

000 001 002 003 004 005 TokSuite: MEASURING THE IMPACT OF TOKENIZER 006 CHOICE ON LANGUAGE MODEL BEHAVIOR 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Tokenizers provide the fundamental basis through which text is represented and
026 processed by language models (LMs). Despite the importance of tokenization, its
027 role in LM performance and behavior is poorly understood due to the challenge
028 of measuring the impact of tokenization in isolation. To address this need, we
029 present TokSuite, a collection of models and a benchmark that supports research
030 into tokenization’s influence on LMs. Specifically, we train fourteen models that
031 use different tokenizers but are otherwise identical—using the same architecture,
032 dataset, training budget, and initialization. Additionally, we curate and release
033 a new benchmark that specifically measures model performance subject to real-
034 world perturbations that are likely to influence tokenization. Together, TokSuite
035 allows robust decoupling of the influence of a model’s tokenizer, supporting a
036 series of novel findings that elucidate the respective benefits and shortcomings of
037 a wide range of popular tokenizers.
038

1 INTRODUCTION

039 Language models (LMs) generally do not process “raw text” directly; instead, they operate on a
040 sequence of “tokens” that represent words, sub-words, or characters. As a result, tokenization funda-
041 mentally influences the representation learned by LMs and, consequently, affects the downstream
042 model capabilities (Mielke et al., 2021). For example, the tokenizer used in T5 (Raffel et al., 2020)
043 cannot represent curly brace tokens, making the T5 models poorly suited to processing many cod-
044 ing languages (Wang et al., 2021c). The importance of tokenization naturally motivates not only
045 understanding the impact of different tokenization strategies but also the design of better tokenizers.
046 However, tokenization is a relatively understudied aspect of language model development compared
047 to, e.g., model architectures, training recipes, and dataset curation. In fact, the design of the tokenizer
048 is often treated as an afterthought, with many open models simply using a preexisting tokenizer off
049 the shelf. For instance, the GPT-2 tokenizer was directly reused for Meta’s Open Pretrained Trans-
050 formers (OPT) (Zhang et al., 2022), and EleutherAI’s GPT-NeoX-20B tokenizer was directly used
051 for the MPT-7B-8k model (Team, 2023) and Pythia models (Biderman et al., 2023).

052 We argue that one factor contributing to the paucity of research into the impact of tokenization is
053 the relative difficulty, using existing artifacts, of decoupling the impact of the tokenizer with other
054 possible variables (model architecture, training data, etc.). For example, it would be fraught to try to
055 compare the Qwen 3 (Yang et al., 2025) and Llama 3 (Dubey et al., 2024) tokenizers by studying the
056 respective models because differences in training data, training duration, and architectural details
057 make it difficult to attribute performance differences specifically to tokenization. Understanding the
058 downstream effects of tokenizer design choices is further complicated by the multifaceted nature of
059 tokenization itself, involving various interrelated factors including the underlying segmentation al-
060 gorithm (e.g., BPE Gage (1994); Sennrich et al. (2016), Unigram Kudo (2018), WordPiece Wu et al.
061 (2016)), granularity level (e.g., byte-level Xue et al. (2022), character-level, word-level), vocabulary
062 size constraints, and the composition of training data used to learn the vocabulary.

063 What would it take to reliably measure the impact of tokenization on model performance and be-
064 havior? We argue that reliable comparison can only be made through models that are completely
065 identical apart from the tokenizer used, because otherwise differences in performance could be at-
066 tributable to other factors. To the best of our knowledge, there is no open collection of such models.
067 Our first contribution in this work is therefore to train and release 14 LMs with identical initial-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 ization, architecture, and training data composition, varying only in the tokenizer used. Our suite of models covers a wide range of tokenizer types, selected among popular pretrained tokenizers as representatives of their main distinctive features, from byte-level tokenization to subword-based approaches including BPE, SentencePiece, and WordPiece variants. This collection encompasses both English-only tokenizers trained on monolingual corpora and multilingual tokenizers designed to handle diverse language families and scripts. The tokenizers additionally exhibit varying approaches to out-of-vocabulary (OOV) handling, unicode normalization strategies, whitespace treatment protocols, continuation token markers for subword boundaries, and pretokenization splitting rules. Our chosen tokenizers also have diverse vocabulary sizes ranging from compact, efficient lexicons to comprehensive multilingual vocabularies, each with distinct trade-offs between compression efficiency and linguistic coverage. Noting that different vocabularies might share tokens, we develop a novel vocabulary unification framework that creates bijective mappings between tokenizer-specific and unified token spaces. This allows us to use a unified parameter initialization where embeddings for shared tokens are initialized to the same value across models.

To test how tokenization choices affect model behavior, we introduce a novel benchmark¹ with approximately 5,000 samples. Since the effect of different tokenizers can vary across languages (Ali et al., 2024; Dang et al., 2024b; Seo et al., 2025), our benchmark includes five orthographically and morphologically diverse languages: English (EN), Turkish (TR), Italian (IT), Farsi (FA), and Mandarin Chinese (ZH). Specifically, Farsi uses Arabic script and presents unique challenges in which the same text can be represented by optional diacritics. Mandarin Chinese is a logographic and isolating language. TokSuite also covers its romanization through Pinyin, the Chinese Phonetic Alphabet, and errors relating to it, which is rarely found in the training data but is an essential part of daily communication. Turkish is an agglutinative language with six additional letters in its alphabet and rich in grammar that severely impacts word form and tokenization. Italian is representative of fusional Latin languages with complex inflectional patterns and accents.

FIX

Our benchmark includes 40 “canonical” multiple-choice text completion questions translated into all five languages. Each question has different perturbed versions manually curated by native speakers that reflect real-world changes users might make. For example, we test what happens when visually identical characters have different Unicode values (e.g., replacing Latin “a” with Cyrillic “a”), when users type Turkish text with English keyboards (causing “ş” to become “s”), when Farsi text includes or omits optional accent marks, and when regular text uses special Unicode formatting such as enclosed characters. We also add two specialized benchmarks: an elementary school math dataset and a science, technology, engineering, and mathematics (STEM) dataset, respectively, with 20 and 44 “canonical” technical questions alongside targeted perturbations. This multi-domain approach allows us to assess tokenizer performance across general, mathematical, and scientific content.

By applying our benchmark to our suite of models, we both uncover new findings and confirm existing beliefs relating tokenizer characteristics to model behaviors. For example, we find that perturbations tend to be more detrimental in non-English settings, even for tokenizers that were trained on non-English data. Additionally, we find that essentially all off-the-shelf tokenizers are sensitive to Unicode formatting and style perturbations. Furthermore, we found that the two most unconventional tokenizers, ByT5 (Xue et al., 2022) and TokenMonster (Forsythe, 2025), tended to be more robust, suggesting that further investments should be made in the development of novel tokenizers. Together, our models, dataset, and findings will support future research that aims to better understand how tokenizer choices affect model behavior.

2 BACKGROUND

Before focusing on how tokenization can affect downstream LM performance, we first explain how tokenizers are created and how design decisions can affect the final tokenizer.

Tokenizers Tokenization is the process of converting a sequence of input symbols into meaningful lexical tokens from some vocabulary \mathcal{V} . Each entry in the vocabulary corresponds to a particular string, and tokenizing an input string can be seen as segmenting it into strings from the vocabulary. When used as the input of an LM, the vocabulary is also used to map each token to an integer ID, $V : S \mapsto \{0, 1, \dots, |V| - 1\}$. These IDs are then used to look up a vector representation of

¹<https://anonymous.4open.science/r/toksuite-934F/data>

108 the token in an LM’s embedding table, thus creating a real-valued vector input for each token in
 109 an input sequence. While \mathcal{V} can be manually enumerated for languages with restrictive grammars
 110 (e.g. programming languages), the ambiguity and open-endedness of natural language necessitate
 111 estimating an optimal set of tokens from data.

112 Consequently, differences in tokenizers can result in different token sequences for the same string.
 113 These differences can affect both learnability and how information is processed in downstream mod-
 114 els. For example, a tokenizer that maps the string “dogs” to two tokens “dog” and “s” allows the
 115 model to “reuse” its understanding of the token for “dog”, but requires composing with the meaning
 116 of the “s” token as pluralization. In contrast, a tokenizer that includes “dogs” as its own token packs
 117 both dog and its pluralization into a single token. These differences generally arise in the three main
 118 components involved in tokenizer training: data, learning algorithm, and preprocessing decisions.
 119

120 **Training Data** In order to determine the collection of substrings in the vocabulary, tokenizers are
 121 generally trained on a text dataset. While the training process for different approaches to tokeniza-
 122 tion can vary (see the following subsection), one straightforward effect of the training data is that if
 123 the training dataset does not include a given word or symbol, it will not be in the vocabulary. Simi-
 124 larly, differences in tokenizer training datasets can result in different choices for tokens included in
 125 \mathcal{V} by different tokenizer learning algorithms. For example, if one tokenizer is trained on web data
 126 that includes many examples of the typo “teh”, it is more likely to represent it as a single token in its
 127 vocabulary compared to a tokenizer that is only trained on highly edited text where this typo is rare.
 128

129 The inclusion of multilingual data in the tokenizer training data can also have a large effect on
 130 the final vocabulary, especially when scripts that do not share an alphabet are included. Generally a
 131 much larger vocabulary is required—for example the increase from 32,000 to 256,000 when moving
 132 from T5 (Raffel et al., 2020) to mT5 (Xue et al., 2021).

133 **Learning Algorithm** When training a tokenizer, a learning algorithm produces a vocabulary \mathcal{V}
 134 that “fits” the training data, with inclusion primarily determined by frequency. Most tokenizers func-
 135 tion as compressors (Lester et al., 2024), assigning common words to single tokens while splitting
 136 rarer ones. Common algorithms include Byte-Pair Encoding (BPE) (Gage, 1994), which iteratively
 137 merges the most frequent symbol bigrams until reaching vocabulary size $|\mathcal{V}|$; WordPiece (Wu et al.,
 138 2016), which merges symbols by maximizing training data likelihood; and Unigram (Kudo, 2018),
 139 which starts with all possible segmentations and removes symbols causing minimal unigram loss
 140 increase. TokenMonster (Forsythe, 2025) uses an unusual approach, building a global vocabulary
 141 from all possible tokens and employing an “ungreedy” algorithm that revises tokenization by looka-
 142 head. Byte-level models like ByT5 (Xue et al., 2022) use predefined Unicode vocabularies rather
 143 than learned ones (Mielke et al., 2021).

144 Vocabulary size $|\mathcal{V}|$ significantly affects composition, as larger vocabularies include more rare words
 145 as individual tokens. While most tokenizer training algorithms ensure that every string in the training
 146 set can be tokenized, “byte-fallback” forces \mathcal{V} to include the 256 bytes needed to represent any
 147 character in Unicode. This allows tokenization of symbols that do not appear in the training dataset.
 148

149 For a more in-depth discussion of various tokenization approaches, see Mielke et al. (2021).

150 **Preprocessing** Tokenization pipelines often use some form of pre-tokenization, which segments
 151 the input text into “intuitive” tokens, such as whitespace-separated words, before the learning al-
 152 gorithm is applied. This segmentation can limit which strings can be added to \mathcal{V} as the learning
 153 algorithms do not consider bigrams that cross pre-tokenization boundaries. This means that
 154 very common bigrams such as “New York” *cannot* be represented as a single token. While some
 155 work (Schmidt et al., 2025; Liu et al., 2025, *et alia*) explores methods that allow cross-boundary
 156 merges, most commonly used tokenizers do not.

157 As another example of pre-tokenization, the GPT-2 tokenizer (Radford et al., 2019) splits
 158 contractions—e.g., “we’ll” → “we”, “ll”—meaning that “we’ll” cannot be a token in \mathcal{V} . In con-
 159 trast, BLOOM’s (Workshop et al., 2022) pre-tokenization process does not force contractions to a
 160 new token, thus allowing for “we’ll” ∈ \mathcal{V} .

161 Similar differences exist in the handling of numbers. The pre-tokenization used in some models,
 162 like GPT-4 (Achiam et al., 2023), breaks contiguous digits into groups of three (“1337” → “133”,

“7”) while other models split numbers into their individual digits. There are also models that rely exclusively on the learning algorithm to decide how to segment numbers into digits. Each approach has trade-offs; for example, splitting numbers into thousands might be natural for math but is less natural for dates. Similar considerations exist for how repeated whitespace is handled, especially in domains like code where whitespace can be especially meaningful.

3 THE TOKSUITE MODELS

3.1 TOKENIZER SELECTION AND CHARACTERISTICS

To systematically investigate how different tokenization design choices affect model performance and robustness, we began by selecting a diverse set of 14 preexisting tokenizers, specifically ByT5 (Xue et al., 2022), TokenMonster (Forsythe, 2025), Phi-3 (Abdin et al., 2024), GPT-2 (Radford et al., 2019), Comma (Kandpal et al., 2025), mBERT (Devlin et al., 2019), Llama-3.2 (Dubey et al., 2024), Tekken (AI, 2024), Qwen-3 (Yang et al., 2025), GPT-4o (Hurst et al., 2024), BLOOM (Workshop et al., 2022), Aya (Dang et al., 2024a), Gemma-2 (Team et al., 2024), and XGLM (Lin et al., 2021). Our selection provides comprehensive coverage across vocabulary sizes (ranging from 259 tokens in byte-level tokenizers like ByT5 to over 256,000 tokens in models such as Aya or XGLM), tokenization algorithms (BPE, WordPiece, Unigram, TokenMonster, and byte-level approaches). This diversity enables systematic analysis of how different tokenizers handle out-of-vocabulary words, morphological variations, and adversarial inputs. The selected tokenizers also encompass notable variation in preprocessing strategies that affect robustness, including different approaches to numerical content handling (digit splitting vs. grouping), contraction processing (rule-based vs. learned), Unicode normalization schemes, and multilingual support ranging from monolingual to 100+ languages. Additionally, the tokenizers vary in their out-of-vocabulary handling mechanisms, with some incorporating byte-fallback and others relying on unknown tokens, providing insight into how these design choices propagate to model robustness under various challenges. Detailed technical specifications for each tokenizer are provided in Table 2 and Table 3 in the Appendix.

3.2 CROSS-TOKENIZER VOCABULARY ALIGNMENT

To align vocabularies across tokenizers, we first create a unified “*super vocabulary*”. For each tokenizer $i \in T$, where T is the set of all tokenizers, we extract its individual vocabulary \mathcal{V}_i , accounting for tokenizer-specific quirks (like WordPiece’s “#” prefixes or Unigram’s “_” whitespace markers). We also unify the strings that denote the beginning of a sequence—`<|`, `<|beginoftext|>`, etc. Then, we create a super vocabulary, \mathcal{SV} , by taking the union of all vocabularies $\mathcal{SV} = \bigcup_i \mathcal{V}_i$. Note that this unification is based on the UTF-8 byte representation of each element in the vocabularies.

Finally, for each tokenizer, we create a mapping, $\mathcal{SV} : V(X) \mapsto \mathcal{SV}(X)$ that translates a tokenizer’s original token IDs to the corresponding positions in the unified super vocabulary. This causes a given token string to always map to the same index—regardless of which tokenizer was used—that is, $\forall i, j \in T, \mathcal{SV}(\mathcal{V}_i(S)) = \mathcal{SV}(\mathcal{V}_j(S))$, if $S \in \mathcal{V}_i \cap \mathcal{V}_j$. The use of the super vocabulary allows us to use the same initialization for the embeddings for shared tokens across models. This shared starting point alleviates the variation of initialization across models, allowing more rigorous attribution of downstream performance to tokenizer characteristics.

3.3 MODEL ARCHITECTURE AND TRAINING CONFIGURATION

We trained fourteen LMs (one for each tokenizer) using Meta’s Lingua framework (Videau et al., 2024). Our model architecture and training hyperparameters follow Lingua’s Llama-3.2-1B configuration with approximately one billion non-embedding parameters, following the Llama model family (Dubey et al., 2024). All models use a shared initialization based on the super vocabulary. See Appendix B.1 for more information. All models were trained for 100,000 steps with batches of 256 length-4096 sequences. We use the AdamW (Loshchilov & Hutter, 2019) with a weight decay of 0.1 and a peak learning rate of 0.001 with cosine annealing and 2000 warm-up steps.

We train all models on a multilingual corpus totaling approximately 100 billion tokens. For English content, we use FineWeb-Edu (Penedo et al., 2024a; Lozhkov et al., 2024), which provides high-quality content filtered from Common Crawl data. For the multilingual components, we use the

216 Chinese, Turkish, Italian, and Farsi subsets of the FineWeb-2 HQ Dataset (Messmer et al., 2025),
 217 which is a pre-training dataset derived from FineWeb-2 (Penedo et al., 2025) by selecting the top-
 218 quality documents across languages. The final corpus composition consists of 40B English tokens
 219 and 60B multilingual tokens equally distributed across the four target languages (15B each).

220 For training, we use a fixed token budget in line with the current practice in LLM training and reporting.
 221 This means that each model sees different amounts of raw information (in bytes/documents),
 222 see Appendix B.3. For example, 100B tokens correspond to approximately 100GB (ByT5), 278GB
 223 (Comma), and 471GB (Gemma-2) of UTF-8 bytes, see Table 4 for all models. However, we con-
 224 sider the alternative—training each model on the same text, but for a different number of training
 225 steps—to be more problematic, because training duration heavily influences model performance
 226 and some models would be relatively under- or over-trained. Additionally, a tokenizer’s efficiency
 227 in compressing the training data is a relevant factor in tokenizer selection.

FIX

228 As an initial sanity check to ensure that our trained models behave as expected, we evaluated their
 229 performance on standard benchmarks commonly used to assess the base LMs: HellaSwag (Zellers
 230 et al., 2019), ARC (Clark et al., 2018), PIQA (Bisk et al., 2020), and XNLI (Conneau et al., 2018).
 231 Results are shown in Fig. 2. Overall, we find that our models attain reasonable performance given
 232 their parameters and training budget. However, we do find notable differences in performance across
 233 different models. Since our models are otherwise equivalent, this performance difference can be
 234 attributed directly to tokenization, which we discuss further in Section 5.

235

236 4 THE TOKSUITE BENCHMARKS

237

238 To systematically study the impact of tokenizers on model performance, we develop a new bench-
 239 mark that captures different types of input variations models may encounter in real-world deploy-
 240 ment. Unlike existing evaluations that focus on clean, canonical text, our benchmark specifically
 241 targets naturally occurring perturbations that expose tokenization-dependent issues across our target
 242 languages—Chinese (ZH), English (EN), Farsi (FA), Italian (IT), and Turkish (TR)—and domains
 243 including general knowledge, basic arithmetic, and STEM. Since the benchmark aims to assess ro-
 244 bustness to variations in tokenization schemes, we deliberately select simple, canonical questions
 245 designed to provide a strong baseline performance across all models. The selection of canon-
 246 ical questions follows a model-in-the-loop process in which we iteratively test question candidates
 247 across our model suite to ensure high baseline accuracy, allowing us to cleanly measure perfor-
 248 mance degradation when perturbations are applied. For each question in the canonical benchmarks,
 249 over 70% of the models responded correctly. As shown in Fig. 4, model performance consistently
 250 exceeds 70–75% accuracy on canonical tasks, both in English and non-English settings.

251

252 4.1 MULTI-LINGUAL PARALLEL DATASET

253

254 We begin by selecting a seed set of 40 *canonical* questions in multiple-choice text completion format
 255 in English that almost all of the fourteen models answer correctly, such as “The capital of France
 256 is,” “The chemical formula for water is,” and “The number of continents on Earth is”. We aim for
 257 canonical questions that our base models get correct so that we can study cases where perturbations
 258 flip the answer to incorrect. The native speakers then translate each canonical question into FA, IT,
 259 TR, and ZH. Subsequently, each example undergoes targeted *perturbations* designed to reflect the
 260 morphological and orthographic characteristics of each language. Canonical questions in English
 261 are provided in Appendix D.1, and further examples of each category with detailed case studies on
 tokenization differences are presented in Appendix E.

262

263 Orthographic Perturbations input medium challenges, diacritics perturbations, orthographic er-
 264 rors, and variations in writing systems, linguistic register and stylistic conventions. *Writing Sys-
 265 tem Variations* include script variations such as traditional vs. simplified Chinese characters, and
 266 romanization—writing text in Latin script like Pinyin for Chinese or Finglish for Farsi. *Input
 267 medium challenges* capture typing scenarios where users employ non-native keyboards, leading to
 268 systematic character substitutions. This category also includes spacing irregularities with zero-width
 269 characters, and homoglyphs—visually similar characters with different Unicode values. *Diacritics*
 perturbations include presence of optional diacritics, where text remains valid with or without
 marks—fatha for /a/, kasra for /e/ in FA—and common accent errors (è → é). *Orthographic errors*

represent spelling mistakes and character-level variations commonly encountered in real-world text, including vowel substitutions, consonant errors, phonetic spelling variants, common misspellings, and punctuation errors. *Register & Style* captures variations in linguistic register and stylistic conventions across different contexts. This includes web search query formatting with shortened keyword expressions, standard and domain-specific abbreviations, and word reordering that reflect old orthographic conventions. This category encompasses informal digital communication patterns such as colloquial language, emoji or character substitution, and letter repetition for emphasis.

Morphological challenges cover contractions, compound words, inflectional variations, case marking, and derivations that may fragment or alter token boundaries. These challenges are particularly pronounced in agglutinative languages such as Turkish.

Noise perturbations introduce realistic types of textual noise encountered in practice, including typos, character or space deletion, character permutation, and formatting inconsistencies arising from sources such as OCR or other data processing pipelines. These variations test the robustness of the tokenizer under imperfect input conditions that the models must handle.

Grammatical errors cover typical mistakes made by non-expert speakers like subject-verb agreement, article omission or misuse, wrong preposition, incorrect verb tenses, and structural errors.

Linguistic variety covers variations in expressing the same semantic content across different linguistic contexts. It includes equivalent expressions with different syntactic structures, code-switching, similar words, historical spelling variations, and dialects representing regional language varieties with different vocabulary and spelling conventions.

Structural text elements includes Unicode-based formatting (see Fig. 5) and stylistic variations that preserve semantic content while altering visual presentation.

4.2 MATH & STEM DATASETS

Beyond testing simple world knowledge, a subset of our benchmark tests basic arithmetic and STEM, which allows TokSuite to include additional domain-specific perturbations.

LaTeX and Formatting variations include straightforward examples such as $\$6\$$ and $\$N_2\$$, as well as more complex formatted expressions like $\$\\frac{\\text{kg}}{\\text{m}^2} \\cdot \\text{s}^2\$$. We also include ASCII-based structural representations such as molecular diagrams, tree structures, and flowcharts.

Multilingual Basic Arithmetic is tested by translating canonical questions to ZH, FA, TR, and IT.

4.3 THE TOKSUITE EVALUATION FRAMEWORK

Robustness We evaluated models with `lm-eval`'s (Gao et al., 2024) byte-length normalized log-likelihood. For fair comparison among models with different baseline capabilities, we report relative accuracy drop for each model against its canonical performance within each category, computed as $\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$, where Acc_{can} is the canonical accuracy and lower values indicate greater robustness.

Intrinsic Tokenization Efficiency We evaluate tokenizers' efficiency in compressing text from the five target languages using 10,000 parallel Flores200 (Team et al., 2022) samples with three metrics: 1) *Subword fertility (SF)*: mean number of tokens per word, where lower values indicate less segmentation; (2) *Parity*: cross-lingual fairness measured as the ratio of tokenized lengths $\frac{|T(s_A)|}{|T(s_B)|}$ for parallel sentences (Ali et al., 2024); (3) *Proportion of continued words (PCW)*: fraction of words requiring multiple tokens (Rust et al., 2020). See Appendix C for detailed results.

5 FINDINGS

We present the robustness results of the TokSuite models on the TokSuite benchmark. We report the mean drop derived from a 10,000-trial bootstrap in Table 1. Paired Wilcoxon Signed-Rank Tests (Wilcoxon, 1945) determine statistical significance of performance differences in Section F.1.

NEW

324
 325 Table 1: Tokenization robustness under multilingual text perturbations. Values represent relative
 326 performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness. Perturbation types: In-
 327 put: non-native keyboard/romanization; Diacr.: optional diacritics; Orth. Errors: orthographic er-
 328 rors; Morph.: derivations/inflections/contractions; Noise: homoglyphs/OCR/typos/spacing; LaTeX:
 329 LaTeX-style math formatting; STEM: scientific diagrams and notations; Unic.: Unicode styling
 330 characters. NEN:non-English. Break-down of each category and detailed case studies are presented
 331 in Appendix E. **Green** and **red** entries indicate notable robustness and fragility, respectively.

Model	Input	Diacr.	Orth. Gram.		Morph		Noise		LaTeX	STEM	Unic	Avg
	NEN	NEN	EN	NEN	EN	NEN	EN	NEN	EN	EN	EN	
TokenMonster	0.23	0.33	0.08	0.01	0.23	-0.07	0.10	0.18	0.21	0.10	0.51	0.17
Avg	0.26	0.38	0.13	0.07	0.23	-0.04	0.14	0.21	0.19	0.21	0.48	0.21
XGLM	0.34	0.49	0.10	0.11	0.25	0.07	0.12	0.22	0.29	0.29	0.11	0.22
BLOOM	0.30	0.34	0.13	0.07	0.18	0.11	0.18	0.18	0.24	0.11	0.57	0.22
ByT5	0.30	0.44	0.04	0.06	0.27	0.04	0.14	0.18	0.17	0.29	0.53	0.22
Comma	0.28	0.43	0.05	0.07	0.18	-0.00	0.11	0.20	0.23	0.29	0.61	0.22
mBERT	0.33	0.44	0.11	0.11	0.23	0.06	0.18	0.22	0.14	0.22	0.61	0.24
GPT-4o	0.30	0.51	0.08	0.05	0.21	0.05	0.16	0.19	0.24	0.33	0.55	0.24
GPT-2	0.34	0.46	0.07	0.10	0.25	0.06	0.14	0.21	0.24	0.35	0.53	0.25
Phi-3	0.33	0.46	0.16	0.09	0.27	0.08	0.17	0.21	0.24	0.22	0.55	0.25
Gemma-2	0.32	0.42	0.14	0.15	0.24	0.03	0.16	0.25	0.22	0.36	0.57	0.26
Qwen-3	0.36	0.42	0.14	0.11	0.25	0.06	0.16	0.23	0.26	0.29	0.57	0.26
Llama-3.2	0.33	0.55	0.11	0.10	0.25	0.08	0.15	0.24	0.17	0.30	0.59	0.26
Aya	0.31	0.46	0.14	0.10	0.22	0.03	0.19	0.25	0.21	0.38	0.58	0.26
Tekken	0.33	0.47	0.18	0.03	0.31	0.10	0.14	0.21	0.27	0.43	0.54	0.27
Avg	0.31	0.44	0.11	0.08	0.24	0.04	0.15	0.21	0.22	0.28	0.53	0.24

346
 347 **Impact of Tokenization Algorithm Design on Multilingual Robustness** While orthographic and
 348 morphological diversities present universal difficulties across tokenizers, TokenMonster’s per-
 349 formance is particularly striking given its architectural constraints. Despite having a 32,000-token vo-
 350 cabulary trained exclusively on English text—roughly one-tenth the size of multilingual competitors
 351 like Aya or XGLM—it achieves the best average robustness score across all multilingual pertur-
 352 bations, with the lowest average relative performance drop of 0.18 (see Table 1). This effectiveness
 353 stems not from its vocabulary, but from its unique “ungreedy” tokenization algorithm that allows it
 354 to revise the token sequence by looking ahead.

355 ByT5 also demonstrates exceptional multilingual robustness, on average outperforming 9 models
 356 (see Table 1) despite using only a 259-token vocabulary. Its byte-level “token-free” design achieves
 357 minimal performance degradation across diverse perturbations: 0.04/0.06 drops for English/non-
 358 English orthographic errors (see Table 1), 0.00 drop for English grammatical errors (see Table 10),
 359 and top average 0.18 drop for multilingual noise (e.g., typos, OCR errors, etc.) (see Table 15). The
 360 model shows particular strength in Turkish and Chinese scenarios, including romanized Pinyin han-
 361 dling and even performance improvements (-0.11) with zero-width characters (see Table 8). How-
 362 ever, this robustness comes at an efficiency cost, with the highest subword fertility and PCW scores
 363 across all languages (see Appendix C), reflecting the robustness-efficiency trade-off. These findings
 364 demonstrate that tokenization algorithm design and segmentation consistency can be critical factors
 365 for multilingual performance, often more so than massive training data or vocabulary size.

366
 367 **Amplification of Tokenization Vulnerabilities under Multilingual Noise** Noise-based per-
 368 turbations create systematic degradation across all tokenizers, but the average performance drop due
 369 to noise is markedly more severe for non-English languages (0.22) compared to English (0.15)
 370 (see Table 1). This degradation can stem from the core mechanics of subword tokenization: when
 371 noise corrupts a familiar word, the tokenizer fragments it into unfamiliar or non-sensical subword
 372 units. This effect is particularly damaging in morphologically complex languages. For instance,
 373 a simple spacing error in the Turkish phrase “gün sayısı” (day count) causes it to be re-tokenized
 374 into chaotic and less meaningful sequences like `gün`, `#s`, `ay`, `#ısı` by mBERT or `gü`,
 375 `ns`, `ay`, `ısı` by Llama-3.2. In contrast, the byte-level tokenizer ByT5 proves more resilient,
 376 as character-level errors result in a predictably altered sequence of known bytes rather than catas-
 377 strophic fragmentation. This suggests that the reliance on a fixed vocabulary in subword models
 378 creates an inherent brittleness that is significantly exacerbated by noise in multilingual contexts. See
 379 Section E.3 for a detailed case study of this fragmentation phenomenon.

378 **Structural Limitations in Mathematical and STEM Content** Technical content presents unique
 379 tokenization challenges extending beyond vocabulary coverage. Analysis of mathematical and
 380 STEM content reveals critical tokenizer dependencies, with models showing significant performance
 381 degradation (average drops of 0.23 for LaTeX and 0.29 for STEM content, see Table 1). Even in
 382 simplified text completion format with mild technical notation, models exhibit vulnerability to de-
 383 scriptive STEM content. The clearest example of destructive tokenization is XGLM, with the highest
 384 LaTeX performance drop (0.30) and notable performance drop for STEM (0.29). This is likely due to
 385 XGLM’s tokenizer employing an aggressive normalization strategy that creates a stark performance
 386 trade-off. It excels at ignoring superficial text styling but fails significantly on technical domains
 387 like STEM and LaTeX, where its “lossy” pre-processing destroys the essential structural and spatial
 388 information required for comprehension. These domains rely heavily on precise whitespace treat-
 389 ment, symbol placement, and structural conventions—parallel to challenges in coding tasks where
 390 spacing and formatting carry semantic meaning. See Appendix E.4 for a detailed case study.
 390

391 **Universal Challenges Across Tokenizers** Formatting presents a universal challenge. Unicode
 392 styling and character transformations degrade performance consistently across nearly all models,
 393 with an average drop of 0.53—the highest drop observed (see Tables 1, 17, 18). XGLM shows strong
 394 robustness to these perturbations thanks to its NFKC normalization during preprocessing. While this
 395 mitigates performance degradation from styled characters, it also means that the tokenizer cannot
 396 faithfully represent or generate the diverse Unicode formatting present in real-world text.
 397

398 **Scaling Effects on Tokenization Robustness** TokSuite remains a challenging benchmark across
 399 different model capacities. In a controlled experiment comparing identically trained 7B and 1B
 400 Llama-3.2 models, we observed limited difference in robustness (Table 20). While canonical per-
 401 formance improves with scale, robustness remains roughly the same across all perturbed categories
 402 except those related to noise. Evaluation of larger, industry-scale models (Table 19), trained for
 403 orders of magnitude longer than the models in TokSuite, shows only modest improvements in ro-
 404 bustness. These findings demonstrate that tokenization design is the dominant factor influencing
 405 these robustness characteristics, more so than simply increasing parameter size or training duration.
 406

FIX

407 6 RELATED WORK

409 While tokenization is relatively understudied compared to other aspects of LM development, some
 410 past work has also studied how tokenization design choices influence model performance and cost.
 411

412 **Tokenization Design Factors:** [Ali et al. \(2024\)](#) demonstrated that using English-centric tokenizers
 413 in a multilingual setting leads to severe downstream degradation and up to 68% additional training
 414 cost owing to inefficient token coverage for non-English languages. [Rust et al. \(2020\)](#) found
 415 that monolingual tokenizers play an equally important role for pretraining data size in downstream
 416 performance. [Islam et al. \(2022\)](#) showed vocabulary-free neural tokenizers yielded substantial im-
 417 provements for low-resource languages in multilingual natural language inference.

418 On algorithmic choice, ByT5 notably shows that a byte-level tokenizer can match or outperform
 419 subword-level tokenizers on generative tasks. A comparative work compared mT5 ([Xue et al., 2021](#))
 420 and ByT5, which share architecture and data but differ in tokenization, and found that while their
 421 overall performance is comparable, the ByT5 model requires more layers to encode morpholog-
 422 ical information and performs differently across languages ([Dang et al., 2024b](#)). [Hou et al. \(2023\)](#)
 423 showed that morphological segmentation consistently outperformed BPE across morphologically
 424 rich languages, achieving lower perplexity and more efficient training convergence while enabling
 425 smaller models to match larger BPE-trained counterparts. [Richburg et al. \(2020\)](#) provided con-
 426 trolled evidence that Unigram language models perform translation more effectively and exhibit
 427 superior recall for rare words compared to BPE, particularly in morphologically rich languages like
 428 Swahili and Turkish for neural machine translation (NMT). The original SentencePiece work ([Kudo & Richardson, 2018](#))
 429 reported processing speeds up to 380 times faster than subword-based NMT in this setting, while achieving comparable or improved performance in machine translation. In an-
 430 other thread, [Huang et al. \(2025\)](#) argued for decoupling input and output vocabularies and indicated
 431 a log-linear benefit from scaling the input vocabulary, i.e., larger token sets often reduce loss and
 432 improve performance. [Schmidt et al. \(2024\)](#) explored how vocabulary sizes over a specific range

432 perform similarly across a moderate range for English tasks, suggesting diminishing returns from
 433 very large vocabularies in that regime. Tao et al. (2024) demonstrated that most current LLMs use
 434 insufficient vocabulary sizes, with their analysis suggesting Llama2-70B’s optimal vocabulary size
 435 should be 216K tokens, 7 times larger than its actual vocabulary size with 32K tokens.

436 **Tokenization Robustness and Vulnerabilities:** Like our work, Chai et al. (2024) studied LM’s sen-
 437 sitivity to typographical errors and ambiguities caused by the internal token structure; while scaling
 438 model parameters mitigates this sensitivity it doesn’t eliminate it. Wang et al. (2024) developed an
 439 adversarial dataset for tokenizer (ADT) framework, successfully degrading the performance of state-
 440 of-the-art LM’s through vocabulary-based adversarial examples that exploit tokenization vulnerabil-
 441 ities. They created “trap words” where concatenating two vocabulary tokens forms a different exist-
 442 ing vocabulary token, causing LLMs to incorrectly tokenize inputs and produce completely wrong
 443 responses, with particularly high effectiveness in Chinese due to tokenization complexity. Geh et al.
 444 (2025) demonstrated “adversarial tokenization” using non-canonical segmentations that preserve
 445 semantic meaning while evading safety alignment. Their approach successfully bypassed existing
 446 defense mechanisms, including LlamaGuard and ShieldGemma, revealing fundamental flaws in cur-
 447 rent LLM safety training pipelines. Several other previous works (Dhole et al., 2021; Wang et al.,
 448 2021a;b) have also evaluated LM’s vulnerability to noise.

449 **Limitations in the Background Work:** Despite recent advances, tokenization research suffers from
 450 critical gaps: lack of open-source model collections differing solely in tokenization, limited robust-
 451 ness benchmarks for tokenizer evaluation, and narrow coverage of languages and tokenizer types.
 452 To address these limitations, we trained and open-sourced 14 models with different tokenizers us-
 453 ing identical architectures, developed a multilingual robustness benchmark, and evaluated models
 454 across diverse input variations to isolate tokenization’s impact on performance and stability.

455 456 7 FUTURE WORK & LIMITATIONS

457 TokSuite models are trained exclusively on five languages with higher mixing rates than massive
 458 multilingual models (for example, the highest mixing rate across *all* languages in mT5 (Xue et al.,
 459 2021)’s training was less than 5%). This setup may underestimate multilingual interference ef-
 460 fects present in more realistic settings, where cross-lingual interference could degrade performance.
 461 While additional training data may alleviate some vulnerabilities, tokenizers provide a cost-free in-
 462 ductive bias that fundamentally shapes robustness and efficiency. Critically, intrinsic properties like
 463 compression rates directly constrain information processing within token budgets, forcing inefficient
 464 tokenizers to underconsume or learn subpar representations for certain languages. While coding
 465 tasks could present interesting challenges related to non-natural text and whitespace handling, we
 466 excluded them from our benchmark due to inconsistent model performance at the scale we con-
 467 sidered. Future research should expand to include these domains and broader linguistic coverage, and
 468 investigate whether tokenization vulnerabilities persist at larger model scales.

471 472 8 CONCLUSION

473 Despite tokenization’s fundamental role in language model behavior, practitioners commonly adopt
 474 off-the-shelf tokenizers without systematic understanding of their impact. To address this, we intro-
 475 duced TokSuite: 14 identical language models differing only in their tokenizer, plus a benchmark
 476 curated by native speakers probing natural variations that capture orthographic and morphological
 477 challenges across 5 languages and technical domains. Our results show that tokenizer design can
 478 matter more than vocabulary size—for example, an English-only tokenizer (TokenMonster) out-
 479 performed larger multilingual ones on certain perturbations, while byte-level models proved more
 480 robust to multilingual noise and subword fragmentation. Technical content analysis revealed crit-
 481 ical vulnerabilities where trivial formatting differences caused catastrophic performance degra-
 482 dation. Our work provides clear evidence that tokenizer choice directly impacts model robustness
 483 and capability across diverse contexts and will support future work on understanding the impact of
 484 tokenization on LM performance.

486 REFERENCES
487

488 Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-
489 san Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Singh Behl, Alon Ben-
490 haim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio C’esar Teodoro Mendes,
491 Weizhu Chen, Vishrav Chaudhary, Parul Chopra, Allison Del Giorno, Gustavo de Rosa, Matthew
492 Dixon, Ronen Eldan, Dan Iter, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Jun-
493 heng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
494 Karampatziakis, Dongwoo Kim, Young Jin Kim, Mahoud Khademi, Lev Kurilenko, James R.
495 Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan,
496 Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
497 Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Corby Rosset, Sam-
498 budha Roy, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning
499 Shang, Hiteshi Sharma, Xianmin Song, Olatunji Ruwase, Praneetha Vaddamanu, Xin Wang,
500 Rachel Ward, Guanhua Wang, Philipp Andre Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali
501 Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Cheng-Yuan Zhang, Cyril Zhang, Jianwen Zhang,
502 Li Lyra Zhang, Yi Zhang, Yunan Zhang, Xiren Zhou, and Yifan Yang. Phi-3 technical report:
503 A highly capable language model locally on your phone. *ArXiv*, abs/2404.14219, 2024. URL
<https://api.semanticscholar.org/CorpusID:269293048>.

504 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
505 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
506 report. *arXiv preprint arXiv:2303.08774*, 2023.

507

508 Mistral AI. mistral-common. <https://github.com/mistralai/mistral-common>,
509 2024.

510

511 Mehdi Ali, Michael Fromm, Klaudia Thellmann, Richard Rutmann, Max Lübbing, Johannes Lev-
512 eling, Katrin Klug, Jan Ebert, Niclas Doll, Jasper Buschhoff, et al. Tokenizer choice for llm
513 training: Negligible or crucial? In *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 3907–3924, 2024.

514

515 Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald
516 Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. The bele-
517 bele benchmark: a parallel reading comprehension dataset in 122 language variants. In Lun-
518 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 749–775. Association for Computational Linguistics, 2024.
519 doi: 10.18653/V1/2024.ACL-LONG.44. URL <https://doi.org/10.18653/v1/2024.acl-long.44>.

520

521

522

523 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
524 Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
525 Pythia: A suite for analyzing large language models across training and scaling. In *International Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

526

527

528 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
529 about physical commonsense in natural language. In *The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pp. 7432–7439. AAAI
530 Press, 2020. doi: 10.1609/AAAI.V34I05.6239. URL <https://doi.org/10.1609/aaai.v34i05.6239>.

531

532

533

534

535 Yekun Chai, Yewei Fang, Qiwei Peng, and Xuhong Li. Tokenization falling short: On subword
536 robustness in large language models. *arXiv preprint arXiv:2406.11687*, 2024.

537

538 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
539 Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL <http://arxiv.org/abs/1803.05457>.

540 Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger
 541 Schwenk, and Veselin Stoyanov. XNLI: evaluating cross-lingual sentence representations. In
 542 Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the*
 543 *2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, Oc-*
 544 *tober 31 - November 4, 2018*, pp. 2475–2485. Association for Computational Linguistics, 2018.
 545 doi: 10.18653/V1/D18-1269. URL <https://doi.org/10.18653/v1/d18-1269>.

546 John Dang, Shivalika Singh, Daniel D’souza, Arash Ahmadian, Alejandro Salamanca, Made-
 547 line Smith, Aidan Peppin, Sungjin Hong, Manoj Govindassamy, Terrence Zhao, et al. Aya
 548 expanse: Combining research breakthroughs for a new multilingual frontier. *arXiv preprint*
 549 *arXiv:2412.04261*, 2024a.

550 Thao Anh Dang, Limor Raviv, and Lukas Galke. Tokenization and morphology in multilingual
 551 language models: A comparative analysis of mt5 and byt5. *arXiv preprint arXiv:2410.11627*,
 552 2024b.

553 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 554 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 555 *the North American chapter of the association for computational linguistics: human language*
 556 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

557 Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Ma-
 558 hamood, Abinaya Mahendiran, Simon Mille, Ashish Srivastava, Samson Tan, Tongshuang Wu,
 559 Jascha Sohl-Dickstein, Jinho D. Choi, Eduard H. Hovy, Ondrej Dusek, Sebastian Ruder, Sajant
 560 Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Con-
 561 norr Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile
 562 Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cor-
 563 nell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra
 564 Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla,
 565 Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis
 566 Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan
 567 Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko,
 568 Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat
 569 Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria
 570 Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais,
 571 Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicholas Roberts,
 572 Juan Diego Rodriguez, Claude Roux, Paulo Henrique Santos Vasconcellos, Ananya B. Sai,
 573 Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib Shamsi, Xudong Shen, Yiwen
 574 Shi, Haoyue Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman
 575 Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, K. V. Aditya Srivatsa,
 576 Tony Sun, Mukund Varma T., A. Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie
 577 Tolkiehn, Athena Wang, Zijian Wang, Zijie J. Wang, Gloria Wang, Fuxuan Wei, Bryan Wilie,
 578 Genta Indra Winata, Xinyi Wu, Witold Wydmanski, Tianbao Xie, Usama Yaseen, Michael A. Yee,
 579 Jing Zhang, and Yue Zhang. Nl-augmenter: A framework for task-sensitive natural language aug-
 580 mentation. *CoRR*, abs/2112.02721, 2021. URL <https://arxiv.org/abs/2112.02721>.

581 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 582 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 583 *arXiv e-prints*, pp. arXiv–2407, 2024.

584 Alasdair Forsythe. tokenmonster: Ungreedy subword tokenizer and vocabulary trainer for
 585 python, go & javascript, 2025. URL [https://github.com/alsadairforsythe/](https://github.com/alsadairforsythe/tokenmonster)
 586 [tokenmonster](https://github.com/alsadairforsythe/tokenmonster).

587 Philip Gage. A new algorithm for data compression. *C Users Journal*, 12(2):23–38, 1994. URL
 588 <http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM>.

589 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 590 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
 591 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 592 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 593 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

594 Renato Lui Geh, Zilei Shao, and Guy Van den Broeck. Adversarial tokenization. *arXiv preprint*
 595 *arXiv:2503.02174*, 2025.

596

597 Jue Hou, Anisia Katinskaia, Anh-Duc Vu, and Roman Yangarber. Effects of sub-word segmentation
 598 on performance of transformer language models. *arXiv preprint arXiv:2305.05480*, 2023.

599 Hongzhi Huang, Defa Zhu, Banggu Wu, Yutao Zeng, Ya Wang, Qiyang Min, and Xun Zhou. Over-
 600 tokenized transformer: Vocabulary is generally worth scaling. *arXiv preprint arXiv:2501.16975*,
 601 2025.

602

603 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 604 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 605 *arXiv:2410.21276*, 2024.

606

607 Md Mofijul Islam, Gustavo Aguilar, Pragaash Ponnusamy, Clint Solomon Mathialagan, Chengyuan
 608 Ma, and Chenlei Guo. A vocabulary-free multilingual neural tokenizer for end-to-end task learn-
 609 ing. *arXiv preprint arXiv:2204.10815*, 2022.

610

611 Nikhil Kandpal, Brian Lester, Colin Raffel, Sebastian Majstorovic, Stella Biderman, Baber Abbasi,
 612 Luca Soldaini, Enrico Shippole, A Feder Cooper, Aviya Skowron, et al. The common pile v0.
 613 1: An 8tb dataset of public domain and openly licensed text. *arXiv preprint arXiv:2506.05209*,
 614 2025.

615

616 Taku Kudo. Subword regularization: Improving neural network translation models with multiple
 617 subword candidates. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual
 618 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 66–75,
 619 Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/
 620 P18-1007. URL <https://aclanthology.org/P18-1007/>.

621

622 Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
 623 tokenizer and detokenizer for neural text processing. *arXiv preprint arXiv:1808.06226*, 2018.

624

625 Brian Lester, Jaehoon Lee, Alexander A Alemi, Jeffrey Pennington, Adam Roberts, Jascha Sohl-
 626 Dickstein, and Noah Constant. Training LLMs over neurally compressed text. *Transactions on
 627 Machine Learning Research*, 2024. ISSN 2835-8856. URL [https://openreview.net/
 628 forum?id=pRvhMSV48t](https://openreview.net/forum?id=pRvhMSV48t). Featured Certification.

629

630 Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle
 631 Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, et al. Few-shot learning with multilingual language
 632 models. *arXiv preprint arXiv:2112.10668*, 2021.

633

634 Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A. Smith, and Yejin Choi.
 635 Superbpe: Space travel for language models, 2025. URL [https://arxiv.org/abs/2503.
 636 13423](https://arxiv.org/abs/2503.13423).

637

638 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 639 ence on Learning Representations*, 2019. URL [https://openreview.net/forum?id=
 640 Bkg6RiCqY7](https://openreview.net/forum?id=Bkg6RiCqY7).

641

642 Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
 643 collection of educational content, 2024. URL [https://huggingface.co/datasets/
 645 HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/

 644 HuggingFaceFW/fineweb-edu).

646

647 Bettina Messmer, Vinko Sabolčec, and Martin Jaggi. Enhancing multilingual Ilm pretraining with
 648 model-based data selection. *arXiv*, 2025. URL <https://arxiv.org/abs/2502.10361>.

649

650 Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
 651 Raja, Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. Between words and characters: A brief
 652 history of open-vocabulary modeling and tokenization in nlp. *arXiv preprint arXiv:2112.10508*,
 653 2021.

654

655 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 656 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 657 finest text data at scale, 2024a. URL <https://arxiv.org/abs/2406.17557>.

648 Guilherme Penedo, Hynek Kydlíček, Alessandro Cappelli, Mario Sasko, and Thomas Wolf. Data-
 649 Trove: large scale data processing, 2024b. URL <https://github.com/huggingface/datatrave>.
 650

651 Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Amir Hos-
 652 sein Kargaran, Colin Raffel, Martin Jaggi, Leandro Von Werra, and Thomas Wolf. Fineweb2: One
 653 pipeline to scale them all-adapting pre-training data processing to every language. *arXiv preprint*
 654 *arXiv:2506.20920*, 2025.
 655

656 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 657 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 658

659 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 660 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 661 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
 662

663 Aquia Richburg, Ramy Eskander, Smaranda Muresan, and Marine Carpuat. An evaluation of sub-
 664 word segmentation strategies for neural machine translation of morphologically rich languages.
 665 In *Proceedings of the Fourth Widening Natural Language Processing Workshop*, pp. 151–155,
 666 2020.

667 Angelika Romanou, Negar Foroutan, Anna Sotnikova, Sree Harsha Nelaturu, Shivalika Singh,
 668 Rishabh Maheshwary, Micol Altomare, Zeming Chen, Mohamed A. Haggag, Snegha A, Alfonso
 669 Amayuelas, Azril Hafizi Amirudin, Danylo Boiko, Michael Chang, Jenny Chim, Gal Cohen,
 670 Aditya Kumar Dalmia, Abraham Diress, Sharad Duwal, Daniil Dzenhaliou, and et al. INCLUDE:
 671 evaluating multilingual language understanding with regional knowledge. In *The Thirteenth In-
 672 ternational Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
 673 OpenReview.net, 2025. URL <https://openreview.net/forum?id=k3gCieTXeY>.
 674

675 Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. How good is your
 676 tokenizer? on the monolingual performance of multilingual language models. *arXiv preprint*
 677 *arXiv:2012.15613*, 2020.
 678

679 Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, and
 680 Chris Tanner. Tokenization is more than compression. *arXiv preprint arXiv:2402.18376*, 2024.
 681

682 Craig W. Schmidt, Varshini Reddy, Chris Tanner, and Yuval Pinter. Boundless byte pair encod-
 683 ing: Breaking the pre-tokenization barrier, 2025. URL <https://arxiv.org/abs/2504.00178>.
 684

685 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 686 subword units. In Katrin Erk and Noah A. Smith (eds.), *Proceedings of the 54th Annual Meeting of*
 687 *the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1715–1725, Berlin,
 688 Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
 689 URL <https://aclanthology.org/P16-1162>.
 690

691 Jean Seo, Jaeyoon Kim, SungJoo Byun, and Hyopil Shin. How does a language-specific tokenizer
 692 affect llms? *arXiv preprint arXiv:2502.12560*, 2025.
 693

694 Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin, and
 695 Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies. *Advances*
 696 *in Neural Information Processing Systems*, 37:114147–114179, 2024.
 697

698 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 699 patiraju, Léonard Hussonot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
 700 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.
 701

702 MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, ly usable llms, 2023.
 703 URL www.mosaicml.com/blog/mpt-7b. Accessed: 2023-03-28.
 704

705 NLLB Team, Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield,
 706 Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left
 707 behind: Scaling human-centered machine translation. *arXiv preprint arXiv:2207.04672*, 2022.
 708

702 Mathurin Videau, Badr Youbi Idrissi, Daniel Haziza, Luca Wehrstedt, Jade Copet, Olivier Teytaud,
 703 and David Lopez-Paz. Meta Lingua: A minimal PyTorch LLM training library, 2024. URL
 704 <https://github.com/facebookresearch/lingua>.

705

706 Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan
 707 Awadallah, and Bo Li. Adversarial GLUE: A multi-task benchmark for robustness evaluation of
 708 language models. *CoRR*, abs/2111.02840, 2021a. URL <https://arxiv.org/abs/2111.02840>.

709

710 D Wang, Y Li, J Jiang, Z Ding, G Jiang, J Liang, and D Yang. Tokenization matters! degrading large
 711 language models through challenging their tokenization (no. arxiv: 2405.17067). arxiv, 2024.

712

713 Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou, Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui
 714 Zheng, Zexiong Pang, Qinzhuo Wu, Zhengyan Li, Chong Zhang, Ruotian Ma, Zichu Fei, Ruijian
 715 Cai, Jun Zhao, Xingwu Hu, Zhiheng Yan, Yiding Tan, Yuan Hu, Qiyuan Bian, Zhihua Liu, Shan
 716 Qin, Bolin Zhu, Xiaoyu Xing, Jinlan Fu, Yue Zhang, Minlong Peng, Xiaoqing Zheng, Yaqian
 717 Zhou, Zhongyu Wei, Xipeng Qiu, and Xuanjing Huang. TextFlint: Unified multilingual robust-
 718 ness evaluation toolkit for natural language processing. In Heng Ji, Jong C. Park, and Rui Xia
 719 (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
 720 and the 11th International Joint Conference on Natural Language Processing: System Demon-
 721 strations*, pp. 347–355, Online, August 2021b. Association for Computational Linguistics. doi:
 722 10.18653/v1/2021.acl-demo.41. URL <https://aclanthology.org/2021.acl-demo.41>.

723

724 Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
 725 pre-trained encoder-decoder models for code understanding and generation. *arXiv preprint
 726 arXiv:2109.00859*, 2021c.

727

728 Frank Wilcoxon. Individual comparisons by ranking methods. *Biometrics Bulletin*, 1(6):80–83,
 1945. ISSN 00994987. URL <http://www.jstor.org/stable/3001968>.

729

730 BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,
 731 Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom:
 732 A 176b-parameter open-access multilingual language model. *arXiv preprint arXiv:2211.05100*,
 2022.

733

734 Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
 735 Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
 736 son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
 737 Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
 738 Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
 739 machine translation system: Bridging the gap between human and machine translation. *CoRR*,
 abs/1609.08144, 2016. URL <http://arxiv.org/abs/1609.08144>.

740

741 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
 742 Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer, 2021.
 743 URL <https://arxiv.org/abs/2010.11934>.

744

745 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
 746 Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte
 747 models. *Transactions of the Association for Computational Linguistics*, 10:291–306, 2022.

748

749 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 750 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 751 arXiv:2505.09388*, 2025.

752

753 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 754 chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Márquez
 755 (eds.), *Proceedings of the 57th Conference of the Association for Computational Linguistics,
 ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 4791–
 4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
<https://doi.org/10.18653/v1/p19-1472>.

756 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
757 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
758 Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
759 Opt: Open pre-trained transformer language models, 2022.
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 1: TokSuite is a comprehensive benchmark covering real-world perturbations that change tokenization (*left*), and 14 models that share the same initialization, architecture, and data but differ only in their tokenizers (*right*). *Left* panel illustrates how different tokenizers fragment the concept “doctor” when subjected to OCR errors, orthographic mistakes, semantic equivalents, emoji substitution, and multilingual translations. Each colored box represents one token across Gemma-2 (yellow), GPT-2 (blue), TokenMonster (green), and XGLM (red) tokenizers.

NEW

Table 2: Comprehensive Overview of Selected Tokenizers—Part A: Basic Properties

Tokenizer	Method	Vocab. Size	OOV Handling	Language(s)	Pretokenization
ByT5	Bytes	259 (XS)	Bytes	LA.	None (raw bytes)
TokenMonster	Custom	32,000 (S)	Ignores Unknowns	English-Only	None (boundaries are learned)
Phi-3	BPE	32,064 (S)	Byte-fallback	Multilingual	SentencePiece
GPT-2	BPE	50,257 (M)	Byte-fallback	English-Only	GPT-2
Comma	BPE	64,000 (M)	Byte-fallback	Multilingual	GPT-4
mBERT	WordPiece	110,000 (M)	[UNK]	Multilingual	BERT
Llama-3.2	BPE	128,256 (M)	Byte-fallback	Multilingual	GPT-4
Tekken	BPE	130,000 (M)	Byte-fallback	Multilingual	GPT-4o*
Qwen-3	BPE	151,646 (L)	Byte-fallback	Multilingual	GPT-4*
GPT-4o	BPE	200,000 (L)	Byte-fallback	Multilingual	GPT-4o
BLOOM	BPE	250,680 (L)	Byte-fallback	Multilingual	BLOOM
Aya	BPE	255,029 (L)	Byte-fallback	Multilingual	GPT-2
Gemma-2	Unigram	256,128 (L)	Byte-fallback	Multilingual	SentencePiece
XGLM	Unigram	256,008 (L)	Byte-fallback	Multilingual	SentencePiece

¹ Vocabulary bucket is indicated in ().

² OOV = Out-of-vocabulary

³ LA. = Language-agnostic

A TOKENIZER PROCESSING GLOSSARY

PRETOKENIZATION

BERT Pre-tokenization splits are based on whitespace and punctuation.

GPT-2 Pre-tokenization splits are done on whitespace and transitions between letters, numbers, and punctuation.

GPT-4 GPT-4 pre-tokenization follows GPT-2’s approach, but it also creates a new token after 3 contiguous digits. Note that Qwen 3 uses the same pretokenization as GPT-4, but does not split numbers into groups of three.

GPT-4o GPT-4o pre-tokenization follows that of GPT-4, but specific contractions—(‘s, ‘d, ‘m, ‘t, ‘ll, ‘ve, ‘re)—are not split from the preceding word. Note that Tekken uses the same pre-tokenization methods as GPT-4o, but without special case handling of the specific english contractions.

864 Table 3: Comprehensive Overview of Selected Tokenizers—Part B: Processing Details. See Ap-
 865 pendix A for detailed explanations of tokenization processing terminologies and methodologies.
 866

867 Tokenizer Name	868 Numbers	869 Contractions	870 Unicode Norm.	871 Whitespace	872 Zerowidth chars
873 ByT5	874 N/A	875 N/A	876 None	877 N/A	878 3 Bytes
879 TokenMonster	880 Learned	881 Learned	882 NFD	883 Learned	884 Token
885 Phi-3	886 Split	887 Learned	888 None	889 Manual	890 Token
891 GPT-2	892 Group	893 GPT-2	894 None	895 Individual	896 Token
897 Comma	898 Group by 3	899 GPT-4	900 None	901 Learned	902 Token
903 mBERT	904 Learned	905 Composed	906 None	907 Normalized	908 Normalized/Removed
909 Llama-3.2	910 Group by 3	911 GPT-4	912 None	913 Learned	914 Token
915 Tekken	916 Split	917 GPT-4*	918 None	919 Learned	920 Token
921 Qwen-3	922 Split	923 GPT-4	924 NFC	925 Learned	926 Token
927 GPT-4o	928 Group by 3	929 Learned	930 None	931 Learned	932 Token
933 BLOOM	934 Learned	935 Learned	936 None	937 Learned	938 Token
939 Aya	940 Split	941 GPT-2	942 NFC	943 Learned	944 Token
945 Gemma-2	946 Split	947 Learned	948 None	949 Manual	950 Token
951 XGLM	952 Learned	953 Learned	954 NFKC	955 Normalized	956 Normalized/Removed

880
 881
 882 **BLOOM** Pre-tokenization splits are done based on whitespace and punctuation like commas
 883 and periods.
 884 **SentencePiece** Pre-tokenization splits are done on whitespace, and at transitions between letters,
 885 numbers and punctuation.
 886

887 NUMBERS PROCESSING

888 **Split** Numbers are deterministically broken down into individual digits which are each
 889 treated as single tokens.
 890
 891 **Group** Numbers are deterministically split from adjoining text during pre-tokenization.
 892 The learning algorithm then determines which numbers become single tokens and
 893 which are further tokenized.
 894
 895 **Group by 3** Similar to **Group**, but contiguous digits are split into groups of 3 during pre-
 896 tokenization. Again, the learning algorithm then determines which numbers are
 897 single tokens. For example, “username12345” is pre-tokenized into “username”,
 898 “123”, and “45”, but “123” is not a token in \mathcal{V} yielding a final token stream of
 899 “username”, “1”, “23”, “45”.
 900
 901 **Learned** Numbers are not automatically segmented from surrounding text. Thus, the learn-
 902 ing algorithm determines token boundaries for letters and numbers jointly. This
 903 can result in tokens that include both characters and digits.
 904

905 CONTRACTIONS PROCESSING

906 **GPT-2** A selected number of English contractions (’s, ’d, ’m, ’t, ’ll, ’ve, ’re) are manually
 907 split into their own tokens. The learning algorithm then decides if they should be
 908 their own token or if it should be broken down further. This makes it impossible
 909 to have a token like “I’ll”.
 910
 911 **GPT-4** Uses GPT-4’s contraction processing method. The name set of contractions are
 912 explicitly handled, but the regex is implemented differently. Note that Tekken
 913 uses the GPT-4 regex without special casing english contractions; however, it still
 914 results in splitting contractions from the base during pre-tokenization.
 915
 916 **Learned** Contractions are not manually split from the base word; the learning algorithm
 917 decides if the contraction should be its own token or a composition.
 918
 919 **Composed** The pre-tokenization splits all contractions into multiple tokens (base, apostro-
 920 phic, and contraction, e.g., he’ll → “he”, “’”, “ll”), which cannot be merged back
 921 together in the learning algorithm.

918	UNICODE NORMALIZATION	
919		
920	None	No Unicode normalization is applied; characters are processed exactly as they appear in the input. Note that this can result in \mathcal{V} containing multiple tokens that are visually the same, but differ in their underlying bytes, for example two “é” tokens, but one is represented by a single code point while the other is represented as the composition of “e” and “’”.
921		
922	NFD	<i>Normalization Form Decomposed</i> : Unicode characters are decomposed into their constituent parts (base characters + combining marks separately).
923		
924	NFC	<i>Normalization Form Composed</i> : Unicode characters are composed into their canonical combined form (base characters + combining marks merged when possible).
925		
926	NFKC	<i>Normalization Form Compatibility Composed</i> : Similar to NFC but also applies compatibility mappings, converting visually similar characters to their canonical equivalents before composition. Note that this can result in lossy detokenization as characters like “2” are mapped to “2”.
927		
928		
929		
930		
931		
932		
933		
934		
935	WHITESPACE TREATMENT	
936	Normalized	Whitespace like tabs, newlines, and contiguous spaces are normalized to a single space. This results in lossy detokenization and often stops the downstream model from understanding domains with meaningful whitespace such as code.
937		
938		
939	Learned	Each piece of contiguous whitespace is segmented into a single token during pre-tokenization, then the learning algorithm decides how to subdivide them into individual tokens. This results in whitespace being preserved and allows for lossless detokenization.
940		
941		
942		
943	Manual	The handling of whitespaces during pre-tokenization matches Learned , but pre-defined whitespace tokens of various sizes are used instead of learning them from the data. This results in whitespace being preserved and allows for lossless detokenization.
944		
945		
946		
947	Individual	Whitespace is preserved, but each individual whitespace character is represented as its own token. This yields long token sequences for whitespace heavy inputs. This results in whitespace being preserved and allows for lossless detokenization.
948		
949		
950		
951	ZERO-WIDTH CHARACTERS	
952	3 Bytes	Zero-width characters are maintained in their original 3-byte representation.
953	Token	Zero-width characters are preserved and assigned as new tokens in the vocabulary.
954	Normalized/Removed	Zero-width characters are either normalized to standard equivalents or completely removed.
955		
956		
957		
958	B MODEL TRAINING	
959		
960	B.1 MODEL INITIALIZATION	
961		
962	We use the same initialization strategy as the Llama-1B configuration, however, we first create a shared initialization where the size of the embedding table—and the final output layer—is the size of the <i>super vocabulary</i> , $ E_{sv} = \mathcal{S}\mathcal{V} $. Each model then uses the parameter values from this shared initialization for most layers. The embedding table for an individual model, E , is initialized by selecting the appropriate rows from the super vocabulary embedding table. Thus after initialization, $E(x) = E_{sv}(sv(X))$. This results in a shared initialization for all models, including the initial embedding value for any shared tokens.	
963		
964		
965		
966		
967		
968		
969	B.2 MODEL PERFORMANCE	
970		
971	We evaluate all models on standard English reasoning tasks (HellaSwag (Zellers et al., 2019), ARC Easy/Challenge (Clark et al., 2018), PIQA (Bisk et al., 2020)), multilingual natural language infer-	

ence (XNLI (Conneau et al., 2018) in English, Turkish, and Chinese), reading comprehension (Belebele (Bandarkar et al., 2024) in English, Italian, Farsi, Turkish, and Chinese), and a multilingual reasoning benchmark (INCLUDE Base 44 (Romanou et al., 2025) in Chinese, Italian, and Turkish) in Fig. 2. Although models achieve sufficient performance on easier English reasoning tasks, their performance on more advanced multilingual reading comprehension and reasoning benchmarks hardly exceeds the random baseline. Results for Belebele and INCLUDE are omitted from the figures for visual clarity, as their performance trends were consistent with this pattern, slightly above random but not competitive across languages. Note that models with larger vocabulary (Aya, XGLM, mBERT, Gemma-2, GPT-4o, and Llama-3.2) tend to perform better on the downstream tasks, with TokenMonster and Tekken falling slightly behind.

Figure 2: Model Performance on Multilingual Benchmarks

B.3 TRAINING DATA CONSUMPTION AND FAIRNESS

The training process utilizes a deterministic data loader, sampling documents in the same order for all models. However, the varying compression efficiency of each tokenizer results in variation in the tokenized batch streams, which leads to different total numbers of actual UTF-8 bytes consumed for a fixed token budget. This consumption difference is an inherent consequence of tokenizer design and is unavoidable when comparing tokenizers under current LLM training practice (fixed token budget). To quantify this trade-off, we reconstructed the entirety of the text data consumed by each model ², detokenized each batch, and computed the total UTF-8 bytes seen. By T5 consumed 100 GB, while others ranged from ~ 215 GB to ~ 477 GB, with the exact numbers provided in Table 4. Crucially, models that consumed a greater total byte count were not necessarily the best performers (Table 1), suggesting that the tokenization strategy plays a larger role than the sheer volume of raw input.

C INTRINSIC TOKENIZATION EFFICIENCY METRICS

Tokenizers exhibit varying degrees of compactness when segmenting text into tokens, resulting in notable disparities in model performance across languages and domains. To systematically evaluate these differences, we analyze several metrics across our selected pretrained tokenizers, focusing on our five languages.

We compute three primary intrinsic efficiency metrics using 10,000 parallel random samples from Flores200 (Team et al., 2022), split into “real” words via language-specific word-level tokenizers from the DataTrove library (Penedo et al., 2024b):

²[link redacted for anonymity]

NEW

Table 4: Data consumed during training across different tokenizers

Model	Data Consumed (GB)
ByT5	100.00
TokenMonster	215.61
GPT-2	263.81
Comma	278.59
Phi-3	287.38
Llama-3.2	397.58
Qwen-3	411.23
Tekken	437.00
BLOOM	437.66
mBERT	445.80
GPT-4o	467.10
Aya	468.44
Gemma-2	471.38
XGLM	477.22

- Subword fertility (SF): is the mean number of tokens used to represent each “real” text word. This reflects how aggressively a tokenizer segments words. The theoretical minimum is 1, implying that the tokenizer’s vocabulary encompasses every word in the reference text (Penedo et al., 2025).
- Parity: evaluates whether a tokenizer processes equivalent sentences fairly across languages. Achieved when the ratio of tokenized lengths $\frac{|T(s_A)|}{|T(s_B)|} \approx 1$ for parallel sentence sets s_A and s_B from languages A and B (Ali et al., 2024).
- Proportion of continued words (PCW): is the proportion of “real” text words that require two or more tokens for encoding. This metric indicates how frequently a tokenizer splits words. A score of 0 means no splitting occurs, while a score of 1 means every word is split (Rust et al., 2020).

The intrinsic metrics reflect a tokenizer’s efficiency in processing a language and are critical factors in tokenizer selection, as they directly impact an LM’s computational cost, context window utilization, and representation quality. Table 5 reveals substantial disparities in how our tokenizers handle our target languages. ByT5 and tokenizers with smaller vocabularies (TokenMonster, and Phi-3) exhibit significantly higher subword fertility and PCW scores, particularly for non-English languages—ByT5 requires 7.72 tokens per word in Farsi compared to 4.40 in English. Multilingual-specialized tokenizers (mBERT, XGLM) demonstrate superior language parity, with XGLM achieving near-optimal parity scores (1.18 average) and mBERT showing the lowest average subword fertility (1.54).

Notably, vocabulary size alone does not guarantee efficiency; Qwen-3 and Gemma-2, despite having large vocabularies ($>150K$), show comparable or worse performance than smaller vocabulary tokenizers like mBERT on certain metrics. We also observe higher fertility and PCW scores for morphologically rich languages (Turkish, Farsi) compared to English.

D TOKSUITE BENCHMARK DETAILS

D.1 QUESTION STYLE AND DIFFICULTY

The TokSuite benchmark comprises straightforward multiple-choice text completion questions. Below we present the canonical English questions that form our English subset, which are subsequently translated into Farsi (FA), Italian (IT), Turkish (TR), and Chinese (ZH). The fourteen models demonstrate strong performance on the canonical questions in English and Italian (Fig. 4), while the canonical accuracy on Farsi, Turkish, and Chinese is slightly behind. Higher subword fertility, PCW, and parity scores in these three languages (see Table 5) suggest that the models are likely to consume less information measured in raw bytes in these languages.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097

Table 5: Multilingual Tokenizers Comparison on Flores200 Using Intrinsic Tokenizer Efficiency Metrics. sf denotes subword fertility, pcw denotes proportion of continued words, and parity is measured against English parallel samples. Summary statistics report average values across all languages. Lower is better for all metrics. Bold font highlights the best performance in each row. Models are ordered from smallest to largest vocabulary size, left to right. Vocabulary size is categorized as XS, S, M, and L for $< 1K$, $1K-50K$, $50K-150K$, and $> 150K$ tokens, respectively.

Tokenizer Vocab. Size														
	ByT5	TokenMonster	Phi-3	GPT-2	Comma	mBERT	Llama-3.2	Tekken	Qwen-3	GPT-4o	BLOOM	Aya	Gemma-2	XGLM
	XS	S	S	M	M	M	M	L	L	L	L	L	L	
English sf	4.40	1.75	1.24	1.30	1.44	1.15	1.26	1.35	1.28	1.24	1.31	1.19	1.14	1.23
English pcw	0.87	0.56	0.16	0.23	0.34	0.10	0.20	0.27	0.21	0.20	0.25	0.15	0.11	0.21
Chinese sf	5.00	4.92	3.44	3.54	2.45	1.68	1.49	1.64	1.21	1.44	1.16	1.23	1.28	2.19
Chinese pcw	0.98	0.97	0.97	0.82	0.58	0.55	0.35	0.41	0.16	0.32	0.13	0.18	0.21	0.87
Chinese parity	0.94	4.99	2.03	3.21	1.94	1.40	1.29	1.43	1.02	1.27	0.93	1.05	1.09	1.15
Turkish sf	6.49	4.31	3.20	3.20	3.29	1.99	2.38	2.44	2.58	2.33	2.71	2.17	2.23	1.69
Turkish pcw	0.87	0.80	0.76	0.76	0.78	0.52	0.72	0.73	0.74	0.71	0.72	0.68	0.69	0.52
Turkish parity	1.12	3.34	2.11	2.45	2.21	1.37	1.39	1.50	1.63	1.43	1.98	1.21	1.39	1.12
Farsi sf	7.72	7.74	4.77	4.91	4.43	1.53	1.94	1.92	2.45	1.93	2.01	1.85	1.83	1.36
Farsi pcw	0.95	0.94	0.93	0.90	0.90	0.31	0.58	0.58	0.67	0.57	0.58	0.53	0.53	0.28
Farsi parity	1.72	9.45	4.08	5.35	4.31	1.38	1.52	1.47	2.63	1.55	1.80	1.48	1.45	1.21
Italian sf	4.78	2.50	1.64	1.99	2.05	1.34	1.81	1.77	1.83	1.71	1.75	1.61	1.54	1.36
Italian pcw	0.84	0.63	0.42	0.57	0.59	0.23	0.55	0.53	0.55	0.52	0.51	0.47	0.41	0.32
Italian parity	1.19	2.30	1.48	2.02	1.87	1.28	1.62	1.40	1.64	1.47	1.63	1.31	1.33	1.24
Avg sf	5.79	4.39	2.90	3.19	2.93	1.54	1.78	1.82	1.87	1.73	1.79	1.61	1.60	1.56
Avg pcw	0.90	0.78	0.62	0.66	0.64	0.34	0.48	0.50	0.47	0.46	0.44	0.40	0.39	0.46
Avg parity	1.27	5.31	2.54	3.44	2.74	1.36	1.46	1.45	1.73	1.43	1.59	1.26	1.32	1.18

1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Figure 3: Tokenizer performance comparison across languages using Flores200 dataset with intrinsic efficiency metrics (fertility, parity, and proportion of continued words). Lower is better.

1188 300 Dr Smith is a doctor. Occupation of Dr Smith is: **doctor**, teacher, judge, lawyer
 1189 301 The color of the sky is: **blue**, red, green, yellow
 1190 302 The price of this house is 1,028,415 dollars. The cost of this house is: **1,028,415 dollars**,
 1191 1,028.415 dollars, 1,028,411 dollars, 1,028.415 dollars
 1192 303 Today's date is 29/08/2025. Today is: **29/08/2025**, 19/08/2025, 26/08/2025, 29/09/2025
 1193 304 The number of continents on Earth is: **7**, 5, 6, 8
 1194 305 The capital city of Iran is: **Tehran**, Mashhad, Baghdad, Isfahan
 1195 306 The number of days in a week is: **7**, 5, 6, 8
 1196 307 The number of hours in a day is: **24**, 20, 25, 30
 1197 308 The number of legs a cow has is: **4**, 8, 3, 5
 1198 309 The number of minutes in 2 hours is: **120**, 100, 140, 90
 1199 310 The number of months in a year is: **12**, 10, 11, 13
 1200 311 The number of seconds in a minute is: **60**, 50, 100, 30
 1201 312 The number of sides a hexagon has is: **6**, 5, 7, 8
 1202 313 The number of sides a triangle has is: **3**, 2, 4, 5
 1203 314 In "I work at Apple", Apple is: **company**, person, city, fruit
 1204 315 In "I work at Google", Google is: **company**, person, city, fruit
 1205 316 In "Microsoft released a new update", Microsoft is: **company**, person, place, date
 1206 317 In "The cat sat on the mat", the subject is: **the cat**, sat, the mat, on
 1207 318 The gas humans need to breathe to live is: **oxygen**, methane, helium, hydrogen
 1208 319 10% of 100 is: **10**, 5, 15, 20
 1209 320 25% of 80 is: **20**, 15, 25, 30
 1210 321 Chad's capital is: **N'Djamena**, Moundou, Abéché, Ngama
 1211 322 The capital of France is: **Paris**, London, Berlin, Rome
 1212 323 The capital of Japan is: **Tokyo**, Kyoto, Osaka, Hiroshima
 1213 324 The capital of Turkey is: **Ankara**, İstanbul, İzmir, Bursa
 1214 325 The chemical formula for water is: **H2O**, CO₂, NaCl, O₂
 1215 326 The intent in "What time does the store close?" is: **get information**, make purchase, book
 1216 appointment, file complaint
 327 The largest mammal in the world is: **blue whale**, dolphin, giraffe, bear
 1217 328 The unit of measurement for temperature in the International System is: **Kelvin**, Celsius,
 1218 meter, Rankine
 1219 329 The country whose space agency is NASA is: **United States**, Russia, China, Japan
 1220 330 The language spoken in Brazil is: **Portuguese**, Spanish, French, Italian
 1221 331 The metal with chemical symbol 'Fe' is: **iron**, lead, zinc, gold
 1222 332 The organ in the human body that pumps blood is: **heart**, liver, lungs, kidneys
 1223 333 The planet closest to the Sun in our solar system is: **Mercury**, Venus, Mars, Earth
 1224 334 The largest planet in the Solar System is: **Jupiter**, Earth, Saturn, Mars
 1225 335 The process that allows plants to produce their own food using sunlight is: **photosynthesis**,
 1226 respiration, digestion, fermentation
 1227 336 The author who wrote the play "Romeo and Juliet" is: **William Shakespeare**, Charles
 1228 Dickens, Mark Twain, Jane Austen
 1229 337 What bees produce is: **honey**, milk, silk, wax
 1230 338 What plants need from the air to make food is: **carbon dioxide**, nitrogen, hydrogen, helium
 1231 339 In "Can you please book a flight to Paris?", the person wants to: **make a booking**, go
 1232 shopping, file a complaint, cancel reservation
 1233 340

Figure 4: Accuracies of models on canonical versus perturbed questions across the English (eng_Latn), Italian (ita.Latn), Farsi (pes_Arab), Turkish (tur_Latn), and Chinese (zho_Hans) TokSuite subsets.

D.2 BENCHMARK COMPOSITION

In Table 6, we list the composition of the categories and perturbations in TokSuite. The multilingual parallel dataset comprises 80% of the dataset, while the remaining part covers math, STEM, and general questions.

Table 6: Benchmark statistics by language and domain

Language/Domain	Total Examples	Perturbations
English	1,180	42 types
Chinese	485	18 types
Turkish	638	21 types
Italian	1,088	19 types
Farsi	747	15 types
Math	189	5 types
STEM	614	25 types
General	89	4 types

E DETAILED BENCHMARK RESULTS

In this section, we provide case studies for each category in Section 4.1.

E.1 ORTHOGRAPHIC & SCRIPT CHALLENGES

Variations in Writing Systems or Input Mediums Table 7 examines tokenization robustness under orthographic and script challenges, focusing on variations in writing systems or input mediums where users employ non-native keyboards. For Chinese romanization, we write the full question and choices in Pinyin without tone markers—as if the user only has access to an English keyboard—with spaces between individual groups that constitute a character for easy segmentation. However, this segmentation aid does not improve tokenization robustness, as models still exhibit substantial performance degradation (0.60 relative accuracy drop) when processing romanized Chinese text compared to native scripts. For Farsi, we examine two romanization approaches: (1) Finglish-style romanization (FA column), where Persian text is written using Latin characters following common transliteration practices used by native speakers on English keyboards, and (2) number-based romanization, where Persian numerals replace corresponding characters (e.g., using digits like 2, 3, 7 as phonetic substitutes). We also evaluate cross-script keyboard constraints: Latin-script languages (Italian and Turkish) are tested with English keyboard layouts (TR, IT columns), while Farsi is tested with Arabic keyboard input (Arabic Keyboard column), reflecting common scenarios where users lack access

1296
1297
1298
1299
13001301 Table 7: Tokenization robustness under different input mediums or writing systems, granular version
1302 of **Input** in Table 1. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate
1303 greater robustness. ‘Traditional’ refers to traditional Chinese characters instead of simplified.
1304

Model	Romanization		Number Romaniza- tion FA	English Keyboard		Arabic Keyboard FA	Traditional ZH	Avg
	FA	ZH		TR	IT			
TokenMonster	0.46	0.58	-0.10	-0.04	0.21	0.25	0.02	0.20
Comma	0.42	0.59	0.21	0.03	0.24	0.42	0.04	0.28
GPT-4o	0.57	0.67	-0.03	0.22	0.09	0.43	0.03	0.28
Llama-3.2	0.60	0.66	-0.23	0.24	0.14	0.53	0.09	0.29
BLOOM	0.63	0.48	0.08	0.21	0.15	0.40	0.10	0.29
Aya	0.55	0.62	0.01	0.06	0.16	0.55	0.12	0.29
ByT5	0.61	0.46	0.21	0.13	0.15	0.39	0.18	0.30
Tekken	0.59	0.61	0.00	0.17	0.20	0.44	0.18	0.31
Gemma-2	0.40	0.52	0.28	0.24	0.19	0.47	0.18	0.32
Phi-3	0.58	0.66	0.25	0.06	0.24	0.39	0.09	0.33
XGLM	0.59	0.63	0.13	0.29	0.19	0.41	0.10	0.34
mBERT	0.44	0.60	0.42	0.22	0.18	0.50	0.10	0.35
GPT-2	0.61	0.67	0.31	0.30	0.16	0.32	0.11	0.35
Qwen-3	0.68	0.64	0.19	0.15	0.19	0.47	0.18	0.36
Avg	0.55	0.60	0.12	0.16	0.18	0.43	0.11	0.31

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
13291330 Table 8: Tokenization robustness under errors from input mediums. Values represent relative per-
1331 formance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness.
1332

Model	Homoglyphs EN	Zero-width chars.		Avg
		FA	ZH	
mBERT	0.08	0.09	0.00	0.06
Phi-3	0.03	0.21	-0.06	0.06
TokenMonster	0.09	0.18	-0.06	0.07
BLOOM	0.12	0.17	-0.07	0.07
XGLM	0.03	0.19	0.03	0.08
ByT5	0.06	0.32	-0.11	0.09
Comma	0.05	0.32	-0.07	0.10
GPT-4o	0.14	0.23	-0.03	0.11
Aya	0.28	0.23	-0.14	0.12
Gemma-2	0.15	0.27	0.03	0.15
Llama-3.2	0.12	0.30	0.03	0.15
GPT-2	0.13	0.23	0.13	0.16
Tekken	0.13	0.29	0.10	0.17
Qwen-3	0.11	0.38	0.11	0.20
Avg	0.11	0.24	-0.01	0.11

1346
1347
1348
1349

1350 to their native keyboard. Finally, the Traditional column assesses Chinese model performance when
 1351 presented with Traditional Chinese characters instead of the standard Simplified Chinese characters
 1352 used in training. Across these input medium variations, models show varying degrees of robustness,
 1353 with average relative performance drops ranging from 0.11 (Traditional Chinese) to 0.60 (Chinese
 1354 romanization).

1355
 1356
 1357 **Homoglyphs and Zero-width Characters** In Table 8, the errors due to input systems (like homo-
 1358 glyphs and zero-width characters) are presented. This category examines tokenization robustness
 1359 under typographic irregularities: (1) homoglyphs in English, where visually identical characters
 1360 from different Unicode scripts (e.g., Cyrillic ‘o’ vs. Latin ‘o’) replace their Latin counterparts,
 1361 and (2) zero-width characters (invisible Unicode characters like zero-width spaces) inserted into
 1362 Farsi and Chinese text. This category tests whether tokenizers can handle Unicode irregularities
 1363 and visually deceptive characters-issues that arise from copy-pasting text across different systems,
 1364 malicious input, or encoding errors. Models demonstrate relatively good robustness to homoglyphs
 1365 (0.11 average drop) and Chinese zero-width characters (-0.01 average), but show moderate degra-
 1366 dation with Farsi zero-width characters (0.24 average drop), likely because of its dual reliance on both
 1367 white-space boundaries for word segmentation and contextual letter joining rules (where zero-width
 1368 joiners/non-joiners are legitimately used), making tokenizers particularly sensitive to incorrectly
 1369 placed invisible characters that can simultaneously disrupt both spacing patterns and character con-
 1370 nnectivity.

1371
 1372
 1373 Table 9: Tokenization robustness to diacritics, granular version of **Diacr** in Table 1 and wrong
 1374 accents in Italian. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate
 1375 greater robustness.

Model	Diacritics		Wrong accents	Avg
	FA	ZH		
BLOOM	0.33	0.37	0.08	0.26
TokenMonster	0.21	0.45	0.17	0.28
GPT-2	0.42	0.50	-0.02	0.30
Qwen-3	0.41	0.43	0.10	0.31
ByT5	0.42	0.46	0.06	0.31
mBERT	0.31	0.57	0.06	0.31
Gemma-2	0.43	0.42	0.10	0.32
Phi-3	0.39	0.53	0.05	0.32
Tekken	0.47	0.48	0.07	0.34
Aya	0.45	0.48	0.10	0.34
XGLM	0.44	0.54	0.11	0.36
GPT-4o	0.47	0.57	0.08	0.37
Comma	0.39	0.48	0.30	0.39
Llama-3.2	0.60	0.50	0.16	0.42
Avg	0.41	0.49	0.10	0.33

1391
 1392 **Diacritics Perturbations** Table 9 expands on diacritics perturbations, examining how tokenizers
 1393 handle optional Farsi diacritics that are used to clarify pronunciation and phonetic details, Chinese
 1394 tonal variations in the Pinyin format, and incorrect accent placement in Italian text. We test how
 1395 tokenizers handle optional diacritics, where text remains valid with or without marks (e.g., marks
 1396 placed above or below letters to clarify pronunciation and phonetic details such as short vowels (fātā
 1397 for /a/, kasra for /e/, damma for /o/), or sukūn for the absence of vowels in Farsi), wrong accents
 1398 such as using é instead of è in Italian. Models experience substantial performance degradation when
 1399 diacritics are added to Chinese (0.49 average drop) and Farsi (0.41 average drop), languages that
 1400 typically lack such markers. This indicates that tokenizers trained on undiacritized text struggle
 1401 when these marks are introduced, despite their disambiguating potential. In contrast, models show
 1402 much higher robustness to incorrect Italian accents (0.10 average drop). Among models, BLOOM
 1403 performs best overall (0.26 average drop) due to its multilingual design; TokenMonster excels on
 1404 Farsi (0.21 drop); GPT-2 slightly improves on Italian wrong accents (-0.02 drop); while Llama-3.2
 1405 exhibits severe degradation on Farsi (0.60 drop).

1404
 1405 **Orthographic and Grammatical Errors** Table 10 reveals that orthographic and grammatical er-
 1406 rors create varying challenges depending on the morphological complexity of the language. Token-
 1407 Monster and ByT5, a character-level approach, demonstrate the strongest performance.

1408
 1409 Table 10: Tokenization robustness under orthographic and grammatical errors. Values represent
 1410 relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness.

Model	Orthographic Errors			Grammatical Errors			Phonetic	Avg
	EN	TR	IT	EN	TR	IT	IT	
TokenMonster	0.10	0.04	0.04	0.06	0.03	-0.03	0.04	0.04
ByT5	0.06	0.10	0.08	0.00	-0.01	0.04	0.02	0.04
GPT-4o	0.12	0.13	0.08	0.00	0.05	-0.01	0.02	0.06
Comma	0.09	0.20	0.06	-0.03	0.13	0.01	0.04	0.07
Llama-3.2	0.14	0.18	0.13	0.05	0.07	0.03	0.02	0.09
Tekken	0.24	0.23	-0.01	0.08	0.21	-0.07	-0.01	0.09
GPT-2	0.08	0.30	0.10	0.05	0.12	0.01	0.09	0.11
BLOOM	0.18	0.24	0.05	0.03	0.21	-0.01	0.07	0.11
Qwen-3	0.17	0.18	0.12	0.08	0.15	0.05	0.02	0.11
Phi-3	0.18	0.22	0.13	0.11	0.09	-0.02	0.07	0.11
Aya	0.21	0.21	0.13	0.03	0.07	0.02	0.14	0.11
mBERT	0.15	0.41	0.08	0.03	0.22	-0.02	0.04	0.13
XGLM	0.13	0.32	0.12	0.03	0.23	-0.02	0.15	0.14
Gemma-2	0.18	0.30	0.12	0.05	0.29	0.07	0.09	0.16
Avg	0.14	0.22	0.09	0.04	0.13	0.00	0.06	0.10

1425 **Orthographic Errors** Orthographic errors represent spelling mistakes and character-level variations
 1426 commonly encountered in real-world text, including vowel substitutions, consonant errors,
 1427 phonetic spelling variants, common misspellings, and punctuation errors. Imagine perturbing the
 1428 word “week” to “weak” in the question, “The number of days in a week is”. This change breaks
 1429 6/14 models despite both words existing as distinct tokens with separate embeddings. This sug-
 1430 gests that tokenization robustness depends not merely on vocabulary coverage but on the semantic
 1431 stability of token representations.

1432 **Grammatical Errors** Consider the Turkish locative suffix variants “saat**teki**” for the root saat (in
 1433 the *hour*) versus the incorrect “saat**deki**” as part of the canonical question “2 saat**teki** dakika sayısı”
 1434 (Translation in English: “The number of minutes in 2 hours is”).

1435 This example demonstrates how agglutinative languages amplify tokenization brittleness: a single
 1436 phoneme change (/t/ to /d/) can completely restructure token boundaries. This reflects the curse of
 1437 multilinguality, where tokenizers trained predominantly on English struggle with morphologically
 1438 complex languages, sometimes producing cleaner segmentation—with meaningful morphemes—for
 1439 incorrect forms than correct ones (as Gemma-2 and BLOOM below). English grammatical errors
 1440 on the other hand—with wrong prepositions, subject-verb agreement, etc—tend to change token
 1441 boundaries less and we observe a less striking performance degradation in Table 10.

1442 Assimilation error (“saat**teki**” vs. “saat**deki**”):

- 1443 • **BLOOM, Gemma-2:** sa, atte, ki vs. saat, de, ki (meaningful morphemes
 1444 after error)
- 1445 • **XGLM:** saat, teki vs. saat, deki (clean morpheme separation)
- 1446 • **Llama-3.2:** sa, atte, ki vs. sa, at, deki (inconsistent segmentation)
- 1447 • **mBERT:** saat, #**tek**, #**i** vs. saat, #**deki** (subword fragmentation changes)
- 1448 • **Qwen-3:** sa, atte, ki vs. sa, at, de, ki (boundary reorganization)
- 1449 • **TokenMonster:** sa, at, tek, i vs. sa, a, td, ek, i (severe fragmentation)
- 1450 • **GPT-4o:** s, aat, te, ki vs. s, aat, de, ki (character-level consistency)
- 1451 • **Tekken:** sa, atte, ki vs. sa, at, deki (partial boundary preservation)
- 1452 • **GPT-2:** sa, at, te, ki vs. sa, at, d, eki (fine-grained segmentation)

1453 *Turkish final-obstruent devoicing error (“ineğin” → “inekin”) in the word cow’s (possesive)*

- **BLOOM**: ine, Ç, \$, in vs. in, ekin
- **XGLM**: in, e, ğ, in vs. in, ekin
- **Llama-3.2**: ine, Ç, \$, in vs. ine, kin
- **mBERT**: [UNK] vs. in, ##ekin (unknown token fallback)
- **Qwen-3**: ine, Ç\$, in vs. ine, kin
- **TokenMonster**: ine, g, ̄i, n vs ine, kin (diacritic decomposition)
- **Gemma-2**: ine, ğ, in vs. ine, kin
- **GPT-4o**: ine, ğ, in vs. ine, kin
- **Tekken**: ine, ğ, in vs. ine, kin
- **GPT-2**: ine, ğ, in vs. ine, kin

Register and Style Variations Consider using emoji substitution in “The capital of Japan is” by replacing “Japan” with the Japan’s flag.

Table 11: Tokenization robustness under different register and style variations. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness. Abb.: abbreviations, Word Ord.: word reordering, emoji: emoji substitution, char. subs.: character substitution, repet.: letter repetition for emphasis

Model	Web Search			Abb.		Word Ord.		Phonetic		Colloquial				Emoji	Char. Subs.	Repet.	Avg
	EN	TR	IT	EN	IT	EN	TR	IT	EN	FA	TR	ZH	EN	EN	EN	EN	EN
TokenMonster	0.26	0.07	0.38	0.32	0.04	0.06	-	0.04	0.11	0.00	-	0.04	0.25	-	0.22	0.11	
mBERT	0.33	0.25	0.23	0.27	0.07	0.08	0.18	0.04	0.15	0.09	0.12	0.18	0.29	-	0.07	0.18	0.16
GPT-4o	0.36	0.34	0.53	0.18	0.09	0.05	0.03	0.02	0.20	0.10	0.12	0.15	0.16	-	0.01	0.21	0.17
ByT5	0.40	0.30	0.29	0.28	0.11	0.06	0.12	0.02	0.15	0.19	0.14	0.16	0.32	-	0.04	0.11	0.17
Comma	0.43	0.33	0.43	0.32	0.08	-	0.03	0.04	0.12	0.13	0.14	0.19	0.23	0.01	0.13	0.17	
BLOOM	0.41	0.36	0.31	0.24	0.09	0.12	0.20	0.07	0.17	0.20	0.15	0.01	0.20	0.00	0.17	0.18	
GPT-2	0.29	0.36	0.38	0.20	0.16	0.13	0.15	0.09	0.10	0.06	0.18	0.21	0.26	-	0.28	0.19	
XGLM	0.29	0.32	0.30	0.29	0.16	0.03	0.17	0.15	0.20	0.22	0.17	0.15	0.33	0.01	0.08	0.19	
Llama-3.2	0.38	0.32	0.36	0.30	0.13	0.10	0.14	0.02	0.19	0.17	0.08	0.17	0.25	0.06	0.27	0.20	
Tekken	0.49	0.34	0.42	0.29	0.01	0.05	0.19	-	0.16	0.26	0.07	0.24	0.26	0.01	0.20	0.20	
Aya	0.42	0.38	0.33	0.28	0.24	0.08	0.20	0.14	0.17	0.13	0.11	0.15	0.11	-	0.32	0.20	
Qwen-3	0.32	0.41	0.49	0.26	-	0.08	0.17	0.02	0.14	0.32	0.17	0.16	0.14	0.08	0.36	0.21	
Gemma-2	0.50	0.36	0.54	0.25	0.28	0.08	0.15	0.09	0.18	0.07	0.12	0.24	0.18	0.04	0.20	0.22	
Phi-3	0.43	0.31	0.62	0.20	0.04	0.11	0.15	0.07	0.24	0.21	0.19	0.23	0.33	-	0.28	0.22	
Avg	0.38	0.32	0.40	0.26	0.11	0.07	0.13	0.06	0.16	0.15	0.13	0.16	0.24	-	0.21	0.19	

Emoji handling reveals differences: Most modern tokenizers like Gemma-2, GPT-4o, Tekken, GPT-2, and Qwen-3 have emojis in their vocabulary, correctly parse the Japanese flag emoji into two tokens as the corresponding regional indicators ([J] and [P]). Aya on the other hand has a stand-alone token for the flag emoji. BLOOM, Llama-3.2, and TokenMonster use byte-fallback, XGLM and mBERT resort to unknown tokens. The coverage of emojis translate into good performance in the Emoji substitution perturbations (see Table 11).

Linguistic Variety Table 12 examines how tokenizers handle linguistic diversity including historical spellings, code-switching, dialects, and colloquial expressions. TokenMonster demonstrates remarkable consistency across varied linguistic phenomena (0.08 average drop), while most models struggle significantly with certain types of variation. In Table 13, we group the models based

1512 on their vocabulary size (see Table 2) to investigate potential correlations with vocabulary size, as
 1513 larger vocabularies theoretically provide more comprehensive dictionaries.

1514 Counterintuitively, vocabulary size shows little to no correlation with linguistic robustness—byte-
 1515 level model (ByT5) demonstrates superior consistency despite operating without traditional vocabu-
 1516 lary constraints, while some large-vocabulary tokenizers exhibit significant brittleness. We observe
 1517 that larger vocabulary size doesn’t always produce a lexically-rich vocabulary. Modern tokenizers
 1518 may actually compound the problem by learning multiple variants of common words (Gemma-2
 1519 has distinct tokens for “hello”, “ hello”, “Hello”, and “ Hello”), reducing the effective vocabulary.
 1520 While this multiplicity has efficiency gains it could make models sensitive to stylistic variations that
 1521 should be semantically equivalent.

1522 Historical spelling variants (“capitall”³, “Japane”) demonstrate systematic fragmentation patterns
 1523 where tokenizers often segment archaic or non-standard spellings along morphological boundaries:

- **Most tokenizers:** capit, all and Jap, ane (consistent morpheme-like splitting)
- **mBERT:** capital, #l and Japan, #e (subword suffix handling)
- **XGLM:** capital, l and Japan, e (clean separation)

1525 Colloquial expressions reveal deeper challenges in world knowledge representation. The question
 1526 “Turkey’s capital turns out to be” with the correct answer “Ankara” illustrates how informal phrasing
 1527 can disrupt factual recall: as it breaks 3 models. This suggests that tokenizers’ handling of casual
 1528 discourse markers and words (“turns out to be”) may interfere with models’ access to factual knowl-
 1529 edge. The pattern indicates that linguistic variety challenges extend beyond mere tokenization to
 1530 fundamental issues of how models integrate linguistic style with semantic content.

1531 E.2 MORPHOLOGICAL CHALLENGES

1532 Table 14 examines how tokenizers handle morphological variations including derivations, inflec-
 1533 tions, and contractions across English, Turkish, and Italian. Morphological perturbations reveal
 1534 fundamental inconsistencies in how tokenizers segment related word forms—contractions like
 1535 “Google’s” versus decomposed forms, or Italian elision patterns where “dell’Italia” and “d’Italia”
 1536 receive dramatically different tokenization despite identical meaning. These inconsistencies suggest
 1537 that current tokenization approaches lack coherent strategies for handling morphologically related
 1538 forms, potentially leading models to develop disparate semantic representations for linguistically
 1539 equivalent expressions. For example while BLOOM learns contractions, GPT-2 and GPT-4o use a
 1540 regex-based search.

1541 English Contractions: “Google is”→ “Google’s”

- **BLOOM, Llama-3.2, Qwen-3, Gemma-2, GPT-2, GPT-4o, Tekken:** Google, 's
 (separate marker)
- **XGLM, mBERT:** Google, ', s (fragmentation)
- **TokenMonster:** google, 's (lowercase normalization)

1542 **Italian Ellisions** The Italian contraction “L’intento” (the intent) demonstrates varying approaches
 1543 to handling elided articles:

- **BLOOM:** L', int, ento
- **XGLM:** L, ', inten, to
- **Llama-3.2:** L, 'int, ento
- **mBERT:** L, ', intento
- **Qwen-3:** L, 'int, ento
- **TokenMonster:** l', intent, o
- **Gemma-2:** L, ', int, ento

³<https://www.oed.com/search/dictionary/?scope=Entries&q=capitall>

1566

1567

1568

1569

1570

1571

1572

Table 12: Tokenization robustness under linguistic variety. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness. Hist.: historical spelling, equiv. exp.: equivalent expressions, sim. words: similar words

1576

Model	Hist.	Code switch				Dialects			Equiv. exp.				Sim. words			Avg
		EN	FA	TR	IT	ZH	FA	TR	IT	EN	FA	TR	ZH	EN	TR	IT
TokenMonster	0.09	0.07	0.00	0.00	0.03	0.22	0.09	0.17	0.14	0.07	0.04	0.03	0.03	-0.06	0.22	0.08
ByT5	0.06	0.03	0.04	0.06	-0.04	0.29	0.15	0.15	0.02	0.13	0.06	0.04	0.08	-0.08	0.24	0.08
Comma	0.21	0.10	0.13	0.06	0.03	0.30	0.04	0.06	-0.05	0.10	0.06	0.03	0.08	-0.02	0.28	0.09
BLOOM	0.25	-0.07	0.16	-0.03	-0.04	0.31	0.19	0.14	0.05	0.07	0.14	-0.07	0.09	0.13	0.26	0.11
mBERT	0.11	0.09	0.16	0.03	0.09	0.30	0.31	0.12	-0.05	0.06	0.04	0.06	0.02	0.23	0.05	0.11
Tekken	0.21	0.12	0.16	-0.03	0.03	0.37	0.14	-0.02	0.17	0.15	0.06	0.03	0.05	0.18	-0.01	0.11
GPT-4o	0.08	-0.03	0.10	-0.08	0.07	0.29	0.10	0.14	0.14	-0.03	-0.03	0.13	0.05	0.29	0.44	0.11
XGLM	0.18	0.09	0.21	0.06	-0.03	0.30	0.15	0.02	0.17	0.03	0.10	0.09	0.08	0.16	0.10	0.11
Gemma-2	0.31	0.17	0.05	0.05	0.10	0.33	0.23	0.07	0.17	0.00	0.07	-0.10	0.04	0.08	0.40	0.13
Aya	0.21	0.03	0.13	0.08	0.03	0.30	0.18	0.14	0.27	0.16	0.10	0.00	0.07	0.10	0.23	0.14
GPT-2	0.18	0.10	0.18	0.06	0.20	0.28	0.23	0.23	0.07	0.10	0.14	0.03	0.09	0.08	0.10	0.14
Llama-3.2	0.25	0.03	0.13	0.03	0.09	0.24	0.05	0.17	0.10	0.03	0.17	0.19	0.09	0.16	0.40	0.14
Qwen-3	0.32	0.21	0.18	0.05	0.04	0.34	0.18	0.11	0.02	0.24	0.17	-0.07	0.09	0.22	0.15	0.15
Phi-3	0.32	0.12	0.16	0.09	0.13	0.35	0.10	0.23	-0.05	0.15	0.34	0.09	0.09	0.29	0.19	0.17
Avg	0.20	0.08	0.13	0.03	0.05	0.30	0.15	0.12	0.08	0.09	0.11	0.03	0.07	0.13	0.22	0.12

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

Table 13: Tokenization robustness under linguistic variety. Same as Table 12 but grouped under vocabulary size. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness. Hist.: historical spelling, equiv. exp.: equivalent expressions, sim. words: similar words

1607

Vocab Size	Hist.	Code switch				Dialects			Equiv. exp.				Sim. words			Avg
		EN	FA	TR	IT	ZH	FA	TR	IT	EN	FA	TR	ZH	EN	TR	IT
X-Small	0.06	0.03	0.04	0.06	-0.04	0.29	0.15	0.15	0.02	0.13	0.06	0.04	0.08	-0.08	0.24	0.08
Medium	0.19	0.09	0.15	0.03	0.09	0.30	0.15	0.12	0.05	0.09	0.10	0.07	0.07	0.13	0.17	0.12
Large	0.23	0.07	0.14	0.02	0.03	0.31	0.17	0.10	0.14	0.08	0.09	0.00	0.07	0.16	0.26	0.13
Small	0.21	0.10	0.09	0.05	0.08	0.29	0.10	0.20	0.04	0.11	0.20	0.06	0.06	0.13	0.20	0.13
Avg	0.17	0.07	0.11	0.04	0.04	0.30	0.14	0.14	0.06	0.10	0.11	0.04	0.07	0.08	0.22	0.11

1614

1615

1616

1617

1618

1619

1620 • **GPT-4o:** L, 'int, ento
 1621 • **Tekken:** L, 'int, ento
 1622 • **GPT-2:** L, ', intent, o
 1623
 1624 “dell’Italia” vs. “d’Italia”:
 1625
 1626 • **BLOOM:** d, ell, ', Italia vs. d', Italia
 1627 • **XGLM:** dell, ', Italia vs. d, ', Italia
 1628 • **Llama-3.2, Qwen-3:** d, ell, 'It, alia vs. d, 'It, alia (fragments “Italia”)
 1629 • **mBERT:** dell, ', Italia vs. d, ', Italia (length-dependent)
 1630 • **TokenMonster:** dell, ', ita, lia vs. d, ', ita, lia (lowercase + frag-
 1631 mentation)
 1632 • **Gemma-2:** dell, ', Italia vs. d, ', Italia (clean separation)
 1633 • **GPT-4o:** d, ell, ', Italia vs. d, ', Italia (inconsistent decomposition)
 1634 • **Tekken:** d, ell, 'Italia vs. d, 'Italia (treats apostrophe differently)
 1635 • **GPT-2:** d, ell, ', It, alia vs. d, ', It, alia (fragments country name)
 1636
 1637
 1638
 1639
 1640

1641 Table 14: Tokenization robustness under morphological challenges, granular version of Morpho-
 1642 logical in Table 1. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate
 1643 greater robustness.

Model	Contractions		Compounds EN	Derivations TR	Inflections		Avg
	EN	IT			EN	TR	
Comma	0.23	0.18	0.09	-0.11	0.02	0.02	0.07
TokenMonster	0.30	0.16	0.17	-0.12	0.02	-0.09	0.07
GPT-2	0.33	-0.08	0.09	0.05	0.02	0.13	0.09
Aya	0.27	-0.03	0.19	0.02	0.05	0.06	0.10
Gemma-2	0.27	-0.03	0.14	0.02	0.12	0.06	0.10
mBERT	0.26	0.14	0.09	0.18	0.15	0.06	0.10
Qwen-3	0.31	0.12	0.09	0.02	0.10	0.06	0.12
GPT-4o	0.26	0.26	0.12	-0.04	0.07	0.06	0.12
ByT5	0.30	-0.03	0.15	0.09	0.21	0.05	0.13
BLOOM	0.20	-0.01	0.16	0.11	0.14	0.16	0.13
XGLM	0.26	0.02	0.07	0.11	0.25	0.06	0.13
Llama-3.2	0.29	0.12	0.16	0.02	0.14	0.11	0.14
Tekken	0.36	-0.04	0.14	0.08	0.17	0.18	0.15
Phi-3	0.28	0.07	0.14	0.09	0.25	0.08	0.15
Avg		0.28	0.04	0.13	0.04	0.12	0.07
							0.11

E.3 NOISE

1661 Table 15 shows robustness against common noise in digital text, such as keyboard proximity errors
 1662 (s→(a,w,d,x), j→(k,u,h,m), چ→(چ,م), 价→(加,们,份,什)), OCR misrecognition (O→0, I→l),
 1663 character deletion, space removal, and typographical errors (doctor→ doctro). These perturbations
 1664 reflect authentic user input scenarios where models must maintain performance despite noisy text
 1665 across multiple languages and writing systems.

1666 We observe that tokenizers that segment text into complete word tokens tend to exhibit greater
 1667 vulnerability to noise errors, as single character perturbations can cause familiar words to fragment
 1668 into unfamiliar subword combinations, whereas tokenizers using smaller subword units maintain
 1669 more consistent segmentation patterns.

1670 **Noise in Chinese subset** For keyboard proximity errors in Chinese characters are replaced with
 1671 phonetically or positionally similar alternatives on the keyboard layout. For space removal, we use
 1672 the Pinyin input without any spaces.

1674
1675 **Typos** Typographical errors demonstrate how different tokenization approaches handle character-
1676 level perturbations. For example, the word “doctor” with a typo becomes “doctro”:
1677

- 1677 • **mBERT**: doctor, doc, ##tro
- 1678 • **Comma AI**: do, ctor, doc, tro
- 1679 • **Llama-3**: doctor, do, ct, ro
- 1680 • **Tekken**: doctor, doct, ro
- 1681 • **Aya Expanse**: doctor, doct, ro
- 1682 • **GPT-4o**: doctor, doct, ro
- 1683 • **GPT-2**: doctor, doct, ro
- 1684 • **ByT5**: d, o, c, t, o, r, , d, o, c, t, r, o

1685
1686 Similarly, for Turkish text “gün sayısı” (day count) with spacing errors becoming “güns ayısı”:
1687

- 1687 • **mBERT**: gün, sayısı, gün, ##s, ay, ##ısı
- 1688 • **Comma AI**: g, ün, say, ı, s, ı, g, ü, ns, ay, ı, s, ı
- 1689 • **Tekken**: g, ün, say, ı, s, ı, g, ü, ns, ay, ı, s, ı
- 1690 • **GPT-4o**: g, ün, say, ı, s, ı, g, ü, ns, ay, ı, s, ı
- 1691 • **Llama-3.2**: gün, sayısı, gü, ns, ay, ı, s, ı
- 1692 • **GPT-2**: g, ü, n, say, ı, s, ı, g, ü, ns, ay, ı, s, ı
- 1693 • **Aya Expanse**: gün, sayısı, gün, s, ay, ı, s, ı
- 1694 • **ByT5**: Character-level segmentation (individual Unicode characters)

1700 E.4 MATHEMATICAL & SCIENTIFIC EXPRESSIONS

1702 Table 16 demonstrates that models generally struggle with the formatting and structural challenges
1703 inherent in scientific domains. When numerical values are replaced with their spelled-out equivalents
1704 (15 → fifteen), we observe a consistent performance degradation even in English. The parallel
1705 multilingual basic arithmetic questions reveal that certain tokenizers may exhibit inductive biases
1706 favoring specific languages. For instance, Gemma-2’s performance on Italian questions matches
1707 that of the canonical English questions, whereas it shows a 53% performance degradation in Farsi.
1708 Llama-3.2 demonstrates similar behavior with Turkish, while the Aya tokenizer, developed as part of
1709 a multilingual language model, exhibits the greatest robustness across languages. It should be noted,
1710 however, that this represents one of the few instances in our study where Aya tokenizer demonstrates
1711 clear multilingual advantages.

1712 **Tokenization of scientific text:** Consider the unit “cubic meters” expressed as m^3 , $\$m^3\$$,
1713 $\$m^{\{3\}}\$$, and $\$m^{\{3\}}\$$. Despite semantic equivalence, tokenization patterns reveal increasing
1714 fragmentation:
1715

- 1716 • **BLOOM**:
 - 1717 – Plain: m, ^3
 - 1718 – LaTeX: \$m, ^3, \$
 - 1719 – Braced: \$m, ^{3, }\$
 - 1720 – Spaced: \$m, ^{, 3, }\$
- 1721 • **XGLM**:
 - 1722 – Plain: m, ^, 3
 - 1723 – LaTeX: \$, m, ^, 3, \$
 - 1724 – Braced: \$, m, ^, \{, 3, \}, \$
 - 1725 – Spaced: \$, m, ^, \{, 3, \}, \$
- 1726 • **Llama-3.2**:

1728
1729
1730
1731
17321733 Table 15: Tokenization robustness under multi-lingual noise. Values represent relative performance
1734 drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness.
1735

Model	Keyboard Errors					OCR		Char. Del. EN	Space Removal		Typos		Avg		
	EN	FA	TR	IT	ZH	EN	ZH		EN	ZH	EN	TR			
Comma	0.05	0.29	0.15	0.18	0.17	0.12	0.10	0.10	0.14	0.55	0.20	0.04	0.25	0.18	
ByT5	0.19	0.26	0.13	0.22	0.11	0.18	0.11	0.09	0.18	0.43	0.17	0.11	0.18	0.18	
TokenMonster	0.22	0.18	0.15	0.13	0.16	0.10	0.26	0.04	0.13	0.58	0.08	0.09	0.25	0.18	
GPT-2	0.20	0.16	0.29	0.16	0.27	0.15	0.23	0.09	0.16	0.50	0.18	0.22	0.20	0.22	
Qwen-3	0.20	0.32	0.25	0.19	0.11	0.15	0.25	0.12	0.17	0.43	0.23	0.16	0.26	0.22	
GPT-4o	0.13	0.20	0.13	0.13	0.23	0.15	0.40	0.18	0.16	0.53	0.24	0.13	0.22	0.22	
BLOOM	0.22	0.23	0.34	0.16	0.11	0.19	0.11	0.16	0.21	0.56	0.16	0.25	0.17	0.22	
Gemma-2	0.17	0.23	0.21	0.22	0.19	0.17	0.29	0.16	0.15	0.52	0.14	0.13	0.30	0.22	
Llama-3.2	0.12	0.30	0.26	0.21	0.19	0.10	0.28	0.17	0.20	0.56	0.08	0.22	0.24	0.22	
XGLM	0.18	0.25	0.29	0.19	0.23	0.15	0.29	0.13	0.13	0.60	0.11	0.22	0.21	0.23	
Tekken	0.23	0.29	0.33	0.12	0.26	0.20	0.29	0.11	0.12	0.52	0.11	0.21	0.20	0.23	
Phi-3	0.15	0.27	0.22	0.20	0.22	0.20	0.22	0.21	0.18	0.53	0.20	0.20	0.21	0.23	
mBERT	0.24	0.25	0.32	0.16	0.14	0.20	0.20	0.14	0.24	0.60	0.11	0.23	0.26	0.24	
Aya	0.15	0.42	0.25	0.26	0.24	0.17	0.28	0.19	0.21	0.52	0.10	0.19	0.27	0.25	
Avg		0.18	0.26	0.24	0.18	0.19	0.16	0.24	0.13	0.17	0.53	0.15	0.17	0.23	0.22

1750
1751
1752
1753
1754
1755
1756
1757
1758
17591760 Table 16: Tokenization robustness under math and STEM related challenges. Values represent
1761 relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness. LaTeX: LaTeX-
1762 style math formatting; Diag. scientific diagrams and notations; Unic.: Unicode formatted ASCII
1763 characters. NEN=non-English.1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Model	LaTeX					Spelled Out		Diag. EN	Multilingual			Unicode EN	Avg	
	EN	EN	FA	TR	IT	ZH	EN	FA	TR	IT	ZH			
TokenMonster	0.23	0.28	0.49	0.07	0.33	0.31	0.11	0.29	0.00	0.14	0.00	0.08	0.19	
Phi-3	0.25	0.34	0.39	0.14	0.47	0.23	0.22	0.29	0.00	0.00	0.00	0.24	0.11	0.22
Aya	0.23	0.32	0.35	0.41	0.47	0.26	0.38	0.07	0.00	0.00	0.00	0.21	0.23	
mBERT	0.15	0.35	0.55	0.45	0.35	0.38	0.22	0.14	0.07	0.14	0.07	0.23	0.26	
Llama-3.2	0.18	0.33	0.43	0.34	0.45	0.23	0.29	0.18	0.47	0.00	0.18	0.07	0.26	
GPT-2	0.25	0.38	0.35	0.32	0.44	0.08	0.35	0.18	0.35	0.24	0.24	0.17	0.28	
Tekken	0.27	0.37	0.33	0.36	0.38	0.31	0.44	0.18	0.24	0.12	0.24	0.15	0.28	
BLOOM	0.25	0.29	0.24	0.47	0.40	0.20	0.11	0.41	0.35	0.24	0.29	0.19	0.29	
Comma	0.23	0.36	0.54	0.17	0.47	0.26	0.29	0.39	0.28	0.17	0.22	0.19	0.30	
ByT5	0.18	0.37	0.54	0.42	0.54	0.23	0.29	0.07	0.20	0.27	0.27	0.23	0.30	
GPT-4o	0.25	0.38	0.33	0.45	0.52	0.28	0.33	0.37	0.32	0.05	0.16	0.20	0.30	
Gemma-2	0.22	0.35	0.33	0.32	0.53	0.40	0.37	0.53	0.35	0.00	0.18	0.23	0.32	
Qwen-3	0.26	0.41	0.50	0.41	0.47	0.23	0.29	0.25	0.35	0.20	0.30	0.23	0.33	
XGLM	0.30	0.35	0.46	0.41	0.53	0.30	0.29	0.27	0.33	0.20	0.20	0.27	0.33	
Avg		0.23	0.35	0.42	0.34	0.45	0.26	0.29	0.26	0.24	0.13	0.18	0.19	0.28

- 1782 – Plain: $m, \hat{,} 3$
- 1783 – LaTeX: $\$m, \hat{,} 3, \$$
- 1784 – Braced: $\$m, \hat{\{,} 3, \}}\$$
- 1785 – Spaced: $\$m, \hat{\{,} , 3, \}}\$$
- 1786
- 1787 • **mBERT:**
- 1788 – Plain: $m, \hat{,} 3$
- 1789 – LaTeX: $\$, m, \hat{,} 3, \$$
- 1790 – Braced: $\$, m, \hat{\{,} , 3, \}}, \$$
- 1791 – Spaced: $\$, m, \hat{\{,} , 3, \}}, \$$ (identical tokenization)
- 1792
- 1793 • **Qwen-3:**
- 1794 – Plain: $m, \hat{,} 3$
- 1795 – LaTeX: $\$m, \hat{,} 3, \$$
- 1796 – Braced: $\$m, \hat{\{,} 3, \}}\$$
- 1797 – Spaced: $\$m, \hat{\{,} , 3, \}}\$$
- 1798
- 1799 • **TokenMonster:**
- 1800 – Plain: $m, \hat{,} 3$
- 1801 – LaTeX: $\$, m^{\hat{,}} 3\$$
- 1802 – Braced: $\$, m^{\hat{,}} \{3\}\$$
- 1803 – Spaced: $\$, m^{\hat{,}} \{, 3, \}\$$
- 1804
- 1805 Performance drops precipitously with formatting complexity: while all models correctly identified
- 1806 “volume” for plain text, only 8/14 succeeded with basic LaTeX formatting, 2/14 with braces, and just
- 1807 2/14 with spaced braces. TokenMonster and Qwen-3 showed the highest robustness, maintaining
- 1808 correct answers through the spaced version.
- 1809 This shows that even trivial whitespace differences in technical notation can cause catastrophic per-
- 1810 formance degradation, highlighting a critical vulnerability for applications that require strong math-
- 1811 ematical reasoning.
- 1812
- 1813 • **Structural ASCII Art and Chemical Notation** These examples demonstrate how tokenizers han-
- 1814 dle structured chemical representations, from simple formulas to ASCII molecular diagrams and
- 1815 systematic nomenclature. The input contains CH4, an ASCII diagram of methane, H2SO4, and the
- 1816 systematic name “Dihydrogen sulfur tetraoxide”:
- 1817 • **BLOOM:**
- 1818 – Simple formulas: CH, 4 and H2, SO4
- 1819 – ASCII structure: H, |, H-C-H, |, H (preserves structural elements)
- 1820 – Systematic name: D, ih, yd, rogen, sulfur, tet, ra, oxide
- 1821
- 1822 • **XGLM:**
- 1823 – Simple formulas: CH, 4 and H, 2, SO, 4
- 1824 – ASCII structure: H, |, H-, C, -, H, |, H (fragments bonds)
- 1825 – Systematic name: Di, hydro, gen, su, lfur, te, tra, oxide
- 1826
- 1827 • **mBERT:**
- 1828 – Simple formulas: CH, #4 and H, #2, #S, #O, #4
- 1829 – ASCII structure: H, |, H, -, C, -, H, |, H (aggressive fragmentation)
- 1830 – Systematic name: Di, #hy, #dro, #gen, sul, #fur, te, #tra, #ox, #ide
- 1831
- 1832 • **Gemma-2:**
- 1833 – Simple formulas: CH, 4 and H, 2, SO, 4
- 1834 – ASCII structure: Uses special spacing tokens (____) for whitespace
- 1835 – Systematic name: Di, hydrogen, sulfur, tetra, oxide

1836 • **GPT-4o:**

1837 – Simple formulas: CH, 4 and H, 2, SO, 4

1838 – ASCII structure: H, |, H-C-H, |, H (clean structural preservation)

1839 – Systematic name: D, ih, yd, rogen, sulfur, tetra, oxide

1840

1841 • **GPT-2:**

1842 – Simple formulas: CH, 4 and H, 2, SO, 4

1843 – ASCII structure: H, |, H-, C, -, H, |, H

1844 – Systematic name: D, ih, yd, rogen, sulfur, tet, ra, oxide

1845

1846 • **Tekken:**

1847 – Simple formulas: CH, 4 and H, 2, SO, 4

1848 – ASCII structure: H, |, H-C-H, |, H (preserves structure well)

1849 – Systematic name: D, ihydro, gen, sulfur, tetra, oxide

1850

1851 • **TokenMonster:**

1852 – Simple formulas: ch, 4 and h2, so, 4 (lowercase normalization)

1853 – ASCII structure: Complex Unicode handling with encoding artifacts

1854 – Systematic name: di, hydrogen, sul, fur, tet, ra, ox, ide

1855 While all models correctly identified CH₄ as methane, only Llama and GPT-2 models correctly interpreted the ASCII molecular diagram. For H₂SO₄, all models succeeded, while spelled-out systematic nomenclature achieved 65% accuracy. The ASCII diagram failure is particularly revealing—the structured representation that humans easily recognize as methane becomes nearly incomprehensible to models when tokenized, despite containing identical chemical information. XGLM and mBERT normalize the whitespaces in the diagram, however they still fail to identify the molecule, maybe due to—characters. Gemma-2’s special whitespace handling (—) and GPT-4o’s clean structural preservation suggest different approaches to spatial formatting, yet neither prevented the semantic confusion in the ASCII representation.

1864 E.5 STYLING & UNICODE CHALLENGES

1865 Table 17: Tokenization robustness under Unicode formatting, NFKC normalization used by XGLM
 1866 strips away all normalizations below. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$);
 1867 lower values indicate greater robustness.

Model	Decorative Unicode EN	Fullwidth Characters EN	Scripted Text EN	Double Struck EN	Enclosed Characters EN	(Sup/sub) script EN	Avg
XGLM	0.07	0.07	0.02	0.12	0.19	0.08	0.09
ByT5	0.40	0.54	0.58	0.56	0.73	0.66	0.58
GPT-2	0.47	0.59	0.59	0.68	0.61	0.65	0.60
TokenMonster	0.36	0.62	0.57	0.64	0.72	0.70	0.60
Tekken	0.41	0.73	0.57	0.62	0.73	0.62	0.62
Gemma-2	0.53	0.54	0.67	0.62	0.68	0.66	0.62
GPT-4o	0.47	0.62	0.61	0.70	0.67	0.67	0.62
Phi-3	0.47	0.54	0.59	0.75	0.73	0.67	0.62
Aya	0.36	0.68	0.71	0.63	0.69	0.69	0.63
BLOOM	0.59	0.51	0.62	0.67	0.72	0.65	0.63
Qwen-3	0.60	0.67	0.69	0.62	0.57	0.64	0.63
mBERT	0.36	0.73	0.70	0.69	0.81	0.71	0.67
Llama-3.2	0.59	0.60	0.70	0.69	0.76	0.68	0.67
Comma	0.67	0.60	0.67	0.81	0.70	0.58	0.67
Avg	0.45	0.57	0.59	0.63	0.67	0.62	0.59

1885 Using Unicode characters and applying styling to the questions (or all choices) causes performance
 1886 degradation across all models (see Tables 17 and 18). Although some tokenizers maintain distinct
 1887 tokens for certain styled characters, they nevertheless exhibit significant failure rates. These styling
 1888 variations could potentially be mitigated through normalization techniques, such as the NFKC nor-
 1889 malization employed by XGLM. However, this is not always desirable, as these transformations are
 irreversible. We include the sample transformations in Fig. 5.

Table 18: Tokenization robustness under different styling formats. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$); lower values indicate greater robustness.

Model	Diacriticized EN	Lowercase EN	Capitalized EN	Upside Down EN	Spaced EN	Hyphenated EN	Avg
TokenMonster	0.60	0.01	-0.03	0.47	0.66	0.69	0.40
Aya	0.66	0.08	0.15	0.42	0.54	0.67	0.42
GPT-2	0.52	0.06	0.21	0.52	0.63	0.63	0.43
Tekken	0.57	0.03	0.16	0.60	0.63	0.61	0.43
Gemma-2	0.69	0.06	0.15	0.47	0.64	0.67	0.45
GPT-4o	0.57	0.00	0.16	0.62	0.62	0.70	0.45
Phi-3	0.58	0.11	0.18	0.47	0.68	0.66	0.45
Comma	0.58	0.06	0.11	0.60	0.68	0.68	0.45
Llama-3.2	0.60	0.11	0.05	0.54	0.68	0.75	0.45
Qwen-3	0.58	0.09	0.11	0.67	0.53	0.76	0.46
ByT5	0.61	0.06	0.06	0.73	0.69	0.67	0.47
BLOOM	0.61	0.08	0.12	0.65	0.72	0.65	0.47
mBERT	0.64	0.09	0.16	0.80	0.59	0.65	0.49
XGLM	0.63	0.11	0.32	0.87	0.61	0.63	0.53
Avg	0.60	0.07	0.14	0.60	0.64	0.67	0.45

	Style	Text	Style	Text
1923	Style	Text	Underline	<u>Python</u>
1924	Full width	Py t h o n	Macron	Þýðóñ
1925	Script	<i>Python</i>	Overline	<u>Þýðóñ</u>
1926	Enclosed/ Circled	©Ý†©ÓÑ	Upside down	Þýðóñ
1927	Enclosed/ Parenthesized	(p)(Y)(t)(h)(o)(n)	Ring above	Þ°ýðóñ
1928	Superscript	Python	Diacritics	Þýðóñ
1929	Subscript	python	Strikethrough	Þýðóñ-
1930	Double struck	Þþýðóñ	Strikethrough/ Forward slash	Þýðóñ/
1931			Strikethrough/ Backward slash	Þýðóñ\

Figure 5: **Left:** Styling challenges that are normalized by NFKC, **Right:** Styling challenges that NFKC cannot

1944 F EVALUATING INDUSTRY-LEVEL MODELS ON TokSUITE BENCHMARK

1946 Table 19: Tokenization robustness of original (industry) pre-trained models under multilingual
1947 text perturbations. Values represent relative performance drop ($\frac{Acc_{can} - Acc_{pert}}{Acc_{can}}$); lower values indicate
1948 greater robustness. NEN=non-English.

Model	Input	Diacr.	Orth. Gram.		Morph		Noise		LaTeX	STEM	Unic	Avg	
	NEN	NEN	EN	NEN	EN	NEN	EN	NEN	EN	EN	EN	EN	
bert-base-multilingual-cased	0.02	-0.18	0.03	-0.10	0.10	-0.04	-0.15	0.03	0.05	-0.83	-0.12	-0.11	
xglm-564M	-0.26	-0.30	0.15	0.04	0.14	0.09	0.13	0.06	0.24	0.05	0.11	0.04	
Phi-3-mini-4k-instruct	-0.14	0.13	0.07	-0.21	0.24	-0.26	0.08	-0.02	0.04	0.08	0.59	0.05	
GPT-2	-0.30	0.00	0.09	0.09	0.13	0.11	0.18	-0.01	0.23	-0.12	0.49	0.08	
phi-15	-0.13	0.13	0.10	-0.09	0.29	-0.17	0.18	-0.04	0.11	0.20	0.62	0.11	
Qwen3-0.6B-Base	-0.03	0.40	0.10	-0.16	0.25	-0.10	0.12	0.06	0.04	0.18	0.50	0.12	
Llama-3.2-1B-Instruct	0.14	-0.25	0.05	0.03	0.27	0.13	0.10	0.16	0.04	0.13	0.62	0.13	
gemma-2-9b	0.27	0.15	0.00	0.05	0.25	0.02	0.01	0.21	0.16	0.06	0.34	0.14	
gemma-2-2b-it	0.21	0.07	0.03	0.16	0.22	0.10	0.04	0.21	0.00	0.08	0.41	0.14	
aya-expanse-8b	0.18	0.36	0.03	0.04	0.16	0.07	0.03	0.09	0.11	0.14	0.49	0.16	
Qwen3-1.7B-Base	0.25	0.39	0.03	0.06	0.25	0.06	0.06	0.19	-0.02	0.06	0.52	0.17	
babbage-002	0.09	0.10	0.10	0.03	0.27	0.05	0.10	0.13	0.22	0.26	0.56	0.17	
Llama-3.2-3B	0.22	0.29	0.01	0.12	0.25	0.05	0.04	0.21	0.02	0.18	0.53	0.17	
gemma-2-2b	0.30	0.30	-0.02	0.27	0.23	0.13	0.02	0.25	0.16	0.08	0.37	0.19	
Llama-3.2-1B	0.13	0.11	0.04	0.21	0.24	0.11	0.08	0.15	0.14	0.42	0.59	0.20	
blt	0.15	0.49	0.06	0.09	0.25	0.06	0.06	0.23	0.16	0.11	0.61	0.21	
Avg		0.07	0.14	0.05	0.04	0.22	0.03	0.07	0.12	0.11	0.07	0.45	0.12

1964 While direct comparisons between our models and their original pre-trained counterparts must be
1965 interpreted with caution due to fundamental differences in training data, model architectures, and
1966 coverage, several noteworthy patterns emerge (see Tables 19 and 1). It should be noted that these
1967 models are trained significantly longer than our controlled experiments—for example, Gemma-2-
1968 2B (Team et al., 2024) is trained on 2 trillion tokens.

1970 Notably, model size does not appear to be the determining factor, as evidenced by Aya-Expanse-
1971 8B (Dang et al., 2024a) performing comparably to smaller models. Instruction-tuned models show
1972 marginally better robustness compared to their base counterparts, though the improvement is modest.

1973 Industry models exhibit better overall robustness, with mBERT demonstrating negative degradation
1974 values, indicating improved performance on perturbed inputs. This performance gain could stem
1975 from training data or training procedure. However, they still struggle significantly with Unicode
1976 styling (0.43 average degradation), suggesting that even extensive real-world training data may not
1977 adequately cover such specialized character variations. Conversely, our controlled study isolates
1978 the effect of tokenization differences by maintaining identical initialization and training data across
1979 models, revealing that tokenization choices alone can account for substantial performance variations
1980 and more data doesn’t always translate into robustness under input variations. The consistent pat-
1981 terns observed across both settings suggest that these robustness challenges are fundamental rather
1982 than artifacts of specific training regimes.

1983 Table 20: Tokenization Robustness of the Llama-3.2 Tokenizer across 1B and 7B model scales
1984 under multilingual text perturbations. Values represent relative performance drop ($\frac{Acc_{can} - Acc_{pert}}{Acc_{can}}$);
1985 lower values indicate greater robustness, same as Table 1.

Model	Input	Diacr.	Orth. Gram.		Morph		Noise		LaTeX	STEM	Unic	Avg
	NEN	NEN	EN	NEN	EN	NEN	EN	NEN	EN	EN	EN	EN
7B	0.30	0.52	0.05	0.06	0.24	0.08	0.09	0.14	0.17	0.26	0.60	0.23
1B	0.33	0.55	0.11	0.10	0.25	0.08	0.15	0.24	0.18	0.29	0.59	0.26
Avg	0.31	0.53	0.08	0.08	0.25	0.08	0.12	0.19	0.18	0.28	0.60	0.24

NEW

1994 **Model Scale** While a comprehensive study across all tokenizers at larger architectural scales re-
1995 mains computationally challenging, we trained a 7 billion parameter model (excluding embeddings)
1996 using the Llama-3.2 tokenizer. We compare its performance against the 1B model in Table 20. De-
1997 spite the 7B model demonstrating superior performance over all fourteen baseline LMs in TokSuite
1998 on canonical questions, the underlying tokenization robustness profile remains largely unchanged

1998 across scales. The two models exhibit highly similar robustness metrics, with the noise categories
 1999 being the primary exception.

NEW

2000 To further investigate the impact of architectural scale, we performed a secondary analysis using the
 2001 same architectural families: Qwen-3 family (ranging from 0.6B to 30B), Llama-3.2 (1B and 3B),
 2002 Gemma-2 (2B, 9B and 27B). As models within the same family share an identical tokenizer, this
 2003 approach provides a proxy for assessing scaling effects on robustness. However, these models were not
 2004 generally trained with uniform data or duration (e.g., Qwen-3 (Yang et al., 2025) reports distillation
 2005 for smaller models). Therefore, we refrain from drawing direct performance comparisons between
 2006 different families. The results, detailed in Table 21 (in the Appendix), reinforce that tokenization
 2007 robustness remains a challenging issue relevant across all evaluated scales.

NEW

2008 Table 21: Tokenization robustness within architectural families (Qwen-3, Llama-3.2, Gemma-2)
 2009 under multilingual text perturbations. Values represent relative performance drop ($\frac{\text{Acc}_{\text{can}} - \text{Acc}_{\text{pert}}}{\text{Acc}_{\text{can}}}$);
 2010 lower values indicate greater robustness. NEN=non-English.

Model	Input	Diacr.	Orth. Gram.		Morph		Noise		LaTeX	STEM	Unic	Avg
	NEN	NEN	EN	NEN	EN	NEN	EN	NEN	EN	EN	EN	EN
Qwen3-8B-Base	0.24	0.28	-0.06	0.08	0.23	0.04	-0.03	0.22	-0.01	0.04	0.30	0.12
Qwen3-0.6B-Base	-0.03	0.40	0.10	-0.16	0.25	-0.10	0.12	0.06	0.04	0.18	0.50	0.12
Qwen3-14B-Base	0.22	0.10	0.01	0.09	0.27	0.06	0.04	0.18	0.04	0.04	0.37	0.13
Qwen3-30B-A3B-Base	0.19	0.27	0.03	0.08	0.25	0.05	0.03	0.19	0.02	-0.01	0.36	0.13
Qwen3-4B-Base	0.28	0.31	-0.04	0.09	0.22	0.10	0.01	0.25	0.02	-0.01	0.38	0.15
Qwen3-1.7B-Base	0.25	0.39	0.03	0.06	0.25	0.06	0.06	0.19	-0.02	0.06	0.52	0.17
Avg	0.19	0.29	0.01	0.04	0.25	0.03	0.04	0.18	0.01	0.05	0.40	0.14
Model	Input	Diacr.	Orth. Gram.		Morph		Noise		LaTeX	STEM	Unic	Avg
	NEN	NEN	EN	NEN	EN	NEN	EN	NEN	EN	EN	EN	EN
Llama-3.2-3B	0.55	0.64	0.02	0.34	0.26	0.29	0.06	0.48	0.00	0.27	0.56	0.32
Llama-3.2-1B	0.56	0.59	0.05	0.45	0.26	0.38	0.08	0.49	0.15	0.50	0.58	0.37
Llama-3.2-1B-Instruct	0.63	0.50	0.07	0.49	0.29	0.54	0.13	0.60	0.12	0.25	0.63	0.39
Avg	0.58	0.58	0.05	0.43	0.27	0.40	0.09	0.53	0.09	0.34	0.59	0.36
Model	Input	Diacr.	Orth. Gram.		Morph		Noise		LaTeX	STEM	Unic	Avg
	NEN	NEN	EN	NEN	EN	NEN	EN	NEN	EN	EN	EN	EN
gemma-2-9b	0.38	0.28	0.00	0.22	0.25	0.19	0.01	0.34	0.13	0.12	0.34	0.21
gemma-2-2b-it	0.44	0.35	0.03	0.39	0.22	0.34	0.03	0.43	0.09	0.19	0.42	0.27
gemma-2-2b	0.50	0.53	0.03	0.43	0.27	0.32	0.06	0.45	0.17	0.19	0.39	0.30
Avg	0.44	0.38	0.02	0.35	0.25	0.29	0.03	0.41	0.10	0.17	0.35	0.21

2034 F.1 STATISTICAL SIGNIFICANCE

2035 To ensure the robustness and reliability of our results, we employed two distinct statistical methods:
 2036 bootstrapping to estimate variability and a non-parametric test to confirm performance differences.

2037 **Estimating Variability (Bootstrapping)** We estimated the distributional statistics for robustness
 2038 through a 10,000-trial bootstrap procedure. This process yielded reliable standard deviations, which
 2039 are presented alongside the mean performance scores in Fig. 6. We highlight that all of the per-
 2040 formance differences discussed in Section 5 exceed one standard deviation, confirming that these
 2041 observations are unlikely due to random variation.

2042 In Fig. 6 we plotted the 95% confidence interval (2.5–97.5 percentile) of the robustness metrics
 2043 obtained from 10,000 bootstrap samples, with colors indicating the statistical significance (in terms
 2044 of standard deviation from the mean) of each model’s performance.

2045 **Significance (Wilcoxon Test)** To formally test the statistical significance of the differences be-
 2046 tween tokenizer performance, we utilized the Wilcoxon signed-rank test (Wilcoxon, 1945). This
 2047 non-parametric test is appropriate for comparing two related samples (the performance of two dif-
 2048 ferent tokenizers on the same set of tasks). The results of the pairwise Wilcoxon signed-rank tests
 2049 across all perturbation categories are presented in Table 22. Specifically, a p-value threshold of

2052 $\alpha = 0.05$ was adopted, and the results clearly demonstrate that the majority of the observed dif-
 2053 ferences in robustness are statistically significant, further validating the conclusions drawn in our
 2054 study.
 2055
 2056
 2057

2058 Table 22: Statistically Significant Performance Differences (Paired Wilcoxon Signed-Rank Test).
 2059 **Note:** Results where $P < 0.05$ are shown. The Median Drop Difference is calculated as
 2060 $\text{Median}(\text{Score}_{\text{Better}}) - \text{Median}(\text{Score}_{\text{Worse}})$. A negative value indicates that the tested model
 2061 has a statistically significant lower (better) robustness than the baseline model.

Perturbation	Baseline Model	Model	Median Drop Diff.	P-Value
Input (Non-EN)	Gemma-2	TokenMonster	-0.088	$< 10^{-4}$
		Qwen-3	0.041	$< 10^{-4}$
Diacritics (Non-EN)	mBERT	TokenMonster	-0.110	$< 10^{-4}$
		BLOOM	-0.093	$< 10^{-4}$
		GPT-4o	0.074	$< 10^{-4}$
		Llama-3.2	0.109	$< 10^{-4}$
Orthographic Errors (EN)	Llama-3.2	ByT5	-0.069	$< 10^{-4}$
		Comma	-0.056	$< 10^{-4}$
		Phi-3	0.050	$< 10^{-4}$
		Tekken	0.076	$< 10^{-4}$
Orthographic Errors (Non-EN)	Phi-3	TokenMonster	-0.075	$< 10^{-4}$
		Tekken	-0.057	$< 10^{-4}$
		Gemma-2	0.064	$< 10^{-4}$
Morphological (EN)	Gemma-2	Comma	-0.058	$< 10^{-4}$
		BLOOM	-0.054	$< 10^{-4}$
		Tekken	0.075	$< 10^{-4}$
Morphological (Non-EN)	GPT-4o	TokenMonster	-0.113	$< 10^{-4}$
		Comma	-0.054	$< 10^{-4}$
		Tekken	0.042	$< 10^{-4}$
		BLOOM	0.052	$< 10^{-4}$
Noise (EN)	Llama-3.2	TokenMonster	-0.045	$< 10^{-4}$
		Comma	-0.034	$< 10^{-4}$
		XGLM	-0.027	$< 10^{-4}$
		mBERT	0.030	$< 10^{-4}$
		BLOOM	0.034	$< 10^{-4}$
		Aya	0.041	$< 10^{-4}$
Noise (Non-EN)	Tekken	ByT5	-0.031	$< 10^{-4}$
		BLOOM	-0.027	$< 10^{-4}$
		TokenMonster	-0.023	$< 10^{-4}$
		Llama-3.2	0.027	$< 10^{-4}$
		Gemma-2	0.034	$< 10^{-4}$
		Aya	0.040	$< 10^{-4}$
LaTeX	Comma	mBERT	-0.085	$< 10^{-4}$
		Llama-3.2	-0.056	$< 10^{-4}$
		ByT5	-0.052	$< 10^{-4}$
		Tekken	0.041	$< 10^{-4}$
		XGLM	0.066	$< 10^{-4}$
STEM (EN)	ByT5	TokenMonster	-0.184	$< 10^{-4}$
		BLOOM	-0.184	$< 10^{-4}$
		Aya	0.088	$< 10^{-4}$
		Tekken	0.145	$< 10^{-4}$
Unicode	ByT5	XGLM	-0.418	$< 10^{-4}$

2105
 NEW
 NEW

2129
2130 Figure 6: Distribution of tokenization robustness. Error bars represent the 2.5th to 97.5th percentile
2131 range across bootstrap samples. Models are ordered by their vocabulary size. The gray shaded
2132 region indicates ± 1 standard deviation from the mean across all models for each perturbation type.
2133 Points are colored to highlight statistical significance: **green** indicates models that are significantly
2134 more robust (> 1 SD below mean), **red** indicates models that are significantly more fragile (> 1 SD
above mean), and **blue** indicates performance within one standard deviation of the mean.

2156 Figure 7: Same as Fig. 6 but grouped by vocabulary buckets.

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

Figure 8: Same as Fig. 6 but grouped by underlying algorithm.

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

Figure 9: Same as Fig. 6 but grouped by pre-tokenization splits (see Table 2 for details).

2209

2210

2211

2212

2213

2214 **LARGE LANGUAGE MODEL USAGE**
2215

2216 We used Claude throughout the research process for dataset design brainstorming, generating pertur-
2217 bation ideas, rephrasing sentences, summarizing related work, and assisting with literature review.
2218

2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267