules
in these libraries are usually far more synthetically accessible (either already in-stock in commercial
or corporate collections, or easily synthesizable via established routes and readily accessible building
blocks) than de-novo generated molecules. However, this constraint does prevent the discovery of new
compounds that may have better properties for the given task than those already present in the library.

In this work, we propose a generative model and workflows to address these issues. We make use
of recent advances in voxel-based generative modelling, which have demonstrated the success of
processing and generating molecules in voxel space [Pinheiro et al., 2023, 2024]. Concretely, we
propose VoxCap, a voxel-based generative model for pharmacophore/ligand-based drug discovery.
VoxCap is a voxel captioning method that generates SMILES strings [Weininger, 1988] from an input
voxelised representation of a molecule. We use VoxCap to generate SMILES strings corresponding
to an input voxelised pharmacophore-shape profile.

We propose and evaluate two workflows: de-novo design, where we generate new molecules that are
not in the training or test sets, with high pharmacophore-shape similarities to query molecules from
the test set; and fast search, where we use de-novo design in conjunction with a fast 2D substructure
similarity search to quickly and efficiently find hits in 3D space from a given library. Our evaluation
shows that VoxCap outperforms previous work, by up to an order of magnitude, on the number of
diverse de-novo hits generated given a query molecule. We also find that VoxCap, in conjunction with
our fast search workflow, reduces the computational time/cost of inference by orders of magnitude
while returning an appreciable number of hits for each query molecule.

2 Related Work

2.1 Image captioning

Deep learning has significantly automated the generation of captions from natural images. Vinyals et al.
[2015] proposed the first end-to-end deep learning model to generate a caption from an input image.
They use a convolutional neural network (CNN) [LeCun et al., 1998] to extract features from an input
image, and a long short term memory network (LSTM) [Hochreiter and Schmidhuber, 1997] to decode
this representation into a caption. Prior to this, Mao et al. [2014] and Kiros et al. [2014] proposed
models that separately encoded images and text to rank or generate new captions. Xu et al. [2016]
built on Vinyals et al. [2015]’s model by introducing an attention mechanism into the model to attend to
different aspects of the input image. Continuing in the path of moving to attention-based architectures,
Li et al. [2019] proposed a captioning model based on the Transformer [Vaswani et al., 2017]. VoxCap
modifies such approaches to operate on 3D inputs, thereby producing strings from voxel grids.

2.2 Voxel-based molecule generation

While point-cloud based molecular generation remains widely used, recent work has focused on
voxel-based molecular generative models. Ragoza et al. [2020] first proposed a voxel-based generative
model for molecules using a variational autoencoder (VAE) [Kingma and Welling, 2022]. Skalic et al.
[2019] proposed a VAE-LSTM based model to generate SMILES strings given an input voxelised
atomic representation of a molecule. Pinheiro et al. [2023] proposed a voxel-based generative model
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based on the neural empirical Bayes framework [Saremi and Hyvärinen, 2019], implemented using
a UNet-based [Ronneberger et al., 2015] architecture. [Pinheiro et al., 2024] extended this framework
to the conditional setting for binder generation, generating voxelised molecules conditioned on
the voxelised representation of a protein pocket. Ragoza et al. [2022] also proposed a binding-site
conditioned voxel-based generative model using a conditional VAE-based architecture [Kingma and
Welling, 2022, Sohn et al., 2015].

2.3 Pharmacophore-based molecular design

Typical small molecule pharmacophore-based virtual screening workflows involve searching existing
databases for molecules that match the pharmacophore and shape profiles of various lead compounds.
Rush et al. [2005] proposed software to define, align and compute the overlap of pharmacophore-shape
profiles, as well as a workflow to apply this to LBDD. Grebner et al. [2020] studied the relationship
between database size and matching molecules found. Skalic et al. [2019] generated SMILES strings
from voxelised atomic density input and conditioning pharmacophore information, and evaluated
these against reference sets using distributional metrics such as uniqueness, Fréchet ChemNet Distance
[Preuer et al., 2018] and distributional scaffold frequency similarity. Zhu et al. [2023] proposed a
conditional VAE-based model to generate SMILES strings conditioned on stochastically generated
pharmacophore graphs. They carry out evaluation by measuring a graph-matching score between query
and generated molecules, and measuring properties such as docking score of generated molecules
against the pocket from which the hit molecule was obtained.

3 Method

VoxCap generates SMILES strings from an input voxelised representation of a molecule. Our task here
is to generate SMILES strings from a molecule’s pharmacophore and shape profile. Our 3D voxelised
molecular representation builds on previous works on voxelised molecule generation [Pinheiro et al.,
2023, 2024]. We represent a molecule with a Gaussian-like density centered around the location
of each of the pharmacophores of the molecule, with each pharmacophore type having a separate
channel. We use 6 pharmacophore types: hydrogen bond donor, hydrogen bond acceptor, cation,
anion, aromatic ring and hydrophobe. We also use an additional shape channel, in which Gaussian
densities are centered at the 3D positions of each of the atoms in the molecule, but in one channel
and with all densities having the same radius. An example voxelised pharmacophore-shape profile
is given in Figure 1. Section B of the Appendix gives further details on the voxelisation.

3.1 Training objective

Given a molecule m including its conformation, from a dataset M={mn}Nn=1, where N is the number
of molecules in the dataset, we compute its tokenised SMILES string sequence u=(u(1),···,u(T )),
where T is the length of the sequence and each element of u is an integer r ∈ Z : 1 ≤ r ≤ R
representing a token from the vocabulary V= {vr}Rr=1 of size R. Each vocabulary element vr is a
sequence of characters; we use the vocabulary and tokeniser provided in the DeepChem package
[Ramsundar et al., 2019]. We also compute the molecule’s voxelised pharmacophore-shape profile
ξ = fξ(m) ∈ RC×d×d×d, with number of channels C = 7 and each side of the voxel grid having
dimensionality d, using a deterministic non-differentiable function fξ.

Our objective during training is to predict the ground truth SMILES string sequenceu from the input vox-
elised representation ξ. The task is to maximise the likelihood of the data with respect to the parameters
θ of our model. Our model is autoregressive and factorises the likelihood of each datapoint as follows:

p(u|ξ;θ)=
T∏

t=1

p(u(t+1)|u(1:t),ξ;θ). (1)

The loss L for each datapoint is thus given by:

L(u|ξ;θ)=−log p(u|ξ;θ)=−
T∑

t=1

log p(u(t+1)|u(1:t),ξ;θ). (2)
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(a) Molecular graph (b) Shape profile

(c) Pharmacophore profile

Figure 1: Example molecule from the ChEMBL dataset with its molecular graph, 3D shape profile and
3D pharmacophore profile. Each colour in the pharmacophore profile (one for each pharmacophore
type as shown in the legend) is represented as a different channel to the model, as is the shape profile.
Distances on the axes are measured in Angstroms. For visualisation purposes, we threshold the voxel
grids displayed here such that values under 0.1 are set to 0.

As implied by this equation, the model is trained using teacher forcing. At each time step t the model
uses the softmax function to output a distribution p(u(t+1)=vr|u(1:t),ξ;θ)= exp(f(u(1:t),ξ;θ)r)∑R

j=1exp(f(u
(1:t),ξ;θ)j)

where f(.;θ) : (R∗×RC×d×d×d)→RR is a neural network with parameters θ mapping a sequence
of arbitrary length (R∗ denotes a sequence of any length) and a voxel grid to a logit for each element
in the vocabulary V, and f(.;θ)j is the logit output by this function for vj .

3.2 Generation

At generation time, the voxelised pharmacophore-shape profile ξ of a query molecule m is passed
as input to the model. We use ancestral sampling to generate SMILES strings s corresponding to new
molecules, with a distribution p̃ over V that is annealed by a temperature parameter τ ∈R : τ ≥1, as
follows:

s(t+1)∼ p̃(s(t+1)=vr|s(1:t),ξ;θ)=
exp(f(s(1:t),ξ;θ)r/τ)∑R
j=1exp(f(s

(1:t),ξ;θ)j/τ)
(3)

4



3.3 Model architecture

We use an encoder-decoder model. As our encoder we use a 3D CNN-based architecture to compress
the input voxels ξ, corresponding to a given molecule’s pharmacophore-shape profile, into a vector
representation. We then use this representation to initialise the hidden state of an LSTM decoder, and
also pass it in to this LSTM at every time step, concatenated with the embedded token for that timestep.
A diagram of the model is given in Supplementary Figure 1.

4 Experiments

4.1 De-novo generation from pharmacophore-shape input

We carry out experiments to evaluate the ability of our model to generate a diverse set of molecules
matching an input pharmacophore-shape profile for the purpose of ligand-based drug discovery.
To evaluate the overlap between the pharmacophore-shape profiles of two molecules, we compute
OpenEye’s ROCS Tanimoto Combo score. For the purposes of this paper, we abstract this as a function
TC(·,·) :M×M→ [0,2], where M is the space of all possible molecules with their conformations.
TC hence takes in two molecules and outputs a score between 0 and 2, with 0 representing no overlap
and 2 representing perfect overlap.

We carry out the evaluation on two datasets: GEOM-drugs [Axelrod and Gomez-Bombarelli, 2022]
and the subset of ChEMBL [Mendez et al., 2019] defined in the GuacaMol benchmark [Brown et al.,
2019], commonly used in the machine learning literature.

GEOM-drugs consists of approximately 430,000 drug-like molecules with up to 181 heavy atoms
of type { C, O, N, F, S, Cl, Br, P, I and B }. The median number of heavy atoms per molecule is 45
and more than 99% of molecules have less than 80 heavy atoms. The dataset consists of multiple
conformations for each molecule. We carry out experiments using different resolutions and grid sizes,
and for our final model choose a grid of dimension 483 with a resolution of 0.35 A. This volume covers
over 99.8% of all points in the dataset. We perform the same preprocessing and dataset split as [Vignac
et al., 2023], resulting in a 1.1M/146K/146K train/validation/test split.

The ChEMBL (subset) dataset consists of approximately 1,600,000 drug-like molecules with up to
88 heavy atoms of type { C, O, N, F, S, Cl, Br, P, I, B, Se and Si }. The median number of heavy atoms
per molecule is 27. As the dataset is given as SMILES strings, we use RdKit [Landrum et al., 2023]
to generate a 3D conformation for each molecule. We do this by using ETKDG [Riniker and Landrum,
2015] to get initial coordinates for the atoms followed by optimisation with reference to the Merck
Molecular Force Field [Halgren, 1996]. Our final model uses a grid of dimension 643 with resolution
0.35. We use the same 1.3M/80k/240k train/validation/test split as Brown et al. [2019].

For each dataset, we carry out evaluation on 100 randomly selected ‘query’ molecules from the test set.
A conformation is associated with each of these query molecules. As a baseline, for each of these query
molecules we randomly sample 1000 molecules from the test set. We obtain multiple conformations
for each of these sampled molecules using OpenEye, overlay them with the candidate molecule and
compute the Tanimoto Combo score. For each sampled molecule, we retain the highest Tanimoto
Combo score computed against the query amongst all conformations of the sampled molecule. We
define a hit as a sampled molecule mgen with TC(mgen,mquery)≥1.2 with respect to the query ligand
mquery, in line with the heuristics used by Grebner et al. [2020]. We evaluate on four metrics: number
of hits per query molecule, number of hits per query molecule containing a unique scaffold, max
Tanimoto Score per query molecule and number of query molecules with at least one hit.

We then evaluate our model as well as the Pharmacophore Guided Molecular Generation (PGMG)
model proposed by Zhu et al. [2023] for pharmacophore-based generation. The PGMG model is based
on a conditional variational autoencoder [Kingma and Welling, 2022, Sohn et al., 2015] architecture.
At training time, the PGMG model learns to denoise a corrupted SMILES string conditioned on a
pharmacophore point cloud that is computed from the uncorrupted SMILES string. At inference time,
the model generates SMILES strings corresponding to a given pharmacophore point cloud. The point
cloud is encoded using a Gated Graph Convolutional Neural Network [Bresson and Laurent, 2018] that
is equivariant to rotation, and a transformer [Vaswani et al., 2017] architecture is used to process the
encoded representation along with the SMILES string. For the ChEMBL dataset, we use the pretrained
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Method Dataset Hits Unique Scaffold Hits Max # Queries with ≥ 1 hit
Dataset baseline

GEOM-drugs
0 0 1.16 43

PGMG 11.5 7 1.44 77
VoxCap 116.5 55.5 1.77 97

VoxCap AA 4 4 1.31 76
Dataset baseline

ChEMBL
0 0 1.12 32

PGMG 11.5 8.5 1.39 77
VoxCap 115 72 1.77 95

VoxCap AA 75 36 1.65 89

Table 1: De-novo generation where the queries are drawn from a test set with the same distribution as
the training set. Values for hits, unique scaffold hits and max score are medians across the 100 query
molecules.

Method Training/Test Dataset Hits Unique Scaffold Hits Max # Queries with ≥ 1 hit
PGMG ChEMBL/GEOM-drugs 12 8 1.40 73
VoxCap 85.5 48.5 1.65 90
PGMG GEOM-drugs/ChEMBL 1 1 1.23 57
VoxCap 23.5 12 1.47 77

Table 2: De-novo generation where the queries are drawn from a test set with a different distribution
than the training set. Values for hits, unique scaffold hits and max score are medians across the 100
query molecules.

model provided by Zhu et al. [2023]. For GEOM-drugs, we train a model using their codebase and
use the best checkpoint output by their training script.

For each of the candidate molecules, we compute the pharmacophore-shape profile ξ and pass it as
input to VoxCap. We sample several SMILES strings from p(s|ξ;θ,τ) using different values of τ
as well as top-k sampling [Fan et al., 2018]. For the PGMG model, we pass the SMILES string of
the query molecule into the model along with a pharmacophore graph computed from this string
using the code provided by the authors, and sample several SMILES strings. Before evaluating, we
remove invalid and duplicate generated molecules. We also remove generated molecules that are
identical to the query molecule, as the purpose of this task is to generate novel, diverse molecules with
a similar pharmacophore-shape profile to the reference molecule, not to reproduce the query molecule.
For each model, we select the first 1000 valid, non-duplicate generated molecules corresponding
to each candidate molecule, then obtain conformations and compute metrics for these molecules in
the same way as for the dataset baseline. (For VoxCap, before selection, the generated molecules are
arranged in ascending order of the τ value used to generate them, so that we favour selecting molecules
sampled from the distribution on which the model was trained, where τ=1.) In this way, we compare
approaches using the same budget for ROCS evaluation, which is the time-consuming part of the
evaluation, compared to forward passes of neural networks which are relatively cheap.

We use the validation set for early stopping and model selection based on the total number of unique
scaffold hits in a small set of 100 generated samples for each of 10 randomly selected validation set
query molecules.

Results on GEOM-drugs and ChEMBL are given in Table 1. (See also Supplementary Table 1 for mean
and standard deviation summary statistics.) Metrics corresponding to the dataset baseline are very
low, showing that two randomly selected molecules from the same marginal distribution are expected
to have low overlap. VoxCap outperforms PGMG by large margins across all metrics on both datasets.
In contrast to PGMG, VoxCap produces at least one hit for almost every query molecule in each test
set. Of note, along with the high number of hits, is the high number of unique scaffold hits, showing
that the model produces a diverse set of hypotheses with matching pharmacophore-shape profiles,
providing diverse avenues for ligand exploration corresponding to a given query. The top score among
all generated ligands, averaged over all query molecules, is also higher for VoxCap than for PGMG
across both datasets. VoxCap is therefore able to generate hits for queries drawn from the distribution
on which it was trained. This in-distribution evaluation relates to drug-discovery campaigns where
lead compounds are similar to library compounds that the campaign has access to, or has produced
before, which have been used to train the model.

6



The mean and median values for all VoxCap metrics are comparable in all cases, showing that VoxCap’s
successful performance is not merely due to an extremely high contribution to the metrics from a
small number of queries and low contribution from the rest, but is instead due to high contributions
from many queries. The standard deviation across the 100 queries is, however, high for both the hits
and unique scaffold hits metrics. Bringing this number down would correspond to more predictable
performance for a given query and is an important area of future work.

We similarly measure out-of-distribution performance in Table 2 and Supplementary Table 2. For this
task, models trained on GEOM-drugs are evaluated on query molecules from the ChEMBL subset, and
vice-versa. We see that VoxCap once again outperforms PGMG across all metrics by large margins.
VoxCap is hence able to generate hits for queries drawn from a distribution that is different to the one on
which it was trained. This relates to drug-discovery campaigns where lead compounds are significantly
different from compounds that the campaign has access to, or has produced before. Results from
models trained on ChEMBL are better than the corresponding models trained on GEOM-drugs,
possibly because of the larger number of molecules in ChEMBL.

4.2 Fast molecular library search

Carrying out a brute-force ROCS search against a given database (also known as a molecular library)
for each new query molecule in an experimental setting is a time-consuming and costly process.
We propose an inexpensive approximation to this workflow by taking advantage of the generative
capability and cheap inference cost of our model. Given a query ligand m from the test set, we compute
its pharmacophore-shape profile ξ, use VoxCap to generate several sample SMILES strings s from
p(s|ξ;θ,τ), and then remove duplicate and invalid molecules. For each of these ng generated molecules
we then find, in the union of the train and validation sets, the na closest 2D analogs by Tanimoto
similarity (i.e. Jaccard similarity) of Morgan fingerprints (a bit vector featurisation of a molecule,
each element of which indicates whether a particular substructure is contained in the molecular graph),
and compute the ROCS score for each of these analogs against the query molecule. A diagram of this
algorithm is shown in Figure 2.

Generate molecules
using VoxCap

Query
molecule

Compute
fingerprint

Generated
molecule 1

Generated
molecule 

Morgan fingerprint  of
generated molecule 

2D Tanimoto
similarity

2D Tanimoto
similarityGenerated

molecule 

2D Tanimoto
similarity

th most similar
database molecule

Most similar
database molecule

Fingerprint
of database
molecule 1

Fingerprint
of database
molecule 

Fingerprint
of database
molecule 

th most similar
database molecule

Pick database molecules
with   highest 2D
Tanimoto similarities

3D Tanimoto
Combo score

3D Tanimoto
Combo score

3D Tanimoto
Combo score

Database molecules with  are hits

Figure 2: Fast search workflow, where we focus on the procedure applied to one of ng generated
unique, valid molecules. Fingerprints of database molecules can be precomputed and reused for each
new query to further reduce computational cost.
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Our proposed approach drastically reduces the cost of database search. The 2D search we employ is
fast and inexpensive, with negligible computational cost compared with 3D conformation generation,
alignment to the query molecule and Tanimoto Combo score computation. Our approach brings down
the number of 3D comparisons from O(database size) to O(ng×na), a difference of several orders
of magnitude depending on database size. As an example, the Enamine Real and Enamine Diverse
databases consist of 60 billion compounds and 100 million compounds respectively, whereas ng×na is
typically on the order of 1000. Furthermore, running brute force 3D searches against the full Enamine
Real database is intractable, especially in a generative design framework where we wish to run searches
for hundreds or thousands of generated molecules, whereas our fast search workflow is feasible. Our ap-
proach is advantageous to simply running the 2D search over the entire database for each query molecule
as we are interested in finding compounds that are diverse in substructure space but similar to the query
in 3D pharmacophore-shape space; not analogs that are simply similar to the query in substructure space.

We evaluate the accuracy of this workflow as follows. For each of 11 randomly selected query
molecules from the ChEMBL test set, we run a ROCS search against every molecule in the union
of the train and validation sets excluding the query molecule. We call this the brute force approach.
We also use VoxCap to generate several molecules given the query molecule’s pharmacophore-shape
profile, and find either (i) na=5 analogs for each of up to ng =100 unique, valid molecules, or (ii)
na=1 analog for each of up to ng=500 molecules. We compute these analogs’ ROCs scores against
the query molecule as described above. We then compute the number of hits in this set of analogs
and compare with the number of hits in the set of top 500 molecules by ROCS score from the brute
force approach for each query molecule. Results are given in Table 3.

We find that this workflow yields a significant number of hits and unique scaffold hits; the two settings
ofng andna yield similar results. The number of ROCS comparisons per query (up to a constant,α, the
average number of conformers per database molecule) is ng×na. This is several orders of magnitude
below that of the brute force search, which is the size of the database. This difference would hence
be even more pronounced in a real-world drug discovery application for databases such as Enamine
Real/Diverse. We would also expect to find a greater number of 2D matches and hits from VoxCap-
generated molecules for these databases due to their larger size. Our workflow hence enables the search
of large-scale databases for sets of diverse hits, a current bottleneck in the drug design pipeline.

Our results show that there are limitations to our approach, namely the number of hits is over an
order of magnitude lower than the brute force method, suggesting significant room for improvement.
We explore why this may be the case. We observe that the highest 2D Tanimoto similarity for
any given generated molecule is generally low, with a median top-1 similarity of 0.38 for the
ng =500,na =1 setting. Hence many of the generated molecules do not have close 2D analogs in
the dataset. Supplementary Figure 2 shows a moderate correlation (Pearson r=0.4) between 2D and
3D similarities. The lack of close 2D analogs for most of the generated molecules could therefore
be a major reason for the low number of hits relative to the brute force approach. We also observe that
there is a significant number of duplicate 2D hits per query, where the 2D search procedure maps on
average 2.4 generated molecules to the same molecule in the database for the ng=500,na=1 setting,
thereby decreasing the number of hits that can be found on running ROCS.

We also observe from our experiments that our early stopping criterion selects a checkpoint after only
a few epochs of training. Further training causes performance on sampling metrics to drop even as
the validation cross-entropy loss continues to decrease. We hypothesise that the input representation
is too specific to each individual molecule, so with continued training the model learns a distribution
that is sharply peaked around the most likely molecule without adequately learning other modes of
the distribution. This could mean that, at the early stopping checkpoint, when the number of training
epochs completed is not large, the model has not been trained long enough to adequately capture the
2D structure of molecules in the dataset.

Future directions of work could involve regularisation/early stopping strategies that yield molecules
more structurally similar to those in the dataset, as well as input representations that are smooth or
noisy enough to facilitate the learning of several modes of the distribution over a larger number of
training steps.
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Method ng na Hits Unique Max Queries w/ ≥ 1 hit ROCS comparisons/query
Brute force - - 450 151 1.67 11 α×1.3×106

VoxCap 100 5 10 9 1.58 10 α×500
VoxCap 500 1 10 8 1.58 11 α×500

Table 3: Fast database search results. Unique stands for unique scaffold hits. ROCS comparisons/query
are given including the constant α, which is the average number of conformers per database molecule.
Values for hits, unique scaffold hits and max score are medians across the 11 query molecules.

5 Conclusion

In this work, we propose the generation of molecules conditioned on voxelised 3D pharmacophore-
shape profiles. We introduce VoxCap, a generative model that generates diverse SMILES strings
from these pharmacophore-shape profiles. We propose a benchmark task for de-novo generation
conditioned on pharmacophore-shape profiles and find that VoxCap outperforms the existing state
of the art by large margins across all metrics. We also implement a generative model-based fast search
workflow to practically enable the search of large libraries for structurally diverse 3D hits against a
given query. We find that VoxCap, paired with this workflow, returns hits from the database for each
query molecule, but that there is significant room for improvement. We identify areas of future work
corresponding to coarser pharmacophore-shape representations and regularisation, that would enable
the efficient search of large-scale databases for hit compounds in drug discovery campaigns.
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A Model architecture

Feedforward

Conv3D(out_channels, out_channels/2)
Batch norm
ReLU

Conv3D(out_channels/2, out_channels)
Batch norm
ReLU

MaxPool3d

Conv3D(in_channels, out_channels)
Batch norm
ReLU

Voxels Vector
representation

AvgPool3d

(a) The encoder compresses the input voxelised pharmacophore-shape profile into a vector representation. The 3D
convolutional block is applied l times, where l is a hyperparameter.

LSTM

Linear +
Softmax

Voxel encoder
representation

Embedding

Initial hidden state

(b) The decoder maps the encoder’s output to a tokenised SMILES string.

Supplementary Figure 1: Model architecture
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B Voxelisation

We represent pharmacophores and molecular shape as voxelised densities. Given an input molecular
conformation, we compute the locations of all pharmacophores in the molecule, resulting in a
point cloud for each of the 6 pharmacophore types. We also compute a shape point cloud, whose
points’ locations are the same as those of the molecule’s atoms. We now have a set of 7 point clouds
C={Cc}7c=1. The cth point cloud is given by Cc={ac,n}Nc

n=1 where ac,n is the nth point in point cloud
Cc and Nc is the number of points in point cloud Cc.

We voxelise the pharmacophore and shape point clouds in a similar manner to how Pinheiro et al.
[2023] voxelise atomic densities. First we convert each point ac,n into a 3D Gaussian-like density:

Vac,n
(d,r)=exp

(
− d2

(.93·r)2
)
, (4)

where Vac,n
is defined as the fraction of occupied volume by point ac,n at distance d from its center.

We use radius r=1 for all points. We then compute the occupancy of each voxel in the grid at each
of the grid points (i,j,k) at each channel c:

Occc,i,j,k=1−
Nc∏
n=1

(
1−Vac,n

(∥Ci,j,k−xac,n
∥,r)

)
, (5)

where Ci,j,k are the coordinates (i,j,k) in the grid and xac,n
is the coordinates of point ac,n. Since

we use c to index both channels and point clouds, points in point cloud Cc are assigned to channel
c. Each voxel in the grid has a value between 0 and 1. We use the python package PyUUL [Orlando
et al., 2022] to generate the voxel grids.

C Data augmentation

During training, we randomly augment each training sample. This augmentation comprises a random
translation by a value uniformly sampled from [-1,1] for each axis, and a random rotation by a value
uniformly sampled from [0, 2π) for each of the three Euler angles. This augmentation is applied to
the point clouds before voxelisation.

D De-novo generation

Method Dataset Hits Unique Scaffold Hits Max
Dataset baseline

GEOM-drugs
1.37 ± 2.88 1.33 ± 2.75 1.18 ± 0.17

PGMG 20.14 ± 23.76 10.01 ± 10.96 1.41 ± 0.30
VoxCap 126.08 ± 98.22 73.12 ± 63.44 1.69 ± 0.24

VoxCap AA 29.98 ± 60.67 19.92 ± 35.25 1.32 ± 0.39
Dataset baseline

ChEMBL
0.63 ± 1.25 0.62 ± 1.25 1.12 ± 0.15

PGMG 47.98 ± 74.71 27.56 ± 37.83 1.42 ± 0.27
VoxCap 150.70 ± 121.50 90.69 ± 80.00 1.70 ± 0.25

VoxCap AA 126.68 ± 140.07 73.69 ± 83.82 1.59 ± 0.27

Supplementary Table 1: De-novo generation where the queries are drawn from a test set with the same
distribution as the training set. Values for hits, unique scaffold hits and max score are means ± standard
deviations across the 100 query molecules.
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Method Training/Test Dataset Hits Unique Scaffold Hits Max
PGMG ChEMBL/GEOM-drugs 51.21 ± 90.04 27.73 ± 43.86 1.39 ± 0.30
VoxCap 111.29 ± 100.01 67.56 ± 65.54 1.61 ± 0.28
PGMG GEOM-drugs/ChEMBL 11.97 ± 20.16 5.97 ± 9.93 1.26 ± 0.24
VoxCap 55.39 ± 75.62 33.63 ± 49.02 1.46 ± 0.30

Supplementary Table 2: De-novo generation where the queries are drawn from a test set with a different
distribution than the training set. Values for hits, unique scaffold hits and max score are means ±
standard deviations across the 100 query molecules.

E Fast database search

Method ng na Hits Unique Scaffold Hits Max
Brute force - - 326.27 ± 214.53 158.82 ± 121.47 1.64 ± 0.21

VoxCap 100 5 20.64 ± 17.55 12.73 ± 9.31 1.52 ± 0.55
VoxCap 500 1 16.09 ± 10.63 11.82 ± 7.68 1.65 ± 0.21

Supplementary Table 3: Fast database search results. Values for hits, unique scaffold hits and max
score are means ± standard deviations across the 11 query molecules
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Supplementary Figure 2: 3D vs 2D similarities, from fast database search experiment with ng =
500, na=1
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