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ABSTRACT

Tokenizers provide the fundamental basis through which text is represented and
processed by language models (LMs). Despite the importance of tokenization,
its role in LM performance and behavior is poorly understood due to the chal-
lenge of measuring the impact of tokenization in isolation. To address this need,
we present TokSuite, a collection of models and a benchmark that supports re-
search into tokenization’s influence on LMs. Specifically, we train fourteen mod-
els that use different tokenizers but are otherwise identical—using the same ar-
chitecture, dataset, training budget, and initialization. Additionally, we curate and
release a new benchmark that specifically measures model performance subject
to real-world perturbations that are likely to influence tokenization. Put together,
TokSuite allows robustly decoupling the influence of a model’s tokenizer, sup-
porting a series of novel findings that elucidate the respective benefits and short-
comings of a wide range of popular tokenizers.

1 INTRODUCTION

Language models (LMs) generally do not process “raw” text directly; instead, they operate on a
sequence of “tokens” that represent words, subwords, or characters. As a result, tokenization funda-
mentally influences the representation learned by LMs and, consequently, affects downstream model
capabilities (Mielke et al., 2021). For example, the tokenizer used in T5 (Raffel et al., 2020) can-
not represent curly brace tokens, making the TS models poorly suited for processing many coding
languages (Wang et al., 2021c). The importance of tokenization naturally motivates not only un-
derstanding the impact of different tokenization strategies, but also the design of better tokenizers.
However, tokenization is a relatively understudied aspect of language model development compared
to, e.g., model architectures, training recipes, and dataset curation. In fact, the design of the tokenizer
is often treated as an afterthought, with many open models simply using a preexisting tokenizer off
the shelf. For instance, the GPT-2 tokenizer was directly reused for Meta’s Open Pretrained Trans-
formers (OPT) (Zhang et al., 2022), and EleutherAI’s GPT-NeoX-20B tokenizer was directly used
for the MPT-7B-8k model (Team, 2023) and Pythia models (Biderman et al., 2023).

We argue that one factor contributing to the paucity of research into the impact of tokenization is
the relative difficulty—using existing artifacts—of decoupling the impact of the tokenizer with other
possible variables (model architecture, training data, etc.). For example, it would be fraught to try to
compare the Qwen 3 (Yang et al., 2025) and Llama 3 (Dubey et al., 2024)’s tokenizers by studying
the respective models because differences in training data, training duration, and architectural details
make it difficult to attribute performance differences specifically to tokenization. Understanding the
downstream effects of tokenizer design choices is further complicated by the multifaceted nature of
tokenization itself, involving various interrelated factors including the underlying segmentation al-
gorithm (e.g., BPE Gage (1994); Sennrich et al. (2016), Unigram Kudo (2018), WordPiece Wu et al.
(2016)), granularity level (e.g., byte-level Xue et al. (2022), character-level, word-level), vocabulary
size constraints, and the composition of training data used to learn the vocabulary.

What would it take to reliably measure the impact of tokenization on model performance and be-
havior? We argue that reliable comparison can only be made through models that are completely
identical apart from the tokenizer used, because otherwise differences in performance could be at-
tributable to other factors. Given that no open collection of such models exists, we train and release !
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14 LMs with identical initialization, architecture, and training data composition, varying only in the
tokenizer used.

Our suite of models covers a wide range of tokenizer types, selected among popular pretrained
tokenizers as representatives of their main distinctive features, from the most granular byte-level
tokenizers like ByT5, to subword-based approaches including BPE, SentencePiece, and WordPiece
variants. This collection encompasses both English-only tokenizers trained on monolingual corpora
and multilingual tokenizers designed to handle diverse language families and scripts. The tokenizers
additionally exhibit varying approaches to out-of-vocabulary (OOV) handling, unicode normaliza-
tion strategies, whitespace treatment protocols, continuation token markers for subword boundaries,
and pretokenization splitting rules. These differences result in diverse vocabulary sizes ranging from
compact, efficient lexicons to comprehensive multilingual vocabularies, each with distinct trade-offs
between compression efficiency and linguistic coverage. Noting that different vocabularies might
share tokens, we develop a novel vocabulary unification framework that creates bijective mappings
between tokenizer-specific and unified token spaces. This allows us to use a unified parameter ini-
tialization where embeddings for shared tokens are initialized to the same value across models.

To test how tokenization choices affect model behavior, we introduce a novel benchmark with ap-
proximately 5,000 samples. Since the effect of different tokenizers can vary across languages (Ali
et al., 2024; Dang et al., 2024b; Seo et al., 2025), our benchmark includes five orthographically and
morphologically diverse languages: English, Turkish, Italian, Farsi, and Mandarin Chinese. Our
benchmark includes 40 “canonical” multiple-choice text completion questions translated into all
five languages. Each question has different perturbed versions manually curated by native speakers
that reflect real-world changes users might make. For example, we test what happens when visu-
ally identical characters have different Unicode values (like replacing Latin “a” with Cyrillic “a”),
when users type Turkish text with English keyboards (causing “s” to become “s”), when Farsi text
includes or omits optional accent marks, and when regular text uses special Unicode formatting like
enclosed characters. We also add two specialized benchmarks: an elementary school math dataset
and a science, technology, engineering, and mathematics (STEM) dataset, respectively with 20 and
44 “canonical” technical questions alongside targeted perturbations. This multi-domain approach
allows us to assess tokenizer performance across general, mathematical, and scientific content.

By applying our new benchmark to our suite of models, we both uncover new findings and confirm
existing beliefs relating tokenizer characteristics to model behaviors. For example, we find that
perturbations tend to be more detrimental in non-English settings, even for tokenizers that were
trained on non-English data. Additionally, we found that essentially all off-the-shelf tokenizers
are sensitive to Unicode formatting and style perturbations. Further, we found that the two most
unconventional tokenizers, ByTS (Xue et al., 2022) and TokenMonster (Forsythe, 2025), tended to
be more robust, suggesting that further investments should be made in the development of novel
tokenizers. Put together, our models, dataset, and findings will support future research aiming to
more deeply understand how tokenizer choices affect model behavior.

2 BACKGROUND

Before focusing on how tokenization can affect downstream LM performance, we first explain how
tokenizers are created and how design decisions can affect the final tokenizer.

Tokenizers Tokenization is the process of converting a sequence of input symbols into meaningful
lexical tokens from some vocabulary V. Each entry in the vocabulary corresponds to a particular
string, and tokenizing an input string can be seen as segmenting it into strings from the vocabulary.
When used as the input layer of an LM, the vocabulary is also used to map each token to an integer
ID,V : S+~ {0,1,...,|V| — 1}. These IDs are then used to look up a vector representation of
the token in an LM’s embedding table, thus creating a real-valued vector input for each token in
an input sequence. While V can be manually enumerated for languages with restrictive grammars,
i.e., programming languages, the ambiguity and open-endedness of natural language necessitate
estimating an optimal set of tokens from data.

Consequently, differences in tokenizers can result in different token sequences for the same string.
These differences can affect both learnability and how information is processed in downstream mod-
els. For example, a tokenizer that maps the string “dogs” to two tokens “dog” and “s” allows the
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model to “reuse” its understanding of the token for “dog”, but requires composing with the mean-
ing of the “s” token as pluralization. In contrast, a tokenizer that includes “dogs” as its own token
packs both dog and its pluralization into a single token. These differences generally arise in the
three main components involved in the training of tokenizers: the data, the learning algorithm, and
preprocessing decisions.

Training Data In order to determine the collection of substrings in the vocabulary, tokenizers
are generally trained on a text dataset. While the training process for different approaches to tok-
enization can vary (and are discussed in the following subsection), one straightforward effect of the
training data is that if the training dataset does not include a given word or symbol then that word or
symbol will not be included in the vocabulary.

Similarly, differences in tokenizer training datasets can result in different choices for tokens included
in V by different tokenizer learning algorithms. For example, if one tokenizer is trained on web data
that includes many examples of the typo “teh”, it is more likely to represent it as a single token in its
vocabulary compared to a tokenizer that is only trained on highly edited text where this typo is rare.

The inclusion of multilingual data in the tokenizer training data can also have a large effect on
the final vocabulary, especially when scripts that do not share an alphabet are included. Generally a
much larger vocabulary is required—for example the increase from 32,000 to 256,000 when moving
from T5 (Raffel et al., 2020) to mT5 (Xue et al., 2021).

Learning Algorithm When training a tokenizer, a learning algorithm produces a vocabulary V
that somehow “fits” the training data, with string inclusion primarily determined by frequency. Most
tokenizers function as compressors (Lester et al., 2024), assigning common words to single tokens
while splitting rarer ones.

Common algorithms include Byte-Pair Encoding (BPE) (Gage, 1994), which iteratively merges the
most frequent symbol bigrams until reaching vocabulary size |V|; WordPiece (Wu et al., 2016),
which merges symbols by maximizing training data likelihood; and Unigram (Kudo, 2018), which
starts with all possible segmentations and removes symbols causing minimal unigram loss increase.
TokenMonster (Forsythe, 2025) uses an unusual approach, building a global vocabulary from all
possible tokens and employing an “ungreedy” algorithm that revises tokenization by lookahead.
Byte-level models like ByT5 (Xue et al., 2022) use predefined Unicode vocabularies rather than
learned ones (Mielke et al., 2021).

Vocabulary size |V| significantly affects composition—Ilarger vocabularies include more rare words
as individual tokens. While most tokenizer training algorithms ensure that every string in the training
set can be tokenized, “byte-fallback” forces V to include the 256 bytes needed to represent any
character in Unicode. This allows tokenization of symbols that do not appear in the training dataset,
and is primarily important in cases where the training dataset is not large enough.

While most tokenizer training algorithms ensure that every string in the training set can be tokenized,
“byte-fallback” forces V to include the 256 bytes needed to represent any character in Unicode. This
allows tokenization of symbols that do not appear in the training dataset, and is primarily important
in cases where the training dataset is not large enough.

For a more in-depth discussion of various tokenization approaches, see Mielke et al. (2021).

Preprocessing Tokenization pipelines often use some form of pre-tokenization, which segments
the input text into “intuitive” tokens, such as whitespace-separated words, before the learning al-
gorithm is applied. This segmentation can limit which strings can be added to V as the learn-
ing algorithms do not consider bigrams that cross pre-tokenization boundaries. This means that
very common bigrams such as “New York™ cannot be represented as a single token. While some
work (Schmidt et al., 2025; Liu et al., 2025, et alia) explores methods that allow cross-boundary
merges, most commonly used tokenizers do not.

As another example of pre-tokenization, the GPT-2 tokenizer (Radford et al., 2019) splits
contractions—e.g., “we’ll” — “we”, “’II”—meaning that “we’ll” cannot be a token in ). In con-
trast, BLOOM’s (Workshop et al., 2022) pre-tokenization process does not force contractions to a

new token, thus allowing for “we’ll” € V.
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Similar differences exist in the handling of numbers. The pre-tokenization used in some models,
like GPT-4 (Achiam et al., 2023), breaks contiguous digits into groups of three (“1337” — “133”,
“7”’) while other models split numbers into their individual digits. There are also models that rely
exclusively on the learning algorithm to decide how to segment numbers into digits. Each approach
has trade-offs; for example, splitting numbers into thousands might be natural for math but is less
natural for dates. Similar considerations exist for how repeated whitespace is handled, especially in
domains like code where whitespace can be especially meaningful.

3 THE TokSuiTE MODELS

3.1 TOKENIZER SELECTION AND CHARACTERISTICS

To systematically investigate how different tokenization design choices affect model performance
and robustness, we began by selecting a diverse set of 14 preexisting tokenizers, specifically
ByTS5 (Xue et al., 2022), TokenMonster (Forsythe, 2025), Phi-3 (Abdin et al., 2024), GPT-2 (Radford
etal., 2019), Comma (Kandpal et al., 2025), mBERT (Devlin et al., 2019), Llama-3.2 (Dubey et al.,
2024), Tekken (Al 2024), Qwen-3 (Yang et al., 2025), GPT-40 (Hurst et al., 2024), BLOOM (Work-
shop et al., 2022), Aya (Dang et al., 2024a), Gemma-2 (Team et al., 2024), and XGLM (Lin et al.,
2021). Our selection provides comprehensive coverage across vocabulary sizes (ranging from 259
tokens in byte-level tokenizers like ByT5 to over 256,000 tokens in models such as Aya or XGLM),
tokenization algorithms (BPE, WordPiece, Unigram, TokenMonster, and byte-level approaches).
This diversity enables systematic analysis of how different tokenizers handle out-of-vocabulary
words, morphological variations, and adversarial inputs. The selected tokenizers also encompass
notable variation in preprocessing strategies that affect robustness, including different approaches
to numerical content handling (digit splitting vs. grouping), contraction processing (rule-based vs.
learned), Unicode normalization schemes, and multilingual support ranging from monolingual to
100+ languages. Additionally, the tokenizers vary in their out-of-vocabulary handling mechanisms,
with some incorporating byte-fallback and others relying on unknown tokens, providing insight into
how these design choices propagate to model robustness under various challenges. Detailed techni-
cal specifications for each tokenizer are provided in Table 2 and Table 3 in the Appendix.

3.2 CROSS-TOKENIZER VOCABULARY ALIGNMENT

To align vocabularies across tokenizers, we first create a unified “super vocabulary”. For each
tokenizer ¢ we extract its individual vocabulary V;, accounting for tokenizer-specific quirks (like
WordPiece’s “##” prefixes or Unigram’s “_” whitespace markers) in this conversion. We also unify
the strings that denote the beginning of a sequence—<s>, <|beginoftext |>, etc. Then, we
create a super vocabulary, SV, by taking the union of all vocabularies SV = |J, V;. Note that
this unification is based on the UTF-8 byte representation of each element in the vocabularies; see

Appendix A for an example of how multiple tokens that are visually the same can appear in SV.

Finally, for each tokenizer, we create a mapping, SV : V(X)) — SV(X) that translates a tokenizer’s
original token IDs to the corresponding positions in the unified super vocabulary. This causes a
given token string to always map to the same index—regardless of which tokenizer was used—that
is, Vi, jSV(V;(S)) = SV (V;(S)), assuming S € V;A € V;. The use of the super vocabulary allows
us to use the same initialization for the embeddings for shared tokens across models. This shared
starting point removes one factor of variation across models, allowing more rigorous attribution of
downstream performance to tokenizer characteristics.

3.3 MODEL ARCHITECTURE AND TRAINING CONFIGURATION

We trained fourteen LMs (one for each tokenizer) using the lingua framework (Videau et al., 2024).
Our model architecture and training hyper-parameters follow lingua’s Llama-1B configuration with
approximately one billion non-embedding layers, which follows conventions from the Llama model
family (Dubey et al., 2024). All models use a shared initialization based on the super vocabulary.
See Appendix B.1 for more information. All models were trained for 100,000 steps with batches
of of 256 length-4096 sequences. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with
a weight decay of 0.1 and a peak learning rate of 0.001 with cosine annealing and 2000 warm-up
steps.



Under review as a conference paper at ICLR 2026

We train all models on a multilingual corpus totaling approximately 100 billion tokens. For English
content, we use FineWeb-Edu (Penedo et al., 2024; Lozhkov et al., 2024), which provides high-
quality content filtered from Common Crawl data. For the multilingual components, we use the
Chinese, Turkish, Italian, and Farsi subsets of the FineWeb-2 HQ Dataset (Messmer et al., 2025),
which is a pre-training dataset curated from FineWeb-2 (Penedo et al., 2025) to select high-quality
across languages. The final corpus composition consists of 40B English tokens and 60B multilingual
tokens equally distributed across the four target languages (15B each).

We acknowledge that training models with different tokenizers under the same token budget means
that each model has seen a different collection of text. For example, 100B tokens correspond to
approximately 100GB (ByT5), 413GB (Comma), and 698GB (Gemma-2) of text. However, we
consider the alternative—training each model on the same text, but for a different number of training
steps—to be more problematic, because training duration heavily influences model performance and
some models would be relatively under- or over-trained. Additionally, a tokenizer’s efficiency in
compressing the training data is a relevant factor in tokenizer selection.

As an initial sanity check that our trained models perform reasonably well, we evaluated their
performance on standard benchmarks used to evaluate base (i.e., non-post-trained) LMs: Hel-
1aSWAG (Zellers et al., 2019), ARC (Clark et al., 2018), PIQA (Bisk et al., 2020), and XNLI (Con-
neau et al., 2018). Results are shown in Fig. 1. Overall, we find that our models attain reasonable
performance for their parameter and training budget. However, we do find notable differences in
performance across different models. Since our models are otherwise equivalent, this performance
difference can be attributed directly to tokenization, which we discuss further in Section 5.

4 THE TokSUITE BENCHMARKS

To systematically study tokenization’s impact on model performance, we develop a new benchmark
that captures the type of input variations models may encounter in real-world deployment. Unlike
existing evaluations that focus on clean, canonical text, our benchmark specifically targets naturally
occurring perturbations that expose tokenization-dependent issues across our target languages—
Chinese (ZH), English (EN), Farsi (FA), Italian (IT), and Turkish (TR)—and domains including
general knowledge, basic arithmetic, and STEM. Since the goal of the benchmark is to measure
robustness against changing tokenization schemes, we specifically select straightforward canonical
questions that establish a strong baseline performance across all models. The selection of canoni-
cal questions follows a model-in-the-loop process in which we iteratively test question candidates
across our model suite to ensure high baseline accuracy, allowing us to cleanly measure performance
degradation when perturbations are applied.

4.1 MULTI-LINGUAL PARALLEL DATASET

We begin by selecting a seed set of 40 canonical questions in multiple-choice text completion format
in English that almost all of the fourteen models answer correctly, such as “The capital of France
is,” “The chemical formula for water is,” and “The number of continents on Earth is”. We aim for
canonical questions that our base models get correct so that we can study cases where perturbations
flip the answer incorrect. Each canonical question is then translated into FA, IT, TR, and ZH by
native speakers. Subsequently, each example undergoes targeted perturbations designed to reflect
the morphological and orthographic characteristics of each language. Canonical questions in English
are provided in Appendix D.1 2, and further examples to each category with detailed case studies on
tokenization differences are presented in Appendix E.

Orthographic Perturbations encompass variations in writing systems, diacritics, script-specific
features, input medium challenges, and orthographic errors. Writing System Variations include script
variations such as traditional vs. simplified Chinese characters, and romanization—writing text in
Latin script like Pinyin for Chinese or Finglish for Farsi. Input medium challenges capture typing
scenarios where users employ non-native keyboards, leading to systematic character substitutions.
This category also includes spacing irregularities with zero-width characters, and homoglyphs—
visually similar characters with different Unicode values. Diacritics perturbations include presence
of optional diacritics, where text remains valid with or without marks—fata for /a/, kasra for /e/

https://anonymous.4open.science/r/toksuite—3CEA/
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in FA—and common accent errors (&€ — €). Orthographic errors represent spelling mistakes and
character-level variations commonly encountered in real-world text, including vowel substitutions,
consonant errors, phonetic spelling variants, common misspellings, and punctuation errors. Regis-
ter & Style captures variations in linguistic register and stylistic conventions across different con-
texts. This includes web search query formatting with shortened keyword expressions, standard and
domain-specific abbreviations, and word reordering that reflect old orthographic conventions. This
category encompasses informal digital communication patterns such as colloquial language, emoji
or character substitution, and letter repetition for emphasis.

Morphological challenges cover contractions, compound words, inflectional variations, case mark-
ing, and derivations that may fragment or alter token boundaries. These challenges are particularly
pronounced in agglutinative languages such as Turkish.

Noise perturbations introduce realistic types of textual noise encountered in practice, including ty-
pos, character or space deletion, character permutation, and formatting inconsistencies arising from
sources such as OCR or other data processing pipelines. These variations test the robustness of the
tokenizer under imperfect input conditions that the models must handle.

Grammatical errors represent typical mistakes made by non-expert speakers. Examples in the
benchmark include subject-verb agreement errors, article omission or misuse, wrong preposition,
incorrect verb tenses and structural errors.

Linguistic variety covers variations in expressing the same semantic content across different
linguistic contexts. It includes equivalent expressions with different syntactic structures, code-
switching, similar words, historical spelling variations, and dialects representing regional language
varieties with different vocabulary and spelling conventions.

Structural text elements includes Unicode-based formatting (see Fig. 4) and stylistic variations
that preserve semantic content while altering visual presentation.

4.2 MATH & STEM DATASETS

Beyond testing simple world knowledge, a subset of our benchmark tests basic arithmetic and
STEM, which allows TokSuite to include additional domain-specific perturbations.

LaTeX and Formatting  variations include  straightforward examples  such
as $6$ and S$N_2$, as well as more complex formatted expressions like
S\frac{\text{kg} \cdot \text{m}~ 2} {\text{s} 2}$. We also include ASCII-
based structural representations such as molecular diagrams, tree structures, and flowcharts.

Multilingual basic arithmetic is tested by translating the canonical questions into ZH, FA, TR, and
IT.

4.3 THE TokSuiTE EVALUATION FRAMEWORK

Robustness We evaluated each model using 1m-eval (Gao et al., 2024) library, with byte-length
normalized log-likelihood. For fair comparison between models with different baseline capabili-
ties, we report relative accuracy drop for each model against its canonical performance within each

Accean—AcCper o qs
category, computed as —3——"=, where lower values indicate greater robustness.

Intrinsic Tokenization Efficiency We evaluate tokenizers’ efficiency in compressing text from the
five target languages using 10,000 parallel Flores200 (Team et al., 2022) samples with three metrics:
1) Subword fertility (SF): mean tokens per word, where lower values indicate less segmentation; (2)

Parity: cross-lingual fairness measured as 7?(2?;) ~ 1 for parallel sentences (Ali et al., 2024);

(3) Proportion of continued words (PCW): fraction of words requiring multiple tokens (Rust et al.,
2020). See Appendix C for detailed results.
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Table 1: Tokenization robustness under multilingual text perturbations. Values represent relative

performance drop (%::C"e“); lower values indicate greater robustness. Perturbation types: In-
put: non-native keyboard/romanization; Diacr.: optional diacritics; Orth. Errors: orthographic er-
rors; Morph.: derivations/inflections/contractions; Noise: homoglyphs/OCR/typos/spacing; LaTeX:
LaTeX-style math formatting; STEM: scientific diagrams and notations; Unic.: Unicode styling
characters. NEN=non-English. Break-down of each category and detailed case studies are pre-

sented in Appendix E. Green and red entries indicate notable rosbustness and fragility, respectively.

Model Input  Diacr. Orth. Errors Morph. Noise LaTeX STEM Unic Avg
NEN NEN EN NEN EN NEN EN NEN EN EN EN
TokenMonster | 0.23 0.33 0.09 0.02 023 -0.05 0.11  0.19 0.23 0.11 0.52 0.18
XGLM 0.35 0.49 0.10 0.12 0.25 0.07 0.12 0.22 0.30 0.29 0.12 0.22
BLOOM 0.31 0.35 0.13  0.08 0.18 0.11 0.18 0.19 0.25 0.11 0.57 0.22
Comma 0.29 0.43 0.05 0.07 0.18 0.00 0.11 0.21 0.23 0.29 0.61 0.23
ByT5 0.30 0.44 0.04 0.06 0.27 0.05 0.14 0.18 0.18 0.29 0.53 0.23
mBERT 0.33 0.44 0.11 0.11 0.23  0.06 0.18 0.22 0.15 0.22 0.62 0.24
GPT-40 0.30 0.52 0.08 0.05 0.21 0.06 0.16 0.20 0.25 0.33 0.55 0.25
GPT-2 0.35 0.46 0.07 0.10 0.25 0.06 0.15 0.21 0.25 0.35 0.53 0.25
Phi-3 0.33 0.46 0.16 0.09 0.27 0.08 0.17 0.21 0.25 0.22 0.55 0.25
Qwen-3 0.36 0.42 0.14 0.11 0.25 0.06 0.16 0.23 0.26 0.29 0.57 0.26
Gemma-2 0.32 0.43 0.14 0.15 0.24 0.03 0.16 0.25 0.22 0.37 0.57 0.26
Llama-3.2 0.33 0.55 0.11 0.10 0.25 0.08 0.15 0.24 0.18 0.29 0.59 0.26
Aya 0.31 0.47 0.15 0.10 022 0.03 0.19 0.25 0.23 0.38 0.58 0.26
Tekken 0.34 0.48 0.18 0.03 0.31  0.10 0.14  0.21 0.27 0.44 0.55 0.28
Avg | 032 0.45 0.11 0.08 0.24  0.05 0.15 0.22 0.23 0.29 0.53 0.24

5 FINDINGS

How does tokenization algorithm design impact robustness across diverse multilingual set-
tings? While orthographic and morphological diversities present universal difficulties across to-
kenizers, TokenMonster’s performance is particularly striking given its architectural constraints.
Despite having a 32,000-token vocabulary trained exclusively on English text—roughly one-tenth
the size of multilingual competitors like Aya or XGLM—it achieves the best average robustness
score across all multilingual perturbations, with the lowest average relative performance drop of
0.18 (see Table 1). This effectiveness stems not from its vocabulary, but from its unique “ungreedy”
tokenization algorithm that allows it to revise the token sequence by looking ahead.

ByTS5 also demonstrates exceptional multilingual robustness, on average outperforming 9 models
(see Table 1) despite using only a 259-token vocabulary. Its byte-level “token-free” design achieves
minimal performance degradation across diverse perturbations: 0.04/0.06 drops for English/non-
English orthographic errors (see Table 1), 0.00 drop for English grammatical errors (see Table 9),
and top average 0.18 drop for multilingual noise (e.g., typos, OCR errors, etc.) (see Table 14). The
model shows particular strength in Turkish and Chinese scenarios, including romanized Pinyin han-
dling and even performance improvements (-0.11) with zero-width characters (see Table 7). How-
ever, this robustness comes at an efficiency cost, with the highest subword fertility and PCW scores
across all languages (see Appendix C), reflecting the robustness-efficiency trade-off. These findings
demonstrate that tokenization algorithm design and segmentation consistency can be critical factors
for multilingual performance, often more so than massive training data or vocabulary size.

How does multilingual noise amplify tokenization vulnerabilities? Noise-based perturbations
create systematic degradation across all tokenizers, but the average performance drop due to noise
is markedly more severe for non-English languages (0.22) compared to English (0.15) (see Table 1).
This degradation can stem from the core mechanics of subword tokenization: when noise corrupts a
familiar word, the tokenizer fragments it into unfamiliar or non-sensical subword units. This effect
is particularly damaging in morphologically complex languages. For instance, a simple spacing
error in the Turkish phrase “giin sayis1” (day count) causes it to be re-tokenized into chaotic and less
meaningful sequences like gtin, ##s, ay, ##1s1 by mBERT or gii, ns, ay, 1s1i by
Llama-3.2. In contrast, the byte-level tokenizer ByTS5 proves more resilient, as character-level errors
result in a predictably altered sequence of known bytes rather than catastrophic fragmentation. This
suggests that the reliance on a fixed vocabulary in subword models creates an inherent brittleness
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that is significantly exacerbated by noise in multilingual contexts. See Section E.3 for a detailed
case study of this fragmentation phenomenon.

How do mathematical and STEM content dependencies reveal fundamental limitations in in-
put structure processing for tokenizers? Technical content presents unique tokenization chal-
lenges that extend beyond vocabulary coverage. Analysis of mathematical and STEM content re-
veals critical tokenizer dependencies, with models showing moderate but significant performance
degradation (average drops of 0.23 for LaTeX and 0.29 for STEM content, (see Table 1). Even in
simplified text completion format with mild technical notation, models exhibit vulnerability to de-
scriptive STEM content. The clearest example of destructive tokenization is XGLM, with the highest
LaTeX performance drop (0.30) and notable performance drop for STEM (0.29). This is likely due to
XGLM’s tokenizer employing an aggressive normalization strategy that creates a stark performance
trade-off. It excels at ignoring superficial text styling but fails significantly on technical domains
like STEM and LaTeX, where its “lossy” pre-processing destroys the essential structural and spatial
information required for comprehension. These domains rely heavily on precise whitespace treat-
ment, symbol placement, and structural conventions—parallel to challenges in coding tasks where
spacing and formatting carry semantic meaning. See Appendix E.4 for a detailed case study.

Are there any universal challenges across tokenizers? Formatting presents a universal challenge
across tokenizers. Unicode styling and character transformations degrade performance consistently
across nearly all models, with an average drop of 0.53—among one of the highest drops observed
in our study (see Tables 1, 16, 17). XGLM shows strong robustness to these perturbations thanks
to its NFKC normalization during preprocessing. While it mitigates performance degradation from
styled characters, it also means that the tokenizer cannot faithfully represent or generate the diverse
Unicode formatting present in real-world text.

Similar patterns emerge at scale Evaluation of the original models (including instruction-tuned
and larger variants) from which we sourced our tokenizers, which tend to be larger and/or trained
for longer than the models in TokSuite, shows modest improvements to robustness (see Table 18)
yet consistent patterns persist despite their exposure to orders of magnitude more training data,
indicating that tokenization design can influence these robustness characteristics much more heavily
than simply training for longer.

6 RELATED WORK

While tokenization is relatively understudied compared to other aspects of LM development, some
past work has also studied how tokenization design choices influence model performance and com-
putational cost.

Tokenization Design Factors: Ali et al. (2024) shows that using English-centric tokenizers in a
multilingual setting leads to severe downstream degradation and up to 68% additional training cost
owing to inefficient token coverage for non-English languages. Rust et al. (2020) found that mono-
lingual tokenizers play an equally important role for pretraining data size in downstream perfor-
mance. Islam et al. (2022) showed vocabulary-free neural tokenizers yielded substantial improve-
ments for low-resource languages in multilingual natural language inference.

On algorithmic choice, ByT5 notably shows that a byte-level tokenizer can match or outperform
subword-level tokenizers on generative tasks. A comparative work compares mT5 (Xue et al., 2021)
and ByT5, which share architecture and data but differ in tokenization, and finds that while their
overall performance is comparable, the ByT5 model requires more layers to encode morphologi-
cal information and performs differently across languages (Dang et al., 2024b). Hou et al. (2023)
showed that morphological segmentation consistently outperformed BPE across morphologically
rich languages, achieving lower perplexity and more efficient training convergence while enabling
smaller models to match larger BPE-trained counterparts. Richburg et al. (2020) provided con-
trolled evidence that Unigram language models perform translation more effectively and exhibit
superior recall for rare words compared to BPE, particularly in morphologically rich languages like
Swabhili and Turkish for neural machine translation (NMT). The original SentencePiece work (Kudo
& Richardson, 2018) reported processing speeds up to 380 times faster than subword-based NMT
in this setting, while achieving comparable or improved performance in machine translation. In



Under review as a conference paper at ICLR 2026

another thread, Huang et al. (2025) argues for decoupling input and output vocabularies and shows
a log-linear benefit from scaling the input vocabulary, i.e., larger token sets often reduce loss and
improve performance. Schmidt et al. (2024) explores how vocabulary sizes over a specific range
perform similarly across a moderate range for English tasks, suggesting diminishing returns from
very large vocabularies in that regime. Tao et al. (2024) demonstrated that most current LLMs use
insufficient vocabulary sizes, with their analysis suggesting Llama2-70B’s optimal vocabulary size
should be 216K tokens, 7 times larger than its actual vocabulary size with 32K tokens.

Tokenization Robustness and Vulnerabilities: Like our work, Chai et al. (2024) study LM’s sen-
sitivity to typographical errors and ambiguities caused by the internal token structure; while scaling
model parameters mitigates this sensitivity it doesn’t eliminate it. Wang et al. (2024) developed an
adversarial dataset for tokenizer (ADT) framework, successfully degrading the performance of state-
of-the-art LM’s through vocabulary-based adversarial examples that exploit tokenization vulnerabil-
ities. They created “trap words” where concatenating two vocabulary tokens forms a different exist-
ing vocabulary token, causing LLMs to incorrectly tokenize inputs and produce completely wrong
responses, with particularly high effectiveness in Chinese due to tokenization complexity. Geh et al.
(2025) demonstrated “adversarial tokenization” using non-canonical segmentations that preserve
semantic meaning while evading safety alignment. Their approach successfully bypassed existing
defense mechanisms, including LlamaGuard and ShieldGemma, revealing fundamental flaws in cur-
rent LLM safety training pipelines. Several other previous works (Dhole et al., 2021; Wang et al.,
2021a;b) have also evaluated LM’s vulnerability to noise.

Limitations in the Background Work: Despite recent advances, tokenization research suffers from
critical gaps: lack of open-source model collections differing solely in tokenization, limited robust-
ness benchmarks for tokenizer evaluation, and narrow coverage of languages and tokenizer types.
To address these limitations, we trained and open-sourced 14 models with different tokenizers us-
ing identical architectures, developed a multilingual robustness benchmark, and evaluated models
across diverse input variations to isolate tokenization’s impact on performance and stability.

7 FUTURE WORK & LIMITATIONS

TokSuite models are trained exclusively on five languages with higher mixing rates than massively
multilingual models (for example, the highest mixing rate across all languages in mT5 (Xue et al.,
2021)’s training was less than 5%). This setup may underestimate multilingual interference ef-
fects present in more realistic settings, where cross-lingual interference could degrade performance.
While additional training data may alleviate some vulnerabilities, tokenizers provide a cost-free in-
ductive bias that fundamentally shapes robustness and efficiency. Critically, intrinsic properties like
compression rates directly constrain information processing within token budgets, forcing inefficient
tokenizers to underconsume or learn subpar representations for certain languages. While coding
tasks could present interesting challenges related to non-natural text and whitespace handling, we
excluded them from our benchmark due to inconsistent model performance at the scale we consid-
ered. Future research should expand to include these domains and broader linguistic coverage, and
investigate whether tokenization vulnerabilities persist at larger model scales.

8 CONCLUSION

Despite tokenization’s fundamental role in language model behavior, practitioners commonly adopt
off-the-shelf tokenizers without systematic understanding of their impact. To address this, we intro-
duced TokSuite: 14 identical language models differing only in their tokenizer, plus a benchmark
curated by native speakers probing natural variations that capture orthographic and morphological
challenges across 5 languages and technical domains. Our results show that tokenizer design can
matter more than vocabulary size—for example, an English-only tokenizer (TokenMonster) out-
performed larger multilingual ones on certain perturbations, while byte-level models proved more
robust to multilingual noise and subword fragmentation. Technical content analysis revealed crit-
ical vulnerabilities where trivial formatting differences caused catastrophic performance degrada-
tion. Our work provides clear evidence that tokenizer choice directly impacts model robustness
and capability across diverse contexts and will support future work on understanding the impact of
tokenization on LM performance.
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Table 2: Comprehensive Overview of Selected Tokenizers—Part A: Basic Properties

Tokenizer
ByT5
TokenMonster
Phi-3
GPT-2
Comma
mBERT
Llama-3.2
Tekken
Qwen-3
GPT-40
BLOOM
Aya
Gemma-2
XGLM

Method
Bytes
Custom
BPE
BPE
BPE
WordPiece
BPE
BPE
BPE
BPE
BPE
BPE
Unigram
Unigram

Vocab. Size
259 (XS)
32,000 (S)
32,064 (S)
50, 257 (M)
64,000 (M)
110,000 (M)
128, 256 (M)
130,000 (M)
151,646 (L)
200, 000 (L)
250, 680 (L)
255,029 (L)
256,128 (L)
256,008 (L)

OOV Handling
Bytes

Ignores Unknowns
Byte-fallback
Byte-fallback
Byte-fallback
[UNK]
Byte-fallback
Byte-fallback
Byte-fallback
Byte-fallback
Byte-fallback
Byte-fallback
Byte-fallback
Byte-fallback

Language(s)
LA.
English-Only
Multilingual
English-Only
Multilingual
Multilingual
Multilingual
Multilingual
Multilingual
Multilingual
Multilingual
Multilingual
Multilingual
Multilingual

Pretokenization
None (raw bytes)

None (boundaries are learned)

SentencePiece
GPT-2

GPT-4

BERT

GPT-4
GPT-4*
GPT-4*
GPT-40
BLOOM
GPT-2
SentencePiece
SentencePiece

! Vocabulary bucket is indicated in ( ).
2 00V = Out-of-vocabulary
* LA. = Language-agnostic

Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

Table 3: Comprehensive Overview of Selected Tokenizers—Part B: Processing Details. See Ap-
pendix A for detailed explanations of tokenization processing terminologies and methodologies.

Tokenizer Name
ByT5
TokenMonster
Phi-3

GPT-2
Comma
mBERT
Llama-3.2
Tekken
Qwen-3
GPT-40
BLOOM

Aya

Gemma-2
XGLM

Numbers
N/A
Learned
Split
Group
Group by 3
Learned
Group by 3
Split

Split
Group by 3
Learned
Split

Split
Learned

Contractions Unicode Norm.
N/A None
Learned NFD
Learned None
GPT-2 None
GPT-4 None
Composed None
GPT-4 None
GPT-4* None
GPT-4 NFC
Learned None
Learned None
GPT-2 NFC
Learned None
Learned NFKC

Whitespace
N/A
Learned
Manual
Individual
Learned
Normalized
Learned
Learned
Learned
Learned
Learned
Learned
Manual
Normalized

Zerowidth chars

3 Bytes

Token

Token

Token

Token
Normalized/Removed
Token

Token

Token

Token

Token

Token

Token
Normalized/Removed

A  TOKENIZER PROCESSING GLOSSARY

PRETOKENIZATION

BERT
GPT-2

GPT-4

GPT-40

Pre-tokenization splits are based on whitespace and punctuation.

Pre-tokenization splits are done on whitespace and transitions between letters,

numbers, and punctuation.

GPT-4 pre-tokenization follows GPT-2’s approach, but it also creates a new token
after 3 contiguous digits. Note that Qwen 3 uses the same pretokenization as GPT-
4, but does not split numbers into groups of three.

GPT-40 pre-tokenization follows that of GPT-4, but specific contractions—(’s, ’d,
‘m, ’t, ’11, *ve, ‘re)—are not split from the preceding word. Note that Tekken uses
the same pre-tokenization methods as GPT-40, but without special case handling
of the specific english contractions.
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BLOOM

SentencePiece

Pre-tokenization splits are done based on whitespace and punctuation like commas
and periods.

Pre-tokenization splits are done on whitespace, and at transitions between letters,
numbers and punctuation.

NUMBERS PROCESSING

Split

Group

Group by 3

Learned

Numbers are deterministically broken down into individual digits which are each
treated as single tokens.

Numbers are deterministically split from adjoining text during pre-tokenization.
The learning algorithm then determines which numbers become single tokens and
which are further tokenized.

Similar to Group, but contiguous digits are split into groups of 3 during pre-
tokenization. Again, the learning algorithm then determines which numbers are
single tokens. For example, “usernamel2345” is pre-tokenized into “username”,
“123”, and “45”, but “123” is not a token in V yielding a final token stream of
“username”, “17, “23”, “45”.

Numbers are not automatically segmented from surrounding text. Thus, the learn-
ing algorithm determines token boundaries for letters and numbers jointly. This
can result in tokens that include both characters and digits.

CONTRACTIONS PROCESSING

GPT-2

GPT-4

Learned

Composed

None

NFD

NFC

NFKC

A selected number of English contractions (’s, ’d, 'm, ’t, ’1l, *ve, 're) are manually
split into their own tokens. The learning algorithm then decides if they should be
their own token or if it should be broken down further. This makes it impossible
to have a token like “I’11”.

Uses GPT-4’s contraction processing method. The name set of contractions are
explicitly handled, but the regex is implemented differently. Note that Tekken
uses the GPT-4 regex without special casing english contractions; however, it still
results in splitting contractions from the base during pre-tokenization.

Contractions are not manually split from the base word; the learning algorithm
decides if the contraction should be its own token or a composition.

The pre-tokenization splits all contractions into multiple tokens (base, apostro-
phe, and contraction, e.g., he’ll — “he”, “*”’, “I1I”’), which cannot be merged back
together in the learning algorithm.

No Unicode normalization is applied; characters are processed exactly as they
appear in the input. Note that this can result in V containing multiple tokens that
are visually the same, but differ in their underlying bytes, for example two “¢”
tokens, but one is represented by a single code point while the other is represented
as the composition of “e” and “””.

Normalization Form Decomposed: Unicode characters are decomposed into their
constituent parts (base characters + combining marks separately).

Normalization Form Composed: Unicode characters are composed into their
canonical combined form (base characters + combining marks merged when pos-
sible).

Normalization Form Compatibility Composed: Similar to NFC but also applies
compatibility mappings, converting visually similar characters to their canonical
equivalents before composition. Note that this can result in lossy detokenization
as characters like “?” are mapped to “2”.
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WHITESPACE TREATMENT

Normalized Whitespace like tabs, newlines, and contiguous spaces are normalized to a single
space. This results in lossy detokenization and often stops the downstream model
from understanding domains with meaningful whitespace such as code.

Learned Each piece of contiguous whitespace is segmented into a single token during pre-
tokenization, then the learning algorithm decides how to subdivide them into indi-
vidual tokens. This results in whitespace being preserved and allows for lossless
detokenization.

Manual The handling of whitespaces during pre-tokenization matches Learned, but pre-
defined whitespace tokens of various sizes are used instead of learning them from
the data. This results in whitespace being preserved and allows for lossless detok-
enization.

Individual Whitespace is preserved, but each individual whitespace character is represented
as its own token. This yields long token sequences for whitespace heavy inputs.
This results in whitespace being preserved and allows for lossless detokenization.

3 Bytes Zero-width characters are maintained in their original 3-byte representation.
Token Zero-width characters are preserved and assigned as new tokens in the vocabulary.

Normalized/Removed Zero-width characters are either normalized to standard equivalents or com-
pletely removed.

B MODEL TRAINING

B.1 MODEL INITIALIZATION

We use the same initialization strategy as the Llama-1B configuration, however, we first create a
shared initialization where the size of the embedding table—and the final output layer—is the size
of the super vocabulary, | Es,| = |SV|. Each model then uses the parameter values from this shared
initialization for most layers. The embedding table for an individual model, FE, is initialized by
selecting the appropriate rows from the super vocabulary embedding table. Thus after initialization,
E(xz) = Eg(sv(X)). This results in a shared initialization for all models, including the initial
embedding value for any shared tokens.

B.2 MODEL PERFORMANCE

We evaluate all models on standard English reasoning tasks (HellaSwag (Zellers et al., 2019), ARC
Easy/Challenge (Clark et al., 2018), PIQA (Bisk et al., 2020)), multilingual natural language in-
ference (XNLI (Conneau et al., 2018) in English, Turkish, and Chinese), reading comprehension
(Belebele (Bandarkar et al., 2024) in English, Italian, Farsi, Turkish, and Chinese), and a multilin-
gual reasoning benchmark (Include Base 44 (Romanou et al., 2025) in Chinese, Italian, and Turkish)
in Fig. 1. Although models achieve sufficient performance on easier English reasoning tasks, their
performance on the multilingual benchmarks hardly exceeds the random baseline. Note that models
with larger vocabulary (Aya, XGLM, mBERT, Gemma-2, GPT-40, and Llama-3.2) tend to perform
better on the downstream tasks with TokenMonster and Tekken falling slightly behind.

C INTRINSIC TOKENIZATION EFFICIENCY METRICS

Tokenizers exhibit varying degrees of compactness when segmenting text into tokens, resulting in
notable disparities in model performance across languages and domains. To systematically evaluate
these differences, we analyze several metrics across our selected pretrained tokenizers, focusing on
our five languages.
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We compute three primary intrinsic efficiency metrics using 10,000 parallel random samples from
Flores200 (Team et al., 2022), split into “real” words via language-specific word-level tokenizers
from the DataTrove library (Penedo et al.):

» Subword fertility (SF): is the mean number of tokens used to represent each “real” text
word. This reflects how aggressively a tokenizer segments words. The theoretical minimum
is 1, implying that the tokenizer’s vocabulary encompasses every word in the reference text
(Penedo et al., 2025).

* Parity: evaluates whether a tokenizer processes equivalent sentences fairly across lan-
guages. Achieved when the ratio of tokenized lengths ;;Ejg;} ~ 1 for parallel sentence

sets s 4 and sp from languages A and B (Ali et al., 2024).

* Proportion of continued words (PCW): is the proportion of “real” text words that require
two or more tokens for encoding. This metric indicates how frequently a tokenizer splits
words. A score of 0 means no splitting occurs, while a score of 1 means every word is split
(Rust et al., 2020).

The intrinsic metrics reflect a tokenizer’s efficiency in processing a language and are critical fac-
tors in tokenizer selection, as they directly impact an LM’s computational cost, context window
utilization, and representation quality. Table 4 reveals substantial disparities in how our tokenizers
handle our target languages. ByT5 and tokenizers with smaller vocabularies (TokenMonster, and
Phi-3) exhibit significantly higher subword fertility and PCW scores, particularly for non-English
languages—ByT5 requires 7.72 tokens per word in Farsi compared to 4.40 in English. Multilingual-
specialized tokenizers (MBERT, XGLM) demonstrate superior language parity, with XGLM achiev-
ing near-optimal parity scores (1.18 average) and mBERT showing the lowest average subword
fertility (1.54).

Notably, vocabulary size alone does not guarantee efficiency; Qwen-3 and Gemma-2, despite hav-
ing large vocabularies (>150K), show comparable or worse performance than smaller vocabulary
tokenizers like mBERT on certain metrics. We also observe higher fertility and PCW scores for
morphologically rich languages (Turkish, Farsi) compared to English.

D TokSuiTE BENCHMARK DETAILS

D.1 QUESTION STYLE AND DIFFICULTY

The TokSuite benchmark comprises straightforward multiple-choice text completion questions.
Below we present the canonical English questions that form our English subset, which are sub-
sequently translated into Farsi (FA), Italian (IT), Turkish (TR), and Chinese (ZH). The fourteen
models demonstrate strong performance on the canonical questions in English and Italian (Fig. 3),
while the canonical accuracy on Farsi, Turkish, and Chinese is slightly behind. Higher PCW scores
in these three languages (see Table 2) suggest that the models are likely to consume less information
measured in raw bytes in these languages.

300 Dr Smith is a doctor. Occupation of Dr Smith is: doctor, teacher, judge, lawyer
301 The color of the sky is: blue, red, green, yellow

302 The price of this house is 1,028,415 dollars. The cost of this house is: 1,028,415 dollars,
1.028.415 dollars, 1,028,411 dollars, 1,028.415 dollars

303 Today’s date is 29/08/2025. Today is: 29/08/2025, 19/08/2025, 26/08/2025, 29/09/2025
304 The number of continents on Earth is: 7, 5, 6, 8

305 The capital city of Iran is: Tehran, Mashhad, Baghdad, Isfahan

306 The number of days in a week is: 7, 5, 6, 8

307 The number of hours in a day is: 24, 20, 25, 30

308 The number of legs a cow has is: 4, 8, 3,5

309 The number of minutes in 2 hours is: 120, 100, 140, 90

310 The number of months in a year is: 12, 10, 11, 13
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hellaswag arc_easy arc_challenge piqa
Aya I
Qwen-3 I
BLOOM I
Comma
XGLM ——
mBERT I——
ByTS I
Gemma-2 I
GPT-2 I
Llama-3.2 I—
Phi-3 I
Tekken I
GPT-40 I
TokenMonster I
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Figure 1: Model Performance on Multilingual Benchmarks

Table 4: Multilingual Tokenizers Comparison on Flores200 Using Intrinsic Tokenizer Efficiency
Metrics. sf denotes subword fertility, pcw denotes proportion of continued words, and parity is
measured against English parallel samples. Summary statistics report average values across all lan-
guages. Lower is better for all metrics. Bold font highlights the best performance in each row.
Models are ordered from smallest to largest vocabulary size, left to right. Vocabulary size is catego-
rized as XS, S, M, and L for < 1K, 1K-50K, 50K-150K, and > 150K tokens, respectively.

§
S N o
S )
S » y
w F . o §8Fs S &2
NI O i W R N
Tokenizer Qv & R & O s & K S & I v & &
Vocab. Size XS S S M M M M M L L L L L L
English sf 440 1.75 124 130 144 1.15 126 135 128 124 131 1.19 1.14 1.23
English pcw 0.87 0.56 0.16 0.23 0.34 0.10 0.20 0.27 0.21 020 0.25 0.15 0.11 0.21
Chinese sf 500 492 344 354 245 168 149 164 121 144 1.16 123 128 2.19

Chinese pcw 098 097 097 082 0.58 055 035 041 0.16 032 0.13 0.18 021 0.87
Chinese parity | 0.94 499 203 321 194 140 129 143 1.02 127 093 1.05 1.09 1.15

Turkish sf 649 431 320 320 329 199 238 244 258 233 271 217 223 1.69
Turkish pcw 0.87 080 0.76 0.76 0.78 0.52 0.72 0.73 0.74 0.71 0.72 0.68 0.69 0.52
Turkish parity | 1.12 334 2.11 245 221 137 139 150 1.63 143 198 121 139 112

Farsi sf 772 774 477 491 443 153 194 192 245 193 2.01 1.85 1.83 136
Farsi pcw 095 094 093 090 090 0.31 0.58 0.58 0.67 0.57 0.58 0.53 0.53 0.28
Farsi parity 1.72 945 408 535 431 138 1.52 147 2.63 155 1.80 148 145 1.21

Italian sf 478 250 1.64 199 205 134 181 1.77 183 1.71 1.75 1.61 154 136
Italian pcw 0.84 0.63 042 057 059 023 055 0.53 0.55 052 051 047 041 032
Italian parity 1.19 230 148 2.02 187 128 1.62 140 1.64 147 163 131 133 124

Avg sf 579 439 290 3.19 293 154 178 1.82 1.87 1.73 1.79 1.61 1.60 1.56
Avg pcw 090 0.78 0.62 0.66 0.64 034 048 050 047 046 044 040 039 046
Avg parity 1.27 531 254 344 274 136 146 145 1.73 143 159 126 132 1.18
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311 The number of seconds in a minute is: 60, 50, 100, 30

312 The number of sides a hexagon has is: 6, 5, 7, 8

313 The number of sides a triangle has is: 3, 2, 4, 5

314 In “I work at Apple”, Apple is: company, person, city, fruit

315 In “I work at Google”, Google is: company, person, city, fruit

316 In “Microsoft released a new update”, Microsoft is: company, person, place, date
317 In “The cat sat on the mat”, the subject is: the cat, sat, the mat, on

322 The gas humans need to breathe to live is: oxygen, methane, helium, hydrogen
323 10% of 100 is: 10, 5, 15, 20

324 25% of 80 is: 20, 15, 25, 30

326 Chad’s capital is: N’Djamena, Moundou, Abéché, Ngama

327 The capital of France is: Paris, London, Berlin, Rome

328 The capital of Japan is: Tokyo, Kyoto, Osaka, Hiroshima

329 The capital of Turkey is: Ankara, Istanbul, izmir, Bursa

330 The chemical formula for water is: H20, CO2, NaCl, O2

331 The intent in “What time does the store close?” is: get information, make purchase, book
appointment, file complaint

332 The largest mammal in the world is: blue whale, dolphin, giraffe, bear

333 The unit of measurement for temperature in the International System is: Kelvin, Celsius,
meter, Rankine

334 The country whose space agency is NASA is: United States, Russia, China, Japan
335 The language spoken in Brazil is: Portuguese, Spanish, French, Italian

336 The metal with chemical symbol 'Fe’ is: iron, lead, zinc, gold

337 The organ in the human body that pumps blood is: heart, liver, lungs, kidneys

338 The planet closest to the Sun in our solar system is: Mercury, Venus, Mars, Earth
339 The largest planet in the Solar System is: Jupiter, Earth, Saturn, Mars

340 The process that allows plants to produce their own food using sunlight is: photosynthesis,
respiration, digestion, fermentation

341 The author who wrote the play “Romeo and Juliet” is: William Shakespeare, Charles
Dickens, Mark Twain, Jane Austen

342 What bees produce is: honey, milk, silk, wax
343 What plants need from the air to make food is: carbon dioxide, nitrogen, hydrogen, helium

344 In “Can you please book a flight to Paris?”, the person wants to: make a booking, go
shopping, file a complaint, cancel reservation

D.2 BENCHMARK COMPOSITION

In Table 5, we list the composition of the categories and perturbations in TokSuite. The multilin-
gual parallel dataset comprises 80% of the dataset, while the remaining part covers math, STEM,
and general questions.

E DETAILED BENCHMARK RESULTS

In this section, we provide case studies for each category in Section 4.1.
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Figure 3: Accuracies of models on canonical versus perturbed questions across the English
(eng_Latn), Italian (ita_Latn), Farsi (pes_Arab), Turkish (tur_Latn), and Chinese (zho_Hans)
TokSuite subsets.

Table 5: Benchmark statistics by language and domain

Language/Domain  Total Examples Perturbations
English 1,180 42 types
Chinese 485 18 types
Turkish 638 21 types
Italian 1,088 19 types
Farsi 747 15 types
Math 189 5 types
STEM 614 25 types
General 89 4 types

Table 6: Tokenization robustness under different input mediums, granular version of Input in Table 1.
Values represent relative performance drop (canonical-perturbed)/canonical; lower values indicate

greater robustness. Traditional: Traditional Chinese characters instead of simplified.

Model Romanization Number English Keyboard Arabic Traditional Avg
Romaniza- Keyboard
tion
FA ZH FA TR IT FA ZH
TokenMonster 0.46 0.58 -0.10 -0.04  0.21 0.25 0.02 0.20
Comma 042 059 0.21 0.03 0.24 0.42 0.04 0.28
GPT-40 0.57 0.67 -0.03 022 0.09 0.43 0.03 0.28
Llama-3.2 0.60 0.66 -0.23 0.24 0.14 0.53 0.09 0.29
BLOOM 0.63 048 0.08 0.21 0.15 0.40 0.10 0.29
Aya 0.55 0.62 0.01 0.06 0.16 0.55 0.12 0.29
ByT5 0.61 0.46 0.21 0.13 0.15 0.39 0.18 0.30
Tekken 0.59 0.61 0.00 0.17 0.20 0.44 0.18 0.31
Gemma-2 0.40 052 0.28 0.24 0.19 0.47 0.18 0.32
Phi-3 0.58 0.66 0.25 0.06 0.24 0.39 0.09 0.33
XGLM 0.59 0.63 0.13 0.29 0.19 0.41 0.10 0.34
mBERT 0.44  0.60 0.42 022 0.18 0.50 0.10 0.35
GPT-2 0.61 0.67 0.31 0.30 0.16 0.32 0.11 0.35
Qwen-3 0.68  0.64 0.19 0.15 0.19 0.47 0.18 0.36
Avg 0.55  0.60 0.12 0.16 0.18 0.43 0.11 0.31
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E.1 ORTHOGRAPHIC & SCRIPT CHALLENGES

Table 6 examines tokenization robustness under orthographic and script challenges, focusing on
input medium variations where users employ non-native keyboards or writing systems. For Chinese
romanization, we write the full question and choices in Pinyin without tone markers—as if the user
only has access to an English keyboard—with spaces between individual groups that constitute a
character for easy segmentation. However, this segmentation aid does not improve tokenization
robustness, as models still exhibit substantial performance degradation (0.60 average drop) when
processing romanized Chinese text compared to native scripts. In Table 7, the errors due to input
systems (like homoglyphs and zero-width characters) are presented.

Diacritics perturbations systematically vary the presence and accuracy of accent marks and dia-
critical symbols. We test how tokenizers handle optional diacritics, where text remains valid with
or without marks (e.g., marks placed above or below letters to clarify pronunciation and phonetic
details such as short vowels (fata for /a/, kasra for /e/, amma for /o/), or sukiin for the absence of
vowels in Farsi), wrong accents such as using € instead of ¢ in Italian. Table 8 expands on diacritics
perturbations, examining how tokenizers handle optional Farsi diacritics that are used to clarify pro-
nunciation and phonetic details, Chinese tonal variations in the Pinyin format, and incorrect accent
placement in Italian text. We see that Tokenmonster, which decomposes these markers shows strong
performance with Farsi optional diacritics.

In Table 14, we also present Pinyin input without these optional whitespaces and observe that the
space-removed version causes less performance degradation. In Table 8, we further demonstrate that
adding tone markers significantly improves performance. While we expected adding spaces to help
models identify corresponding Chinese characters better, the opposite occurred—this likely reflects
how native speakers typically write Pinyin without spaces in practice, making the spaced version
appear more artificial to models trained on naturalistic text data.

Orthographic and Grammatical Errors Table 9 reveals that orthographic and grammatical er-
rors create varying challenges depending on the morphological complexity of the language. Token-
Monster demonstrates the strongest, while character-level approaches like ByT5 show competitive
performance across multiple categories.

Orthographic Errors Imagine perturbing the word “week” to “weak’ in the question, “The num-
ber of days in a week is”. This change breaks 6/14 models despite both words existing as distinct
tokens with separate embeddings. This suggests that tokenization robustness depends not merely on
vocabulary coverage but on the semantic stability of token representations.

Grammatical Errors Consider the Turkish locative suffix variants ”saatteki” for the root saat (in
the hour) versus the incorrect “’saatdeki” as part of the canonical question “The number of minutes
in 2 hours is” (TR: 2 saatteki dakika sayis1).

This example demonstrates how agglutinative languages amplify tokenization brittleness: a single
phoneme change (/t/ to /d/) can completely restructure token boundaries. This reflects the curse of
multilinguality, where tokenizers trained predominantly on English struggle with morphologically
complex languages, sometimes producing cleaner segmentation—with meaningful morphemes—for
incorrect forms than correct ones (as Gemma-2 and BLOOM below). English grammatical errors
on the other hand—with wrong prepositions, subject-verb agreement, etc—tend to change token
boundaries less and we observe a less striking performance degradation in Table 9.

Assimilation error (”saatteki” vs. ”saatdeki” ):

« BLOOM, Gemma-2: sa, atte, ki vs. saat, de, ki (meaningful morphemes
after error)

XGLM: saat, tekivs.saat, deki (clean morpheme separation)

e Llama-3.2: sa, atte, kivs.sa, at, deki (inconsistent segmentation)

* mBERT: saat, ##tek, ##1ivs.saat, ##deki (subword fragmentation changes)
* Qwen-3: sa, atte, kivs.sa, at, de, ki (boundary reorganization)

* TokenMonster: sa, at, tek, 1ivs.sa, a, td, ek, 1 (severefragmentation)
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Table 7: Tokenization robustness under errors from input mediums. Values represent relative per-
formance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.

Model Homoglyphs Zero-width chars. Avg
EN FA ZH
mBERT 0.08 0.09 0.00 0.06
Phi-3 0.03 0.21  -0.06 0.06
TokenMonster 0.09 0.18 -0.06 0.07
BLOOM 0.12 0.17 -0.07 0.07
XGLM 0.03 0.19 0.03 0.08
ByT5 0.06 0.32 -0.11 0.09
Comma 0.05 032 -0.07 0.10
GPT-40 0.14 023 -0.03 0.11
Aya 0.28 023 -0.14 0.12
Gemma-2 0.15 0.27 0.03 0.15
Llama-3.2 0.12 0.30 0.03 0.15
GPT-2 0.13 023 0.13 0.16
Tekken 0.13 029 0.10 0.17
Qwen-3 0.11 0.38 0.11 0.20
Avg \ 0.11 024 -0.01 0.11

Table 8: Tokenization robustness to diacritics, granular version of Diacr in Table 1 and wrong ac-
cents in Italian. Values represent relative performance drop (canonical-perturbed)/canonical; lower
values indicate greater robustness.

Model Diacritics Wrong Avg
accents
FA ZH IT
BLOOM 0.33 0.37 0.08 0.26
TokenMonster 0.21 045 0.17 0.28
GPT-2 042 050 -0.02 0.30
Qwen-3 041 043 0.10 0.31
ByTS 042 046 0.06 0.31
mBERT 0.31 057 0.06 0.31
Gemma-2 043 042 0.10 0.32
Phi-3 0.39 053 0.05 0.32
Tekken 047 048 0.07 0.34
Aya 045 048 0.10 0.34
XGLM 044 054 0.11 0.36
GPT-40 047 057 0.08 0.37
Comma 0.39 048 0.30 0.39
Llama-3.2 0.60 0.50 0.16 0.42
Avg 041 049 0.10 0.33

Table 9: Tokenization robustness under orthographic and grammatical errors. Values represent rela-
tive performance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.

Model Orthographic Errors Grammatical Errors Phonetic Avg
EN TR IT EN TR IT 1T
TokenMonster 0.10 0.04 0.04 0.06 0.03 -0.03 0.04 0.04
ByTS 0.06 0.10 0.08 0.00 -0.01 0.04 0.02 0.04
GPT-40 0.12 0.13 0.08 0.00 0.05 -0.01 0.02 0.06
Comma 0.09 0.20 0.06 -0.03 0.13 0.01 0.04 0.07
Llama-3.2 0.14 0.18 0.13 0.05 0.07 0.03 0.02 0.09
Tekken 0.24 0.23 -0.01 0.08 0.21 -0.07 -0.01 0.09
GPT-2 0.08 0.30 0.10 0.05 0.12 0.01 0.09 0.11
BLOOM 0.18 0.24 0.05 0.03 0.21 -0.01 0.07 0.11
Qwen-3 0.17 0.18 0.12 0.08 0.15 0.05 0.02 0.11
Phi-3 0.18 0.22 0.13 0.11 0.09 -0.02 0.07 0.11
Aya 0.21 0.21 0.13 0.03 0.07 0.02 0.14 0.11
mBERT 0.15 0.41 0.08 0.03 0.22 -0.02 0.04 0.13
XGLM 0.13 0.32 0.12 0.03 0.23 -0.02 0.15 0.14
Gemma-2 0.18 0.30 0.12 0.05 0.29 0.07 0.09 0.16
Avg | 0.14 0.22 0.09 0.04 0.13 0.00 0.06 0.10
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* GPT40: s, aat, te, kivs.s, aat, de, ki (character-level consistency)
* Tekken: sa, atte, kivs.sa, at, deki (partial boundary preservation)
* GPT-2: sa, at, te, kivs.sa, at, d, eki (fine-grained segmentation)

Turkish final-obstruent devoicing error (“inegin” — “inekin”) in the word cow’s (possesive)

e BLOOM: ine, ¢, §, invs.in, ekin

¢« XGLM: in, e, §, invs.in, ekin

e Llama-3.2: ine, ¢, §, invs.ine, kin

e mBERT: [UNK] vs. in, ##ekin (unknown token fallback)

* Qwen-3: ine, C§, invs.ine, kin

* TokenMonster: ine, g, i, nvs.ine, kin (diacritic decomposition)
e Gemma-2: ine, §, invs.ine, kin

¢ GPT-40: ine, §, invs. ine, kin

e Tekken: ine, §, invs. ine, kin

e GPT-2: ine, §, invs.ine, kin

Register and style variations compound tokenization challenges. Consider using emoji substi-
tution in “The capital of Japan is” by replacing “Japan” with the Japanese flag .

Table 10: Tokenization robustness under different register and style variations. Values represent
relative performance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.
Abb.: abbreviations, Word Ord.: word reordering, emoji: emoji substituion, char. subs.: character
substitution, repet.: letter repetition for emphasis

Model ‘Web Search Abb. Word Ord. Phonetic Colloquial Emoji Char. Repet. Avg

Subs.
EN TR IT EN IT EN TR 1T EN FA TR ZH EN EN EN

TokenMonster | 0.26 0.07 0.38 032 0.04 0.06 - 0.04  0.11 0.00 - 0.04 0.25 - 022 0.11
0.01 0.00 0.07

mBERT 0.33 0.25 0.23 0.27 0.07 0.08 0.18 0.04  0.15 0.09 0.12 0.18 0.29 - 0.18 0.16
0.08

GPT-40 0.36 0.34 0.53 0.18  0.09 0.05 0.03 0.02  0.20 0.10 0.12 0.15 0.16 - 021  0.17
0.01

ByT5 0.40 0.30 0.29 0.28 0.11 0.06 0.12 0.02  0.15 0.19 0.14 0.16 0.32 - 0.11  0.17
0.04

Comma 0.43 0.33 0.43 032 0.08 - 0.03 0.04  0.12 0.13 0.14 0.19 0.23 0.01 0.13  0.17

0.03

BLOOM 0.41 0.36 0.31 0.24  0.09 0.12  0.20 0.07 0.17 0.20 0.15 0.01 020 000 0.17 0.18

GPT-2 0.29 0.36 0.38 0.20 0.16 0.13 0.15 0.09  0.10 0.06 0.18 0.21 0.26 - 028 0.19
0.05

XGLM 0.29 0.32 0.30 029 0.16 0.03 0.17 0.15 0.20 0.22 0.17 0.15 0.33 0.01 0.08 0.19

Llama-3.2 0.38 0.32 0.36 0.30 0.13 0.10 0.14 0.02  0.19 0.17 0.08 0.17 0.25 0.06 027 0.20

Tekken 0.49 0.34 0.42 0.29 0.01 0.05 0.19 - 0.16 0.26 0.07 0.24 026  0.01 020 020

0.01

Aya 0.42 0.38 0.33 0.28 0.24 0.08 0.20 0.14  0.17 0.13 0.11 0.15 0.11 - 032 020
0.03

Qwen-3 0.32 0.41 0.49 026 - 0.08 0.17 0.02  0.14 0.32 0.17 0.16 0.14  0.08 036 021

0.03

Gemma-2 0.50 0.36 0.54 025 0.28 0.08 0.15 0.09  0.18 0.07 0.12 0.24 0.18 0.04 020 022

Phi-3 0.43 0.31 0.62 0.20 0.04 0.11 0.15 0.07 0.24 0.21 0.19 0.23 0.33 - 028 022
0.05

Avg 0.38 0.32 0.40 0.26 0.11 0.07 0.13 0.06  0.16 0.15 0.13 0.16 0.24 - 021 0.19
0.01

Emoji handling reveals differences: Most modern tokenizers like Gemma-2, GPT-40, Tekken, GPT-
2, and Qwen-3 have emojis in their vocabulary, correctly parse the Japanese flag emoji into two
tokens as the corresponding regional indicators ([J] and [P]). Aya on the other hand has a stand-
alone token for the flag emoji. BLOOM, Llama-3.2, and TokenMonster use byte-fallback, XGLM
and mBERT resort to unknown tokens. The coverage of emojis translate into good performance in
the Emoji substitution perturbations (see Table 10).
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Linguistic Variety Table 11 examines how tokenizers handle linguistic diversity including his-
torical spellings, code-switching, dialects, and colloquial expressions. TokenMonster demonstrates
remarkable consistency across varied linguistic phenomena (0.08 average drop), while most mod-
els struggle significantly with certain types of variation. In Table 12, we group the models based
on their vocabulary size (see Table 2) to investigate potential correlations with vocabulary size, as
larger vocabularies theoretically provide more comprehensive dictionaries.

Counterintuitively, vocabulary size shows little to no correlation with linguistic robustness—byte-
level model (ByT5) demonstrates superior consistency despite operating without traditional vocabu-
lary constraints, while some large-vocabulary tokenizers exhibit significant brittleness. We observe
that larger vocabulary size doesn’t always produce a lexically-rich vocabulary. Modern tokenizers
may actually compound the problem by learning multiple variants of common words (Gemma-2
has distinct tokens for “hello”, “ hello”, “Hello”, and ““ Hello”), reducing the effective vocabulary.
While this multiplicity has efficiency gains it could make models sensitive to stylistic variations that
should be semantically equivalent.

Historical spelling variants (“capitall”®, ”Japane™) demonstrate systematic fragmentation patterns
where tokenizers often segment archaic or non-standard spellings along morphological boundaries:

* Most tokenizers: capit, all and Jap, ane (consistent morpheme-like splitting)
* mBERT: capital, ##1 and Japan, ##e (subword suffix handling)
e XGLM: capital, 1 and Japan, e (clean separation)

Colloquial expressions reveal deeper challenges in world knowledge representation. The question
“Turkey’s capital turns out to be” with the correct answer ”Ankara” illustrates how informal phras-
ing can disrupt factual recall: as it breaks 3 models. This suggests that tokenizers’ handling of
casual discourse markers and words (’turns out to be”’) may interfere with models’ access to factual
knowledge. The pattern indicates that linguistic variety challenges extend beyond mere tokenization
to fundamental issues of how models integrate linguistic style with semantic content.

E.2 MORPHOLOGICAL CHALLENGES

Table 13 examines how tokenizers handle morphological variations including derivations, inflec-
tions, and contractions across English, Turkish, and Italian. Morphological perturbations reveal
fundamental inconsistencies in how tokenizers segment related word forms—contractions like
“Google’s” versus decomposed forms, or Italian elision patterns where “dell’Italia” and “d’Italia”
receive dramatically different tokenization despite identical meaning. These inconsistencies suggest
that current tokenization approaches lack coherent strategies for handling morphologically related
forms, potentially leading models to develop disparate semantic representations for linguistically
equivalent expressions. For example while BLOOM learns contractions, GPT-2 and GPT-40 use a
regex-based search.

English Contractions: “Google is”— “Google’s”
« BLOOM, Llama-3.2, Qwen-3, Gemma-2, GPT-2, GPT-40, Tekken,: Google, ’s
(separate marker)
* XGLM, mBERT: Google, ', s (fragmentation)

¢ TokenMonster: google, ’s (lowercase normalization)

Italian Ellisions The Italian contraction ’L’intento” (the intent) demonstrates varying approaches
to handling elided articles:

e BLOOM:1L’, int, ento
e XGLM: L, ’, inten, to
e Llama-3.2: 1., ’'int, ento
e mBERT: 1, ’, intento

Shttps://www.oed.com/search/dictionary/?scope=Entries&qg=capitall
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Table 11: Tokenization robustness under linguistic variety. Values represent relative performance
drop (canonical-perturbed)/canonical; lower values indicate greater robustness. Hist.: historical
spelling, equiv. exp.: equivalent expressions, sim. words: similar words

Model Hist. Code switch Dialects Equiv. exp. Sim. words Avg
EN FA TR IT ZH FA TR IT EN FA TR ZH EN TR IT
TokenMonster | 0.09 0.07 0.00 0.00 0.03 0.22 0.09 0.17 0.14 0.07 0.04 0.03 0.03 -0.06 0.22 0.08
ByT5 0.06 0.03 0.04 0.06 -0.04 0.29 0.15 0.15 0.02 0.13 0.06 0.04 0.08 -0.08 0.24 0.08
Comma 0.21 0.10 0.13 0.06 0.03 0.30 0.04 0.06 -0.05 0.10 0.06 0.03 0.08 -0.02 0.28 0.09
BLOOM 0.25 -0.07 0.16 -0.03 -0.04 031 0.19 0.14 0.05 0.07 0.14 -0.07 0.09 0.13 026 0.11
mBERT 0.11 0.09 0.16 0.03 0.09 0.30 0.31 0.12 -0.05 0.06 0.04 0.06 0.02 023 005 0.11
Tekken 0.21 0.12 0.16 -0.03 0.03 0.37 0.14 -0.02 0.17 0.15 0.06 0.03 0.05 0.18 -0.01 0.11
GPT-40 0.08 -0.03 0.10 -0.08 0.07 0.29 0.10 0.14 0.14 -0.03 -0.03 0.13 0.05 029 044 0.11
XGLM 0.18 0.09 021 0.06 -0.03 0.30 0.15 0.02 0.17 0.03 0.10 0.09 0.08 0.16 0.10 0.11
Gemma-2 0.31 0.17 0.05 0.05 0.10 0.33 0.23 0.07 0.17 0.00 0.07 -0.10 0.04 0.08 040 0.13
Aya 0.21 0.03 0.13 0.08 0.03 0.30 0.18 0.14 0.27 0.16 0.10 0.00 0.07 0.10 0.23 0.14
GPT-2 0.18 0.10 0.18 0.06 0.20 0.28 023 0.23 0.07 0.10 0.14 0.03 0.09 0.08 0.10 0.14
Llama-3.2 0.25 0.03 0.13 0.03 0.09 0.24 0.05 0.17 0.10 0.03 0.17 0.19 0.09 0.16 0.40 0.14
Qwen-3 0.32 021 0.18 0.05 0.04 0.34 0.18 0.11 0.02 024 0.17 -0.07 0.09 022 0.15 0.15
Phi-3 0.32 0.12 0.16 0.09 0.13 035 0.10 0.23 -0.05 0.15 0.34 0.09 0.09 029 0.19 0.17
Avg | 020 0.08 0.13 0.03 0.05 0.30 0.15 0.12 0.08 0.09 0.11 0.03 0.07 0.13 022 0.12

Table 12: Tokenization robustness under linguistic variety. Same as Table 11 but grouped under
vocabulary size. Values represent relative performance drop (canonical-perturbed)/canonical; lower
values indicate greater robustness. Hist.: historical spelling, equiv. exp.: equivalent expressions,
sim. words: similar words

Vocab Size | Hist. Code switch Dialects Equiv. exp. Sim. words Avg
EN FA TR IT ZH FA TR IT EN FA TR ZH EN TR IT

X-Small 0.06 0.03 0.04 0.06 -0.04 0.29 0.15 0.15 0.02 0.13 0.06 0.04 0.08 -0.08 0.24 0.08
Medium 0.19 0.09 0.15 0.03 0.09 030 0.15 0.12 0.05 0.09 0.10 0.07 0.07 0.13 0.17 0.12

Large 0.23 0.07 0.14 0.02 0.03 031 0.17 0.10 0.14 0.08 0.09 0.00 0.07 0.16 0.26 0.13
Small 0.21 0.10 0.09 0.05 0.08 029 0.10 0.20 0.04 0.11 0.20 0.06 0.06 0.13 020 0.13
Avg ‘ 0.17 0.07 0.11 0.04 0.04 0.30 0.14 0.14 0.06 0.10 0.11 0.04 0.07 0.08 0.22 0.11
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e Qwen-3: ., ’int, ento

e TokenMonster: 1’, intent, o
e Gemma-2: 1., ', int, ento

e GPT-40: L, ’'int, ento

e Tekken: L., ’'int, ento
GPT-2: 1, ’, intent, o

“dell’Italia” vs. “d’Italia”:

¢« BLOOM:d, ell, ', Italiavs.d’, Italia

e XGLM: dell, ’, Italiavs.d, ', Italia

e Llama-3.2, Qwen-3: d, ell, ’'It, aliavs.d, ’It, alia (fragments "Italia”)
* mBERT: dell, ’, Italiavs.d, ’, Italia (length-dependent)

* TokenMonster: dell, ', ita, liavs. d, ', ita, lia (lowercase + frag-
mentation)

* Gemma-2: dell, ', Italiavs.d, ', Italia (clean separation)

e GPT-40:d, ell, ', Italiavs.d, ', Italia (inconsistentdecomposition)

* Tekken: d, ell, ’'Italiavs.d, ’Italia (treatsapostrophe differently)

e GPT-2:d, ell, ', It, aliavs.d, ', It, alia (fragmentscountry name)

Table 13: Tokenization robustness under morphological challenges, granular version of Morpholog-
ical in Table 1. Values represent relative performance drop (canonical-perturbed)/canonical; lower
values indicate greater robustness.

Model Contractions Compounds Derivations Inflections Avg
EN IT EN TR EN TR
Comma 0.23 0.18 0.09 -0.11 0.02 0.02 0.07
TokenMonster 0.30 0.16 0.17 -0.12 0.02 -0.09 0.07
GPT-2 0.33  -0.08 0.09 0.05 0.02 0.13 0.09
Aya 0.27 -0.03 0.19 0.02 0.05 0.06 0.10
Gemma-2 0.27 -0.03 0.14 0.02 0.12  0.06 0.10
mBERT 0.26 -0.14 0.09 0.18 0.15 0.06 0.10
Qwen-3 031 0.12 0.09 0.02 0.10 0.06 0.12
GPT-40 0.26 0.26 0.12 -0.04 0.07 0.06 0.12
ByT5 0.30 -0.03 0.15 0.09 0.21  0.05 0.13
BLOOM 0.20 -0.01 0.16 0.11 0.14 0.16 0.13
XGLM 0.26 0.02 0.07 0.11 0.25 0.06 0.13
Llama-3.2 0.29 0.12 0.16 0.02 0.14 0.11 0.14
Tekken 0.36 -0.04 0.14 0.08 0.17 0.18 0.15
Phi-3 0.28 0.07 0.14 0.09 0.25 0.08 0.15
Avg | 0.28 0.04 0.13 0.04 0.12  0.07 0.11
E.3 NOISE

Table 14 shows robustness against common noise in digital text, such as keyboard proximity errors
(s—(a,w,d,x), j=(uhm), o—( kx 43), Hr—BA76,F)) , OCR misrecognition (0—0, I-1),
character deletion, space removal, and typographical errors (doctor— doctro). These perturbations

reflect authentic user input scenarios where models must maintain performance despite noisy text
across multiple languages and writing systems.

We observe that tokenizers that segment text into complete word tokens tend to exhibit greater
vulnerability to noise errors, as single character perturbations can cause familiar words to fragment
into unfamiliar subword combinations, whereas tokenizers using smaller subword units maintain
more consistent segmentation patterns.

Noise in Chinese subset For keyboard proximity errors in Chinese characters are replaced with

phonetically or positionally similar alternatives on the keyboard layout. For space removal, we use
the Pinyin input without any spaces.
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Typos Typographical errors demonstrate how different tokenization approaches handle character-
level perturbations. For example, the word “doctor” with a typo becomes “doctro”:

e mBERT: doctor, doc, ##tro

e Comma Al: do, ctor, .doc, tro

e Llama-3: doctor, .do, ct, ro

e Tekken: doctor, doct, ro

¢ Aya Expanse: doctor, .doct, ro

¢ GPT-40: doctor, doct, ro

e GPT-2: doctor, doct, ro

e ByT5:d, o, ¢, t, o, ¥, -, d, o, ¢, t, r, ©

Similarly, for Turkish text “giin sayis1” (day count) with spacing errors becoming “giins ayis1’:

e mBERT: glin, sayisi, giin, ##s, ay, ##is1

e Comma Al: g, in, .say, 1, s, 1, .g, U, ns, .ay, 1, s, 1
* Tekken: g, tn, say, 1si, glin, s, ay, 1s1i

¢ GPT-40: g, Un, say, 1si, gln, s, ay, 1s1

¢ Llama-3.2: giin, _.sayisi, .gl, ns, .ay, 1s1

e GPT-2: g, 4, n, say, 1, s, 1, g, 4, ns, ay, 1, s, 1

¢ Aya Expanse: giin, .sayisi, .gin, s, .ay, 1s1

* ByTS5: Character-level segmentation (individual Unicode characters)

E.4 MATHEMATICAL & SCIENTIFIC EXPRESSIONS

Table 15 demonstrates that models generally struggle with the formatting and structural challenges
inherent in scientific domains. When numerical values are replaced with their spelled-out equiva-
lents (15 — fifteen), we observe a consistent performance degradation even in English. The parallel
multilingual basic arithmetic questions reveal that certain tokenizers may exhibit inductive biases
favoring specific languages. For instance, Gemma-2’s performance on Italian questions matches
that of the canonical English questions, whereas it shows a 53% performance degradation in Farsi.
Llama-3.2 demonstrates similar behavior with Turkish, while the Aya tokenizer, developed as part of
a multilingual language model, exhibits the greatest robustness across languages. It should be noted,
however, that this represents one of the few instances in our study where Aya tokenizer demonstrates
clear multilingual advantages.

Tokenization of scientific text: Consider the unit “cubic meters” expressed as m” 3, $m”3$,
$m~{3}$, and sm~{ 3 }$. Despite semantic equivalence, tokenization patterns reveal increas-
ing fragmentation:

¢ BLOOM:

— Plain:m, ~3

— LaTeX: $m, "3, $
Braced: $m, ~{3, }$
Spaced: $m, ~{, 3, }$
* XGLM:

- Plainim, ~, 3

- LaTeX: $, m, =, 3, S

Braced: $, m, ~, {, 3, }, s

Spaced: $, m, ~, {, 3, }, $
e Llama-3.2:

14
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Table 14: Tokenization robustness under multi-lingual noise. Values represent relative performance
drop (canonical-perturbed)/canonical; lower values indicate greater robustness.

Model Keyboard Errors OCR Char. Space Removal Typos Avg
Del.
EN FA TR IT ZH EN ZH EN EN ZH EN TR IT
Comma 0.05 029 0.15 0.18 0.17 0.12  0.10 0.10 0.14 0.55 020 0.04 025 0.18
ByT5 0.19 026 0.13 022 0.11 0.18 0.11 0.09 0.18 0.43 0.17 0.11 0.18 0.18
TokenMonster | 0.22 0.18 0.15 0.13 0.16 0.10 0.26 0.04 0.13  0.58 0.08 0.09 025 0.18
GPT-2 020 0.16 029 0.16 027 0.15 0.23 0.09 0.16  0.50 0.18 022 020 0.22
Qwen-3 020 032 025 0.19 0.11 0.15 0.25 0.12 0.17 0.43 023 0.16 026 022
GPT-40 0.13 020 0.13 0.13 0.23 0.15 0.40 0.18 0.16 0.53 024 0.13 022 0.22
BLOOM 022 023 034 0.16 0.11 0.19 0.11 0.16 021 0.56 0.16 025 0.17 0.22
Gemma-2 0.17 023 021 022 0.19 0.17 0.29 0.16 0.15 0.52 0.14 0.13 030 0.22
Llama-3.2 0.12 030 026 021 0.19 0.10 0.28 0.17 0.20 0.56 0.08 022 024 022
XGLM 0.18 025 029 0.19 023 0.15 0.29 0.13 0.13  0.60 0.11 022 021 0.23
Tekken 023 029 033 0.12 0.26 020 0.29 0.11 0.12 0.52 0.11 021 020 0.23
Phi-3 0.15 027 022 020 0.22 020 022 0.21 0.18 0.53 020 020 021 023
mBERT 024 025 032 0.16 0.14 0.20 0.20 0.14 0.24  0.60 0.11 023 026 0.24
Aya 0.15 042 025 026 024 0.17 0.28 0.19 0.21 0.52 0.10 0.19 027 025
Avg | 018 026 024 018 0.19 0.16 0.24 0.13 0.17 0.53 0.15 0.17 023 0.22

Table 15: Tokenization robustness under math and STEM related challenges. Values represent
relative performance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.
LaTeX: LaTeX-style math formatting; Diag. scientific diagrams and notations; Unic.: Unicode
formatted ASCII characters. NEN=non-English.

Model LaTeX Spelled Out Diag. Multilingual Unicode Avg
EN EN FA TR 1T ZH EN FA TR 1T ZH EN
TokenMonster | 0.23 0.28 049 0.07 033 031 0.11 0.29  0.00 0.14 0.00 0.08 0.19
Phi-3 0.25 034 039 014 047 023 0.22 0.29  0.00 0.00 0.24 0.11 0.22
Aya 0.23 032 035 041 047 026 0.38 0.07  0.00 0.00 0.00 0.21 0.23
mBERT 0.15 035 055 045 035 038 0.22 0.14 007 0.14 0.07 0.23 0.26
Llama-3.2 0.18 033 043 034 045 023 0.29 0.18 047 0.00 0.18 0.07 0.26
GPT-2 0.25 038 035 032 044 0.08 0.35 0.18 035 024 024 0.17 0.28
Tekken 0.27 037 033 036 038 031 0.44 0.18 024 012 024 0.15 0.28
BLOOM 0.25 029 024 047 040 020 0.11 041 035 024 029 0.19 0.29
Comma 0.23 036 054 017 047 026 0.29 039 028 017 022 0.19 0.30
ByT5 0.18 037 054 042 054 023 0.29 0.07 020 027 027 0.23 0.30
GPT-40 0.25 038 033 045 052 028 0.33 037 032 005 0.16 0.20 0.30
Gemma-2 0.22 035 033 032 053 040 0.37 053 035 0.00 0.18 0.23 0.32
Qwen-3 0.26 041 050 041 047 023 0.29 025 035 020 030 0.23 0.33
XGLM 0.30 035 046 041 053 030 0.29 027 033 020 020 0.27 0.33
Avg | 023 035 042 034 045 026 0.29 026 024 013 0.18 0.19 0.28

30



Under review as a conference paper at ICLR 2026

Plain: m, ~, 3

- LaTeX: $m, ~, 3, $

- Braced: $m, “{, 3, }$

- Spaced: sm, “{, , 3, }$
« mBERT:

Plain: m, ~, 3

LaTeX:$, m, =, 3, $

Braced: $, m, ~, {, 3, }, s
{, 3, }, s

Spaced: $, m, =,

(identical tokenization)

¢ Qwen-3:

— Plainim, =, 3

- LaTeX: $m, =, 3, $

- Braced: $m, “{, 3, }$

- Spaced: sm, “{, , 3, }$
¢ TokenMonster:

— Plainim, ~, 3
LaTeX:$, m~, 3$
Braced: $, m”~, {3}s
Spaced: $, m~, {, 3, }$

Performance drops precipitously with formatting complexity: while all models correctly identified
”volume” for plain text, only 8/14 succeeded with basic LaTeX formatting, 2/14 with braces, and just
2/14 with spaced braces. TokenMonster and Qwen-3 showed the highest robustness, maintaining
correct answers through the spaced version.

This shows that even trivial whitespace differences in technical notation can cause catastrophic per-
formance degradation, highlighting a critical vulnerability for applications that require strong math-
ematical reasoning.

Structural ASCII Art and Chemical Notation These examples demonstrate how tokenizers han-
dle structured chemical representations, from simple formulas to ASCII molecular diagrams and
systematic nomenclature. The input contains CH4, an ASCII diagram of methane, H2S04, and the
systematic name “Dihydrogen sulfur tetraoxide”:

« BLOOM:
— Simple formulas: CH, 4 and H2, S04
— ASCII structure: H, , H-C-H, , H (preserves structural elements)
— Systematic name: D, ih, yd, rogen, sulfur, tet, ra, oxide
XGLM:
— Simple formulas: CH, 4andH, 2, SO, 4
- ASCII structure: H, , H-, C, -, H, , H(fragments bonds)
— Systematic name: Di, hydro, gen, su, lfur, te, tra, oxide
« mBERT:
— Simple formulas: CH, ##4and H, ##2, ##S, ##0, ##4
- ASCI structure: H, , H, -, C, -, H, , H (aggressive fragmentation)

— Systematic  name: Di, ##hy, ##dro, ##gen, sul, ##fur, te,
##tra, ##ox, ##ide

* Gemma-2:
— Simple formulas: CH, 4andH, 2, SO, 4
— ASCII structure: Uses special spacing tokens () for whitespace
— Systematic name: Di, hydrogen, sulfur, tetra, oxide
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* GPT-4o:

— Simple formulas: CH, 4andH, 2, SO, 4

— ASCII structure: H, , H-C-H, , H (clean structural preservation)

— Systematic name: D, ih, yd, rogen, sulfur, tetra, oxide
 GPT-2:

— Simple formulas: CH, 4andH, 2, SO, 4

- ASCII structure: H, , H-, ¢, -, H, , H

— Systematic name: D, ih, yd, rogen, sulfur, tet, ra, oxide
¢ Tekken:

— Simple formulas: CH, 4andH, 2, SO, 4
— ASCII structure: H, , H-C-H, , H (preserves structure well)
— Systematic name: D, ihydro, gen, sulfur, tetra, oxide

¢ TokenMonster:

— Simple formulas: ch, 4 and h2, so, 4 (lowercase normalization)
— ASCII structure: Complex Unicode handling with encoding artifacts
— Systematic name: di, hydrogen, sul, fur, tet, ra, ox, ide

While all models correctly identified CH4 as methane, only Llama and GPT-2 models correctly inter-
preted the ASCII molecular diagram. For H2S04, all models succeeded, while spelled-out system-
atic nomenclature achieved 65% accuracy. The ASCII diagram failure is particularly revealing—the
structured representation that humans easily recognize as methane becomes nearly incomprehensible
to models when tokenized, despite containing identical chemical information. XGLM and mBERT
normalize the whitespaces in the diagram, however they still fail to identify the molecule, maybe
due to—characters. Gemma-2’s special whitespace handling (___) and GPT-40’s clean structural
preservation suggest different approaches to spatial formatting, yet neither prevented the semantic
confusion in the ASCII representation.

E.5 STYLING & UNICODE CHALLENGES

Table 16: Tokenization robustness under Unicode formatting, NFKC normalization used by XGLM
strips away all normalizations below. Values represent relative performance drop (canonical-
perturbed)/canonical; lower values indicate greater robustness.

Model Decorative Fullwidth Scripted Text Double Enclosed (Sup/sub) Avg
Unicode Characters Struck Characters script
EN EN EN EN EN EN
XGLM 0.07 0.07 0.02 0.12 0.19 0.08 0.09
ByT5 0.40 0.54 0.58 0.56 0.73 0.66 0.58
GPT-2 0.47 0.59 0.59 0.68 0.61 0.65 0.60
TokenMonster 0.36 0.62 0.57 0.64 0.72 0.70 0.60
Tekken 0.41 0.73 0.57 0.62 0.73 0.62 0.62
Gemma-2 0.53 0.54 0.67 0.62 0.68 0.66 0.62
GPT-40 0.47 0.62 0.61 0.70 0.67 0.67 0.62
Phi-3 0.47 0.54 0.59 0.75 0.73 0.67 0.62
Aya 0.36 0.68 0.71 0.63 0.69 0.69 0.63
BLOOM 0.59 0.51 0.62 0.67 0.72 0.65 0.63
Qwen-3 0.60 0.67 0.69 0.62 0.57 0.64 0.63
mBERT 0.36 0.73 0.70 0.69 0.81 0.71 0.67
Llama-3.2 0.59 0.60 0.70 0.69 0.76 0.68 0.67
Comma 0.67 0.60 0.67 0.81 0.70 0.58 0.67
Avg | 0.45 0.57 0.59 0.63 0.67 0.62 0.59

Using Unicode characters and applying styling to the questions (or all choices) causes performance
degradation across all models (see Tables 16 and 17). Although some tokenizers maintain distinct
tokens for certain styled characters, they nevertheless exhibit significant failure rates. These styling
variations could potentially be mitigated through normalization techniques, such as the NFKC nor-
malization employed by XGLM. However, this is not always desirable as these transformations are
irreversible. We include the sample transformations in Fig. 4.
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Table 17: Tokenization robustness under different styling formats. Values represent relative perfor-
mance drop (canonical-perturbed)/canonical; lower values indicate greater robustness.

Model Diacriticized Lowercase Capitalized Upside Down Spaced Hyphenated Avg
EN EN EN EN EN EN
TokenMonster 0.60 0.01 -0.03 0.47 0.66 0.69 0.40
Aya 0.66 0.08 0.15 0.42 0.54 0.67 0.42
GPT-2 0.52 0.06 0.21 0.52 0.63 0.63 043
Tekken 0.57 0.03 0.16 0.60 0.63 0.61 0.43
Gemma-2 0.69 0.06 0.15 0.47 0.64 0.67 0.45
GPT-40 0.57 0.00 0.16 0.62 0.62 0.70 0.45
Phi-3 0.58 0.11 0.18 0.47 0.68 0.66 045
Comma 0.58 0.06 0.11 0.60 0.68 0.68 0.45
Llama-3.2 0.60 0.11 0.05 0.54 0.68 0.75 0.45
Qwen-3 0.58 0.09 0.11 0.67 0.53 0.76 0.46
ByT5 0.61 0.06 0.06 0.73 0.69 0.67 0.47
BLOOM 0.61 0.08 0.12 0.65 0.72 0.65 0.47
mBERT 0.64 0.09 0.16 0.80 0.59 0.65 0.49
XGLM 0.63 0.11 0.32 0.87 0.61 0.63 0.53
Avg \ 0.60 0.07 0.14 0.60 0.64 0.67 0.45
Style Text
Style Text Underline Python
Full width Python  Macron Python
) Overline Python
Script Pythion
Upside down PAlyou
Enclosed/ Circled eYIOHON
Ring above Python
Enclosed/ Parenthesized  (P\Y)(tXhJo)n) L o
Diacritics Pythei
i Python .
Superscript Strikethrough Python-
Subscript python Strikethrough/ Forward slash Pttty
Double struck PPython Strikethrough/ Backward slash Pythony

Figure 4: Left: Styling challenges that are normalized by NFKC, Right: Styling challenges that
NFKC cannot
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F EVALUATING INDUSTRY-LEVEL MODELS ON TokSUITE BENCHMARK

Table 18: Tokenization robustness of original (industry) pre-trained models under multilingual text
perturbations. Values represent relative performance drop (canonical-perturbed)/canonical; lower
values indicate greater robustness. NEN=non-English.

Input Diacr. Orth. Errors  Morphological Noise LaTeX STEM Unicode Avg
Model NEN ZHFA EN IT,TR EN TR EN NEN EN EN EN
bert-base-multilingual-cased | 0.02  -0.18 0.04 -0.11 0.10 -0.04 -0.15  0.03 0.05 051  -0.12 -0.08
xglm-564M -0.26  -0.30 0.20 0.05 0.14  0.09 0.13  0.06 0.24 0.16 0.11 0.06
Phi-3-mini-4k-instruct -0.14  0.13 0.07 -0.25 024 -0.26 0.08 -0.02 0.04 0.20 0.59 0.06
GPT-2 -0.30  0.00 0.14  0.00 0.13 0.11 0.18 -0.01 0.23 0.11 0.49 0.10
phi-1.5 -0.13  0.13 0.10 0.00 029 -0.17 0.18 -0.04 0.11 0.20 0.62 0.12
Llama-3.2-1B-Instruct 0.14  -0.25 0.04 0.05 027 0.13 0.10 0.16 0.04 0.31 0.62 0.15
gemma-2-2b-it 0.21 0.07 0.03 024 022 0.10 0.04 0.21 0.00 0.20 0.41 0.16
aya-expanse-8b 0.18 0.36 0.03 0.10 0.16 0.07 0.03  0.09 0.11 0.17 0.49 0.16
Qwen3-1.7B-Base 0.25 0.39 0.03 0.12 0.25 0.06 0.06 0.19 -0.02 023 0.52 0.19
Llama-3.2-1B 0.13 0.11 0.05 026 024 0.11 0.08 0.15 0.14 0.33 0.59 0.20
gemma-2-2b 0.30 0.30 -0.01  0.39 023 0.13 0.02 0.25 0.16 0.22 0.37 0.21
Avg \ 0.04 0.07 0.07 0.08 021 0.03 0.07 0.10 0.10 0.15 0.43 0.12

While direct comparisons between our models and their original pre-trained counterparts must be
interpreted with caution due to fundamental differences in training data, model architectures, and
coverage, several noteworthy patterns emerge (see Tables 18 and 1). It should be noted that these
models are trained significantly longer than our controlled experiments—for example, Gemma-2-
2B (Team et al., 2024) is trained on 2 trillion tokens.

Notably, model size does not appear to be the determining factor, as evidenced by Aya-Expanse-
8B (Dang et al., 2024a) performing comparably to smaller models. Instruction-tuned models show
marginally better robustness compared to their base counterparts, though the improvement is modest.

Industry models exhibit better overall robustness, with mBERT demonstrating negative degradation
values, indicating improved performance on perturbed inputs. This performance gain could stem
from training data or training procedure. However, they still struggle significantly with Unicode
styling (0.43 average degradation), suggesting that even extensive real-world training data may not
adequately cover such specialized character variations. Conversely, our controlled study isolates
the effect of tokenization differences by maintaining identical initialization and training data across
models, revealing that tokenization choices alone can account for substantial performance variations
and more data doesn’t always translate into robustness under input variations. The consistent pat-
terns observed across both settings suggest that these robustness challenges are fundamental rather
than artifacts of specific training regimes.

LARGE LANGUAGE MODEL USAGE

We used Claude throughout the research process for dataset design brainstorming, generating pertur-
bation ideas, rephrasing sentences, summarizing related work, and assisting with literature review.
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