
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TokSuite: MEASURING THE IMPACT OF TOKENIZER
CHOICE ON LANGUAGE MODEL BEHAVIOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Tokenizers provide the fundamental basis through which text is represented and
processed by language models (LMs). Despite the importance of tokenization,
its role in LM performance and behavior is poorly understood due to the chal-
lenge of measuring the impact of tokenization in isolation. To address this need,
we present TokSuite, a collection of models and a benchmark that supports re-
search into tokenization’s influence on LMs. Specifically, we train fourteen mod-
els that use different tokenizers but are otherwise identical—using the same ar-
chitecture, dataset, training budget, and initialization. Additionally, we curate and
release a new benchmark that specifically measures model performance subject
to real-world perturbations that are likely to influence tokenization. Put together,
TokSuite allows robustly decoupling the influence of a model’s tokenizer, sup-
porting a series of novel findings that elucidate the respective benefits and short-
comings of a wide range of popular tokenizers.

1 INTRODUCTION

Language models (LMs) generally do not process “raw” text directly; instead, they operate on a
sequence of “tokens” that represent words, subwords, or characters. As a result, tokenization funda-
mentally influences the representation learned by LMs and, consequently, affects downstream model
capabilities (Mielke et al., 2021). For example, the tokenizer used in T5 (Raffel et al., 2020) can-
not represent curly brace tokens, making the T5 models poorly suited for processing many coding
languages (Wang et al., 2021c). The importance of tokenization naturally motivates not only un-
derstanding the impact of different tokenization strategies, but also the design of better tokenizers.
However, tokenization is a relatively understudied aspect of language model development compared
to, e.g., model architectures, training recipes, and dataset curation. In fact, the design of the tokenizer
is often treated as an afterthought, with many open models simply using a preexisting tokenizer off
the shelf. For instance, the GPT-2 tokenizer was directly reused for Meta’s Open Pretrained Trans-
formers (OPT) (Zhang et al., 2022), and EleutherAI’s GPT-NeoX-20B tokenizer was directly used
for the MPT-7B-8k model (Team, 2023) and Pythia models (Biderman et al., 2023).

We argue that one factor contributing to the paucity of research into the impact of tokenization is
the relative difficulty—using existing artifacts—of decoupling the impact of the tokenizer with other
possible variables (model architecture, training data, etc.). For example, it would be fraught to try to
compare the Qwen 3 (Yang et al., 2025) and Llama 3 (Dubey et al., 2024)’s tokenizers by studying
the respective models because differences in training data, training duration, and architectural details
make it difficult to attribute performance differences specifically to tokenization. Understanding the
downstream effects of tokenizer design choices is further complicated by the multifaceted nature of
tokenization itself, involving various interrelated factors including the underlying segmentation al-
gorithm (e.g., BPE Gage (1994); Sennrich et al. (2016), Unigram Kudo (2018), WordPiece Wu et al.
(2016)), granularity level (e.g., byte-level Xue et al. (2022), character-level, word-level), vocabulary
size constraints, and the composition of training data used to learn the vocabulary.

What would it take to reliably measure the impact of tokenization on model performance and be-
havior? We argue that reliable comparison can only be made through models that are completely
identical apart from the tokenizer used, because otherwise differences in performance could be at-
tributable to other factors. Given that no open collection of such models exists, we train and release 1

1URL redacted for anonymity

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

14 LMs with identical initialization, architecture, and training data composition, varying only in the
tokenizer used.

Our suite of models covers a wide range of tokenizer types, selected among popular pretrained
tokenizers as representatives of their main distinctive features, from the most granular byte-level
tokenizers like ByT5, to subword-based approaches including BPE, SentencePiece, and WordPiece
variants. This collection encompasses both English-only tokenizers trained on monolingual corpora
and multilingual tokenizers designed to handle diverse language families and scripts. The tokenizers
additionally exhibit varying approaches to out-of-vocabulary (OOV) handling, unicode normaliza-
tion strategies, whitespace treatment protocols, continuation token markers for subword boundaries,
and pretokenization splitting rules. These differences result in diverse vocabulary sizes ranging from
compact, efficient lexicons to comprehensive multilingual vocabularies, each with distinct trade-offs
between compression efficiency and linguistic coverage. Noting that different vocabularies might
share tokens, we develop a novel vocabulary unification framework that creates bijective mappings
between tokenizer-specific and unified token spaces. This allows us to use a unified parameter ini-
tialization where embeddings for shared tokens are initialized to the same value across models.

To test how tokenization choices affect model behavior, we introduce a novel benchmark with ap-
proximately 5,000 samples. Since the effect of different tokenizers can vary across languages (Ali
et al., 2024; Dang et al., 2024b; Seo et al., 2025), our benchmark includes five orthographically and
morphologically diverse languages: English, Turkish, Italian, Farsi, and Mandarin Chinese. Our
benchmark includes 40 “canonical” multiple-choice text completion questions translated into all
five languages. Each question has different perturbed versions manually curated by native speakers
that reflect real-world changes users might make. For example, we test what happens when visu-
ally identical characters have different Unicode values (like replacing Latin “a” with Cyrillic “a”),
when users type Turkish text with English keyboards (causing “ş” to become “s”), when Farsi text
includes or omits optional accent marks, and when regular text uses special Unicode formatting like
enclosed characters. We also add two specialized benchmarks: an elementary school math dataset
and a science, technology, engineering, and mathematics (STEM) dataset, respectively with 20 and
44 “canonical” technical questions alongside targeted perturbations. This multi-domain approach
allows us to assess tokenizer performance across general, mathematical, and scientific content.

By applying our new benchmark to our suite of models, we both uncover new findings and confirm
existing beliefs relating tokenizer characteristics to model behaviors. For example, we find that
perturbations tend to be more detrimental in non-English settings, even for tokenizers that were
trained on non-English data. Additionally, we found that essentially all off-the-shelf tokenizers
are sensitive to Unicode formatting and style perturbations. Further, we found that the two most
unconventional tokenizers, ByT5 (Xue et al., 2022) and TokenMonster (Forsythe, 2025), tended to
be more robust, suggesting that further investments should be made in the development of novel
tokenizers. Put together, our models, dataset, and findings will support future research aiming to
more deeply understand how tokenizer choices affect model behavior.

2 BACKGROUND

Before focusing on how tokenization can affect downstream LM performance, we first explain how
tokenizers are created and how design decisions can affect the final tokenizer.

Tokenizers Tokenization is the process of converting a sequence of input symbols into meaningful
lexical tokens from some vocabulary V . Each entry in the vocabulary corresponds to a particular
string, and tokenizing an input string can be seen as segmenting it into strings from the vocabulary.
When used as the input layer of an LM, the vocabulary is also used to map each token to an integer
ID, V : S 7→ {0, 1, . . . , |V | − 1}. These IDs are then used to look up a vector representation of
the token in an LM’s embedding table, thus creating a real-valued vector input for each token in
an input sequence. While V can be manually enumerated for languages with restrictive grammars,
i.e., programming languages, the ambiguity and open-endedness of natural language necessitate
estimating an optimal set of tokens from data.

Consequently, differences in tokenizers can result in different token sequences for the same string.
These differences can affect both learnability and how information is processed in downstream mod-
els. For example, a tokenizer that maps the string “dogs” to two tokens “dog” and “s” allows the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

model to “reuse” its understanding of the token for “dog”, but requires composing with the mean-
ing of the “s” token as pluralization. In contrast, a tokenizer that includes “dogs” as its own token
packs both dog and its pluralization into a single token. These differences generally arise in the
three main components involved in the training of tokenizers: the data, the learning algorithm, and
preprocessing decisions.

Training Data In order to determine the collection of substrings in the vocabulary, tokenizers
are generally trained on a text dataset. While the training process for different approaches to tok-
enization can vary (and are discussed in the following subsection), one straightforward effect of the
training data is that if the training dataset does not include a given word or symbol then that word or
symbol will not be included in the vocabulary.

Similarly, differences in tokenizer training datasets can result in different choices for tokens included
in V by different tokenizer learning algorithms. For example, if one tokenizer is trained on web data
that includes many examples of the typo “teh”, it is more likely to represent it as a single token in its
vocabulary compared to a tokenizer that is only trained on highly edited text where this typo is rare.

The inclusion of multilingual data in the tokenizer training data can also have a large effect on
the final vocabulary, especially when scripts that do not share an alphabet are included. Generally a
much larger vocabulary is required—for example the increase from 32,000 to 256,000 when moving
from T5 (Raffel et al., 2020) to mT5 (Xue et al., 2021).

Learning Algorithm When training a tokenizer, a learning algorithm produces a vocabulary V
that somehow “fits” the training data, with string inclusion primarily determined by frequency. Most
tokenizers function as compressors (Lester et al., 2024), assigning common words to single tokens
while splitting rarer ones.

Common algorithms include Byte-Pair Encoding (BPE) (Gage, 1994), which iteratively merges the
most frequent symbol bigrams until reaching vocabulary size |V|; WordPiece (Wu et al., 2016),
which merges symbols by maximizing training data likelihood; and Unigram (Kudo, 2018), which
starts with all possible segmentations and removes symbols causing minimal unigram loss increase.
TokenMonster (Forsythe, 2025) uses an unusual approach, building a global vocabulary from all
possible tokens and employing an “ungreedy” algorithm that revises tokenization by lookahead.
Byte-level models like ByT5 (Xue et al., 2022) use predefined Unicode vocabularies rather than
learned ones (Mielke et al., 2021).

Vocabulary size |V| significantly affects composition—larger vocabularies include more rare words
as individual tokens. While most tokenizer training algorithms ensure that every string in the training
set can be tokenized, “byte-fallback” forces V to include the 256 bytes needed to represent any
character in Unicode. This allows tokenization of symbols that do not appear in the training dataset,
and is primarily important in cases where the training dataset is not large enough.

While most tokenizer training algorithms ensure that every string in the training set can be tokenized,
“byte-fallback” forces V to include the 256 bytes needed to represent any character in Unicode. This
allows tokenization of symbols that do not appear in the training dataset, and is primarily important
in cases where the training dataset is not large enough.

For a more in-depth discussion of various tokenization approaches, see Mielke et al. (2021).

Preprocessing Tokenization pipelines often use some form of pre-tokenization, which segments
the input text into “intuitive” tokens, such as whitespace-separated words, before the learning al-
gorithm is applied. This segmentation can limit which strings can be added to V as the learn-
ing algorithms do not consider bigrams that cross pre-tokenization boundaries. This means that
very common bigrams such as “New York” cannot be represented as a single token. While some
work (Schmidt et al., 2025; Liu et al., 2025, et alia) explores methods that allow cross-boundary
merges, most commonly used tokenizers do not.

As another example of pre-tokenization, the GPT-2 tokenizer (Radford et al., 2019) splits
contractions—e.g., “we’ll” → “we”, “’ll”—meaning that “we’ll” cannot be a token in V . In con-
trast, BLOOM’s (Workshop et al., 2022) pre-tokenization process does not force contractions to a
new token, thus allowing for “we’ll” ∈ V .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Similar differences exist in the handling of numbers. The pre-tokenization used in some models,
like GPT-4 (Achiam et al., 2023), breaks contiguous digits into groups of three (“1337” → “133”,
“7”) while other models split numbers into their individual digits. There are also models that rely
exclusively on the learning algorithm to decide how to segment numbers into digits. Each approach
has trade-offs; for example, splitting numbers into thousands might be natural for math but is less
natural for dates. Similar considerations exist for how repeated whitespace is handled, especially in
domains like code where whitespace can be especially meaningful.

3 THE TokSuite MODELS

3.1 TOKENIZER SELECTION AND CHARACTERISTICS

To systematically investigate how different tokenization design choices affect model performance
and robustness, we began by selecting a diverse set of 14 preexisting tokenizers, specifically
ByT5 (Xue et al., 2022), TokenMonster (Forsythe, 2025), Phi-3 (Abdin et al., 2024), GPT-2 (Radford
et al., 2019), Comma (Kandpal et al., 2025), mBERT (Devlin et al., 2019), Llama-3.2 (Dubey et al.,
2024), Tekken (AI, 2024), Qwen-3 (Yang et al., 2025), GPT-4o (Hurst et al., 2024), BLOOM (Work-
shop et al., 2022), Aya (Dang et al., 2024a), Gemma-2 (Team et al., 2024), and XGLM (Lin et al.,
2021). Our selection provides comprehensive coverage across vocabulary sizes (ranging from 259
tokens in byte-level tokenizers like ByT5 to over 256,000 tokens in models such as Aya or XGLM),
tokenization algorithms (BPE, WordPiece, Unigram, TokenMonster, and byte-level approaches).
This diversity enables systematic analysis of how different tokenizers handle out-of-vocabulary
words, morphological variations, and adversarial inputs. The selected tokenizers also encompass
notable variation in preprocessing strategies that affect robustness, including different approaches
to numerical content handling (digit splitting vs. grouping), contraction processing (rule-based vs.
learned), Unicode normalization schemes, and multilingual support ranging from monolingual to
100+ languages. Additionally, the tokenizers vary in their out-of-vocabulary handling mechanisms,
with some incorporating byte-fallback and others relying on unknown tokens, providing insight into
how these design choices propagate to model robustness under various challenges. Detailed techni-
cal specifications for each tokenizer are provided in Table 2 and Table 3 in the Appendix.

3.2 CROSS-TOKENIZER VOCABULARY ALIGNMENT

To align vocabularies across tokenizers, we first create a unified “super vocabulary”. For each
tokenizer i we extract its individual vocabulary Vi, accounting for tokenizer-specific quirks (like
WordPiece’s “##” prefixes or Unigram’s “ ” whitespace markers) in this conversion. We also unify
the strings that denote the beginning of a sequence—<s>, <|beginoftext|>, etc. Then, we
create a super vocabulary, SV , by taking the union of all vocabularies SV =

⋃
i Vi. Note that

this unification is based on the UTF-8 byte representation of each element in the vocabularies; see
Appendix A for an example of how multiple tokens that are visually the same can appear in SV .

Finally, for each tokenizer, we create a mapping, SV : V (X) 7→ SV (X) that translates a tokenizer’s
original token IDs to the corresponding positions in the unified super vocabulary. This causes a
given token string to always map to the same index—regardless of which tokenizer was used—that
is, ∀i, jSV (Vi(S)) = SV (Vj(S)), assuming S ∈ Vi∧ ∈ Vj . The use of the super vocabulary allows
us to use the same initialization for the embeddings for shared tokens across models. This shared
starting point removes one factor of variation across models, allowing more rigorous attribution of
downstream performance to tokenizer characteristics.

3.3 MODEL ARCHITECTURE AND TRAINING CONFIGURATION

We trained fourteen LMs (one for each tokenizer) using the lingua framework (Videau et al., 2024).
Our model architecture and training hyper-parameters follow lingua’s Llama-1B configuration with
approximately one billion non-embedding layers, which follows conventions from the Llama model
family (Dubey et al., 2024). All models use a shared initialization based on the super vocabulary.
See Appendix B.1 for more information. All models were trained for 100,000 steps with batches
of of 256 length-4096 sequences. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with
a weight decay of 0.1 and a peak learning rate of 0.001 with cosine annealing and 2000 warm-up
steps.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We train all models on a multilingual corpus totaling approximately 100 billion tokens. For English
content, we use FineWeb-Edu (Penedo et al., 2024; Lozhkov et al., 2024), which provides high-
quality content filtered from Common Crawl data. For the multilingual components, we use the
Chinese, Turkish, Italian, and Farsi subsets of the FineWeb-2 HQ Dataset (Messmer et al., 2025),
which is a pre-training dataset curated from FineWeb-2 (Penedo et al., 2025) to select high-quality
across languages. The final corpus composition consists of 40B English tokens and 60B multilingual
tokens equally distributed across the four target languages (15B each).

We acknowledge that training models with different tokenizers under the same token budget means
that each model has seen a different collection of text. For example, 100B tokens correspond to
approximately 100GB (ByT5), 413GB (Comma), and 698GB (Gemma-2) of text. However, we
consider the alternative—training each model on the same text, but for a different number of training
steps—to be more problematic, because training duration heavily influences model performance and
some models would be relatively under- or over-trained. Additionally, a tokenizer’s efficiency in
compressing the training data is a relevant factor in tokenizer selection.

As an initial sanity check that our trained models perform reasonably well, we evaluated their
performance on standard benchmarks used to evaluate base (i.e., non-post-trained) LMs: Hel-
laSWAG (Zellers et al., 2019), ARC (Clark et al., 2018), PIQA (Bisk et al., 2020), and XNLI (Con-
neau et al., 2018). Results are shown in Fig. 1. Overall, we find that our models attain reasonable
performance for their parameter and training budget. However, we do find notable differences in
performance across different models. Since our models are otherwise equivalent, this performance
difference can be attributed directly to tokenization, which we discuss further in Section 5.

4 THE TokSuite BENCHMARKS

To systematically study tokenization’s impact on model performance, we develop a new benchmark
that captures the type of input variations models may encounter in real-world deployment. Unlike
existing evaluations that focus on clean, canonical text, our benchmark specifically targets naturally
occurring perturbations that expose tokenization-dependent issues across our target languages—
Chinese (ZH), English (EN), Farsi (FA), Italian (IT), and Turkish (TR)—and domains including
general knowledge, basic arithmetic, and STEM. Since the goal of the benchmark is to measure
robustness against changing tokenization schemes, we specifically select straightforward canonical
questions that establish a strong baseline performance across all models. The selection of canoni-
cal questions follows a model-in-the-loop process in which we iteratively test question candidates
across our model suite to ensure high baseline accuracy, allowing us to cleanly measure performance
degradation when perturbations are applied.

4.1 MULTI-LINGUAL PARALLEL DATASET

We begin by selecting a seed set of 40 canonical questions in multiple-choice text completion format
in English that almost all of the fourteen models answer correctly, such as “The capital of France
is,” “The chemical formula for water is,” and “The number of continents on Earth is”. We aim for
canonical questions that our base models get correct so that we can study cases where perturbations
flip the answer incorrect. Each canonical question is then translated into FA, IT, TR, and ZH by
native speakers. Subsequently, each example undergoes targeted perturbations designed to reflect
the morphological and orthographic characteristics of each language. Canonical questions in English
are provided in Appendix D.1 2, and further examples to each category with detailed case studies on
tokenization differences are presented in Appendix E.

Orthographic Perturbations encompass variations in writing systems, diacritics, script-specific
features, input medium challenges, and orthographic errors. Writing System Variations include script
variations such as traditional vs. simplified Chinese characters, and romanization—writing text in
Latin script like Pinyin for Chinese or Finglish for Farsi. Input medium challenges capture typing
scenarios where users employ non-native keyboards, leading to systematic character substitutions.
This category also includes spacing irregularities with zero-width characters, and homoglyphs—
visually similar characters with different Unicode values. Diacritics perturbations include presence
of optional diacritics, where text remains valid with or without marks—fata for /a/, kasra for /e/

2https://anonymous.4open.science/r/toksuite-3CEA/

5

https://anonymous.4open.science/r/toksuite-3CEA/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

in FA—and common accent errors (è → é). Orthographic errors represent spelling mistakes and
character-level variations commonly encountered in real-world text, including vowel substitutions,
consonant errors, phonetic spelling variants, common misspellings, and punctuation errors. Regis-
ter & Style captures variations in linguistic register and stylistic conventions across different con-
texts. This includes web search query formatting with shortened keyword expressions, standard and
domain-specific abbreviations, and word reordering that reflect old orthographic conventions. This
category encompasses informal digital communication patterns such as colloquial language, emoji
or character substitution, and letter repetition for emphasis.

Morphological challenges cover contractions, compound words, inflectional variations, case mark-
ing, and derivations that may fragment or alter token boundaries. These challenges are particularly
pronounced in agglutinative languages such as Turkish.

Noise perturbations introduce realistic types of textual noise encountered in practice, including ty-
pos, character or space deletion, character permutation, and formatting inconsistencies arising from
sources such as OCR or other data processing pipelines. These variations test the robustness of the
tokenizer under imperfect input conditions that the models must handle.

Grammatical errors represent typical mistakes made by non-expert speakers. Examples in the
benchmark include subject-verb agreement errors, article omission or misuse, wrong preposition,
incorrect verb tenses and structural errors.

Linguistic variety covers variations in expressing the same semantic content across different
linguistic contexts. It includes equivalent expressions with different syntactic structures, code-
switching, similar words, historical spelling variations, and dialects representing regional language
varieties with different vocabulary and spelling conventions.

Structural text elements includes Unicode-based formatting (see Fig. 4) and stylistic variations
that preserve semantic content while altering visual presentation.

4.2 MATH & STEM DATASETS

Beyond testing simple world knowledge, a subset of our benchmark tests basic arithmetic and
STEM, which allows TokSuite to include additional domain-specific perturbations.

LaTeX and Formatting variations include straightforward examples such
as 6 and N_2, as well as more complex formatted expressions like
$\frac{\text{kg} \cdot \text{m}ˆ2} {\text{s}ˆ2}$. We also include ASCII-
based structural representations such as molecular diagrams, tree structures, and flowcharts.

Multilingual basic arithmetic is tested by translating the canonical questions into ZH, FA, TR, and
IT.

4.3 THE TokSuite EVALUATION FRAMEWORK

Robustness We evaluated each model using lm-eval (Gao et al., 2024) library, with byte-length
normalized log-likelihood. For fair comparison between models with different baseline capabili-
ties, we report relative accuracy drop for each model against its canonical performance within each
category, computed as Acccan−Accpert

Acccan
, where lower values indicate greater robustness.

Intrinsic Tokenization Efficiency We evaluate tokenizers’ efficiency in compressing text from the
five target languages using 10,000 parallel Flores200 (Team et al., 2022) samples with three metrics:
1) Subword fertility (SF): mean tokens per word, where lower values indicate less segmentation; (2)
Parity: cross-lingual fairness measured as T (sA)

T (sSB) ≈ 1 for parallel sentences (Ali et al., 2024);
(3) Proportion of continued words (PCW): fraction of words requiring multiple tokens (Rust et al.,
2020). See Appendix C for detailed results.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Tokenization robustness under multilingual text perturbations. Values represent relative
performance drop (Acccan−Accpert

Acccan
); lower values indicate greater robustness. Perturbation types: In-

put: non-native keyboard/romanization; Diacr.: optional diacritics; Orth. Errors: orthographic er-
rors; Morph.: derivations/inflections/contractions; Noise: homoglyphs/OCR/typos/spacing; LaTeX:
LaTeX-style math formatting; STEM: scientific diagrams and notations; Unic.: Unicode styling
characters. NEN=non-English. Break-down of each category and detailed case studies are pre-
sented in Appendix E. Green and red entries indicate notable rosbustness and fragility, respectively.

Model Input Diacr. Orth. Errors Morph. Noise LaTeX STEM Unic Avg
NEN NEN EN NEN EN NEN EN NEN EN EN EN

TokenMonster 0.23 0.33 0.09 0.02 0.23 -0.05 0.11 0.19 0.23 0.11 0.52 0.18
XGLM 0.35 0.49 0.10 0.12 0.25 0.07 0.12 0.22 0.30 0.29 0.12 0.22
BLOOM 0.31 0.35 0.13 0.08 0.18 0.11 0.18 0.19 0.25 0.11 0.57 0.22
Comma 0.29 0.43 0.05 0.07 0.18 0.00 0.11 0.21 0.23 0.29 0.61 0.23
ByT5 0.30 0.44 0.04 0.06 0.27 0.05 0.14 0.18 0.18 0.29 0.53 0.23
mBERT 0.33 0.44 0.11 0.11 0.23 0.06 0.18 0.22 0.15 0.22 0.62 0.24
GPT-4o 0.30 0.52 0.08 0.05 0.21 0.06 0.16 0.20 0.25 0.33 0.55 0.25
GPT-2 0.35 0.46 0.07 0.10 0.25 0.06 0.15 0.21 0.25 0.35 0.53 0.25
Phi-3 0.33 0.46 0.16 0.09 0.27 0.08 0.17 0.21 0.25 0.22 0.55 0.25
Qwen-3 0.36 0.42 0.14 0.11 0.25 0.06 0.16 0.23 0.26 0.29 0.57 0.26
Gemma-2 0.32 0.43 0.14 0.15 0.24 0.03 0.16 0.25 0.22 0.37 0.57 0.26
Llama-3.2 0.33 0.55 0.11 0.10 0.25 0.08 0.15 0.24 0.18 0.29 0.59 0.26
Aya 0.31 0.47 0.15 0.10 0.22 0.03 0.19 0.25 0.23 0.38 0.58 0.26
Tekken 0.34 0.48 0.18 0.03 0.31 0.10 0.14 0.21 0.27 0.44 0.55 0.28

Avg 0.32 0.45 0.11 0.08 0.24 0.05 0.15 0.22 0.23 0.29 0.53 0.24

5 FINDINGS

How does tokenization algorithm design impact robustness across diverse multilingual set-
tings? While orthographic and morphological diversities present universal difficulties across to-
kenizers, TokenMonster’s performance is particularly striking given its architectural constraints.
Despite having a 32,000-token vocabulary trained exclusively on English text—roughly one-tenth
the size of multilingual competitors like Aya or XGLM—it achieves the best average robustness
score across all multilingual perturbations, with the lowest average relative performance drop of
0.18 (see Table 1). This effectiveness stems not from its vocabulary, but from its unique “ungreedy”
tokenization algorithm that allows it to revise the token sequence by looking ahead.

ByT5 also demonstrates exceptional multilingual robustness, on average outperforming 9 models
(see Table 1) despite using only a 259-token vocabulary. Its byte-level “token-free” design achieves
minimal performance degradation across diverse perturbations: 0.04/0.06 drops for English/non-
English orthographic errors (see Table 1), 0.00 drop for English grammatical errors (see Table 9),
and top average 0.18 drop for multilingual noise (e.g., typos, OCR errors, etc.) (see Table 14). The
model shows particular strength in Turkish and Chinese scenarios, including romanized Pinyin han-
dling and even performance improvements (-0.11) with zero-width characters (see Table 7). How-
ever, this robustness comes at an efficiency cost, with the highest subword fertility and PCW scores
across all languages (see Appendix C), reflecting the robustness-efficiency trade-off. These findings
demonstrate that tokenization algorithm design and segmentation consistency can be critical factors
for multilingual performance, often more so than massive training data or vocabulary size.

How does multilingual noise amplify tokenization vulnerabilities? Noise-based perturbations
create systematic degradation across all tokenizers, but the average performance drop due to noise
is markedly more severe for non-English languages (0.22) compared to English (0.15) (see Table 1).
This degradation can stem from the core mechanics of subword tokenization: when noise corrupts a
familiar word, the tokenizer fragments it into unfamiliar or non-sensical subword units. This effect
is particularly damaging in morphologically complex languages. For instance, a simple spacing
error in the Turkish phrase “gün sayısı” (day count) causes it to be re-tokenized into chaotic and less
meaningful sequences like gün, ##s, ay, ##ısı by mBERT or gü, ns, ay, ısı by
Llama-3.2. In contrast, the byte-level tokenizer ByT5 proves more resilient, as character-level errors
result in a predictably altered sequence of known bytes rather than catastrophic fragmentation. This
suggests that the reliance on a fixed vocabulary in subword models creates an inherent brittleness

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

that is significantly exacerbated by noise in multilingual contexts. See Section E.3 for a detailed
case study of this fragmentation phenomenon.

How do mathematical and STEM content dependencies reveal fundamental limitations in in-
put structure processing for tokenizers? Technical content presents unique tokenization chal-
lenges that extend beyond vocabulary coverage. Analysis of mathematical and STEM content re-
veals critical tokenizer dependencies, with models showing moderate but significant performance
degradation (average drops of 0.23 for LaTeX and 0.29 for STEM content, (see Table 1). Even in
simplified text completion format with mild technical notation, models exhibit vulnerability to de-
scriptive STEM content. The clearest example of destructive tokenization is XGLM, with the highest
LaTeX performance drop (0.30) and notable performance drop for STEM (0.29). This is likely due to
XGLM’s tokenizer employing an aggressive normalization strategy that creates a stark performance
trade-off. It excels at ignoring superficial text styling but fails significantly on technical domains
like STEM and LaTeX, where its “lossy” pre-processing destroys the essential structural and spatial
information required for comprehension. These domains rely heavily on precise whitespace treat-
ment, symbol placement, and structural conventions—parallel to challenges in coding tasks where
spacing and formatting carry semantic meaning. See Appendix E.4 for a detailed case study.

Are there any universal challenges across tokenizers? Formatting presents a universal challenge
across tokenizers. Unicode styling and character transformations degrade performance consistently
across nearly all models, with an average drop of 0.53—among one of the highest drops observed
in our study (see Tables 1, 16, 17). XGLM shows strong robustness to these perturbations thanks
to its NFKC normalization during preprocessing. While it mitigates performance degradation from
styled characters, it also means that the tokenizer cannot faithfully represent or generate the diverse
Unicode formatting present in real-world text.

Similar patterns emerge at scale Evaluation of the original models (including instruction-tuned
and larger variants) from which we sourced our tokenizers, which tend to be larger and/or trained
for longer than the models in TokSuite, shows modest improvements to robustness (see Table 18)
yet consistent patterns persist despite their exposure to orders of magnitude more training data,
indicating that tokenization design can influence these robustness characteristics much more heavily
than simply training for longer.

6 RELATED WORK

While tokenization is relatively understudied compared to other aspects of LM development, some
past work has also studied how tokenization design choices influence model performance and com-
putational cost.

Tokenization Design Factors: Ali et al. (2024) shows that using English-centric tokenizers in a
multilingual setting leads to severe downstream degradation and up to 68% additional training cost
owing to inefficient token coverage for non-English languages. Rust et al. (2020) found that mono-
lingual tokenizers play an equally important role for pretraining data size in downstream perfor-
mance. Islam et al. (2022) showed vocabulary-free neural tokenizers yielded substantial improve-
ments for low-resource languages in multilingual natural language inference.

On algorithmic choice, ByT5 notably shows that a byte-level tokenizer can match or outperform
subword-level tokenizers on generative tasks. A comparative work compares mT5 (Xue et al., 2021)
and ByT5, which share architecture and data but differ in tokenization, and finds that while their
overall performance is comparable, the ByT5 model requires more layers to encode morphologi-
cal information and performs differently across languages (Dang et al., 2024b). Hou et al. (2023)
showed that morphological segmentation consistently outperformed BPE across morphologically
rich languages, achieving lower perplexity and more efficient training convergence while enabling
smaller models to match larger BPE-trained counterparts. Richburg et al. (2020) provided con-
trolled evidence that Unigram language models perform translation more effectively and exhibit
superior recall for rare words compared to BPE, particularly in morphologically rich languages like
Swahili and Turkish for neural machine translation (NMT). The original SentencePiece work (Kudo
& Richardson, 2018) reported processing speeds up to 380 times faster than subword-based NMT
in this setting, while achieving comparable or improved performance in machine translation. In

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

another thread, Huang et al. (2025) argues for decoupling input and output vocabularies and shows
a log-linear benefit from scaling the input vocabulary, i.e., larger token sets often reduce loss and
improve performance. Schmidt et al. (2024) explores how vocabulary sizes over a specific range
perform similarly across a moderate range for English tasks, suggesting diminishing returns from
very large vocabularies in that regime. Tao et al. (2024) demonstrated that most current LLMs use
insufficient vocabulary sizes, with their analysis suggesting Llama2-70B’s optimal vocabulary size
should be 216K tokens, 7 times larger than its actual vocabulary size with 32K tokens.

Tokenization Robustness and Vulnerabilities: Like our work, Chai et al. (2024) study LM’s sen-
sitivity to typographical errors and ambiguities caused by the internal token structure; while scaling
model parameters mitigates this sensitivity it doesn’t eliminate it. Wang et al. (2024) developed an
adversarial dataset for tokenizer (ADT) framework, successfully degrading the performance of state-
of-the-art LM’s through vocabulary-based adversarial examples that exploit tokenization vulnerabil-
ities. They created “trap words” where concatenating two vocabulary tokens forms a different exist-
ing vocabulary token, causing LLMs to incorrectly tokenize inputs and produce completely wrong
responses, with particularly high effectiveness in Chinese due to tokenization complexity. Geh et al.
(2025) demonstrated “adversarial tokenization” using non-canonical segmentations that preserve
semantic meaning while evading safety alignment. Their approach successfully bypassed existing
defense mechanisms, including LlamaGuard and ShieldGemma, revealing fundamental flaws in cur-
rent LLM safety training pipelines. Several other previous works (Dhole et al., 2021; Wang et al.,
2021a;b) have also evaluated LM’s vulnerability to noise.

Limitations in the Background Work: Despite recent advances, tokenization research suffers from
critical gaps: lack of open-source model collections differing solely in tokenization, limited robust-
ness benchmarks for tokenizer evaluation, and narrow coverage of languages and tokenizer types.
To address these limitations, we trained and open-sourced 14 models with different tokenizers us-
ing identical architectures, developed a multilingual robustness benchmark, and evaluated models
across diverse input variations to isolate tokenization’s impact on performance and stability.

7 FUTURE WORK & LIMITATIONS

TokSuite models are trained exclusively on five languages with higher mixing rates than massively
multilingual models (for example, the highest mixing rate across all languages in mT5 (Xue et al.,
2021)’s training was less than 5%). This setup may underestimate multilingual interference ef-
fects present in more realistic settings, where cross-lingual interference could degrade performance.
While additional training data may alleviate some vulnerabilities, tokenizers provide a cost-free in-
ductive bias that fundamentally shapes robustness and efficiency. Critically, intrinsic properties like
compression rates directly constrain information processing within token budgets, forcing inefficient
tokenizers to underconsume or learn subpar representations for certain languages. While coding
tasks could present interesting challenges related to non-natural text and whitespace handling, we
excluded them from our benchmark due to inconsistent model performance at the scale we consid-
ered. Future research should expand to include these domains and broader linguistic coverage, and
investigate whether tokenization vulnerabilities persist at larger model scales.

8 CONCLUSION

Despite tokenization’s fundamental role in language model behavior, practitioners commonly adopt
off-the-shelf tokenizers without systematic understanding of their impact. To address this, we intro-
duced TokSuite: 14 identical language models differing only in their tokenizer, plus a benchmark
curated by native speakers probing natural variations that capture orthographic and morphological
challenges across 5 languages and technical domains. Our results show that tokenizer design can
matter more than vocabulary size—for example, an English-only tokenizer (TokenMonster) out-
performed larger multilingual ones on certain perturbations, while byte-level models proved more
robust to multilingual noise and subword fragmentation. Technical content analysis revealed crit-
ical vulnerabilities where trivial formatting differences caused catastrophic performance degrada-
tion. Our work provides clear evidence that tokenizer choice directly impacts model robustness
and capability across diverse contexts and will support future work on understanding the impact of
tokenization on LM performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-
san Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Singh Behl, Alon Ben-
haim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio C’esar Teodoro Mendes,
Weizhu Chen, Vishrav Chaudhary, Parul Chopra, Allison Del Giorno, Gustavo de Rosa, Matthew
Dixon, Ronen Eldan, Dan Iter, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Jun-
heng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
Karampatziakis, Dongwoo Kim, Young Jin Kim, Mahoud Khademi, Lev Kurilenko, James R.
Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Corby Rosset, Sam-
budha Roy, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning
Shang, Hiteshi Sharma, Xianmin Song, Olatunji Ruwase, Praneetha Vaddamanu, Xin Wang,
Rachel Ward, Guanhua Wang, Philipp Andre Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali
Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Cheng-Yuan Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yunan Zhang, Xiren Zhou, and Yifan Yang. Phi-3 technical report:
A highly capable language model locally on your phone. ArXiv, abs/2404.14219, 2024. URL
https://api.semanticscholar.org/CorpusID:269293048.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Mistral AI. mistral-common. https://github.com/mistralai/mistral-common,
2024.

Mehdi Ali, Michael Fromm, Klaudia Thellmann, Richard Rutmann, Max Lübbering, Johannes Lev-
eling, Katrin Klug, Jan Ebert, Niclas Doll, Jasper Buschhoff, et al. Tokenizer choice for llm
training: Negligible or crucial? In Findings of the Association for Computational Linguistics:
NAACL 2024, pp. 3907–3924, 2024.

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald
Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. The bele-
bele benchmark: a parallel reading comprehension dataset in 122 language variants. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 749–775. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024.ACL-LONG.44. URL https://doi.org/10.18653/v1/2024.
acl-long.44.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 7432–7439. AAAI
Press, 2020. doi: 10.1609/AAAI.V34I05.6239. URL https://doi.org/10.1609/aaai.
v34i05.6239.

Yekun Chai, Yewei Fang, Qiwei Peng, and Xuhong Li. Tokenization falling short: On subword
robustness in large language models. arXiv preprint arXiv:2406.11687, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

10

https://api.semanticscholar.org/CorpusID:269293048
https://github.com/mistralai/mistral-common
https://doi.org/10.18653/v1/2024.acl-long.44
https://doi.org/10.18653/v1/2024.acl-long.44
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
http://arxiv.org/abs/1803.05457

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: evaluating cross-lingual sentence representations. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pp. 2475–2485. Association for Computational Linguistics, 2018. doi:
10.18653/V1/D18-1269. URL https://doi.org/10.18653/v1/d18-1269.

John Dang, Shivalika Singh, Daniel D’souza, Arash Ahmadian, Alejandro Salamanca, Made-
line Smith, Aidan Peppin, Sungjin Hong, Manoj Govindassamy, Terrence Zhao, et al. Aya
expanse: Combining research breakthroughs for a new multilingual frontier. arXiv preprint
arXiv:2412.04261, 2024a.

Thao Anh Dang, Limor Raviv, and Lukas Galke. Tokenization and morphology in multilingual
language models: A comparative analysis of mt5 and byt5. arXiv preprint arXiv:2410.11627,
2024b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Ma-
hamood, Abinaya Mahendiran, Simon Mille, Ashish Srivastava, Samson Tan, Tongshuang Wu,
Jascha Sohl-Dickstein, Jinho D. Choi, Eduard H. Hovy, Ondrej Dusek, Sebastian Ruder, Sajant
Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Con-
nor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile
Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cor-
nell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra
Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla,
Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis
Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan
Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko,
Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat
Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria
Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais,
Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicholas Roberts,
Juan Diego Rodriguez, Claude Roux, Paulo Henrique Santos Vasconcellos, Ananya B. Sai,
Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib Shamsi, Xudong Shen, Yiwen
Shi, Haoyue Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman
Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, K. V. Aditya Srivatsa,
Tony Sun, Mukund Varma T., A. Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie
Tolkiehn, Athena Wang, Zijian Wang, Zijie J. Wang, Gloria Wang, Fuxuan Wei, Bryan Wilie,
Genta Indra Winata, Xinyi Wu, Witold Wydmanski, Tianbao Xie, Usama Yaseen, Michael A. Yee,
Jing Zhang, and Yue Zhang. Nl-augmenter: A framework for task-sensitive natural language aug-
mentation. CoRR, abs/2112.02721, 2021. URL https://arxiv.org/abs/2112.02721.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Alasdair Forsythe. tokenmonster: Ungreedy subword tokenizer and vocabulary trainer for
python, go & javascript, 2025. URL https://github.com/alasdairforsythe/
tokenmonster.

Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, 1994. URL
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

11

https://doi.org/10.18653/v1/d18-1269
https://arxiv.org/abs/2112.02721
https://github.com/alasdairforsythe/tokenmonster
https://github.com/alasdairforsythe/tokenmonster
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
https://zenodo.org/records/12608602

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Renato Lui Geh, Zilei Shao, and Guy Van den Broeck. Adversarial tokenization. arXiv preprint
arXiv:2503.02174, 2025.

Jue Hou, Anisia Katinskaia, Anh-Duc Vu, and Roman Yangarber. Effects of sub-word segmentation
on performance of transformer language models. arXiv preprint arXiv:2305.05480, 2023.

Hongzhi Huang, Defa Zhu, Banggu Wu, Yutao Zeng, Ya Wang, Qiyang Min, and Xun Zhou. Over-
tokenized transformer: Vocabulary is generally worth scaling. arXiv preprint arXiv:2501.16975,
2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Md Mofijul Islam, Gustavo Aguilar, Pragaash Ponnusamy, Clint Solomon Mathialagan, Chengyuan
Ma, and Chenlei Guo. A vocabulary-free multilingual neural tokenizer for end-to-end task learn-
ing. arXiv preprint arXiv:2204.10815, 2022.

Nikhil Kandpal, Brian Lester, Colin Raffel, Sebastian Majstorovic, Stella Biderman, Baber Abbasi,
Luca Soldaini, Enrico Shippole, A Feder Cooper, Aviya Skowron, et al. The common pile v0.
1: An 8tb dataset of public domain and openly licensed text. arXiv preprint arXiv:2506.05209,
2025.

Taku Kudo. Subword regularization: Improving neural network translation models with multiple
subword candidates. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 66–75,
Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/
P18-1007. URL https://aclanthology.org/P18-1007/.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Brian Lester, Jaehoon Lee, Alexander A Alemi, Jeffrey Pennington, Adam Roberts, Jascha Sohl-
Dickstein, and Noah Constant. Training LLMs over neurally compressed text. Transactions on
Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/
forum?id=pRvhMSV48t. Featured Certification.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle
Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, et al. Few-shot learning with multilingual language
models. arXiv preprint arXiv:2112.10668, 2021.

Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A. Smith, and Yejin Choi.
Superbpe: Space travel for language models, 2025. URL https://arxiv.org/abs/2503.
13423.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Bettina Messmer, Vinko Sabolčec, and Martin Jaggi. Enhancing multilingual llm pretraining with
model-based data selection. arXiv, 2025. URL https://arxiv.org/abs/2502.10361.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
Raja, Chenglei Si, Wilson Y Lee, Benoı̂t Sagot, et al. Between words and characters: A brief
history of open-vocabulary modeling and tokenization in nlp. arXiv preprint arXiv:2112.10508,
2021.

Guilherme Penedo, Hynek Kydlı́ček, Alessandro Cappelli, Thomas Wolf, and Mario Sasko.
DataTrove: large scale data processing. URL https://github.com/huggingface/
datatrove.

12

https://aclanthology.org/P18-1007/
https://openreview.net/forum?id=pRvhMSV48t
https://openreview.net/forum?id=pRvhMSV48t
https://arxiv.org/abs/2503.13423
https://arxiv.org/abs/2503.13423
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://arxiv.org/abs/2502.10361
https://github.com/huggingface/datatrove
https://github.com/huggingface/datatrove

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Guilherme Penedo, Hynek Kydlı́ček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Amir Hos-
sein Kargaran, Colin Raffel, Martin Jaggi, Leandro Von Werra, and Thomas Wolf. Fineweb2: One
pipeline to scale them all–adapting pre-training data processing to every language. arXiv preprint
arXiv:2506.20920, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Aquia Richburg, Ramy Eskander, Smaranda Muresan, and Marine Carpuat. An evaluation of sub-
word segmentation strategies for neural machine translation of morphologically rich languages.
In Proceedings of the Fourth Widening Natural Language Processing Workshop, pp. 151–155,
2020.

Angelika Romanou, Negar Foroutan, Anna Sotnikova, Sree Harsha Nelaturu, Shivalika Singh,
Rishabh Maheshwary, Micol Altomare, Zeming Chen, Mohamed A. Haggag, Snegha A, Alfonso
Amayuelas, Azril Hafizi Amirudin, Danylo Boiko, Michael Chang, Jenny Chim, Gal Cohen,
Aditya Kumar Dalmia, Abraham Diress, Sharad Duwal, Daniil Dzenhaliou, and et al. INCLUDE:
evaluating multilingual language understanding with regional knowledge. In The Thirteenth In-
ternational Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=k3gCieTXeY.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. How good is your
tokenizer? on the monolingual performance of multilingual language models. arXiv preprint
arXiv:2012.15613, 2020.

Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, and
Chris Tanner. Tokenization is more than compression. arXiv preprint arXiv:2402.18376, 2024.

Craig W. Schmidt, Varshini Reddy, Chris Tanner, and Yuval Pinter. Boundless byte pair encod-
ing: Breaking the pre-tokenization barrier, 2025. URL https://arxiv.org/abs/2504.
00178.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
URL https://aclanthology.org/P16-1162/.

Jean Seo, Jaeyoon Kim, SungJoo Byun, and Hyopil Shin. How does a language-specific tokenizer
affect llms? arXiv preprint arXiv:2502.12560, 2025.

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin, and
Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies. Advances
in Neural Information Processing Systems, 37:114147–114179, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, ly usable llms, 2023.
URL www.mosaicml.com/blog/mpt-7b. Accessed: 2023-03-28.

NLLB Team, Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left
behind: Scaling human-centered machine translation. arXiv preprint arXiv:2207.04672, 2022.

13

https://arxiv.org/abs/2406.17557
https://openreview.net/forum?id=k3gCieTXeY
https://arxiv.org/abs/2504.00178
https://arxiv.org/abs/2504.00178
https://aclanthology.org/P16-1162/
www.mosaicml.com/blog/mpt-7b

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Mathurin Videau, Badr Youbi Idrissi, Daniel Haziza, Luca Wehrstedt, Jade Copet, Olivier Teytaud,
and David Lopez-Paz. Meta Lingua: A minimal PyTorch LLM training library, 2024. URL
https://github.com/facebookresearch/lingua.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan
Awadallah, and Bo Li. Adversarial GLUE: A multi-task benchmark for robustness evaluation of
language models. CoRR, abs/2111.02840, 2021a. URL https://arxiv.org/abs/2111.
02840.

D Wang, Y Li, J Jiang, Z Ding, G Jiang, J Liang, and D Yang. Tokenization matters! degrading large
language models through challenging their tokenization (no. arxiv: 2405.17067). arxiv, 2024.

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou, Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui
Zheng, Zexiong Pang, Qinzhuo Wu, Zhengyan Li, Chong Zhang, Ruotian Ma, Zichu Fei, Ruijian
Cai, Jun Zhao, Xingwu Hu, Zhiheng Yan, Yiding Tan, Yuan Hu, Qiyuan Bian, Zhihua Liu, Shan
Qin, Bolin Zhu, Xiaoyu Xing, Jinlan Fu, Yue Zhang, Minlong Peng, Xiaoqing Zheng, Yaqian
Zhou, Zhongyu Wei, Xipeng Qiu, and Xuanjing Huang. TextFlint: Unified multilingual robust-
ness evaluation toolkit for natural language processing. In Heng Ji, Jong C. Park, and Rui Xia
(eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing: System Demon-
strations, pp. 347–355, Online, August 2021b. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-demo.41. URL https://aclanthology.org/2021.acl-demo.
41/.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021c.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom:
A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer, 2021.
URL https://arxiv.org/abs/2010.11934.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte mod-
els. Transactions of the Association for Computational Linguistics, 10:291–306, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791–
4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
https://doi.org/10.18653/v1/p19-1472.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt

14

https://github.com/facebookresearch/lingua
https://arxiv.org/abs/2111.02840
https://arxiv.org/abs/2111.02840
https://aclanthology.org/2021.acl-demo.41/
https://aclanthology.org/2021.acl-demo.41/
http://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2010.11934
https://doi.org/10.18653/v1/p19-1472

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: Comprehensive Overview of Selected Tokenizers—Part A: Basic Properties

Tokenizer Method Vocab. Size OOV Handling Language(s) Pretokenization
ByT5 Bytes 259 (XS) Bytes LA. None (raw bytes)
TokenMonster Custom 32, 000 (S) Ignores Unknowns English-Only None (boundaries are learned)
Phi-3 BPE 32, 064 (S) Byte-fallback Multilingual SentencePiece
GPT-2 BPE 50, 257 (M) Byte-fallback English-Only GPT-2
Comma BPE 64, 000 (M) Byte-fallback Multilingual GPT-4
mBERT WordPiece 110, 000 (M) [UNK] Multilingual BERT
Llama-3.2 BPE 128, 256 (M) Byte-fallback Multilingual GPT-4
Tekken BPE 130, 000 (M) Byte-fallback Multilingual GPT-4∗

Qwen-3 BPE 151, 646 (L) Byte-fallback Multilingual GPT-4∗

GPT-4o BPE 200, 000 (L) Byte-fallback Multilingual GPT-4o
BLOOM BPE 250, 680 (L) Byte-fallback Multilingual BLOOM
Aya BPE 255, 029 (L) Byte-fallback Multilingual GPT-2
Gemma-2 Unigram 256, 128 (L) Byte-fallback Multilingual SentencePiece
XGLM Unigram 256, 008 (L) Byte-fallback Multilingual SentencePiece
1 Vocabulary bucket is indicated in ().
2 OOV = Out-of-vocabulary
3 LA. = Language-agnostic

Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

Table 3: Comprehensive Overview of Selected Tokenizers—Part B: Processing Details. See Ap-
pendix A for detailed explanations of tokenization processing terminologies and methodologies.

Tokenizer Name Numbers Contractions Unicode Norm. Whitespace Zerowidth chars
ByT5 N/A N/A None N/A 3 Bytes
TokenMonster Learned Learned NFD Learned Token
Phi-3 Split Learned None Manual Token
GPT-2 Group GPT-2 None Individual Token
Comma Group by 3 GPT-4 None Learned Token
mBERT Learned Composed None Normalized Normalized/Removed
Llama-3.2 Group by 3 GPT-4 None Learned Token
Tekken Split GPT-4∗ None Learned Token
Qwen-3 Split GPT-4 NFC Learned Token
GPT-4o Group by 3 Learned None Learned Token
BLOOM Learned Learned None Learned Token
Aya Split GPT-2 NFC Learned Token
Gemma-2 Split Learned None Manual Token
XGLM Learned Learned NFKC Normalized Normalized/Removed

A TOKENIZER PROCESSING GLOSSARY

PRETOKENIZATION

BERT Pre-tokenization splits are based on whitespace and punctuation.

GPT-2 Pre-tokenization splits are done on whitespace and transitions between letters,
numbers, and punctuation.

GPT-4 GPT-4 pre-tokenization follows GPT-2’s approach, but it also creates a new token
after 3 contiguous digits. Note that Qwen 3 uses the same pretokenization as GPT-
4, but does not split numbers into groups of three.

GPT-4o GPT-4o pre-tokenization follows that of GPT-4, but specific contractions—(’s, ’d,
’m, ’t, ’ll, ’ve, ’re)—are not split from the preceding word. Note that Tekken uses
the same pre-tokenization methods as GPT-4o, but without special case handling
of the specific english contractions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

BLOOM Pre-tokenization splits are done based on whitespace and punctuation like commas
and periods.

SentencePiece Pre-tokenization splits are done on whitespace, and at transitions between letters,
numbers and punctuation.

NUMBERS PROCESSING

Split Numbers are deterministically broken down into individual digits which are each
treated as single tokens.

Group Numbers are deterministically split from adjoining text during pre-tokenization.
The learning algorithm then determines which numbers become single tokens and
which are further tokenized.

Group by 3 Similar to Group, but contiguous digits are split into groups of 3 during pre-
tokenization. Again, the learning algorithm then determines which numbers are
single tokens. For example, “username12345” is pre-tokenized into “username”,
“123”, and “45”, but “123” is not a token in V yielding a final token stream of
“username”, “1”, “23”, “45”.

Learned Numbers are not automatically segmented from surrounding text. Thus, the learn-
ing algorithm determines token boundaries for letters and numbers jointly. This
can result in tokens that include both characters and digits.

CONTRACTIONS PROCESSING

GPT-2 A selected number of English contractions (’s, ’d, ’m, ’t, ’ll, ’ve, ’re) are manually
split into their own tokens. The learning algorithm then decides if they should be
their own token or if it should be broken down further. This makes it impossible
to have a token like “I’ll”.

GPT-4 Uses GPT-4’s contraction processing method. The name set of contractions are
explicitly handled, but the regex is implemented differently. Note that Tekken
uses the GPT-4 regex without special casing english contractions; however, it still
results in splitting contractions from the base during pre-tokenization.

Learned Contractions are not manually split from the base word; the learning algorithm
decides if the contraction should be its own token or a composition.

Composed The pre-tokenization splits all contractions into multiple tokens (base, apostro-
phe, and contraction, e.g., he’ll → “he”, “”’, “ll”), which cannot be merged back
together in the learning algorithm.

UNICODE NORMALIZATION

None No Unicode normalization is applied; characters are processed exactly as they
appear in the input. Note that this can result in V containing multiple tokens that
are visually the same, but differ in their underlying bytes, for example two “é”
tokens, but one is represented by a single code point while the other is represented
as the composition of “e” and “´”.

NFD Normalization Form Decomposed: Unicode characters are decomposed into their
constituent parts (base characters + combining marks separately).

NFC Normalization Form Composed: Unicode characters are composed into their
canonical combined form (base characters + combining marks merged when pos-
sible).

NFKC Normalization Form Compatibility Composed: Similar to NFC but also applies
compatibility mappings, converting visually similar characters to their canonical
equivalents before composition. Note that this can result in lossy detokenization
as characters like “2” are mapped to “2”.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

WHITESPACE TREATMENT

Normalized Whitespace like tabs, newlines, and contiguous spaces are normalized to a single
space. This results in lossy detokenization and often stops the downstream model
from understanding domains with meaningful whitespace such as code.

Learned Each piece of contiguous whitespace is segmented into a single token during pre-
tokenization, then the learning algorithm decides how to subdivide them into indi-
vidual tokens. This results in whitespace being preserved and allows for lossless
detokenization.

Manual The handling of whitespaces during pre-tokenization matches Learned, but pre-
defined whitespace tokens of various sizes are used instead of learning them from
the data. This results in whitespace being preserved and allows for lossless detok-
enization.

Individual Whitespace is preserved, but each individual whitespace character is represented
as its own token. This yields long token sequences for whitespace heavy inputs.
This results in whitespace being preserved and allows for lossless detokenization.

ZERO-WIDTH CHARACTERS

3 Bytes Zero-width characters are maintained in their original 3-byte representation.

Token Zero-width characters are preserved and assigned as new tokens in the vocabulary.

Normalized/Removed Zero-width characters are either normalized to standard equivalents or com-
pletely removed.

B MODEL TRAINING

B.1 MODEL INITIALIZATION

We use the same initialization strategy as the Llama-1B configuration, however, we first create a
shared initialization where the size of the embedding table—and the final output layer—is the size
of the super vocabulary, |Esv| = |SV|. Each model then uses the parameter values from this shared
initialization for most layers. The embedding table for an individual model, E, is initialized by
selecting the appropriate rows from the super vocabulary embedding table. Thus after initialization,
E(x) = Esv(sv(X)). This results in a shared initialization for all models, including the initial
embedding value for any shared tokens.

B.2 MODEL PERFORMANCE

We evaluate all models on standard English reasoning tasks (HellaSwag (Zellers et al., 2019), ARC
Easy/Challenge (Clark et al., 2018), PIQA (Bisk et al., 2020)), multilingual natural language in-
ference (XNLI (Conneau et al., 2018) in English, Turkish, and Chinese), reading comprehension
(Belebele (Bandarkar et al., 2024) in English, Italian, Farsi, Turkish, and Chinese), and a multilin-
gual reasoning benchmark (Include Base 44 (Romanou et al., 2025) in Chinese, Italian, and Turkish)
in Fig. 1. Although models achieve sufficient performance on easier English reasoning tasks, their
performance on the multilingual benchmarks hardly exceeds the random baseline. Note that models
with larger vocabulary (Aya, XGLM, mBERT, Gemma-2, GPT-4o, and Llama-3.2) tend to perform
better on the downstream tasks with TokenMonster and Tekken falling slightly behind.

C INTRINSIC TOKENIZATION EFFICIENCY METRICS

Tokenizers exhibit varying degrees of compactness when segmenting text into tokens, resulting in
notable disparities in model performance across languages and domains. To systematically evaluate
these differences, we analyze several metrics across our selected pretrained tokenizers, focusing on
our five languages.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We compute three primary intrinsic efficiency metrics using 10,000 parallel random samples from
Flores200 (Team et al., 2022), split into “real” words via language-specific word-level tokenizers
from the DataTrove library (Penedo et al.):

• Subword fertility (SF): is the mean number of tokens used to represent each “real” text
word. This reflects how aggressively a tokenizer segments words. The theoretical minimum
is 1, implying that the tokenizer’s vocabulary encompasses every word in the reference text
(Penedo et al., 2025).

• Parity: evaluates whether a tokenizer processes equivalent sentences fairly across lan-
guages. Achieved when the ratio of tokenized lengths |T (sA)|

|T (sB)| ≈ 1 for parallel sentence
sets sA and sB from languages A and B (Ali et al., 2024).

• Proportion of continued words (PCW): is the proportion of “real” text words that require
two or more tokens for encoding. This metric indicates how frequently a tokenizer splits
words. A score of 0 means no splitting occurs, while a score of 1 means every word is split
(Rust et al., 2020).

The intrinsic metrics reflect a tokenizer’s efficiency in processing a language and are critical fac-
tors in tokenizer selection, as they directly impact an LM’s computational cost, context window
utilization, and representation quality. Table 4 reveals substantial disparities in how our tokenizers
handle our target languages. ByT5 and tokenizers with smaller vocabularies (TokenMonster, and
Phi-3) exhibit significantly higher subword fertility and PCW scores, particularly for non-English
languages—ByT5 requires 7.72 tokens per word in Farsi compared to 4.40 in English. Multilingual-
specialized tokenizers (mBERT, XGLM) demonstrate superior language parity, with XGLM achiev-
ing near-optimal parity scores (1.18 average) and mBERT showing the lowest average subword
fertility (1.54).

Notably, vocabulary size alone does not guarantee efficiency; Qwen-3 and Gemma-2, despite hav-
ing large vocabularies (>150K), show comparable or worse performance than smaller vocabulary
tokenizers like mBERT on certain metrics. We also observe higher fertility and PCW scores for
morphologically rich languages (Turkish, Farsi) compared to English.

D TokSuite BENCHMARK DETAILS

D.1 QUESTION STYLE AND DIFFICULTY

The TokSuite benchmark comprises straightforward multiple-choice text completion questions.
Below we present the canonical English questions that form our English subset, which are sub-
sequently translated into Farsi (FA), Italian (IT), Turkish (TR), and Chinese (ZH). The fourteen
models demonstrate strong performance on the canonical questions in English and Italian (Fig. 3),
while the canonical accuracy on Farsi, Turkish, and Chinese is slightly behind. Higher PCW scores
in these three languages (see Table 2) suggest that the models are likely to consume less information
measured in raw bytes in these languages.

300 Dr Smith is a doctor. Occupation of Dr Smith is: doctor, teacher, judge, lawyer
301 The color of the sky is: blue, red, green, yellow
302 The price of this house is 1,028,415 dollars. The cost of this house is: 1,028,415 dollars,

1.028.415 dollars, 1,028,411 dollars, 1,028.415 dollars
303 Today’s date is 29/08/2025. Today is: 29/08/2025, 19/08/2025, 26/08/2025, 29/09/2025
304 The number of continents on Earth is: 7, 5, 6, 8
305 The capital city of Iran is: Tehran, Mashhad, Baghdad, Isfahan
306 The number of days in a week is: 7, 5, 6, 8
307 The number of hours in a day is: 24, 20, 25, 30
308 The number of legs a cow has is: 4, 8, 3, 5
309 The number of minutes in 2 hours is: 120, 100, 140, 90
310 The number of months in a year is: 12, 10, 11, 13

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50
Accuracy

Aya
Qwen-3
BLOOM
Comma

XGLM
mBERT

ByT5
Gemma-2

GPT-2
Llama-3.2

Phi-3
Tekken
GPT-4o

TokenMonster

hellaswag

0.00 0.25 0.50
Accuracy

arc_easy

0.0 0.2 0.4
Accuracy

arc_challenge

0.0 0.5
Accuracy

piqa

0.0 0.2 0.4
Accuracy

Aya
Qwen-3
BLOOM
Comma

XGLM
mBERT

ByT5
Gemma-2

GPT-2
Llama-3.2

Phi-3
Tekken
GPT-4o

TokenMonster

xnli_en

0.0 0.2 0.4
Accuracy

xnli_tr

0.0 0.2
Accuracy

xnli_zh

Figure 1: Model Performance on Multilingual Benchmarks

Table 4: Multilingual Tokenizers Comparison on Flores200 Using Intrinsic Tokenizer Efficiency
Metrics. sf denotes subword fertility, pcw denotes proportion of continued words, and parity is
measured against English parallel samples. Summary statistics report average values across all lan-
guages. Lower is better for all metrics. Bold font highlights the best performance in each row.
Models are ordered from smallest to largest vocabulary size, left to right. Vocabulary size is catego-
rized as XS, S, M, and L for < 1K, 1K–50K, 50K–150K, and > 150K tokens, respectively.

Tokenizer By
T5

To
ke

nM
on

ste
r

Ph
i-3

G
PT

-2
Co

m
m

a
m

BE
RT

Ll
am

a-
3.2

Te
kk

en
Q

we
n-

3
G

PT
-4

o
BL

O
O

M
Ay

a

G
em

m
a-

2
XG

LM
Vocab. Size XS S S M M M M M L L L L L L

English sf 4.40 1.75 1.24 1.30 1.44 1.15 1.26 1.35 1.28 1.24 1.31 1.19 1.14 1.23
English pcw 0.87 0.56 0.16 0.23 0.34 0.10 0.20 0.27 0.21 0.20 0.25 0.15 0.11 0.21

Chinese sf 5.00 4.92 3.44 3.54 2.45 1.68 1.49 1.64 1.21 1.44 1.16 1.23 1.28 2.19
Chinese pcw 0.98 0.97 0.97 0.82 0.58 0.55 0.35 0.41 0.16 0.32 0.13 0.18 0.21 0.87
Chinese parity 0.94 4.99 2.03 3.21 1.94 1.40 1.29 1.43 1.02 1.27 0.93 1.05 1.09 1.15

Turkish sf 6.49 4.31 3.20 3.20 3.29 1.99 2.38 2.44 2.58 2.33 2.71 2.17 2.23 1.69
Turkish pcw 0.87 0.80 0.76 0.76 0.78 0.52 0.72 0.73 0.74 0.71 0.72 0.68 0.69 0.52
Turkish parity 1.12 3.34 2.11 2.45 2.21 1.37 1.39 1.50 1.63 1.43 1.98 1.21 1.39 1.12

Farsi sf 7.72 7.74 4.77 4.91 4.43 1.53 1.94 1.92 2.45 1.93 2.01 1.85 1.83 1.36
Farsi pcw 0.95 0.94 0.93 0.90 0.90 0.31 0.58 0.58 0.67 0.57 0.58 0.53 0.53 0.28
Farsi parity 1.72 9.45 4.08 5.35 4.31 1.38 1.52 1.47 2.63 1.55 1.80 1.48 1.45 1.21

Italian sf 4.78 2.50 1.64 1.99 2.05 1.34 1.81 1.77 1.83 1.71 1.75 1.61 1.54 1.36
Italian pcw 0.84 0.63 0.42 0.57 0.59 0.23 0.55 0.53 0.55 0.52 0.51 0.47 0.41 0.32
Italian parity 1.19 2.30 1.48 2.02 1.87 1.28 1.62 1.40 1.64 1.47 1.63 1.31 1.33 1.24

Avg sf 5.79 4.39 2.90 3.19 2.93 1.54 1.78 1.82 1.87 1.73 1.79 1.61 1.60 1.56
Avg pcw 0.90 0.78 0.62 0.66 0.64 0.34 0.48 0.50 0.47 0.46 0.44 0.40 0.39 0.46
Avg parity 1.27 5.31 2.54 3.44 2.74 1.36 1.46 1.45 1.73 1.43 1.59 1.26 1.32 1.18

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Fertility Scores

(b) Parity Scores

(c) Proportion of Continued Words

Figure 2: Comparison of Tokenizer Performance via Different Intrinsic Efficiency Metrics Using
Flores200 dataset. (a) shows subword fertility, (b) shows parity against English, and (c) shows
the proportion of continued words across languages and tokenizers. Lower values indicate better
comparative performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

311 The number of seconds in a minute is: 60, 50, 100, 30

312 The number of sides a hexagon has is: 6, 5, 7, 8

313 The number of sides a triangle has is: 3, 2, 4, 5

314 In “I work at Apple”, Apple is: company, person, city, fruit

315 In “I work at Google”, Google is: company, person, city, fruit

316 In “Microsoft released a new update”, Microsoft is: company, person, place, date

317 In “The cat sat on the mat”, the subject is: the cat, sat, the mat, on

322 The gas humans need to breathe to live is: oxygen, methane, helium, hydrogen

323 10% of 100 is: 10, 5, 15, 20

324 25% of 80 is: 20, 15, 25, 30

326 Chad’s capital is: N’Djamena, Moundou, Abéché, Ngama

327 The capital of France is: Paris, London, Berlin, Rome

328 The capital of Japan is: Tokyo, Kyoto, Osaka, Hiroshima

329 The capital of Turkey is: Ankara, İstanbul, İzmir, Bursa

330 The chemical formula for water is: H2O, CO2, NaCl, O2

331 The intent in “What time does the store close?” is: get information, make purchase, book
appointment, file complaint

332 The largest mammal in the world is: blue whale, dolphin, giraffe, bear

333 The unit of measurement for temperature in the International System is: Kelvin, Celsius,
meter, Rankine

334 The country whose space agency is NASA is: United States, Russia, China, Japan

335 The language spoken in Brazil is: Portuguese, Spanish, French, Italian

336 The metal with chemical symbol ’Fe’ is: iron, lead, zinc, gold

337 The organ in the human body that pumps blood is: heart, liver, lungs, kidneys

338 The planet closest to the Sun in our solar system is: Mercury, Venus, Mars, Earth

339 The largest planet in the Solar System is: Jupiter, Earth, Saturn, Mars

340 The process that allows plants to produce their own food using sunlight is: photosynthesis,
respiration, digestion, fermentation

341 The author who wrote the play “Romeo and Juliet” is: William Shakespeare, Charles
Dickens, Mark Twain, Jane Austen

342 What bees produce is: honey, milk, silk, wax

343 What plants need from the air to make food is: carbon dioxide, nitrogen, hydrogen, helium

344 In “Can you please book a flight to Paris?”, the person wants to: make a booking, go
shopping, file a complaint, cancel reservation

D.2 BENCHMARK COMPOSITION

In Table 5, we list the composition of the categories and perturbations in TokSuite. The multilin-
gual parallel dataset comprises 80% of the dataset, while the remaining part covers math, STEM,
and general questions.

E DETAILED BENCHMARK RESULTS

In this section, we provide case studies for each category in Section 4.1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 3: Accuracies of models on canonical versus perturbed questions across the English
(eng Latn), Italian (ita Latn), Farsi (pes Arab), Turkish (tur Latn), and Chinese (zho Hans)
TokSuite subsets.

Table 5: Benchmark statistics by language and domain

Language/Domain Total Examples Perturbations

English 1,180 42 types
Chinese 485 18 types
Turkish 638 21 types
Italian 1,088 19 types
Farsi 747 15 types

Math 189 5 types
STEM 614 25 types
General 89 4 types

Table 6: Tokenization robustness under different input mediums, granular version of Input in Table 1.
Values represent relative performance drop (canonical-perturbed)/canonical; lower values indicate
greater robustness. Traditional: Traditional Chinese characters instead of simplified.

Model Romanization Number
Romaniza-

tion

English Keyboard Arabic
Keyboard

Traditional Avg

FA ZH FA TR IT FA ZH

TokenMonster 0.46 0.58 -0.10 -0.04 0.21 0.25 0.02 0.20
Comma 0.42 0.59 0.21 0.03 0.24 0.42 0.04 0.28
GPT-4o 0.57 0.67 -0.03 0.22 0.09 0.43 0.03 0.28
Llama-3.2 0.60 0.66 -0.23 0.24 0.14 0.53 0.09 0.29
BLOOM 0.63 0.48 0.08 0.21 0.15 0.40 0.10 0.29
Aya 0.55 0.62 0.01 0.06 0.16 0.55 0.12 0.29
ByT5 0.61 0.46 0.21 0.13 0.15 0.39 0.18 0.30
Tekken 0.59 0.61 0.00 0.17 0.20 0.44 0.18 0.31
Gemma-2 0.40 0.52 0.28 0.24 0.19 0.47 0.18 0.32
Phi-3 0.58 0.66 0.25 0.06 0.24 0.39 0.09 0.33
XGLM 0.59 0.63 0.13 0.29 0.19 0.41 0.10 0.34
mBERT 0.44 0.60 0.42 0.22 0.18 0.50 0.10 0.35
GPT-2 0.61 0.67 0.31 0.30 0.16 0.32 0.11 0.35
Qwen-3 0.68 0.64 0.19 0.15 0.19 0.47 0.18 0.36

Avg 0.55 0.60 0.12 0.16 0.18 0.43 0.11 0.31

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E.1 ORTHOGRAPHIC & SCRIPT CHALLENGES

Table 6 examines tokenization robustness under orthographic and script challenges, focusing on
input medium variations where users employ non-native keyboards or writing systems. For Chinese
romanization, we write the full question and choices in Pinyin without tone markers—as if the user
only has access to an English keyboard—with spaces between individual groups that constitute a
character for easy segmentation. However, this segmentation aid does not improve tokenization
robustness, as models still exhibit substantial performance degradation (0.60 average drop) when
processing romanized Chinese text compared to native scripts. In Table 7, the errors due to input
systems (like homoglyphs and zero-width characters) are presented.

Diacritics perturbations systematically vary the presence and accuracy of accent marks and dia-
critical symbols. We test how tokenizers handle optional diacritics, where text remains valid with
or without marks (e.g., marks placed above or below letters to clarify pronunciation and phonetic
details such as short vowels (fata for /a/, kasra for /e/, amma for /o/), or sukūn for the absence of
vowels in Farsi), wrong accents such as using é instead of è in Italian. Table 8 expands on diacritics
perturbations, examining how tokenizers handle optional Farsi diacritics that are used to clarify pro-
nunciation and phonetic details, Chinese tonal variations in the Pinyin format, and incorrect accent
placement in Italian text. We see that Tokenmonster, which decomposes these markers shows strong
performance with Farsi optional diacritics.

In Table 14, we also present Pinyin input without these optional whitespaces and observe that the
space-removed version causes less performance degradation. In Table 8, we further demonstrate that
adding tone markers significantly improves performance. While we expected adding spaces to help
models identify corresponding Chinese characters better, the opposite occurred—this likely reflects
how native speakers typically write Pinyin without spaces in practice, making the spaced version
appear more artificial to models trained on naturalistic text data.

Orthographic and Grammatical Errors Table 9 reveals that orthographic and grammatical er-
rors create varying challenges depending on the morphological complexity of the language. Token-
Monster demonstrates the strongest, while character-level approaches like ByT5 show competitive
performance across multiple categories.

Orthographic Errors Imagine perturbing the word “week” to “weak” in the question, “The num-
ber of days in a week is”. This change breaks 6/14 models despite both words existing as distinct
tokens with separate embeddings. This suggests that tokenization robustness depends not merely on
vocabulary coverage but on the semantic stability of token representations.

Grammatical Errors Consider the Turkish locative suffix variants ”saatteki” for the root saat (in
the hour) versus the incorrect ”saatdeki” as part of the canonical question “The number of minutes
in 2 hours is” (TR: 2 saatteki dakika sayısı).

This example demonstrates how agglutinative languages amplify tokenization brittleness: a single
phoneme change (/t/ to /d/) can completely restructure token boundaries. This reflects the curse of
multilinguality, where tokenizers trained predominantly on English struggle with morphologically
complex languages, sometimes producing cleaner segmentation—with meaningful morphemes—for
incorrect forms than correct ones (as Gemma-2 and BLOOM below). English grammatical errors
on the other hand—with wrong prepositions, subject-verb agreement, etc—tend to change token
boundaries less and we observe a less striking performance degradation in Table 9.

Assimilation error (”saatteki” vs. ”saatdeki”):

• BLOOM, Gemma-2: sa, atte, ki vs. saat, de, ki (meaningful morphemes
after error)

• XGLM: saat, teki vs. saat, deki (clean morpheme separation)
• Llama-3.2: sa, atte, ki vs. sa, at, deki (inconsistent segmentation)
• mBERT: saat, ##tek, ##i vs. saat, ##deki (subword fragmentation changes)
• Qwen-3: sa, atte, ki vs. sa, at, de, ki (boundary reorganization)
• TokenMonster: sa, at, tek, i vs. sa, a, td, ek, i (severe fragmentation)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Tokenization robustness under errors from input mediums. Values represent relative per-
formance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.

Model Homoglyphs Zero-width chars. Avg
EN FA ZH

mBERT 0.08 0.09 0.00 0.06
Phi-3 0.03 0.21 -0.06 0.06
TokenMonster 0.09 0.18 -0.06 0.07
BLOOM 0.12 0.17 -0.07 0.07
XGLM 0.03 0.19 0.03 0.08
ByT5 0.06 0.32 -0.11 0.09
Comma 0.05 0.32 -0.07 0.10
GPT-4o 0.14 0.23 -0.03 0.11
Aya 0.28 0.23 -0.14 0.12
Gemma-2 0.15 0.27 0.03 0.15
Llama-3.2 0.12 0.30 0.03 0.15
GPT-2 0.13 0.23 0.13 0.16
Tekken 0.13 0.29 0.10 0.17
Qwen-3 0.11 0.38 0.11 0.20

Avg 0.11 0.24 -0.01 0.11

Table 8: Tokenization robustness to diacritics, granular version of Diacr in Table 1 and wrong ac-
cents in Italian. Values represent relative performance drop (canonical-perturbed)/canonical; lower
values indicate greater robustness.

Model Diacritics Wrong
accents

Avg

FA ZH IT

BLOOM 0.33 0.37 0.08 0.26
TokenMonster 0.21 0.45 0.17 0.28
GPT-2 0.42 0.50 -0.02 0.30
Qwen-3 0.41 0.43 0.10 0.31
ByT5 0.42 0.46 0.06 0.31
mBERT 0.31 0.57 0.06 0.31
Gemma-2 0.43 0.42 0.10 0.32
Phi-3 0.39 0.53 0.05 0.32
Tekken 0.47 0.48 0.07 0.34
Aya 0.45 0.48 0.10 0.34
XGLM 0.44 0.54 0.11 0.36
GPT-4o 0.47 0.57 0.08 0.37
Comma 0.39 0.48 0.30 0.39
Llama-3.2 0.60 0.50 0.16 0.42

Avg 0.41 0.49 0.10 0.33

Table 9: Tokenization robustness under orthographic and grammatical errors. Values represent rela-
tive performance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.

Model Orthographic Errors Grammatical Errors Phonetic Avg
EN TR IT EN TR IT IT

TokenMonster 0.10 0.04 0.04 0.06 0.03 -0.03 0.04 0.04
ByT5 0.06 0.10 0.08 0.00 -0.01 0.04 0.02 0.04
GPT-4o 0.12 0.13 0.08 0.00 0.05 -0.01 0.02 0.06
Comma 0.09 0.20 0.06 -0.03 0.13 0.01 0.04 0.07
Llama-3.2 0.14 0.18 0.13 0.05 0.07 0.03 0.02 0.09
Tekken 0.24 0.23 -0.01 0.08 0.21 -0.07 -0.01 0.09
GPT-2 0.08 0.30 0.10 0.05 0.12 0.01 0.09 0.11
BLOOM 0.18 0.24 0.05 0.03 0.21 -0.01 0.07 0.11
Qwen-3 0.17 0.18 0.12 0.08 0.15 0.05 0.02 0.11
Phi-3 0.18 0.22 0.13 0.11 0.09 -0.02 0.07 0.11
Aya 0.21 0.21 0.13 0.03 0.07 0.02 0.14 0.11
mBERT 0.15 0.41 0.08 0.03 0.22 -0.02 0.04 0.13
XGLM 0.13 0.32 0.12 0.03 0.23 -0.02 0.15 0.14
Gemma-2 0.18 0.30 0.12 0.05 0.29 0.07 0.09 0.16

Avg 0.14 0.22 0.09 0.04 0.13 0.00 0.06 0.10

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• GPT-4o: s, aat, te, ki vs. s, aat, de, ki (character-level consistency)
• Tekken: sa, atte, ki vs. sa, at, deki (partial boundary preservation)
• GPT-2: sa, at, te, ki vs. sa, at, d, eki (fine-grained segmentation)

Turkish final-obstruent devoicing error (“ineǧin” → “inekin”) in the word cow’s (possesive)

• BLOOM: ine, Ç, §, in vs. in, ekin

• XGLM: in, e, ǧ, in vs. in, ekin

• Llama-3.2: ine, Ç, §, in vs. ine, kin

• mBERT: [UNK] vs. in, ##ekin (unknown token fallback)
• Qwen-3: ine, Ç§, in vs. ine, kin

• TokenMonster: ine, g, i, n vs. ine, kin (diacritic decomposition)
• Gemma-2: ine, ǧ, in vs. ine, kin

• GPT-4o: ine, ǧ, in vs. ine, kin

• Tekken: ine, ǧ, in vs. ine, kin

• GPT-2: ine, ǧ, in vs. ine, kin

Register and style variations compound tokenization challenges. Consider using emoji substi-
tution in “The capital of Japan is” by replacing “Japan” with the Japanese flag .

Table 10: Tokenization robustness under different register and style variations. Values represent
relative performance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.
Abb.: abbreviations, Word Ord.: word reordering, emoji: emoji substituion, char. subs.: character
substitution, repet.: letter repetition for emphasis

Model Web Search Abb. Word Ord. Phonetic Colloquial Emoji Char.
Subs.

Repet. Avg

EN TR IT EN IT EN TR IT EN FA TR ZH EN EN EN

TokenMonster 0.26 0.07 0.38 0.32 0.04 0.06 -
0.01

0.04 0.11 0.00 -
0.00

0.04 0.25 -
0.07

0.22 0.11

mBERT 0.33 0.25 0.23 0.27 0.07 0.08 0.18 0.04 0.15 0.09 0.12 0.18 0.29 -
0.08

0.18 0.16

GPT-4o 0.36 0.34 0.53 0.18 0.09 0.05 0.03 0.02 0.20 0.10 0.12 0.15 0.16 -
0.01

0.21 0.17

ByT5 0.40 0.30 0.29 0.28 0.11 0.06 0.12 0.02 0.15 0.19 0.14 0.16 0.32 -
0.04

0.11 0.17

Comma 0.43 0.33 0.43 0.32 0.08 -
0.03

0.03 0.04 0.12 0.13 0.14 0.19 0.23 0.01 0.13 0.17

BLOOM 0.41 0.36 0.31 0.24 0.09 0.12 0.20 0.07 0.17 0.20 0.15 0.01 0.20 0.00 0.17 0.18
GPT-2 0.29 0.36 0.38 0.20 0.16 0.13 0.15 0.09 0.10 0.06 0.18 0.21 0.26 -

0.05
0.28 0.19

XGLM 0.29 0.32 0.30 0.29 0.16 0.03 0.17 0.15 0.20 0.22 0.17 0.15 0.33 0.01 0.08 0.19
Llama-3.2 0.38 0.32 0.36 0.30 0.13 0.10 0.14 0.02 0.19 0.17 0.08 0.17 0.25 0.06 0.27 0.20
Tekken 0.49 0.34 0.42 0.29 0.01 0.05 0.19 -

0.01
0.16 0.26 0.07 0.24 0.26 0.01 0.20 0.20

Aya 0.42 0.38 0.33 0.28 0.24 0.08 0.20 0.14 0.17 0.13 0.11 0.15 0.11 -
0.03

0.32 0.20

Qwen-3 0.32 0.41 0.49 0.26 -
0.03

0.08 0.17 0.02 0.14 0.32 0.17 0.16 0.14 0.08 0.36 0.21

Gemma-2 0.50 0.36 0.54 0.25 0.28 0.08 0.15 0.09 0.18 0.07 0.12 0.24 0.18 0.04 0.20 0.22
Phi-3 0.43 0.31 0.62 0.20 0.04 0.11 0.15 0.07 0.24 0.21 0.19 0.23 0.33 -

0.05
0.28 0.22

Avg 0.38 0.32 0.40 0.26 0.11 0.07 0.13 0.06 0.16 0.15 0.13 0.16 0.24 -
0.01

0.21 0.19

Emoji handling reveals differences: Most modern tokenizers like Gemma-2, GPT-4o, Tekken, GPT-
2, and Qwen-3 have emojis in their vocabulary, correctly parse the Japanese flag emoji into two
tokens as the corresponding regional indicators ([J] and [P]). Aya on the other hand has a stand-
alone token for the flag emoji. BLOOM, Llama-3.2, and TokenMonster use byte-fallback, XGLM
and mBERT resort to unknown tokens. The coverage of emojis translate into good performance in
the Emoji substitution perturbations (see Table 10).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Linguistic Variety Table 11 examines how tokenizers handle linguistic diversity including his-
torical spellings, code-switching, dialects, and colloquial expressions. TokenMonster demonstrates
remarkable consistency across varied linguistic phenomena (0.08 average drop), while most mod-
els struggle significantly with certain types of variation. In Table 12, we group the models based
on their vocabulary size (see Table 2) to investigate potential correlations with vocabulary size, as
larger vocabularies theoretically provide more comprehensive dictionaries.

Counterintuitively, vocabulary size shows little to no correlation with linguistic robustness—byte-
level model (ByT5) demonstrates superior consistency despite operating without traditional vocabu-
lary constraints, while some large-vocabulary tokenizers exhibit significant brittleness. We observe
that larger vocabulary size doesn’t always produce a lexically-rich vocabulary. Modern tokenizers
may actually compound the problem by learning multiple variants of common words (Gemma-2
has distinct tokens for “hello”, “ hello”, “Hello”, and “ Hello”), reducing the effective vocabulary.
While this multiplicity has efficiency gains it could make models sensitive to stylistic variations that
should be semantically equivalent.

Historical spelling variants (”capitall”3, ”Japane”) demonstrate systematic fragmentation patterns
where tokenizers often segment archaic or non-standard spellings along morphological boundaries:

• Most tokenizers: capit, all and Jap, ane (consistent morpheme-like splitting)
• mBERT: capital, ##l and Japan, ##e (subword suffix handling)
• XGLM: capital, l and Japan, e (clean separation)

Colloquial expressions reveal deeper challenges in world knowledge representation. The question
“Turkey’s capital turns out to be” with the correct answer ”Ankara” illustrates how informal phras-
ing can disrupt factual recall: as it breaks 3 models. This suggests that tokenizers’ handling of
casual discourse markers and words (”turns out to be”) may interfere with models’ access to factual
knowledge. The pattern indicates that linguistic variety challenges extend beyond mere tokenization
to fundamental issues of how models integrate linguistic style with semantic content.

E.2 MORPHOLOGICAL CHALLENGES

Table 13 examines how tokenizers handle morphological variations including derivations, inflec-
tions, and contractions across English, Turkish, and Italian. Morphological perturbations reveal
fundamental inconsistencies in how tokenizers segment related word forms—contractions like
“Google’s” versus decomposed forms, or Italian elision patterns where “dell’Italia” and “d’Italia”
receive dramatically different tokenization despite identical meaning. These inconsistencies suggest
that current tokenization approaches lack coherent strategies for handling morphologically related
forms, potentially leading models to develop disparate semantic representations for linguistically
equivalent expressions. For example while BLOOM learns contractions, GPT-2 and GPT-4o use a
regex-based search.

English Contractions: “Google is”→ “Google’s”

• BLOOM, Llama-3.2, Qwen-3, Gemma-2, GPT-2, GPT-4o, Tekken,: Google, ’s
(separate marker)

• XGLM, mBERT: Google, ’, s (fragmentation)
• TokenMonster: google, ’s (lowercase normalization)

Italian Ellisions The Italian contraction ”L’intento” (the intent) demonstrates varying approaches
to handling elided articles:

• BLOOM: L’, int, ento

• XGLM: L, ’, inten, to

• Llama-3.2: L, ’int, ento

• mBERT: L, ’, intento

3https://www.oed.com/search/dictionary/?scope=Entries&q=capitall

26

https://www.oed.com/search/dictionary/?scope=Entries&q=capitall

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 11: Tokenization robustness under linguistic variety. Values represent relative performance
drop (canonical-perturbed)/canonical; lower values indicate greater robustness. Hist.: historical
spelling, equiv. exp.: equivalent expressions, sim. words: similar words

Model Hist. Code switch Dialects Equiv. exp. Sim. words Avg
EN FA TR IT ZH FA TR IT EN FA TR ZH EN TR IT

TokenMonster 0.09 0.07 0.00 0.00 0.03 0.22 0.09 0.17 0.14 0.07 0.04 0.03 0.03 -0.06 0.22 0.08
ByT5 0.06 0.03 0.04 0.06 -0.04 0.29 0.15 0.15 0.02 0.13 0.06 0.04 0.08 -0.08 0.24 0.08
Comma 0.21 0.10 0.13 0.06 0.03 0.30 0.04 0.06 -0.05 0.10 0.06 0.03 0.08 -0.02 0.28 0.09
BLOOM 0.25 -0.07 0.16 -0.03 -0.04 0.31 0.19 0.14 0.05 0.07 0.14 -0.07 0.09 0.13 0.26 0.11
mBERT 0.11 0.09 0.16 0.03 0.09 0.30 0.31 0.12 -0.05 0.06 0.04 0.06 0.02 0.23 0.05 0.11
Tekken 0.21 0.12 0.16 -0.03 0.03 0.37 0.14 -0.02 0.17 0.15 0.06 0.03 0.05 0.18 -0.01 0.11
GPT-4o 0.08 -0.03 0.10 -0.08 0.07 0.29 0.10 0.14 0.14 -0.03 -0.03 0.13 0.05 0.29 0.44 0.11
XGLM 0.18 0.09 0.21 0.06 -0.03 0.30 0.15 0.02 0.17 0.03 0.10 0.09 0.08 0.16 0.10 0.11
Gemma-2 0.31 0.17 0.05 0.05 0.10 0.33 0.23 0.07 0.17 0.00 0.07 -0.10 0.04 0.08 0.40 0.13
Aya 0.21 0.03 0.13 0.08 0.03 0.30 0.18 0.14 0.27 0.16 0.10 0.00 0.07 0.10 0.23 0.14
GPT-2 0.18 0.10 0.18 0.06 0.20 0.28 0.23 0.23 0.07 0.10 0.14 0.03 0.09 0.08 0.10 0.14
Llama-3.2 0.25 0.03 0.13 0.03 0.09 0.24 0.05 0.17 0.10 0.03 0.17 0.19 0.09 0.16 0.40 0.14
Qwen-3 0.32 0.21 0.18 0.05 0.04 0.34 0.18 0.11 0.02 0.24 0.17 -0.07 0.09 0.22 0.15 0.15
Phi-3 0.32 0.12 0.16 0.09 0.13 0.35 0.10 0.23 -0.05 0.15 0.34 0.09 0.09 0.29 0.19 0.17

Avg 0.20 0.08 0.13 0.03 0.05 0.30 0.15 0.12 0.08 0.09 0.11 0.03 0.07 0.13 0.22 0.12

Table 12: Tokenization robustness under linguistic variety. Same as Table 11 but grouped under
vocabulary size. Values represent relative performance drop (canonical-perturbed)/canonical; lower
values indicate greater robustness. Hist.: historical spelling, equiv. exp.: equivalent expressions,
sim. words: similar words

Vocab Size Hist. Code switch Dialects Equiv. exp. Sim. words Avg
EN FA TR IT ZH FA TR IT EN FA TR ZH EN TR IT

X-Small 0.06 0.03 0.04 0.06 -0.04 0.29 0.15 0.15 0.02 0.13 0.06 0.04 0.08 -0.08 0.24 0.08
Medium 0.19 0.09 0.15 0.03 0.09 0.30 0.15 0.12 0.05 0.09 0.10 0.07 0.07 0.13 0.17 0.12
Large 0.23 0.07 0.14 0.02 0.03 0.31 0.17 0.10 0.14 0.08 0.09 0.00 0.07 0.16 0.26 0.13
Small 0.21 0.10 0.09 0.05 0.08 0.29 0.10 0.20 0.04 0.11 0.20 0.06 0.06 0.13 0.20 0.13

Avg 0.17 0.07 0.11 0.04 0.04 0.30 0.14 0.14 0.06 0.10 0.11 0.04 0.07 0.08 0.22 0.11

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• Qwen-3: L, ’int, ento

• TokenMonster: l’, intent, o

• Gemma-2: L, ’, int, ento

• GPT-4o: L, ’int, ento

• Tekken: L, ’int, ento

• GPT-2: L, ’, intent, o

“dell’Italia” vs. “d’Italia”:

• BLOOM: d, ell, ’, Italia vs. d’, Italia

• XGLM: dell, ’, Italia vs. d, ’, Italia

• Llama-3.2, Qwen-3: d, ell, ’It, alia vs. d, ’It, alia (fragments ”Italia”)
• mBERT: dell, ’, Italia vs. d, ’, Italia (length-dependent)
• TokenMonster: dell, ’, ita, lia vs. d, ’, ita, lia (lowercase + frag-

mentation)
• Gemma-2: dell, ’, Italia vs. d, ’, Italia (clean separation)
• GPT-4o: d, ell, ’, Italia vs. d, ’, Italia (inconsistent decomposition)
• Tekken: d, ell, ’Italia vs. d, ’Italia (treats apostrophe differently)
• GPT-2: d, ell, ’, It, alia vs. d, ’, It, alia (fragments country name)

Table 13: Tokenization robustness under morphological challenges, granular version of Morpholog-
ical in Table 1. Values represent relative performance drop (canonical-perturbed)/canonical; lower
values indicate greater robustness.

Model Contractions Compounds Derivations Inflections Avg
EN IT EN TR EN TR

Comma 0.23 0.18 0.09 -0.11 0.02 0.02 0.07
TokenMonster 0.30 0.16 0.17 -0.12 0.02 -0.09 0.07
GPT-2 0.33 -0.08 0.09 0.05 0.02 0.13 0.09
Aya 0.27 -0.03 0.19 0.02 0.05 0.06 0.10
Gemma-2 0.27 -0.03 0.14 0.02 0.12 0.06 0.10
mBERT 0.26 -0.14 0.09 0.18 0.15 0.06 0.10
Qwen-3 0.31 0.12 0.09 0.02 0.10 0.06 0.12
GPT-4o 0.26 0.26 0.12 -0.04 0.07 0.06 0.12
ByT5 0.30 -0.03 0.15 0.09 0.21 0.05 0.13
BLOOM 0.20 -0.01 0.16 0.11 0.14 0.16 0.13
XGLM 0.26 0.02 0.07 0.11 0.25 0.06 0.13
Llama-3.2 0.29 0.12 0.16 0.02 0.14 0.11 0.14
Tekken 0.36 -0.04 0.14 0.08 0.17 0.18 0.15
Phi-3 0.28 0.07 0.14 0.09 0.25 0.08 0.15

Avg 0.28 0.04 0.13 0.04 0.12 0.07 0.11

E.3 NOISE

Table 14 shows robustness against common noise in digital text, such as keyboard proximity errors
(s→(a,w,d,x), j→(k,u,h,m), H. →(É,K,Q, �¯), 价→(加,们,份,什)) , OCR misrecognition (O→0, I→l),
character deletion, space removal, and typographical errors (doctor→ doctro). These perturbations
reflect authentic user input scenarios where models must maintain performance despite noisy text
across multiple languages and writing systems.

We observe that tokenizers that segment text into complete word tokens tend to exhibit greater
vulnerability to noise errors, as single character perturbations can cause familiar words to fragment
into unfamiliar subword combinations, whereas tokenizers using smaller subword units maintain
more consistent segmentation patterns.

Noise in Chinese subset For keyboard proximity errors in Chinese characters are replaced with
phonetically or positionally similar alternatives on the keyboard layout. For space removal, we use
the Pinyin input without any spaces.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Typos Typographical errors demonstrate how different tokenization approaches handle character-
level perturbations. For example, the word “doctor” with a typo becomes “doctro”:

• mBERT: doctor, doc, ##tro

• Comma AI: do, ctor, doc, tro

• Llama-3: doctor, do, ct, ro

• Tekken: doctor, doct, ro

• Aya Expanse: doctor, doct, ro

• GPT-4o: doctor, doct, ro

• GPT-2: doctor, doct, ro

• ByT5: d, o, c, t, o, r, , d, o, c, t, r, o

Similarly, for Turkish text “gün sayısı” (day count) with spacing errors becoming “güns ayısı”:

• mBERT: gün, sayısı, gün, ##s, ay, ##ısı

• Comma AI: g, ün, say, ı, s, ı, g, ü, ns, ay, ı, s, ı

• Tekken: g, ün, say, ısı, gün, s, ay, ısı

• GPT-4o: g, ün, say, ısı, gün, s, ay, ısı

• Llama-3.2: gün, sayısı, gü, ns, ay, ısı

• GPT-2: g, ü, n, say, ı, s, ı, g, ü, ns, ay, ı, s, ı

• Aya Expanse: gün, sayısı, gün, s, ay, ısı

• ByT5: Character-level segmentation (individual Unicode characters)

E.4 MATHEMATICAL & SCIENTIFIC EXPRESSIONS

Table 15 demonstrates that models generally struggle with the formatting and structural challenges
inherent in scientific domains. When numerical values are replaced with their spelled-out equiva-
lents (15 → fifteen), we observe a consistent performance degradation even in English. The parallel
multilingual basic arithmetic questions reveal that certain tokenizers may exhibit inductive biases
favoring specific languages. For instance, Gemma-2’s performance on Italian questions matches
that of the canonical English questions, whereas it shows a 53% performance degradation in Farsi.
Llama-3.2 demonstrates similar behavior with Turkish, while the Aya tokenizer, developed as part of
a multilingual language model, exhibits the greatest robustness across languages. It should be noted,
however, that this represents one of the few instances in our study where Aya tokenizer demonstrates
clear multilingual advantages.

Tokenization of scientific text: Consider the unit ”cubic meters” expressed as mˆ3, $mˆ3$,
$mˆ{3}$, and $mˆ{ 3 }$. Despite semantic equivalence, tokenization patterns reveal increas-
ing fragmentation:

• BLOOM:
– Plain: m, ˆ3
– LaTeX: $m, ˆ3, $
– Braced: $m, ˆ{3, }$
– Spaced: $m, ˆ{, 3, }$

• XGLM:
– Plain: m, ˆ, 3
– LaTeX: $, m, ˆ, 3, $
– Braced: $, m, ˆ, {, 3, }, $
– Spaced: $, m, ˆ, {, 3, }, $

• Llama-3.2:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 14: Tokenization robustness under multi-lingual noise. Values represent relative performance
drop (canonical-perturbed)/canonical; lower values indicate greater robustness.

Model Keyboard Errors OCR Char.
Del.

Space Removal Typos Avg

EN FA TR IT ZH EN ZH EN EN ZH EN TR IT

Comma 0.05 0.29 0.15 0.18 0.17 0.12 0.10 0.10 0.14 0.55 0.20 0.04 0.25 0.18
ByT5 0.19 0.26 0.13 0.22 0.11 0.18 0.11 0.09 0.18 0.43 0.17 0.11 0.18 0.18
TokenMonster 0.22 0.18 0.15 0.13 0.16 0.10 0.26 0.04 0.13 0.58 0.08 0.09 0.25 0.18
GPT-2 0.20 0.16 0.29 0.16 0.27 0.15 0.23 0.09 0.16 0.50 0.18 0.22 0.20 0.22
Qwen-3 0.20 0.32 0.25 0.19 0.11 0.15 0.25 0.12 0.17 0.43 0.23 0.16 0.26 0.22
GPT-4o 0.13 0.20 0.13 0.13 0.23 0.15 0.40 0.18 0.16 0.53 0.24 0.13 0.22 0.22
BLOOM 0.22 0.23 0.34 0.16 0.11 0.19 0.11 0.16 0.21 0.56 0.16 0.25 0.17 0.22
Gemma-2 0.17 0.23 0.21 0.22 0.19 0.17 0.29 0.16 0.15 0.52 0.14 0.13 0.30 0.22
Llama-3.2 0.12 0.30 0.26 0.21 0.19 0.10 0.28 0.17 0.20 0.56 0.08 0.22 0.24 0.22
XGLM 0.18 0.25 0.29 0.19 0.23 0.15 0.29 0.13 0.13 0.60 0.11 0.22 0.21 0.23
Tekken 0.23 0.29 0.33 0.12 0.26 0.20 0.29 0.11 0.12 0.52 0.11 0.21 0.20 0.23
Phi-3 0.15 0.27 0.22 0.20 0.22 0.20 0.22 0.21 0.18 0.53 0.20 0.20 0.21 0.23
mBERT 0.24 0.25 0.32 0.16 0.14 0.20 0.20 0.14 0.24 0.60 0.11 0.23 0.26 0.24
Aya 0.15 0.42 0.25 0.26 0.24 0.17 0.28 0.19 0.21 0.52 0.10 0.19 0.27 0.25

Avg 0.18 0.26 0.24 0.18 0.19 0.16 0.24 0.13 0.17 0.53 0.15 0.17 0.23 0.22

Table 15: Tokenization robustness under math and STEM related challenges. Values represent
relative performance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.
LaTeX: LaTeX-style math formatting; Diag. scientific diagrams and notations; Unic.: Unicode
formatted ASCII characters. NEN=non-English.

Model LaTeX Spelled Out Diag. Multilingual Unicode Avg
EN EN FA TR IT ZH EN FA TR IT ZH EN

TokenMonster 0.23 0.28 0.49 0.07 0.33 0.31 0.11 0.29 0.00 0.14 0.00 0.08 0.19
Phi-3 0.25 0.34 0.39 0.14 0.47 0.23 0.22 0.29 0.00 0.00 0.24 0.11 0.22
Aya 0.23 0.32 0.35 0.41 0.47 0.26 0.38 0.07 0.00 0.00 0.00 0.21 0.23
mBERT 0.15 0.35 0.55 0.45 0.35 0.38 0.22 0.14 0.07 0.14 0.07 0.23 0.26
Llama-3.2 0.18 0.33 0.43 0.34 0.45 0.23 0.29 0.18 0.47 0.00 0.18 0.07 0.26
GPT-2 0.25 0.38 0.35 0.32 0.44 0.08 0.35 0.18 0.35 0.24 0.24 0.17 0.28
Tekken 0.27 0.37 0.33 0.36 0.38 0.31 0.44 0.18 0.24 0.12 0.24 0.15 0.28
BLOOM 0.25 0.29 0.24 0.47 0.40 0.20 0.11 0.41 0.35 0.24 0.29 0.19 0.29
Comma 0.23 0.36 0.54 0.17 0.47 0.26 0.29 0.39 0.28 0.17 0.22 0.19 0.30
ByT5 0.18 0.37 0.54 0.42 0.54 0.23 0.29 0.07 0.20 0.27 0.27 0.23 0.30
GPT-4o 0.25 0.38 0.33 0.45 0.52 0.28 0.33 0.37 0.32 0.05 0.16 0.20 0.30
Gemma-2 0.22 0.35 0.33 0.32 0.53 0.40 0.37 0.53 0.35 0.00 0.18 0.23 0.32
Qwen-3 0.26 0.41 0.50 0.41 0.47 0.23 0.29 0.25 0.35 0.20 0.30 0.23 0.33
XGLM 0.30 0.35 0.46 0.41 0.53 0.30 0.29 0.27 0.33 0.20 0.20 0.27 0.33

Avg 0.23 0.35 0.42 0.34 0.45 0.26 0.29 0.26 0.24 0.13 0.18 0.19 0.28

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

– Plain: m, ˆ, 3
– LaTeX: $m, ˆ, 3, $
– Braced: $m, ˆ{, 3, }$
– Spaced: $m, ˆ{, , 3, }$

• mBERT:
– Plain: m, ˆ, 3
– LaTeX: $, m, ˆ, 3, $
– Braced: $, m, ˆ, {, 3, }, $
– Spaced: $, m, ˆ, {, 3, }, $ (identical tokenization)

• Qwen-3:
– Plain: m, ˆ, 3
– LaTeX: $m, ˆ, 3, $
– Braced: $m, ˆ{, 3, }$
– Spaced: $m, ˆ{, , 3, }$

• TokenMonster:
– Plain: m, ˆ, 3
– LaTeX: $, mˆ, 3$
– Braced: $, mˆ, {3}$
– Spaced: $, mˆ, {, 3, }$

Performance drops precipitously with formatting complexity: while all models correctly identified
”volume” for plain text, only 8/14 succeeded with basic LaTeX formatting, 2/14 with braces, and just
2/14 with spaced braces. TokenMonster and Qwen-3 showed the highest robustness, maintaining
correct answers through the spaced version.

This shows that even trivial whitespace differences in technical notation can cause catastrophic per-
formance degradation, highlighting a critical vulnerability for applications that require strong math-
ematical reasoning.

Structural ASCII Art and Chemical Notation These examples demonstrate how tokenizers han-
dle structured chemical representations, from simple formulas to ASCII molecular diagrams and
systematic nomenclature. The input contains CH4, an ASCII diagram of methane, H2SO4, and the
systematic name ”Dihydrogen sulfur tetraoxide”:

• BLOOM:
– Simple formulas: CH, 4 and H2, SO4
– ASCII structure: H, , H-C-H, , H (preserves structural elements)
– Systematic name: D, ih, yd, rogen, sulfur, tet, ra, oxide

• XGLM:
– Simple formulas: CH, 4 and H, 2, SO, 4
– ASCII structure: H, , H-, C, -, H, , H (fragments bonds)
– Systematic name: Di, hydro, gen, su, lfur, te, tra, oxide

• mBERT:
– Simple formulas: CH, ##4 and H, ##2, ##S, ##O, ##4
– ASCII structure: H, , H, -, C, -, H, , H (aggressive fragmentation)
– Systematic name: Di, ##hy, ##dro, ##gen, sul, ##fur, te,
##tra, ##ox, ##ide

• Gemma-2:
– Simple formulas: CH, 4 and H, 2, SO, 4
– ASCII structure: Uses special spacing tokens () for whitespace
– Systematic name: Di, hydrogen, sulfur, tetra, oxide

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• GPT-4o:
– Simple formulas: CH, 4 and H, 2, SO, 4
– ASCII structure: H, , H-C-H, , H (clean structural preservation)
– Systematic name: D, ih, yd, rogen, sulfur, tetra, oxide

• GPT-2:
– Simple formulas: CH, 4 and H, 2, SO, 4
– ASCII structure: H, , H-, C, -, H, , H
– Systematic name: D, ih, yd, rogen, sulfur, tet, ra, oxide

• Tekken:
– Simple formulas: CH, 4 and H, 2, SO, 4
– ASCII structure: H, , H-C-H, , H (preserves structure well)
– Systematic name: D, ihydro, gen, sulfur, tetra, oxide

• TokenMonster:
– Simple formulas: ch, 4 and h2, so, 4 (lowercase normalization)
– ASCII structure: Complex Unicode handling with encoding artifacts
– Systematic name: di, hydrogen, sul, fur, tet, ra, ox, ide

While all models correctly identified CH4 as methane, only Llama and GPT-2 models correctly inter-
preted the ASCII molecular diagram. For H2SO4, all models succeeded, while spelled-out system-
atic nomenclature achieved 65% accuracy. The ASCII diagram failure is particularly revealing—the
structured representation that humans easily recognize as methane becomes nearly incomprehensible
to models when tokenized, despite containing identical chemical information. XGLM and mBERT
normalize the whitespaces in the diagram, however they still fail to identify the molecule, maybe
due to—characters. Gemma-2’s special whitespace handling () and GPT-4o’s clean structural
preservation suggest different approaches to spatial formatting, yet neither prevented the semantic
confusion in the ASCII representation.

E.5 STYLING & UNICODE CHALLENGES

Table 16: Tokenization robustness under Unicode formatting, NFKC normalization used by XGLM
strips away all normalizations below. Values represent relative performance drop (canonical-
perturbed)/canonical; lower values indicate greater robustness.

Model Decorative
Unicode

Fullwidth
Characters

Scripted Text Double
Struck

Enclosed
Characters

(Sup/sub)
script

Avg

EN EN EN EN EN EN

XGLM 0.07 0.07 0.02 0.12 0.19 0.08 0.09
ByT5 0.40 0.54 0.58 0.56 0.73 0.66 0.58
GPT-2 0.47 0.59 0.59 0.68 0.61 0.65 0.60
TokenMonster 0.36 0.62 0.57 0.64 0.72 0.70 0.60
Tekken 0.41 0.73 0.57 0.62 0.73 0.62 0.62
Gemma-2 0.53 0.54 0.67 0.62 0.68 0.66 0.62
GPT-4o 0.47 0.62 0.61 0.70 0.67 0.67 0.62
Phi-3 0.47 0.54 0.59 0.75 0.73 0.67 0.62
Aya 0.36 0.68 0.71 0.63 0.69 0.69 0.63
BLOOM 0.59 0.51 0.62 0.67 0.72 0.65 0.63
Qwen-3 0.60 0.67 0.69 0.62 0.57 0.64 0.63
mBERT 0.36 0.73 0.70 0.69 0.81 0.71 0.67
Llama-3.2 0.59 0.60 0.70 0.69 0.76 0.68 0.67
Comma 0.67 0.60 0.67 0.81 0.70 0.58 0.67

Avg 0.45 0.57 0.59 0.63 0.67 0.62 0.59

Using Unicode characters and applying styling to the questions (or all choices) causes performance
degradation across all models (see Tables 16 and 17). Although some tokenizers maintain distinct
tokens for certain styled characters, they nevertheless exhibit significant failure rates. These styling
variations could potentially be mitigated through normalization techniques, such as the NFKC nor-
malization employed by XGLM. However, this is not always desirable as these transformations are
irreversible. We include the sample transformations in Fig. 4.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 17: Tokenization robustness under different styling formats. Values represent relative perfor-
mance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.

Model Diacriticized Lowercase Capitalized Upside Down Spaced Hyphenated Avg
EN EN EN EN EN EN

TokenMonster 0.60 0.01 -0.03 0.47 0.66 0.69 0.40
Aya 0.66 0.08 0.15 0.42 0.54 0.67 0.42
GPT-2 0.52 0.06 0.21 0.52 0.63 0.63 0.43
Tekken 0.57 0.03 0.16 0.60 0.63 0.61 0.43
Gemma-2 0.69 0.06 0.15 0.47 0.64 0.67 0.45
GPT-4o 0.57 0.00 0.16 0.62 0.62 0.70 0.45
Phi-3 0.58 0.11 0.18 0.47 0.68 0.66 0.45
Comma 0.58 0.06 0.11 0.60 0.68 0.68 0.45
Llama-3.2 0.60 0.11 0.05 0.54 0.68 0.75 0.45
Qwen-3 0.58 0.09 0.11 0.67 0.53 0.76 0.46
ByT5 0.61 0.06 0.06 0.73 0.69 0.67 0.47
BLOOM 0.61 0.08 0.12 0.65 0.72 0.65 0.47
mBERT 0.64 0.09 0.16 0.80 0.59 0.65 0.49
XGLM 0.63 0.11 0.32 0.87 0.61 0.63 0.53

Avg 0.60 0.07 0.14 0.60 0.64 0.67 0.45

Figure 4: Left: Styling challenges that are normalized by NFKC, Right: Styling challenges that
NFKC cannot

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F EVALUATING INDUSTRY-LEVEL MODELS ON TokSuite BENCHMARK

Table 18: Tokenization robustness of original (industry) pre-trained models under multilingual text
perturbations. Values represent relative performance drop (canonical-perturbed)/canonical; lower
values indicate greater robustness. NEN=non-English.

Input Diacr. Orth. Errors Morphological Noise LaTeX STEM Unicode Avg
Model NEN ZH,FA EN IT,TR EN TR EN NEN EN EN EN

bert-base-multilingual-cased 0.02 -0.18 0.04 -0.11 0.10 -0.04 -0.15 0.03 0.05 -0.51 -0.12 -0.08
xglm-564M -0.26 -0.30 0.20 0.05 0.14 0.09 0.13 0.06 0.24 0.16 0.11 0.06
Phi-3-mini-4k-instruct -0.14 0.13 0.07 -0.25 0.24 -0.26 0.08 -0.02 0.04 0.20 0.59 0.06
GPT-2 -0.30 0.00 0.14 0.00 0.13 0.11 0.18 -0.01 0.23 0.11 0.49 0.10
phi-1 5 -0.13 0.13 0.10 0.00 0.29 -0.17 0.18 -0.04 0.11 0.20 0.62 0.12
Llama-3.2-1B-Instruct 0.14 -0.25 0.04 0.05 0.27 0.13 0.10 0.16 0.04 0.31 0.62 0.15
gemma-2-2b-it 0.21 0.07 0.03 0.24 0.22 0.10 0.04 0.21 0.00 0.20 0.41 0.16
aya-expanse-8b 0.18 0.36 0.03 0.10 0.16 0.07 0.03 0.09 0.11 0.17 0.49 0.16
Qwen3-1.7B-Base 0.25 0.39 0.03 0.12 0.25 0.06 0.06 0.19 -0.02 0.23 0.52 0.19
Llama-3.2-1B 0.13 0.11 0.05 0.26 0.24 0.11 0.08 0.15 0.14 0.33 0.59 0.20
gemma-2-2b 0.30 0.30 -0.01 0.39 0.23 0.13 0.02 0.25 0.16 0.22 0.37 0.21

Avg 0.04 0.07 0.07 0.08 0.21 0.03 0.07 0.10 0.10 0.15 0.43 0.12

While direct comparisons between our models and their original pre-trained counterparts must be
interpreted with caution due to fundamental differences in training data, model architectures, and
coverage, several noteworthy patterns emerge (see Tables 18 and 1). It should be noted that these
models are trained significantly longer than our controlled experiments—for example, Gemma-2-
2B (Team et al., 2024) is trained on 2 trillion tokens.

Notably, model size does not appear to be the determining factor, as evidenced by Aya-Expanse-
8B (Dang et al., 2024a) performing comparably to smaller models. Instruction-tuned models show
marginally better robustness compared to their base counterparts, though the improvement is modest.

Industry models exhibit better overall robustness, with mBERT demonstrating negative degradation
values, indicating improved performance on perturbed inputs. This performance gain could stem
from training data or training procedure. However, they still struggle significantly with Unicode
styling (0.43 average degradation), suggesting that even extensive real-world training data may not
adequately cover such specialized character variations. Conversely, our controlled study isolates
the effect of tokenization differences by maintaining identical initialization and training data across
models, revealing that tokenization choices alone can account for substantial performance variations
and more data doesn’t always translate into robustness under input variations. The consistent pat-
terns observed across both settings suggest that these robustness challenges are fundamental rather
than artifacts of specific training regimes.

LARGE LANGUAGE MODEL USAGE

We used Claude throughout the research process for dataset design brainstorming, generating pertur-
bation ideas, rephrasing sentences, summarizing related work, and assisting with literature review.

34

	Introduction
	Background
	The TokSuite Models
	Tokenizer Selection and Characteristics
	Cross-Tokenizer Vocabulary Alignment
	Model Architecture and Training Configuration

	The TokSuite Benchmarks
	Multi-lingual Parallel Dataset
	Math & STEM Datasets
	The TokSuite Evaluation Framework

	Findings
	Related Work
	Future Work & Limitations
	Conclusion
	Tokenizer Processing Glossary
	Model Training
	Model Initialization
	Model Performance

	Intrinsic Tokenization Efficiency Metrics
	TokSuite Benchmark Details
	Question Style and Difficulty
	Benchmark Composition

	Detailed Benchmark Results
	Orthographic & Script Challenges
	Morphological Challenges
	Noise
	Mathematical & Scientific Expressions
	Styling & Unicode Challenges

	Evaluating Industry-level Models on TokSuite Benchmark

