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ABSTRACT

Tokenizers provide the fundamental basis through which text is represented and
processed by language models (LMs). Despite the importance of tokenization, its
role in LM performance and behavior is poorly understood due to the challenge
of measuring the impact of tokenization in isolation. To address this need, we
present TokSuite, a collection of models and a benchmark that supports research
into tokenization’s influence on LMs. Specifically, we train fourteen models that
use different tokenizers but are otherwise identical—using the same architecture,
dataset, training budget, and initialization. Additionally, we curate and release
a new benchmark that specifically measures model performance subject to real-
world perturbations that are likely to influence tokenization. Together, TokSuite
allows robust decoupling of the influence of a model’s tokenizer, supporting a
series of novel findings that elucidate the respective benefits and shortcomings of
a wide range of popular tokenizers.

1 INTRODUCTION

Language models (LMs) generally do not process “raw text” directly; instead, they operate on a
sequence of “tokens” that represent words, sub-words, or characters. As a result, tokenization fun-
damentally influences the representation learned by LMs and, consequently, affects the downstream
model capabilities (Mielke et al., 2021). For example, the tokenizer used in TS5 (Raffel et al., 2020)
cannot represent curly brace tokens, making the TS models poorly suited to processing many cod-
ing languages (Wang et al., 2021c). The importance of tokenization naturally motivates not only
understanding the impact of different tokenization strategies but also the design of better tokenizers.
However, tokenization is a relatively understudied aspect of language model development compared
to, e.g., model architectures, training recipes, and dataset curation. In fact, the design of the tokenizer
is often treated as an afterthought, with many open models simply using a preexisting tokenizer off
the shelf. For instance, the GPT-2 tokenizer was directly reused for Meta’s Open Pretrained Trans-
formers (OPT) (Zhang et al., 2022), and EleutherAl’s GPT-NeoX-20B tokenizer was directly used
for the MPT-7B-8k model (Team, 2023) and Pythia models (Biderman et al., 2023).

We argue that one factor contributing to the paucity of research into the impact of tokenization is
the relative difficulty, using existing artifacts, of decoupling the impact of the tokenizer with other
possible variables (model architecture, training data, etc.). For example, it would be fraught to try to
compare the Qwen 3 (Yang et al., 2025) and Llama 3 (Dubey et al., 2024) tokenizers by studying the
respective models because differences in training data, training duration, and architectural details
make it difficult to attribute performance differences specifically to tokenization. Understanding the
downstream effects of tokenizer design choices is further complicated by the multifaceted nature of
tokenization itself, involving various interrelated factors including the underlying segmentation al-
gorithm (e.g., BPE Gage (1994); Sennrich et al. (2016), Unigram Kudo (2018), WordPiece Wu et al.
(2016)), granularity level (e.g., byte-level Xue et al. (2022), character-level, word-level), vocabulary
size constraints, and the composition of training data used to learn the vocabulary.

What would it take to reliably measure the impact of tokenization on model performance and be-
havior? We argue that reliable comparison can only be made through models that are completely
identical apart from the tokenizer used, because otherwise differences in performance could be at-
tributable to other factors. To the best of our knowledge, there is no open collection of such models.
Our first contribution in this work is therefore to train and release 14 LMs with identical initial-
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ization, architecture, and training data composition, varying only in the tokenizer used. Our suite
of models covers a wide range of tokenizer types, selected among popular pretrained tokenizers as
representatives of their main distinctive features, from byte-level tokenization to subword-based ap-
proaches including BPE, SentencePiece, and WordPiece variants. This collection encompasses both
English-only tokenizers trained on monolingual corpora and multilingual tokenizers designed to
handle diverse language families and scripts. The tokenizers additionally exhibit varying approaches
to out-of-vocabulary (OOV) handling, unicode normalization strategies, whitespace treatment pro-
tocols, continuation token markers for subword boundaries, and pretokenization splitting rules. Our
chosen tokenizers also have diverse vocabulary sizes ranging from compact, efficient lexicons to
comprehensive multilingual vocabularies, each with distinct trade-offs between compression effi-
ciency and linguistic coverage. Noting that different vocabularies might share tokens, we develop a
novel vocabulary unification framework that creates bijective mappings between tokenizer-specific
and unified token spaces. This allows us to use a unified parameter initialization where embeddings
for shared tokens are initialized to the same value across models.

To test how tokenization choices affect model behavior, we introduce a novel benchmark! with
approximately 5,000 samples. Since the effect of different tokenizers can vary across languages (Ali
et al., 2024; Dang et al., 2024b; Seo et al., 2025), our benchmark includes five orthographically
and morphologically diverse languages: English (EN), Turkish (TR), Italian (IT), Farsi (FA), and
Mandarin Chinese (ZH). Specifically, Farsi uses Arabic script and presents unique challenges in
which the same text can be represented by optional diacritics. Mandarin Chinese is a logographic
and isolating language. TokSuite also covers its romanization through Pinyin, the Chinese Phonetic
Alphabet, and errors relating to it, which is rarely found in the training data but is an essential part of
daily communication. Turkish is an agglutinative language with six additional letters in its alphabet
and rich in grammar that severely impacts word form and tokenization. Italian is representative of
fusional Latin languages with complex inflectional patterns and accents.

Our benchmark includes 40 “canonical” multiple-choice text completion questions translated into all
five languages. Each question has different perturbed versions manually curated by native speakers
that reflect real-world changes users might make. For example, we test what happens when visually
identical characters have different Unicode values (e.g., replacing Latin “a” with Cyrillic “a”), when
users type Turkish text with English keyboards (causing “s” to become “s”), when Farsi text includes
or omits optional accent marks, and when regular text uses special Unicode formatting such as
enclosed characters. We also add two specialized benchmarks: an elementary school math dataset
and a science, technology, engineering, and mathematics (STEM) dataset, respectively, with 20 and
44 “canonical” technical questions alongside targeted perturbations. This multi-domain approach
allows us to assess tokenizer performance across general, mathematical, and scientific content.

By applying our benchmark to our suite of models, we both uncover new findings and confirm
existing beliefs relating tokenizer characteristics to model behaviors. For example, we find that
perturbations tend to be more detrimental in non-English settings, even for tokenizers that were
trained on non-English data. Additionally, we find that essentially all off-the-shelf tokenizers are
sensitive to Unicode formatting and style perturbations. Furthermore, we found that the two most
unconventional tokenizers, ByTS (Xue et al., 2022) and TokenMonster (Forsythe, 2025), tended to
be more robust, suggesting that further investments should be made in the development of novel
tokenizers. Together, our models, dataset, and findings will support future research that aims to
better understand how tokenizer choices affect model behavior.

2 BACKGROUND

Before focusing on how tokenization can affect downstream LM performance, we first explain how
tokenizers are created and how design decisions can affect the final tokenizer.

Tokenizers Tokenization is the process of converting a sequence of input symbols into meaningful
lexical tokens from some vocabulary V. Each entry in the vocabulary corresponds to a particular
string, and tokenizing an input string can be seen as segmenting it into strings from the vocabulary.
When used as the input of an LM, the vocabulary is also used to map each token to an integer
ID,V : S~ {0,1,...,]V| — 1}. These IDs are then used to look up a vector representation of
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the token in an LM’s embedding table, thus creating a real-valued vector input for each token in
an input sequence. While V' can be manually enumerated for languages with restrictive grammars
(e.g. programming languages), the ambiguity and open-endedness of natural language necessitate
estimating an optimal set of tokens from data.

Consequently, differences in tokenizers can result in different token sequences for the same string.
These differences can affect both learnability and how information is processed in downstream mod-
els. For example, a tokenizer that maps the string “dogs” to two tokens “dog” and “s” allows the
model to “reuse” its understanding of the token for “dog”, but requires composing with the meaning
of the “s” token as pluralization. In contrast, a tokenizer that includes “dogs” as its own token packs
both dog and its pluralization into a single token. These differences generally arise in the three main
components involved in tokenizer training: data, learning algorithm, and preprocessing decisions.

Training Data In order to determine the collection of substrings in the vocabulary, tokenizers are
generally trained on a text dataset. While the training process for different approaches to tokeniza-
tion can vary (see the following subsection), one straightforward effect of the training data is that if
the training dataset does not include a given word or symbol, it will not be in the vocabulary. Simi-
larly, differences in tokenizer training datasets can result in different choices for tokens included in
V by different tokenizer learning algorithms. For example, if one tokenizer is trained on web data
that includes many examples of the typo “teh”, it is more likely to represent it as a single token in its
vocabulary compared to a tokenizer that is only trained on highly edited text where this typo is rare.

The inclusion of multilingual data in the tokenizer training data can also have a large effect on
the final vocabulary, especially when scripts that do not share an alphabet are included. Generally a
much larger vocabulary is required—for example the increase from 32,000 to 256,000 when moving
from T5 (Raffel et al., 2020) to mT5 (Xue et al., 2021).

Learning Algorithm When training a tokenizer, a learning algorithm produces a vocabulary V
that “fits” the training data, with inclusion primarily determined by frequency. Most tokenizers func-
tion as compressors (Lester et al., 2024), assigning common words to single tokens while splitting
rarer ones. Common algorithms include Byte-Pair Encoding (BPE) (Gage, 1994), which iteratively
merges the most frequent symbol bigrams until reaching vocabulary size |V|; WordPiece (Wu et al.,
2016), which merges symbols by maximizing training data likelihood; and Unigram (Kudo, 2018),
which starts with all possible segmentations and removes symbols causing minimal unigram loss
increase. TokenMonster (Forsythe, 2025) uses an unusual approach, building a global vocabulary
from all possible tokens and employing an “ungreedy” algorithm that revises tokenization by looka-
head. Byte-level models like ByT5 (Xue et al., 2022) use predefined Unicode vocabularies rather
than learned ones (Mielke et al., 2021).

Vocabulary size |V| significantly affects composition, as larger vocabularies include more rare words
as individual tokens. While most tokenizer training algorithms ensure that every string in the training
set can be tokenized, “byte-fallback™ forces V to include the 256 bytes needed to represent any
character in Unicode. This allows tokenization of symbols that do not appear in the training dataset.

For a more in-depth discussion of various tokenization approaches, see Mielke et al. (2021).

Preprocessing Tokenization pipelines often use some form of pre-tokenization, which segments
the input text into “intuitive” tokens, such as whitespace-separated words, before the learning al-
gorithm is applied. This segmentation can limit which strings can be added to V' as the learn-
ing algorithms do not consider bigrams that cross pre-tokenization boundaries. This means that
very common bigrams such as “New York” cannot be represented as a single token. While some
work (Schmidt et al., 2025; Liu et al., 2025, et alia) explores methods that allow cross-boundary
merges, most commonly used tokenizers do not.

As another example of pre-tokenization, the GPT-2 tokenizer (Radford et al., 2019) splits
contractions—e.g., “we’ll” — “we”, “’II”—meaning that “we’ll” cannot be a token in . In con-
trast, BLOOM’s (Workshop et al., 2022) pre-tokenization process does not force contractions to a
new token, thus allowing for “we’ll” € V.

Similar differences exist in the handling of numbers. The pre-tokenization used in some models,
like GPT-4 (Achiam et al., 2023), breaks contiguous digits into groups of three (“1337” — “133”,
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“7””) while other models split numbers into their individual digits. There are also models that rely
exclusively on the learning algorithm to decide how to segment numbers into digits. Each approach
has trade-offs; for example, splitting numbers into thousands might be natural for math but is less
natural for dates. Similar considerations exist for how repeated whitespace is handled, especially in
domains like code where whitespace can be especially meaningful.

3 THE TokSuIiTE MODELS

3.1 TOKENIZER SELECTION AND CHARACTERISTICS

To systematically investigate how different tokenization design choices affect model performance
and robustness, we began by selecting a diverse set of 14 preexisting tokenizers, specifically
ByT5 (Xue et al., 2022), TokenMonster (Forsythe, 2025), Phi-3 (Abdin et al., 2024), GPT-2 (Radford
et al., 2019), Comma (Kandpal et al., 2025), mBERT (Devlin et al., 2019), Llama-3.2 (Dubey et al.,
2024), Tekken (Al, 2024), Qwen-3 (Yang et al., 2025), GPT-40 (Hurst et al., 2024), BLOOM (Work-
shop et al., 2022), Aya (Dang et al., 2024a), Gemma-2 (Team et al., 2024), and XGLM (Lin et al.,
2021). Our selection provides comprehensive coverage across vocabulary sizes (ranging from 259
tokens in byte-level tokenizers like ByT5 to over 256,000 tokens in models such as Aya or XGLM),
tokenization algorithms (BPE, WordPiece, Unigram, TokenMonster, and byte-level approaches).
This diversity enables systematic analysis of how different tokenizers handle out-of-vocabulary
words, morphological variations, and adversarial inputs. The selected tokenizers also encompass
notable variation in preprocessing strategies that affect robustness, including different approaches
to numerical content handling (digit splitting vs. grouping), contraction processing (rule-based vs.
learned), Unicode normalization schemes, and multilingual support ranging from monolingual to
100+ languages. Additionally, the tokenizers vary in their out-of-vocabulary handling mechanisms,
with some incorporating byte-fallback and others relying on unknown tokens, providing insight into
how these design choices propagate to model robustness under various challenges. Detailed techni-
cal specifications for each tokenizer are provided in Table 2 and Table 3 in the Appendix.

3.2 CROSS-TOKENIZER VOCABULARY ALIGNMENT

To align vocabularies across tokenizers, we first create a unified “super vocabulary”. For each tok-
enizer ¢ € T, where T’ is the set of all tokenizers, we extract its individual vocabulary V;, accounting
for tokenizer-specific quirks (like WordPiece’s “##” prefixes or Unigram’s “_” whitespace markers).
We also unify the strings that denote the beginning of a sequence—<s>, < |beginoftext | >, etc.
Then, we create a super vocabulary, SV, by taking the union of all vocabularies SV = |, V;. Note

that this unification is based on the UTF-8 byte representation of each element in the vocabularies.

Finally, for each tokenizer, we create a mapping, SV : V(X)) — SV(X) that translates a tokenizer’s
original token IDs to the corresponding positions in the unified super vocabulary. This causes a given
token string to always map to the same index—regardless of which tokenizer was used—that is,
Vi,j €T, SV(Vi(S)) = SV (V;(S)),if S € V; N V;. The use of the super vocabulary allows us to
use the same initialization for the embeddings for shared tokens across models. This shared starting
point alleviates the variation of initialization across models, allowing more rigorous attribution of
downstream performance to tokenizer characteristics.

3.3 MODEL ARCHITECTURE AND TRAINING CONFIGURATION

We trained fourteen LMs (one for each tokenizer) using Meta’s Lingua framework (Videau et al.,
2024). Our model architecture and training hyperparameters follow Lingua’s Llama-3.2-1B con-
figuration with approximately one billion non-embedding parameters, following the Llama model
family (Dubey et al., 2024). All models use a shared initialization based on the super vocabulary.
See Appendix B.1 for more information. All models were trained for 100,000 steps with batches of
256 length-4096 sequences. We use the AdamW (Loshchilov & Hutter, 2019) with a weight decay
of 0.1 and a peak learning rate of 0.001 with cosine annealing and 2000 warm-up steps.

We train all models on a multilingual corpus totaling approximately 100 billion tokens. For English
content, we use FineWeb-Edu (Penedo et al., 2024a; Lozhkov et al., 2024), which provides high-
quality content filtered from Common Crawl data. For the multilingual components, we use the
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Chinese, Turkish, Italian, and Farsi subsets of the FineWeb-2 HQ Dataset (Messmer et al., 2025),
which is a pre-training dataset derived from FineWeb-2 (Penedo et al., 2025) by selecting the top-
quality documents across languages. The final corpus composition consists of 40B English tokens
and 60B multilingual tokens equally distributed across the four target languages (15B each).

For training, we use a fixed token budget in line with the current practice in LLM training and report-
ing. This means that each model sees different amounts of raw information (in bytes/documents),
see Appendix B.3. For example, 100B tokens correspond to approximately 100GB (ByT5), 278GB
(Comma), and 471GB (Gemma-2) of UTF-8 bytes, see Table 4 for all models. However, we con-
sider the alternative—training each model on the same text, but for a different number of training
steps—to be more problematic, because training duration heavily influences model performance
and some models would be relatively under- or over-trained. Additionally, a tokenizer’s efficiency
in compressing the training data is a relevant factor in tokenizer selection.

As an initial sanity check to ensure that our trained models behave as expected, we evaluated their
performance on standard benchmarks commonly used to assess the base LMs: HellaSwag (Zellers
et al., 2019), ARC (Clark et al., 2018), PIQA (Bisk et al., 2020), and XNLI (Conneau et al., 2018).
Results are shown in Fig. 2. Overall, we find that our models attain reasonable performance given
their parameters and training budget. However, we do find notable differences in performance across
different models. Since our models are otherwise equivalent, this performance difference can be
attributed directly to tokenization, which we discuss further in Section 5.

4 THE ToxSuiTE BENCHMARKS

To systematically study the impact of tokenizers on model performance, we develop a new bench-
mark that captures different types of input variations models may encounter in real-world deploy-
ment. Unlike existing evaluations that focus on clean, canonical text, our benchmark specifically
targets naturally occurring perturbations that expose tokenization-dependent issues across our target
languages—Chinese (ZH), English (EN), Farsi (FA), Italian (IT), and Turkish (TR)—and domains
including general knowledge, basic arithmetic, and STEM. Since the benchmark aims to assess ro-
bustness to variations in tokenization schemes, we deliberately select simple, canonical questions
designed to provide a strong baseline performance across all models. The selection of canoni-
cal questions follows a model-in-the-loop process in which we iteratively test question candidates
across our model suite to ensure high baseline accuracy, allowing us to cleanly measure perfor-
mance degradation when perturbations are applied. For each question in the canonical benchmarks,
over 70% of the models responded correctly. As shown in Fig. 4, model performance consistently
exceeds 70-75% accuracy on canonical tasks, both in English and non-English settings.

4.1 MULTI-LINGUAL PARALLEL DATASET

We begin by selecting a seed set of 40 canonical questions in multiple-choice text completion format
in English that almost all of the fourteen models answer correctly, such as “The capital of France
is,” “The chemical formula for water is,” and ‘“The number of continents on Earth is”. We aim for
canonical questions that our base models get correct so that we can study cases where perturbations
flip the answer to incorrect. The native speakers then translate each canonical question into FA, IT,
TR, and ZHSubsequently, each example undergoes targeted perturbations designed to reflect the
morphological and orthographic characteristics of each language. Canonical questions in English
are provided in Appendix D.1, and further examples of each category with detailed case studies on
tokenization differences are presented in Appendix E.

Orthographic Perturbations input medium challenges, diacritics perturbations, orthographic er-
rors, and variations in writing systems, linguistic register and stylistic conventions. Writing Sys-
tem Variations include script variations such as traditional vs. simplified Chinese characters, and
romanization—writing text in Latin script like Pinyin for Chinese or Finglish for Farsi. Input
medium challenges capture typing scenarios where users employ non-native keyboards, leading to
systematic character substitutions. This category also includes spacing irregularities with zero-width
characters, and homoglyphs—visually similar characters with different Unicode values. Diacrit-
ics perturbations include presence of optional diacritics, where text remains valid with or without
marks—fatha for /a/, kasra for /e/ in FA—and common accent errors (¢ — €). Orthographic errors

FIX



Under review as a conference paper at ICLR 2026

represent spelling mistakes and character-level variations commonly encountered in real-world text,
including vowel substitutions, consonant errors, phonetic spelling variants, common misspellings,
and punctuation errors. Register & Style captures variations in linguistic register and stylistic con-
ventions across different contexts. This includes web search query formatting with shortened key-
word expressions, standard and domain-specific abbreviations, and word reordering that reflect old
orthographic conventions. This category encompasses informal digital communication patterns such
as colloquial language, emoji or character substitution, and letter repetition for emphasis.

Morphological challenges cover contractions, compound words, inflectional variations, case mark-
ing, and derivations that may fragment or alter token boundaries. These challenges are particularly
pronounced in agglutinative languages such as Turkish.

Noise perturbations introduce realistic types of textual noise encountered in practice, including ty-
pos, character or space deletion, character permutation, and formatting inconsistencies arising from
sources such as OCR or other data processing pipelines. These variations test the robustness of the
tokenizer under imperfect input conditions that the models must handle.

Grammatical errors cover typical mistakes made by non-expert speakers like subject-verb agree-
ment, article omission or misuse, wrong preposition, incorrect verb tenses, and structural errors.

Linguistic variety covers variations in expressing the same semantic content across different
linguistic contexts. It includes equivalent expressions with different syntactic structures, code-
switching, similar words, historical spelling variations, and dialects representing regional language
varieties with different vocabulary and spelling conventions.

Structural text elements includes Unicode-based formatting (see Fig. 5) and stylistic variations
that preserve semantic content while altering visual presentation.

4.2 MATH & STEM DATASETS

Beyond testing simple world knowledge, a subset of our benchmark tests basic arithmetic and
STEM, which allows TokSuite to include additional domain-specific perturbations.

LaTeX and Formatting variations include  straightforward  examples  such
as $6$ and SN_2$, as well as more complex formatted expressions like
$\frac{\text{kg} \cdot \text{m}"2} {\text{s}"2}$. We also include ASCII-
based structural representations such as molecular diagrams, tree structures, and flowcharts.

Multilingual Basic Arithmetic is tested by translating canonical questions to ZH, FA, TR, and IT.

4.3 THE TokSuIiTE EVALUATION FRAMEWORK

Robustness We evaluated models with 1m—eval’s (Gao et al., 2024) byte-length normalized log-
likelihood. For fair comparison among models with different baseline capabilities, we report relative
accuracy drop for each model against its canonical performance within each category, computed as

AccCean —AcCpe, . . . g
— R, where Acccy, is the canonical accuracy and lower values indicate greater robustness.

Intrinsic Tokenization Efficiency We evaluate tokenizers’ efficiency in compressing text from
the five target languages using 10,000 parallel Flores200 (Team et al., 2022) samples with three
metrics: 1) Subword fertility (SF): mean number of tokens per word, where lower values indicate less

segmentation; (2) Parity: cross-lingual fairness measured as the ratio of tokenized lengths I‘;E:g;‘l

for parallel sentences (Ali et al., 2024); (3) Proportion of continued words (PCW): fraction of words
requiring multiple tokens (Rust et al., 2020). See Appendix C for detailed results.

5 FINDINGS

We present the robustness results of the TokSuite models on the TokSuite benchmark. We report
the mean drop derived from a 10,000-trial bootstrap in Table 1. Paired Wilcoxon Signed-Rank Tests
(Wilcoxon, 1945) determine statistical significance of performance differences in Section F.1.

NEW
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Table 1: Tokenization robustness under multilingual text perturbations. Values represent relative

performance drop (%::C"e“); lower values indicate greater robustness. Perturbation types: In-
put: non-native keyboard/romanization; Diacr.: optional diacritics; Orth. Errors: orthographic er-
rors; Morph.: derivations/inflections/contractions; Noise: homoglyphs/OCR/typos/spacing; LaTeX:
LaTeX-style math formatting; STEM: scientific diagrams and notations; Unic.: Unicode styling
characters. NEN:non-English. Break-down of each category and detailed case studies are presented

in Appendix E. Green and red entries indicate notable robustness and fragility, respectively.

Model Input  Diacr. Orth. Gram. Morph Noise LaTeX STEM Unic Avg
NEN NEN EN NEN EN NEN EN NEN EN EN EN
TokenMonster 0.23 0.33 0.08 0.01 0.23 -0.07 0.10 0.18 0.21 0.10 0.51 0.17
Avg 0.26 0.38 0.13 0.07 0.23 -0.04 0.14 0.21 0.19 0.21 0.48 0.21
XGLM 0.34 0.49 0.10 0.11 0.25 0.07 0.12 0.22 0.29 0.29 0.11 0.22
BLOOM 0.30 0.34 0.13 0.07 0.18 0.11 0.18 0.18 0.24 0.11 0.57 0.22
ByT5 0.30 0.44 0.04 0.06 0.27 0.04 0.14 0.18 0.17 0.29 0.53 0.22
Comma 0.28 0.43 0.05 0.07 0.18 -0.00 0.11 0.20 0.23 0.29 0.61 0.22
mBERT 0.33 0.44 0.11 0.11 0.23 0.06 0.18 0.22 0.14 0.22 0.61 0.24
GPT-40 0.30 0.51 0.08 0.05 0.21 0.05 0.16 0.19 0.24 0.33 0.55 0.24
GPT-2 0.34 0.46 0.07 0.10 0.25 0.06 0.14 0.21 0.24 0.35 0.53 0.25
Phi-3 0.33 0.46 0.16 0.09 0.27 0.08 0.17 0.21 0.24 0.22 0.55 0.25
Gemma-2 0.32 0.42 0.14 0.15 0.24 0.03 0.16 0.25 0.22 0.36 0.57 0.26
Qwen-3 0.36 0.42 0.14 0.11 0.25 0.06 0.16 0.23 0.26 0.29 0.57 0.26
Llama-3.2 0.33 0.55 0.11 0.10 0.25 0.08 0.15 0.24 0.17 0.30 0.59 0.26
Aya 0.31 0.46 0.14 0.10 0.22 0.03 0.19 0.25 0.21 0.38 0.58 0.26
Tekken 0.33 0.47 0.18 0.03 0.31 0.10 0.14 0.21 0.27 0.43 0.54 0.27
Avg | 031 0.44 0.11 0.08 0.24 0.04 0.15 0.21 0.22 0.28 0.53 0.24

Impact of Tokenization Algorithm Design on Multilingual Robustness While orthographic and
morphological diversities present universal difficulties across tokenizers, TokenMonster’s perfor-
mance is particularly striking given its architectural constraints. Despite having a 32,000-token vo-
cabulary trained exclusively on English text—roughly one-tenth the size of multilingual competitors
like Aya or XGLM—it achieves the best average robustness score across all multilingual perturba-
tions, with the lowest average relative performance drop of 0.18 (see Table 1). This effectiveness
stems not from its vocabulary, but from its unique “ungreedy” tokenization algorithm that allows it
to revise the token sequence by looking ahead.

ByTS5 also demonstrates exceptional multilingual robustness, on average outperforming 9 models
(see Table 1) despite using only a 259-token vocabulary. Its byte-level “token-free” design achieves
minimal performance degradation across diverse perturbations: 0.04/0.06 drops for English/non-
English orthographic errors (see Table 1), 0.00 drop for English grammatical errors (see Table 10),
and top average 0.18 drop for multilingual noise (e.g., typos, OCR errors, etc.) (see Table 15). The
model shows particular strength in Turkish and Chinese scenarios, including romanized Pinyin han-
dling and even performance improvements (-0.11) with zero-width characters (see Table 8). How-
ever, this robustness comes at an efficiency cost, with the highest subword fertility and PCW scores
across all languages (see Appendix C), reflecting the robustness-efficiency trade-off. These findings
demonstrate that tokenization algorithm design and segmentation consistency can be critical factors
for multilingual performance, often more so than massive training data or vocabulary size.

Amplification of Tokenization Vulnerabilities under Multilingual Noise Noise-based pertur-
bations create systematic degradation across all tokenizers, but the average performance drop due
to noise is markedly more severe for non-English languages (0.22) compared to English (0.15)
(see Table 1). This degradation can stem from the core mechanics of subword tokenization: when
noise corrupts a familiar word, the tokenizer fragments it into unfamiliar or non-sensical subword
units. This effect is particularly damaging in morphologically complex languages. For instance,
a simple spacing error in the Turkish phrase “giin sayis1” (day count) causes it to be re-tokenized
into chaotic and less meaningful sequences like giin, ##s, ay, ##1s1 by mBERT or gi,
ns, ay, 1si by Llama-3.2. In contrast, the byte-level tokenizer ByT5 proves more resilient,
as character-level errors result in a predictably altered sequence of known bytes rather than catas-
trophic fragmentation. This suggests that the reliance on a fixed vocabulary in subword models
creates an inherent brittleness that is significantly exacerbated by noise in multilingual contexts. See
Section E.3 for a detailed case study of this fragmentation phenomenon.
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Structural Limitations in Mathematical and STEM Content Technical content presents unique
tokenization challenges extending beyond vocabulary coverage. Analysis of mathematical and
STEM content reveals critical tokenizer dependencies, with models showing significant performance
degradation (average drops of 0.23 for LaTeX and 0.29 for STEM content, see Table 1). Even in
simplified text completion format with mild technical notation, models exhibit vulnerability to de-
scriptive STEM content. The clearest example of destructive tokenization is XGLM, with the highest
LaTeX performance drop (0.30) and notable performance drop for STEM (0.29). This is likely due to
XGLM’s tokenizer employing an aggressive normalization strategy that creates a stark performance
trade-off. It excels at ignoring superficial text styling but fails significantly on technical domains
like STEM and LaTeX, where its “lossy” pre-processing destroys the essential structural and spatial
information required for comprehension. These domains rely heavily on precise whitespace treat-
ment, symbol placement, and structural conventions—parallel to challenges in coding tasks where
spacing and formatting carry semantic meaning. See Appendix E.4 for a detailed case study.

Universal Challenges Across Tokenizers Formatting presents a universal challenge. Unicode
styling and character transformations degrade performance consistently across nearly all models,
with an average drop of 0.53—the highest drop observed (see Tables 1, 17, 18). XGLM shows strong
robustness to these perturbations thanks to its NFKC normalization during preprocessing. While this
mitigates performance degradation from styled characters, it also means that the tokenizer cannot
faithfully represent or generate the diverse Unicode formatting present in real-world text.

Scaling Effects on Tokenization Robustness TokSuite remains a challenging benchmark across
different model capacities. In a controlled experiment comparing identically trained 7B and 1B
Llama-3.2 models, we observed limited difference in robustness (Table 20). While canonical per-
formance improves with scale, robustness remains roughly the same across all perturbed categories
except those related to noise. Evaluation of larger, industry-scale models (Table 19), trained for
orders of magnitude longer than the models in TokSuite, shows only modest improvements in ro-
bustness. These findings demonstrate that tokenization design is the dominant factor influencing
these robustness characteristics, more so than simply increasing parameter size or training duration.

6 RELATED WORK

While tokenization is relatively understudied compared to other aspects of LM development, some
past work has also studied how tokenization design choices influence model performance and cost.

Tokenization Design Factors: Ali et al. (2024) demonstrated that using English-centric tokenizers
in a multilingual setting leads to severe downstream degradation and up to 68% additional train-
ing cost owing to inefficient token coverage for non-English languages. Rust et al. (2020) found
that monolingual tokenizers play an equally important role for pretraining data size in downstream
performance. Islam et al. (2022) showed vocabulary-free neural tokenizers yielded substantial im-
provements for low-resource languages in multilingual natural language inference.

On algorithmic choice, ByT5 notably shows that a byte-level tokenizer can match or outperform
subword-level tokenizers on generative tasks. A comparative work compared mT5 (Xue et al., 2021)
and ByT5, which share architecture and data but differ in tokenization, and found that while their
overall performance is comparable, the ByT5 model requires more layers to encode morphologi-
cal information and performs differently across languages (Dang et al., 2024b). Hou et al. (2023)
showed that morphological segmentation consistently outperformed BPE across morphologically
rich languages, achieving lower perplexity and more efficient training convergence while enabling
smaller models to match larger BPE-trained counterparts. Richburg et al. (2020) provided con-
trolled evidence that Unigram language models perform translation more effectively and exhibit
superior recall for rare words compared to BPE, particularly in morphologically rich languages like
Swabhili and Turkish for neural machine translation (NMT). The original SentencePiece work (Kudo
& Richardson, 2018) reported processing speeds up to 380 times faster than subword-based NMT
in this setting, while achieving comparable or improved performance in machine translation. In an-
other thread, Huang et al. (2025) argued for decoupling input and output vocabularies and indicated
a log-linear benefit from scaling the input vocabulary, i.e., larger token sets often reduce loss and
improve performance. Schmidt et al. (2024) explored how vocabulary sizes over a specific range
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perform similarly across a moderate range for English tasks, suggesting diminishing returns from
very large vocabularies in that regime. Tao et al. (2024) demonstrated that most current LLMs use
insufficient vocabulary sizes, with their analysis suggesting Llama2-70B’s optimal vocabulary size
should be 216K tokens, 7 times larger than its actual vocabulary size with 32K tokens.

Tokenization Robustness and Vulnerabilities: Like our work, Chai et al. (2024) studied LM’s sen-
sitivity to typographical errors and ambiguities caused by the internal token structure; while scaling
model parameters mitigates this sensitivity it doesn’t eliminate it. Wang et al. (2024) developed an
adversarial dataset for tokenizer (ADT) framework, successfully degrading the performance of state-
of-the-art LM’s through vocabulary-based adversarial examples that exploit tokenization vulnerabil-
ities. They created “trap words” where concatenating two vocabulary tokens forms a different exist-
ing vocabulary token, causing LLMs to incorrectly tokenize inputs and produce completely wrong
responses, with particularly high effectiveness in Chinese due to tokenization complexity. Geh et al.
(2025) demonstrated “adversarial tokenization” using non-canonical segmentations that preserve
semantic meaning while evading safety alignment. Their approach successfully bypassed existing
defense mechanisms, including LlamaGuard and ShieldGemma, revealing fundamental flaws in cur-
rent LLM safety training pipelines. Several other previous works (Dhole et al., 2021; Wang et al.,
2021a;b) have also evaluated LM’s vulnerability to noise.

Limitations in the Background Work: Despite recent advances, tokenization research suffers from
critical gaps: lack of open-source model collections differing solely in tokenization, limited robust-
ness benchmarks for tokenizer evaluation, and narrow coverage of languages and tokenizer types.
To address these limitations, we trained and open-sourced 14 models with different tokenizers us-
ing identical architectures, developed a multilingual robustness benchmark, and evaluated models
across diverse input variations to isolate tokenization’s impact on performance and stability.

7 FUTURE WORK & LIMITATIONS

TokSuite models are trained exclusively on five languages with higher mixing rates than massive
multilingual models (for example, the highest mixing rate across all languages in mT5 (Xue et al.,
2021)’s training was less than 5%). This setup may underestimate multilingual interference ef-
fects present in more realistic settings, where cross-lingual interference could degrade performance.
While additional training data may alleviate some vulnerabilities, tokenizers provide a cost-free in-
ductive bias that fundamentally shapes robustness and efficiency. Critically, intrinsic properties like
compression rates directly constrain information processing within token budgets, forcing inefficient
tokenizers to underconsume or learn subpar representations for certain languages. While coding
tasks could present interesting challenges related to non-natural text and whitespace handling, we
excluded them from our benchmark due to inconsistent model performance at the scale we consid-
ered. Future research should expand to include these domains and broader linguistic coverage, and
investigate whether tokenization vulnerabilities persist at larger model scales.

8 CONCLUSION

Despite tokenization’s fundamental role in language model behavior, practitioners commonly adopt
off-the-shelf tokenizers without systematic understanding of their impact. To address this, we intro-
duced TokSuite: 14 identical language models differing only in their tokenizer, plus a benchmark
curated by native speakers probing natural variations that capture orthographic and morphological
challenges across 5 languages and technical domains. Our results show that tokenizer design can
matter more than vocabulary size—for example, an English-only tokenizer (TokenMonster) out-
performed larger multilingual ones on certain perturbations, while byte-level models proved more
robust to multilingual noise and subword fragmentation. Technical content analysis revealed crit-
ical vulnerabilities where trivial formatting differences caused catastrophic performance degrada-
tion. Our work provides clear evidence that tokenizer choice directly impacts model robustness
and capability across diverse contexts and will support future work on understanding the impact of
tokenization on LM performance.
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Figure 1: TokSuite is a comprehensive benchmark covering real-world perturbations that change
tokenization (left), and 14 models that share the same initialization, architecture, and data but differ
only in their tokenizers (right). Left panel illustrates how different tokenizers fragment the con-
cept “doctor” when subjected to OCR errors, orthographic mistakes, semantic equivalents, emoji
substitution, and multilingual translations. Each colored box represents one token across Gemma-2
(yellow), GPT-2 (blue), TokenMonster (green), and XGLM (red) tokenizers.
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Table 2: Comprehensive Overview of Selected Tokenizers—Part A: Basic Properties

Tokenizer
ByT5
TokenMonster
Phi-3
GPT-2
Comma
mBERT
Llama-3.2
Tekken
Qwen-3
GPT-40
BLOOM
Aya
Gemma-2
XGLM

Method Vocab. Size OOV Handling
Bytes 259 (XS) Bytes

Custom 32,000 (S) Ignores Unknowns
BPE 32,064 (S) Byte-fallback
BPE 50,257 (M) Byte-fallback
BPE 64,000 (M) Byte-fallback
WordPiece 110,000 (M) [UNK]

BPE 128,256 (M) Byte-fallback
BPE 130,000 (M) Byte-fallback
BPE 151,646 (L) Byte-fallback
BPE 200,000 (L)  Byte-fallback
BPE 250,680 (L) Byte-fallback
BPE 255,029 (L) Byte-fallback
Unigram 256,128 (L) Byte-fallback
Unigram 256,008 (L)  Byte-fallback

Language(s)
LA.

Pretokenization
None (raw bytes)

English-Only  None (boundaries are learned)
Multilingual ~ SentencePiece
English-Only ~ GPT-2
Multilingual ~ GPT-4
Multilingual BERT
Multilingual ~ GPT-4
Multilingual ~ GPT-40"
Multilingual ~ GPT-4*
Multilingual ~ GPT-40
Multilingual BLOOM
Multilingual ~ GPT-2
Multilingual ~ SentencePiece
Multilingual ~ SentencePiece

! Vocabulary bucket is indicated in ().
2 OO0V = Out-of-vocabulary
3 LA. = Language-agnostic

A  TOKENIZER PROCESSING GLOSSARY

PRETOKENIZATION
BERT

Pre-tokenization splits are based on whitespace and punctuation.

GPT-2 Pre-tokenization splits are done on whitespace and transitions between letters,
numbers, and punctuation.

GPT-4 GPT-4 pre-tokenization follows GPT-2’s approach, but it also creates a new token
after 3 contiguous digits. Note that Qwen 3 uses the same pretokenization as GPT-
4, but does not split numbers into groups of three.

GPT-40 GPT-40 pre-tokenization follows that of GPT-4, but specific contractions—(’s, ’d,

‘m, ’t, ’11, *ve, ‘re)—are not split from the preceding word. Note that Tekken uses

the same pre-tokenization methods as GPT-40, but
of the specific english contractions.
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Table 3: Comprehensive Overview of Selected Tokenizers—Part B: Processing Details. See Ap-
pendix A for detailed explanations of tokenization processing terminologies and methodologies.

Tokenizer Name

Numbers Contractions Unicode Norm. Whitespace Zerowidth chars

ByT5S N/A N/A None N/A 3 Bytes

TokenMonster Learned Learned NFD Learned Token

Phi-3 Split Learned None Manual Token

GPT-2 Group GPT-2 None Individual Token

Comma Group by 3 GPT-4 None Learned Token

mBERT Learned Composed None Normalized  Normalized/Removed

Llama-3.2 Group by 3 GPT-4 None Learned Token

Tekken Split GPT-4" None Learned Token

Qwen-3 Split GPT-4 NEC Learned Token

GPT-40 Group by 3  Learned None Learned Token

BLOOM Learned Learned None Learned Token

Aya Split GPT-2 NFC Learned Token

Gemma-2 Split Learned None Manual Token

XGLM Learned Learned NFKC Normalized  Normalized/Removed
BLOOM Pre-tokenization splits are done based on whitespace and punctuation like commas

and periods.

SentencePiece Pre-tokenization splits are done on whitespace, and at transitions between letters,

numbers and punctuation.

NUMBERS PROCESSING

Split

Group

Group by 3

Learned

CONTRACTIONS
GPT-2

GPT-4

Learned

Composed

Numbers are deterministically broken down into individual digits which are each
treated as single tokens.

Numbers are deterministically split from adjoining text during pre-tokenization.
The learning algorithm then determines which numbers become single tokens and
which are further tokenized.

Similar to Group, but contiguous digits are split into groups of 3 during pre-
tokenization. Again, the learning algorithm then determines which numbers are
single tokens. For example, “usernamel2345” is pre-tokenized into “username”,
“123”, and “45”, but “123” is not a token in V yielding a final token stream of
“username”, “17, “23”, “45”.

Numbers are not automatically segmented from surrounding text. Thus, the learn-
ing algorithm determines token boundaries for letters and numbers jointly. This
can result in tokens that include both characters and digits.

PROCESSING

A selected number of English contractions (’s, ’d, 'm, ’t, 11, ve, ’re) are manually
split into their own tokens. The learning algorithm then decides if they should be
their own token or if it should be broken down further. This makes it impossible
to have a token like “I’11”.

Uses GPT-4’s contraction processing method. The name set of contractions are
explicitly handled, but the regex is implemented differently. Note that Tekken
uses the GPT-4 regex without special casing english contractions; however, it still
results in splitting contractions from the base during pre-tokenization.

Contractions are not manually split from the base word; the learning algorithm
decides if the contraction should be its own token or a composition.

The pre-tokenization splits all contractions into multiple tokens (base, apostro-

phe, and contraction, e.g., he’ll — “he”, *”’, “II”’), which cannot be merged back
together in the learning algorithm.
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None No Unicode normalization is applied; characters are processed exactly as they
appear in the input. Note that this can result in V containing multiple tokens that
are visually the same, but differ in their underlying bytes, for example two “¢”
tokens, but one is represented by a single code point while the other is represented
as the composition of “e” and “””.

NFD Normalization Form Decomposed: Unicode characters are decomposed into their
constituent parts (base characters + combining marks separately).

NFC Normalization Form Composed: Unicode characters are composed into their
canonical combined form (base characters + combining marks merged when pos-
sible).

NFKC Normalization Form Compatibility Composed: Similar to NFC but also applies

compatibility mappings, converting visually similar characters to their canonical
equivalents before composition. Note that this can result in lossy detokenization
as characters like “2” are mapped to “2”.

WHITESPACE TREATMENT

Normalized Whitespace like tabs, newlines, and contiguous spaces are normalized to a single
space. This results in lossy detokenization and often stops the downstream model
from understanding domains with meaningful whitespace such as code.

Learned Each piece of contiguous whitespace is segmented into a single token during pre-
tokenization, then the learning algorithm decides how to subdivide them into indi-
vidual tokens. This results in whitespace being preserved and allows for lossless
detokenization.

Manual The handling of whitespaces during pre-tokenization matches Learned, but pre-
defined whitespace tokens of various sizes are used instead of learning them from
the data. This results in whitespace being preserved and allows for lossless detok-
enization.

Individual Whitespace is preserved, but each individual whitespace character is represented
as its own token. This yields long token sequences for whitespace heavy inputs.
This results in whitespace being preserved and allows for lossless detokenization.

3 Bytes Zero-width characters are maintained in their original 3-byte representation.
Token Zero-width characters are preserved and assigned as new tokens in the vocabulary.

Normalized/Removed Zero-width characters are either normalized to standard equivalents or com-
pletely removed.

B MODEL TRAINING

B.1 MODEL INITIALIZATION

We use the same initialization strategy as the Llama-1B configuration, however, we first create a
shared initialization where the size of the embedding table—and the final output layer—is the size
of the super vocabulary, | Es,| = |SV|. Each model then uses the parameter values from this shared
initialization for most layers. The embedding table for an individual model, F, is initialized by
selecting the appropriate rows from the super vocabulary embedding table. Thus after initialization,
E(z) = Eg(sv(X)). This results in a shared initialization for all models, including the initial
embedding value for any shared tokens.

B.2 MODEL PERFORMANCE

We evaluate all models on standard English reasoning tasks (HellaSwag (Zellers et al., 2019), ARC
Easy/Challenge (Clark et al., 2018), PIQA (Bisk et al., 2020)), multilingual natural language infer-
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ence (XNLI (Conneau et al., 2018) in English, Turkish, and Chinese), reading comprehension (Bele-
bele (Bandarkar et al., 2024) in English, Italian, Farsi, Turkish, and Chinese), and a multilingual rea-
soning benchmark (INCLUDE Base 44 (Romanou et al., 2025) in Chinese, Italian, and Turkish) in
Fig. 2. Although models achieve sufficient performance on easier English reasoning tasks, their per-
formance on more advanced multilingual reading comprehension and reasoning benchmarks hardly
exceeds the random baseline. Results for Belebele and INCLUDE are omitted from the figures
for visual clarity, as their performance trends were consistent with this pattern, slightly above ran-
dom but not competitive across languages. Note that models with larger vocabulary (Aya, XGLM,
mBERT, Gemma-2, GPT-40, and Llama-3.2) tend to perform better on the downstream tasks, with
TokenMonster and Tekken falling slightly behind.

hellaswag arc_easy arc_challenge piqa
Aya I
Qwen-3 I
BLOOM I
Comma
XGLM I
mBERT I
ByT5 I
Gemma-2 I

Tekken FE—
GPT-40 I
TokenMonster I

0.80 0.25 0.50 0.80 0.25 0.50 0.0 0.2 0.4 0.0 0.5
Accuracy Accuracy Accuracy Accuracy
xnli_en xnli_tr xnli_zh

Aya IE—— I I
Qwen-3 I I I
BLOOM — I I
Comma

XGLM - I I
mBERT I— I I
ByT5 I I
Gemma-2 I I I
GPT-2 I— I I
Llama-3.2 I— I I
Phi-3 I I I
Tekken I I I
GPT-40 I I I
TokenMonster I | |
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2

Accuracy Accuracy Accuracy

Figure 2: Model Performance on Multilingual Benchmarks

B.3 TRAINING DATA CONSUMPTION AND FAIRNESS

The training process utilizes a deterministic data loader, sampling documents in the same order for
all models. However, the varying compression efficiency of each tokenizer results in variation in the
tokenized batch streams, which leads to different total numbers of actual UTF-8 bytes consumed for
a fixed token budget. This consumption difference is an inherent consequence of tokenizer design
and is unavoidable when comparing tokenizers under current LLM training practice (fixed token
budget). To quantify this trade-off, we reconstructed the entirety of the text data consumed by each
model 2, detokenized each batch, and computed the total UTF-8 bytes seen. ByT5 consumed 100
GB, while others ranged from ~ 215 GB to ~ 477 GB, with the exact numbers provided in Table 4.
Crucially, models that consumed a greater total byte count were not necessarily the best performers
(Table 1), suggesting that the tokenization strategy plays a larger role than the sheer volume of raw
input.

C INTRINSIC TOKENIZATION EFFICIENCY METRICS

Tokenizers exhibit varying degrees of compactness when segmenting text into tokens, resulting in
notable disparities in model performance across languages and domains. To systematically evaluate
these differences, we analyze several metrics across our selected pretrained tokenizers, focusing on
our five languages.

We compute three primary intrinsic efficiency metrics using 10,000 parallel random samples from
Flores200 (Team et al., 2022), split into “real” words via language-specific word-level tokenizers
from the DataTrove library (Penedo et al., 2024b):

2[link redacted for anonymity]

—_
\©
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Table 4: Data consumed during training across different tokenizers

Model Data Consumed (GB)
ByT5 100.00
TokenMonster 215.61
GPT-2 263.81
Comma 278.59
Phi-3 287.38
Llama-3.2 397.58
Qwen-3 411.23
Tekken 437.00
BLOOM 437.66
mBERT 445.80
GPT-40 467.10
Aya 468.44
Gemma-2 471.38
XGLM 477.22

* Subword fertility (SF): is the mean number of tokens used to represent each “real” text
word. This reflects how aggressively a tokenizer segments words. The theoretical minimum
is 1, implying that the tokenizer’s vocabulary encompasses every word in the reference text
(Penedo et al., 2025).

* Parity: evaluates whether a tokenizer processes equivalent sentences fairly across lan-
guages. Achieved when the ratio of tokenized lengths ;;E:gg} ~ 1 for parallel sentence

sets s4 and sp from languages A and B (Ali et al., 2024).

* Proportion of continued words (PCW): is the proportion of “real” text words that require
two or more tokens for encoding. This metric indicates how frequently a tokenizer splits
words. A score of 0 means no splitting occurs, while a score of 1 means every word is split
(Rust et al., 2020).

The intrinsic metrics reflect a tokenizer’s efficiency in processing a language and are critical fac-
tors in tokenizer selection, as they directly impact an LM’s computational cost, context window
utilization, and representation quality. Table 5 reveals substantial disparities in how our tokenizers
handle our target languages. ByT5 and tokenizers with smaller vocabularies (TokenMonster, and
Phi-3) exhibit significantly higher subword fertility and PCW scores, particularly for non-English
languages—ByTS5 requires 7.72 tokens per word in Farsi compared to 4.40 in English. Multilingual-
specialized tokenizers (MBERT, XGLM) demonstrate superior language parity, with XGLM achiev-
ing near-optimal parity scores (1.18 average) and mBERT showing the lowest average subword
fertility (1.54).

Notably, vocabulary size alone does not guarantee efficiency; Qwen-3 and Gemma-2, despite hav-
ing large vocabularies (>150K), show comparable or worse performance than smaller vocabulary
tokenizers like mBERT on certain metrics. We also observe higher fertility and PCW scores for
morphologically rich languages (Turkish, Farsi) compared to English.

D TokSuiTE BENCHMARK DETAILS

D.1 QUESTION STYLE AND DIFFICULTY

The TokSuite benchmark comprises straightforward multiple-choice text completion questions.
Below we present the canonical English questions that form our English subset, which are subse-
quently translated into Farsi (FA), Italian (IT), Turkish (TR), and Chinese (ZH). The fourteen models
demonstrate strong performance on the canonical questions in English and Italian (Fig. 4), while the
canonical accuracy on Farsi, Turkish, and Chinese is slightly behind. Higher subword fertility, PCW,
and parity scores in these three languages (see Table 5) suggest that the models are likely to consume
less information measured in raw bytes in these languages.
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Table 5: Multilingual Tokenizers Comparison on Flores200 Using Intrinsic Tokenizer Efficiency
Metrics. sf denotes subword fertility, pcw denotes proportion of continued words, and parity is
measured against English parallel samples. Summary statistics report average values across all lan-
guages. Lower is better for all metrics. Bold font highlights the best performance in each row.
Models are ordered from smallest to largest vocabulary size, left to right. Vocabulary size is catego-
rized as XS, S, M, and L for < 1K, 1K-50K, 50 K-150K, and > 150K tokens, respectively.

$
S & o
S )
S » y
o § oo §8FsEFS §
S I FTFHF S F T § 5§88 s
Tokenizer 3 & oy < @ § N & S ¢ X o <
Vocab. Size XS S S M M M M L L L L L L
English sf 440 1.75 124 130 144 1.15 1.28 1.19 1.14

1.2
English pcw 0.87 0.56 0.16 0.23 0.34 0.10 0.2

Chinese sf 500 492 344 354 245 1.68 149 164 121 144 116 123 128 2.19
Chinese pcw 098 097 097 082 0.58 055 035 041 0.16 032 013 0.18 0.21 0.87
Chinese parity | 0.94 499 2.03 321 194 140 129 143 1.02 127 093 1.05 1.09 1.15

Turkish sf 649 431 320 320 329 199 238 244 258 233 271 217 223 1.69
Turkish pcw 0.87 0.80 0.76 0.76 0.78 0.52 0.72 0.73 0.74 0.71 0.72 0.68 0.69 0.52
Turkish parity | 1.12 3.34 2.11 245 221 137 139 150 1.63 143 198 121 139 1.12

Farsi sf 772 774 477 491 443 153 194 192 245 193 2.01 1.85 1.83 136
Farsi pcw 095 094 093 090 090 031 0.58 0.58 0.67 057 0.58 0.53 0.53 0.28
Farsi parity 1.72 945 4.08 535 431 138 1.52 147 2.63 155 1.80 148 145 1.21

Italian sf 478 250 1.64 199 205 134 1.81 1.77 1.83 1.71 1.75 1.61 154 1.36
Italian pcw 0.84 0.63 042 057 0.59 023 055 053 055 052 051 047 041 0.32
Italian parity 1.19 230 148 2.02 187 128 1.62 140 1.64 147 163 131 133 124

Avg sf 579 439 290 3.19 293 154 178 1.82 1.87 1.73 1.79 1.61 1.60 1.56
Avg pcw 090 0.78 0.62 0.66 0.64 0.34 048 050 047 046 0.44 040 039 0.46
Avg parity 1.27 531 254 344 274 136 146 145 173 143 159 126 132 1.18
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Figure 3: Tokenizer performance comparison across languages using Flores200 dataset with intrin-
sic efficiency metrics (fertility, parity, and proportion of continued words). Lower is better.
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Dr Smith is a doctor. Occupation of Dr Smith is: doctor, teacher, judge, lawyer
The color of the sky is: blue, red, green, yellow

The price of this house is 1,028,415 dollars. The cost of this house is: 1,028,415 dollars,
1.028.415 dollars, 1,028,411 dollars, 1,028.415 dollars

Today’s date is 29/08/2025. Today is: 29/08/2025, 19/08/2025, 26/08/2025, 29/09/2025
The number of continents on Earth is: 7, 5, 6, 8

The capital city of Iran is: Tehran, Mashhad, Baghdad, Isfahan

The number of days in a week is: 7, 5, 6, 8

The number of hours in a day is: 24, 20, 25, 30

The number of legs a cow hasis: 4, 8, 3, 5

The number of minutes in 2 hours is: 120, 100, 140, 90

The number of months in a year is: 12, 10, 11, 13

The number of seconds in a minute is: 60, 50, 100, 30

The number of sides a hexagon has is: 6, 5, 7, 8

The number of sides a triangle has is: 3, 2, 4, 5

In “I work at Apple”, Apple is: company, person, city, fruit

In “T work at Google”, Google is: company, person, city, fruit

In “Microsoft released a new update”, Microsoft is: company, person, place, date
In “The cat sat on the mat”, the subject is: the cat, sat, the mat, on

The gas humans need to breathe to live is: oxygen, methane, helium, hydrogen
10% of 100 is: 10, 5, 15, 20

25% of 80 is: 20, 15, 25, 30

Chad’s capital is: N’Djamena, Moundou, Abéché, Ngama

The capital of France is: Paris, London, Berlin, Rome

The capital of Japan is: Tokyo, Kyoto, Osaka, Hiroshima

The capital of Turkey is: Ankara, Istanbul, Izmir, Bursa

The chemical formula for water is: H20, CO2, NaCl, 02

The intent in “What time does the store close?” is: get information, make purchase, book
appointment, file complaint

The largest mammal in the world is: blue whale, dolphin, giraffe, bear

The unit of measurement for temperature in the International System is: Kelvin, Celsius,
meter, Rankine

The country whose space agency is NASA is: United States, Russia, China, Japan
The language spoken in Brazil is: Portuguese, Spanish, French, Italian

The metal with chemical symbol *Fe’ is: iron, lead, zinc, gold

The organ in the human body that pumps blood is: heart, liver, lungs, kidneys
The planet closest to the Sun in our solar system is: Mercury, Venus, Mars, Earth
The largest planet in the Solar System is: Jupiter, Earth, Saturn, Mars

The process that allows plants to produce their own food using sunlight is: photosynthesis,
respiration, digestion, fermentation

The author who wrote the play “Romeo and Juliet” is: William Shakespeare, Charles
Dickens, Mark Twain, Jane Austen

What bees produce is: honey, milk, silk, wax
What plants need from the air to make food is: carbon dioxide, nitrogen, hydrogen, helium

In “Can you please book a flight to Paris?”, the person wants to: make a booking, go
shopping, file a complaint, cancel reservation
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Figure 4: Accuracies of models on canonical versus perturbed questions across the English
(eng_Latn), Italian (ita_Latn), Farsi (pes_Arab), Turkish (tur_Latn), and Chinese (zho_Hans)
TokSuite subsets.

D.2 BENCHMARK COMPOSITION
In Table 6, we list the composition of the categories and perturbations in TokSuite. The multilin-
gual parallel dataset comprises 80% of the dataset, while the remaining part covers math, STEM,

and general questions.

Table 6: Benchmark statistics by language and domain

Language/Domain  Total Examples Perturbations

English 1,180 42 types
Chinese 485 18 types
Turkish 638 21 types
Italian 1,088 19 types
Farsi 747 15 types
Math 189 5 types
STEM 614 25 types
General 89 4 types

E DETAILED BENCHMARK RESULTS
In this section, we provide case studies for each category in Section 4.1.

E.1 ORTHOGRAPHIC & SCRIPT CHALLENGES

Variations in Writing Systems or Input Mediums Table 7 examines tokenization robustness un-
der orthographic and script challenges, focusing on variations in writing systems or input mediums
where users employ non-native keyboards. For Chinese romanization, we write the full question and
choices in Pinyin without tone markers—as if the user only has access to an English keyboard—with
spaces between individual groups that constitute a character for easy segmentation. However, this
segmentation aid does not improve tokenization robustness, as models still exhibit substantial perfor-
mance degradation (0.60 relative accuracy drop) when processing romanized Chinese text compared
to native scripts. For Farsi, we examine two romanization approaches: (1) Finglish-style romaniza-
tion (FA column), where Persian text is written using Latin characters following common transliter-
ation practices used by native speakers on English keyboards, and (2) number-based romanization,
where Persian numerals replace corresponding characters (e.g., using digits like 2, 3, 7 as phonetic
substitutes). We also evaluate cross-script keyboard constraints: Latin-script languages (Italian and
Turkish) are tested with English keyboard layouts (TR, IT columns), while Farsi is tested with Ara-
bic keyboard input (Arabic Keyboard column), reflecting common scenarios where users lack access
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Table 7: Tokenization robustness under different input mediums or writing systems, granular version

of Input in Table 1. Values represent relative performance drop (%); lower values indicate

greater robustness. ‘Traditional’ refers to traditional Chinese characters instead of simplified.

Model Romanization Number English Keyboard Arabic Traditional Avg
Romaniza- Keyboard
tion
FA ZH FA TR IT FA ZH
TokenMonster 0.46 0.58 -0.10 -0.04 0.21 0.25 0.02 0.20
Comma 042 059 0.21 0.03 0.24 0.42 0.04 0.28
GPT-40 0.57 0.67 -0.03 022 0.09 0.43 0.03 0.28
Llama-3.2 0.60 0.66 -0.23 0.24 0.14 0.53 0.09 0.29
BLOOM 0.63 048 0.08 021 0.15 0.40 0.10 0.29
Aya 0.55 0.62 0.01 0.06 0.16 0.55 0.12 0.29
ByT5 0.61 0.46 0.21 0.13 0.15 0.39 0.18 0.30
Tekken 0.59 0.61 0.00 0.17 0.20 0.44 0.18 0.31
Gemma-2 0.40 052 0.28 0.24 0.19 0.47 0.18 0.32
Phi-3 0.58 0.66 0.25 0.06 0.24 0.39 0.09 0.33
XGLM 0.59 0.63 0.13 029 0.19 0.41 0.10 0.34
mBERT 0.44  0.60 0.42 022 0.18 0.50 0.10 0.35
GPT-2 0.61 0.67 0.31 0.30 0.16 0.32 0.11 0.35
Qwen-3 0.68 0.64 0.19 0.15 0.19 0.47 0.18 0.36
Avg | 0.55 0.60 0.12 0.16 0.18 0.43 0.11 0.31

Table 8: Tokenization robustness under errors from input mediums. Values represent relative per-
Accean —AcCpert P
formance drop (—5—==); lower values indicate greater robustness.

AcCean
Model Homoglyphs Zero-width chars. Avg
EN FA ZH
mBERT 0.08 0.09 0.00 0.06
Phi-3 0.03 0.21 -0.06 0.06
TokenMonster 0.09 0.18 -0.06 0.07
BLOOM 0.12 0.17 -0.07 0.07
XGLM 0.03 0.19 0.03 0.08
ByT5S 0.06 0.32 -0.11 0.09
Comma 0.05 0.32 -0.07 0.10
GPT-40 0.14 0.23  -0.03 0.11
Aya 0.28 023 -0.14 0.12
Gemma-2 0.15 0.27 0.03 0.15
Llama-3.2 0.12 0.30 0.03 0.15
GPT-2 0.13 0.23 0.13 0.16
Tekken 0.13 0.29 0.10 0.17
Qwen-3 0.11 0.38 0.11 0.20
Avg | 0.11 0.24 -0.01 0.11
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to their native keyboard. Finally, the Traditional column assesses Chinese model performance when
presented with Traditional Chinese characters instead of the standard Simplified Chinese characters
used in training. Across these input medium variations, models show varying degrees of robustness,
with average relative performance drops ranging from 0.11 (Traditional Chinese) to 0.60 (Chinese
romanization).

Homoglyphs and Zero-width Characters In Table 8, the errors due to input systems (like homo-
glyphs and zero-width characters) are presented. This category examines tokenization robustness
under typographic irregularities: (1) homoglyphs in English, where visually identical characters
from different Unicode scripts (e.g., Cyrillic ‘0’ vs. Latin ‘0’) replace their Latin counterparts,
and (2) zero-width characters (invisible Unicode characters like zero-width spaces) inserted into
Farsi and Chinese text. This category tests whether tokenizers can handle Unicode irregularities
and visually deceptive characters-issues that arise from copy-pasting text across different systems,
malicious input, or encoding errors. Models demonstrate relatively good robustness to homoglyphs
(0.11 average drop) and Chinese zero-width characters (-0.01 average), but show moderate degrada-
tion with Farsi zero-width characters (0.24 average drop), likely because of its dual reliance on both
white-space boundaries for word segmentation and contextual letter joining rules (where zero-width
joiners/non-joiners are legitimately used), making tokenizers particularly sensitive to incorrectly
placed invisible characters that can simultaneously disrupt both spacing patterns and character con-
nectivity.

Table 9: Tokenization robustness to diacritics, granular version of Diacr in Table 1 and wrong
accents in Italian. Values represent relative performance drop (M); lower values indicate

AcCean
greater robustness.
Model Diacritics Wrong Avg
accents
FA ZH IT
BLOOM 033 0.37 0.08 0.26
TokenMonster 0.21 045 0.17 0.28
GPT-2 042 050 -0.02 0.30
Qwen-3 041 043 0.10 0.31
ByT5 042 046 0.06 0.31
mBERT 031 057 0.06 0.31
Gemma-2 043 042 0.10 0.32
Phi-3 0.39 053 0.05 0.32
Tekken 047 048 0.07 0.34
Aya 045 048 0.10 0.34
XGLM 044 054 0.11 0.36
GPT-40 047 057 0.08 0.37
Comma 0.39 048 0.30 0.39
Llama-3.2 0.60  0.50 0.16 0.42
Avg \ 041 049 0.10 0.33

Diacritics Perturbations Table 9 expands on diacritics perturbations, examining how tokenizers
handle optional Farsi diacritics that are used to clarify pronunciation and phonetic details, Chinese
tonal variations in the Pinyin format, and incorrect accent placement in Italian text. We test how
tokenizers handle optional diacritics, where text remains valid with or without marks (e.g., marks
placed above or below letters to clarify pronunciation and phonetic details such as short vowels (fatha
for /a/, kasra for /e/, damma for /o/), or sukiin for the absence of vowels in Farsi), wrong accents
such as using € instead of ¢ in Italian. Models experience substantial performance degradation when
diacritics are added to Chinese (0.49 average drop) and Farsi (0.41 average drop), languages that
typically lack such markers. This indicates that tokenizers trained on undiacritized text struggle
when these marks are introduced, despite their disambiguating potential. In contrast, models show
much higher robustness to incorrect Italian accents (0.10 average drop). Among models, BLOOM
performs best overall (0.26 average drop) due to its multilingual design; TokenMonster excels on
Farsi (0.21 drop); GPT-2 slightly improves on Italian wrong accents (-0.02 drop); while Llama-3.2
exhibits severe degradation on Farsi (0.60 drop).
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Orthographic and Grammatical Errors Table 10 reveals that orthographic and grammatical er-
rors create varying challenges depending on the morphological complexity of the language. Token-
Monster and ByT5, a character-level approach, demonstrate the strongest performance.

Table 10: Tokenization robustness under orthographic and grammatical errors. Values represent
. AcCean —ACCpert \ . . .
relative performance drop (—5——==); lower values indicate greater robustness.

Accean
Model Orthographic Errors Grammatical Errors Phonetic Avg
EN TR IT EN TR IT 1T
TokenMonster 0.10 0.04 0.04 0.06 0.03 -0.03 0.04 0.04
ByT5 0.06 0.10 0.08 0.00 -0.01 0.04 0.02 0.04
GPT-40 0.12 0.13 0.08 0.00 0.05 -0.01 0.02 0.06
Comma 0.09 0.20 0.06 -0.03 0.13 0.01 0.04 0.07
Llama-3.2 0.14 0.18 0.13 0.05 0.07 0.03 0.02 0.09
Tekken 0.24 0.23 -0.01 0.08 0.21 -0.07 -0.01 0.09
GPT-2 0.08 0.30 0.10 0.05 0.12 0.01 0.09 0.11
BLOOM 0.18 0.24 0.05 0.03 0.21 -0.01 0.07 0.11
Qwen-3 0.17 0.18 0.12 0.08 0.15 0.05 0.02 0.11
Phi-3 0.18 0.22 0.13 0.11 0.09 -0.02 0.07 0.11
Aya 0.21 0.21 0.13 0.03 0.07 0.02 0.14 0.11
mBERT 0.15 0.41 0.08 0.03 0.22 -0.02 0.04 0.13
XGLM 0.13 0.32 0.12 0.03 0.23 -0.02 0.15 0.14
Gemma-2 0.18 0.30 0.12 0.05 0.29 0.07 0.09 0.16
Avg | 0.14 0.22 0.09 0.04 0.13 0.00 0.06 0.10

Orthographic Errors Orthographic errors represent spelling mistakes and character-level vari-
ations commonly encountered in real-world text, including vowel substitutions, consonant errors,
phonetic spelling variants, common misspellings, and punctuation errors. Imagine perturbing the
word “week” to “weak” in the question, “The number of days in a week is”. This change breaks
6/14 models despite both words existing as distinct tokens with separate embeddings. This sug-
gests that tokenization robustness depends not merely on vocabulary coverage but on the semantic
stability of token representations.

Grammatical Errors Consider the Turkish locative suffix variants “saatteki” for the root saat (in
the hour) versus the incorrect “saatdeki” as part of the canonical question “2 saatteki dakika sayis1”
(Translation in English: “The number of minutes in 2 hours is”).

This example demonstrates how agglutinative languages amplify tokenization brittleness: a single
phoneme change (/t/ to /d/) can completely restructure token boundaries. This reflects the curse of
multilinguality, where tokenizers trained predominantly on English struggle with morphologically
complex languages, sometimes producing cleaner segmentation—with meaningful morphemes—for
incorrect forms than correct ones (as Gemma-2 and BLOOM below). English grammatical errors
on the other hand—with wrong prepositions, subject-verb agreement, etc—tend to change token
boundaries less and we observe a less striking performance degradation in Table 10.

Assimilation error (“saatteki” vs. “saatdeki”):

« BLOOM, Gemma-2: sa, atte, ki vs. saat, de, ki (meaningful morphemes
after error)

* XGLM: saat, tekivs.saat, deki (clean morpheme separation)

* Llama-3.2: sa, atte, kivs.sa, at, deki (inconsistent segmentation)

* mBERT: saat, ##tek, ##1ivs. saat, ##deki (subword fragmentation changes)
* Qwen-3: sa, atte, kivs.sa, at, de, ki (boundary reorganization)

* TokenMonster: sa, at, tek, ivs.sa, a, td, ek, i (severefragmentation)
e GPT40: s, aat, te, kivs.s, aat, de, ki (character-level consistency)

* Tekken: sa, atte, kivs.sa, at, deki (partial boundary preservation)

e GPT-2: sa, at, te, kivs.sa, at, d, eki (fine-grained segmentation)

Turkish final-obstruent devoicing error (“inegin” — “inekin”) in the word cow’s (possesive)
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e« BLOOM: ine, ¢, §, invs.in, ekin

* XGLM: in, e, §, invs.in, ekin

e Llama-3.2: ine, C, §, invs.ine, kin

e mBERT: [UNK] vs. in, ##ekin (unknown token fallback)

e Qwen-3: ine, C§, invs.ine, kin

* TokenMonster: ine, g, “i, nvsine, kin (diacritic decomposition)
e Gemma-2: ine, §, invs.ine, kin

¢ GPT-40: ine, §, invs. ine, kin

e Tekken: ine, §, invs. ine, kin

e GPT-2: ine, &, invs.ine, kin

Register and Style Variations Consider using emoji substitution in “The capital of Japan is” by
replacing “Japan” with the Japan’s flag.

Table 11: Tokenization robustness under different register and style variations. Values represent rel-
ative performance drop (W); lower values indicate greater robustness. Abb.: abbreviations,
Word Ord.: word reordering, emoji: emoji substituion, char. subs.: character substitution, repet.:

letter repetition for emphasis

Model Web Search Abb. Word Ord. Phonetic Colloquial Emoji Char. Repet. Avg

Subs.
EN TR IT EN IT EN TR 1T EN FA TR ZH EN EN EN

TokenMonster | 0.26 0.07 0.38 032 0.04 0.06 - 0.04 0.11 0.00 - 0.04 0.25 - 022 0.1
0.01 0.00 0.07

mBERT 0.33 0.25 0.23 0.27 0.07 0.08 0.18 0.04 0.15 0.09 0.12 0.18 0.29 - 0.18  0.16
0.08

GPT-40 0.36 0.34 0.53 0.18  0.09 0.05 0.03 0.02 0.20 0.10 0.12 0.15 0.16 - 021 0.17
0.01

ByT5 0.40 0.30 0.29 0.28 0.11 0.06 0.12 0.02 0.15 0.19 0.14 0.16 0.32 - 0.11  0.17
0.04

Comma 0.43 0.33 0.43 032 0.08 - 0.03 0.04 0.12 0.13 0.14 0.19 0.23 0.01 0.13  0.17

0.03

BLOOM 0.41 0.36 031 0.24  0.09 0.12 0.20 0.07 0.17 0.20 0.15 0.01 0.20 0.00 0.17  0.18

GPT-2 0.29 0.36 0.38 0.20 0.16 0.13  0.15 0.09 0.10 0.06 0.18 0.21 0.26 - 028 0.19
0.05

XGLM 0.29 0.32 0.30 029 0.16 0.03 0.17 0.15 0.20 0.22 0.17 0.15 0.33 0.01 0.08 0.19

Llama-3.2 0.38 0.32 0.36 0.30 0.13 0.10 0.14 0.02 0.19 0.17 0.08 0.17 0.25 0.06 027 020

Tekken 0.49 0.34 0.42 0.29 0.01 0.05 0.19 - 0.16 0.26 0.07 0.24 0.26 0.01 020 020

0.01

Aya 0.42 0.38 0.33 0.28 0.24 0.08 0.20 0.14 0.17 0.13 0.11 0.15 0.11 - 032 020
0.03

Qwen-3 0.32 0.41 0.49 026 - 0.08 0.17 0.02 0.14 0.32 0.17 0.16 0.14 0.08 036 021

0.03

Gemma-2 0.50 0.36 0.54 025 0.28 0.08 0.15 0.09 0.18 0.07 0.12 0.24 0.18 0.04 020 022

Phi-3 0.43 0.31 0.62 020 0.04 0.11 0.15 0.07 0.24 0.21 0.19 0.23 0.33 - 028 022
0.05

Avg 0.38 0.32 0.40 0.26 0.11 0.07 0.13 0.06 0.16 0.15 0.13 0.16 0.24 - 021 0.19
0.01

Emoji handling reveals differences: Most modern tokenizers like Gemma-2, GPT-40, Tekken, GPT-
2, and Qwen-3 have emojis in their vocabulary, correctly parse the Japanese flag emoji into two
tokens as the corresponding regional indicators ([J] and [P]). Aya on the other hand has a stand-
alone token for the flag emoji. BLOOM, Llama-3.2, and TokenMonster use byte-fallback, XGLM
and mBERT resort to unknown tokens. The coverage of emojis translate into good performance in
the Emoji substitution perturbations (see Table 11).

Linguistic Variety Table 12 examines how tokenizers handle linguistic diversity including his-
torical spellings, code-switching, dialects, and colloquial expressions. TokenMonster demonstrates
remarkable consistency across varied linguistic phenomena (0.08 average drop), while most mod-
els struggle significantly with certain types of variation. In Table 13, we group the models based
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on their vocabulary size (see Table 2) to investigate potential correlations with vocabulary size, as
larger vocabularies theoretically provide more comprehensive dictionaries.

Counterintuitively, vocabulary size shows little to no correlation with linguistic robustness—byte-
level model (ByT5) demonstrates superior consistency despite operating without traditional vocabu-
lary constraints, while some large-vocabulary tokenizers exhibit significant brittleness. We observe
that larger vocabulary size doesn’t always produce a lexically-rich vocabulary. Modern tokenizers
may actually compound the problem by learning multiple variants of common words (Gemma-2
has distinct tokens for “hello”, ““ hello”, “Hello”, and * Hello”), reducing the effective vocabulary.
While this multiplicity has efficiency gains it could make models sensitive to stylistic variations that
should be semantically equivalent.

Historical spelling variants (“capitall”, “Japane”) demonstrate systematic fragmentation patterns
where tokenizers often segment archaic or non-standard spellings along morphological boundaries:

* Most tokenizers: capit, all and Jap, ane (consistent morpheme-like splitting)
* mBERT: capital, ##1 and Japan, ##e (subword suffix handling)
* XGLM: capital, 1 and Japan, e (clean separation)

Colloquial expressions reveal deeper challenges in world knowledge representation. The question
“Turkey’s capital turns out to be”” with the correct answer “Ankara” illustrates how informal phrasing
can disrupt factual recall: as it breaks 3 models. This suggests that tokenizers’ handling of casual
discourse markers and words (“turns out to be”’) may interfere with models’ access to factual knowl-
edge. The pattern indicates that linguistic variety challenges extend beyond mere tokenization to
fundamental issues of how models integrate linguistic style with semantic content.

E.2 MORPHOLOGICAL CHALLENGES

Table 14 examines how tokenizers handle morphological variations including derivations, inflec-
tions, and contractions across English, Turkish, and Italian. Morphological perturbations reveal
fundamental inconsistencies in how tokenizers segment related word forms—contractions like
“Google’s” versus decomposed forms, or Italian elision patterns where “dell’Italia” and “d’Italia”
receive dramatically different tokenization despite identical meaning. These inconsistencies suggest
that current tokenization approaches lack coherent strategies for handling morphologically related
forms, potentially leading models to develop disparate semantic representations for linguistically
equivalent expressions. For example while BLOOM learns contractions, GPT-2 and GPT-40 use a
regex-based search.

English Contractions: “Google is”— “Google’s”
« BLOOM, Llama-3.2, Qwen-3, Gemma-2, GPT-2, GPT-40, Tekken,: Google, ’s
(separate marker)
* XGLM, mBERT: Google, ', s (fragmentation)

* TokenMonster: google, ’s (lowercase normalization)

Italian Ellisions The Italian contraction “L’intento” (the intent) demonstrates varying approaches
to handling elided articles:

e BLOOM:1’, int, ento

e XGLM: L, ’, inten, to

e Llama-3.2: ., ’"int, ento

e mBERT: 1., ’, intento

e Qwen-3: ., ’int, ento

e TokenMonster: 1’, intent, o
e Gemma-2: 1., ', int, ento

Shttps://www.oed.com/search/dictionary/?scope=Entries&qg=capitall
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Table 12: Tokenization robustness under linguistic variety. Values represent relative performance
drop (M); lower values indicate greater robustness. Hist.: historical spelling, equiv. exp.:

Accean
equivalent expressions, sim. words: similar words
Model Hist. Code switch Dialects Equiv. exp. Sim. words Avg
EN FA TR IT ZH FA TR IT EN FA TR ZH EN TR IT

TokenMonster | 0.09  0.07 0.00 000 003 022 009 0.17 014 007 004 003 003 -0.06 022 0.08
ByT5 0.06 003 004 006 -0.04 029 0.5 015 002 013 006 004 008 -0.08 024 0.08
Comma 021 010 0.3 006 003 030 0.04 006  -0.05 0.10 0.06 003  0.08 -0.02 028 0.09
BLOOM 025  -0.07 0.16 -0.03 -0.04 031 0.9 0.4 005 007 0.4 -0.07 009 013 026 0.11
mBERT 011 009 0.16 003 009 030 031 012  -0.05 0.06 004 006  0.02 023 005 0.1
Tekken 021 012 0.16 -003 003 037 014 -0.02 017 015 006 003 005 0.18 -0.01 0.11
GPT-40 008  -0.03 0.10 -0.08 0.07 029 0.10 0.14  0.14 -0.03 -0.03 0.13 005 029 044 0.11
XGLM 018 009 021 006 -003 030 0.5 002 017 003 010 009 008 0.16 0.10 0.11
Gemma-2 031 017 005 005 0.0 033 023 007 0.7 000 0.07 -0.10 004 008 040 0.13
Aya 021 003 0.3 008 003 030 0.8 0.4 027 016 0.10 000 007 0.10 023 0.14
GPT-2 018 010 0.8 006 020 028 023 023 007 010 0.14 003 009 008 0.10 0.14
Llama-3.2 025 003 0.3 003 009 024 005 0.7 010 003 017 0.19 009 0.16 040 0.14
Qwen-3 032 021 018 005 004 034 0.18 0.1 002 024 0.17 -0.07 009 022 0.15 0.15
Phi-3 032 012 016 009 013 035 0.0 023  -0.05 0.I5 034 009 009 029 0.19 0.17
Avg | 020 008 0.3 003 005 030 0.5 0.2 008 009 0.1 003 007 0.3 022 0.I2

Table 13: Tokenization robustness under linguistic variety. Same as Table 12 but grouped under

. . Accean—Acc PEET)
vocabulary size. Values represent relative performance drop (—5——>"); lower values indicate
can

greater robustness. Hist.: historical spelling, equiv. exp.: equivalent expressions, sim. words:
similar words

Vocab Size | Hist. Code switch Dialects Equiv. exp. Sim. words Avg
EN FA TR IT ZH FA TR IT EN FA TR ZH EN TR IT

X-Small 0.06 0.03 0.04 0.06 -0.04 0.29 0.15 0.15 0.02 0.13 0.06 0.04 0.08 -0.08 0.24 0.08
Medium 0.19 0.09 0.15 0.03 0.09 030 0.15 0.12 0.05 0.09 0.10 0.07 0.07 0.13 0.17 0.12

Large 0.23 0.07 0.14 0.02 0.03 031 0.17 0.10 0.14 0.08 0.09 0.00 0.07 0.16 0.26 0.13
Small 0.21 0.10 0.09 0.05 0.08 029 0.10 0.20 0.04 0.11 0.20 0.06 0.06 0.13 020 0.13
Avg ‘ 0.17 0.07 0.11 0.04 0.04 0.30 0.14 0.14 0.06 0.10 0.11 0.04 0.07 0.08 0.22 0.11
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e GPT-40: ., ’'int, ento
e Tekken: 1., ’"int, ento

e GPT-2: 1, ', intent, o
“dell’Italia” vs. “d’Italia’:

e BLOOM:d, ell, ', Italiavs.d’, Italia

e XGLM: dell, ’, Italiavs.d, ', Italia

e Llama-3.2, Qwen-3: d, ell, ’'It, aliavs.d, ’It, alia (fragments “Italia”)
* mBERT: dell, ', Italiavs.d, ’, Italia (length-dependent)

* TokenMonster: dell, ', ita, liavs. d, ', ita, lia (lowercase + frag-
mentation)

* Gemma-2: dell, ', Italiavs.d, ', Italia (clean separation)

e GPT40:d, ell, ', Italiavs.d, ', Italia (inconsistentdecomposition)
* Tekken: d, ell, ’'Italiavs.d, ’Italia (treats apostrophe differently)

e GPT-2: 4, ell1, ’, It, aliavs.d, ', It, alia (fragments country name)

Table 14: Tokenization robustness under morphological challenges, granular version of Morpho-
logical in Table 1. Values represent relative performance drop (M); lower values indicate

AcCean
greater robustness.
Model Contractions Compounds Derivations Inflections Avg
EN IT EN TR EN TR
Comma 0.23 0.18 0.09 -0.11 0.02 0.02 0.07
TokenMonster 0.30 0.16 0.17 -0.12 0.02 -0.09 0.07
GPT-2 0.33  -0.08 0.09 0.05 0.02 0.13 0.09
Aya 0.27 -0.03 0.19 0.02 0.05 0.06 0.10
Gemma-2 0.27 -0.03 0.14 0.02 0.12  0.06 0.10
mBERT 026 -0.14 0.09 0.18 0.15 0.06 0.10
Qwen-3 031 0.12 0.09 0.02 0.10 0.06 0.12
GPT-40 0.26 0.26 0.12 -0.04 0.07 0.06 0.12
ByT5 0.30 -0.03 0.15 0.09 0.21 0.05 0.13
BLOOM 0.20 -0.01 0.16 0.11 0.14 0.16 0.13
XGLM 0.26 0.02 0.07 0.11 0.25 0.06 0.13
Llama-3.2 029 0.12 0.16 0.02 0.14 0.11 0.14
Tekken 036 -0.04 0.14 0.08 0.17 0.18 0.15
Phi-3 0.28 0.07 0.14 0.09 0.25 0.08 0.15
Avg | 0.28 0.04 0.13 0.04 0.12 0.07 0.11

E.3 NOISE

Table 15 shows robustness against common noise in digital text, such as keyboard proximity errors
(s—(a,w,d,x), j=(uhm), o—( ks 43), Hr—DAT4,1) , OCR misrecognition (0—0, I-1),

character deletion, space removal, and typographical errors (doctor— doctro). These perturbations
reflect authentic user input scenarios where models must maintain performance despite noisy text
across multiple languages and writing systems.

We observe that tokenizers that segment text into complete word tokens tend to exhibit greater
vulnerability to noise errors, as single character perturbations can cause familiar words to fragment
into unfamiliar subword combinations, whereas tokenizers using smaller subword units maintain
more consistent segmentation patterns.

Noise in Chinese subset For keyboard proximity errors in Chinese characters are replaced with
phonetically or positionally similar alternatives on the keyboard layout. For space removal, we use
the Pinyin input without any spaces.
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Typos Typographical errors demonstrate how different tokenization approaches handle character-
level perturbations. For example, the word “doctor” with a typo becomes “doctro”:

e mBERT: doctor, doc, ##tro

e Comma Al: do, ctor, .doc, tro

e Llama-3: doctor, .do, ct, ro

e Tekken: doctor, doct, ro

¢ Aya Expanse: doctor, .doct, ro

¢ GPT-40: doctor, doct, ro

e GPT-2: doctor, doct, ro

e ByT5:d, o, ¢, t, o, ¥, -, d, o, ¢, t, r, ©

Similarly, for Turkish text “giin sayis1” (day count) with spacing errors becoming “giins ayis1’:

e mBERT: glin, sayisi, giin, ##s, ay, ##is1

e Comma Al: g, in, .say, 1, s, 1, .g, U, ns, .ay, 1, s, 1
* Tekken: g, tn, say, 1si, glin, s, ay, 1s1i

¢ GPT-40: g, Un, say, 1si, gln, s, ay, 1s1

¢ Llama-3.2: giin, _.sayisi, .gl, ns, .ay, 1s1

e GPT-2: g, 4, n, say, 1, s, 1, g, 4, ns, ay, 1, s, 1

¢ Aya Expanse: giin, .sayisi, .gin, s, .ay, 1s1

* ByTS5: Character-level segmentation (individual Unicode characters)

E.4 MATHEMATICAL & SCIENTIFIC EXPRESSIONS

Table 16 demonstrates that models generally struggle with the formatting and structural challenges
inherent in scientific domains. When numerical values are replaced with their spelled-out equiva-
lents (15 — fifteen), we observe a consistent performance degradation even in English. The parallel
multilingual basic arithmetic questions reveal that certain tokenizers may exhibit inductive biases
favoring specific languages. For instance, Gemma-2’s performance on Italian questions matches
that of the canonical English questions, whereas it shows a 53% performance degradation in Farsi.
Llama-3.2 demonstrates similar behavior with Turkish, while the Aya tokenizer, developed as part of
a multilingual language model, exhibits the greatest robustness across languages. It should be noted,
however, that this represents one of the few instances in our study where Aya tokenizer demonstrates
clear multilingual advantages.

Tokenization of scientific text: Consider the unit “cubic meters” expressed as m” 3, $m”3$,
$m~{3}$, and sm~{ 3 }$. Despite semantic equivalence, tokenization patterns reveal increas-
ing fragmentation:

¢ BLOOM:

— Plain:m, ~3

— LaTeX: $m, "3, S
Braced: $m, ~{3, }$
Spaced: $m, ~{, 3, }$
* XGLM:

- Plainim, ~, 3

- LaTeX:$, m, =, 3, $

Braced: $, m, ~, {, 3, }, s

Spaced: $, m, ~, {, 3, }, $
e Llama-3.2:

4
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Table 15: Tokenization robustness under multi-lingual noise. Values represent relative performance
AcCean 7ACCpcrl

drop (—x_—); lower values indicate greater robustness.
Model Keyboard Errors OCR Char. Space Removal Typos Avg

Del.

EN FA TR IT ZH EN ZH EN EN ZH EN TR IT

Comma 0.05 029 0.15 0.18 0.17 0.12 0.10 0.10 0.14 0.55 0.20 0.04 025 0.8
ByT5 0.19 026 0.13 022 0.11 0.18 0.11 0.09 0.18 0.43 0.17 0.11 0.18 0.18
TokenMonster | 0.22 0.18 0.15 0.13 0.16 0.10 0.26 0.04 0.13  0.58 0.08 0.09 025 0.18
GPT-2 020 0.16 029 0.16 027 0.15 023 0.09 0.16 0.50 0.18 022 020 022
Qwen-3 020 032 025 0.19 0.11 0.15 0.25 0.12 0.17 0.43 023 0.16 026 0.22
GPT-40 0.13 020 0.13 0.13 023 0.15 0.40 0.18 0.16 0.53 0.24 0.13 022 022
BLOOM 022 023 034 0.16 0.11 0.19 0.11 0.16 0.21 0.56 0.16 025 0.17 0.22
Gemma-2 0.17 023 021 022 0.19 0.17 0.29 0.16 0.15 0.52 0.14 0.13 030 022
Llama-3.2 0.12 030 026 021 0.19 0.10 0.28 0.17 0.20 0.56 0.08 022 024 022
XGLM 0.18 025 029 0.19 0.23 0.15 0.29 0.13 0.13  0.60 0.11 022 021 0.23
Tekken 023 029 033 012 0.26 0.20 0.29 0.11 0.12 0.52 0.11 021 020 0.23
Phi-3 0.15 027 022 020 022 020 0.22 0.21 0.18 0.53 020 020 021 023
mBERT 024 025 032 016 0.14 0.20 0.20 0.14 0.24  0.60 0.11 023 026 024
Aya 0.15 042 025 026 0.24 0.17 0.28 0.19 021 0.52 0.10 0.19 027 0.25
Avg | 018 026 024 018 0.19 0.16 0.24 0.13 0.17 0.53 0.15 0.17 023 022

Table 16: Tokenization robustness under math and STEM related challenges. Values represent

. AcCen—A .
relative performance drop (W); lower values indicate greater robustness. LaTeX: LaTeX-

style math formatting; Diag. scientific diagrams and notations; Unic.: Unicode formatted ASCII
characters. NEN=non-English.

Model LaTeX Spelled Out Diag. Multilingual Unicode Avg
EN EN FA TR 1T ZH EN FA TR 1T ZH EN
TokenMonster | 0.23 028 049 0.07 033 031 0.11 029 0.00 0.14  0.00 0.08 0.19
Phi-3 0.25 034 039 014 047 023 0.22 029 0.00 0.00 024 0.11 0.22
Aya 0.23 032 035 041 047 026 0.38 0.07 0.00 0.00 0.00 0.21 0.23
mBERT 0.15 035 055 045 035 038 0.22 0.14 007 0.14 0.07 0.23 0.26
Llama-3.2 0.18 033 043 034 045 023 0.29 0.18 047 0.00 0.18 0.07 0.26
GPT-2 0.25 038 035 032 044 0.08 0.35 0.18 035 024 024 0.17 0.28
Tekken 0.27 037 033 036 038 031 0.44 0.18 024 012 024 0.15 0.28
BLOOM 0.25 029 024 047 040 020 0.11 041 035 024 029 0.19 0.29
Comma 0.23 036 054 017 047 0.26 0.29 039 028 017 022 0.19 0.30
ByTS 0.18 037 054 042 054 023 0.29 0.07 020 027 027 0.23 0.30
GPT-40 0.25 038 033 045 052 028 0.33 037 032 005 0.16 0.20 0.30
Gemma-2 0.22 035 033 032 053 040 0.37 053 035 0.00 0.18 0.23 0.32
Qwen-3 0.26 041 050 041 047 023 0.29 025 035 020 030 0.23 0.33
XGLM 0.30 035 046 041 053 030 0.29 027 033 020 020 0.27 0.33
Avg \ 0.23 035 042 034 045 026 0.29 026 024 013 0.18 0.19 0.28
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Plain: m,

e mBERT:

Plain: m,
LaTeX: s,
Braced: $,

¢ Qwen-3:

¢ TokenMonster:

— Plain: m,

— LaTeX: Sm,
— Braced: $m,
— Spaced: $m,

Plain: m,
LaTeX: s,

Spaced: $, m,

~ 3
LaTeX: Sm,
Braced: $m,
Spaced: $m,

~, 3
0
{

4

~3

ml 14

m, ’
’

3
3
1,
“f,

c, 3

m~, 3

P S
3, }s
;3,0 )8

3, S
{r 3!
{ 3

14

b S
1

;S
3, }$
’ 3/ }$

$

Braced: 5, m"~, {3}s
Spaced: $, m”~, {, 3, }$

, S (identical tokenization)

Performance drops precipitously with formatting complexity: while all models correctly identified
“volume” for plain text, only 8/14 succeeded with basic LaTeX formatting, 2/14 with braces, and just
2/14 with spaced braces. TokenMonster and Qwen-3 showed the highest robustness, maintaining
correct answers through the spaced version.

This shows that even trivial whitespace differences in technical notation can cause catastrophic per-
formance degradation, highlighting a critical vulnerability for applications that require strong math-
ematical reasoning.

Structural ASCII Art and Chemical Notation These examples demonstrate how tokenizers han-
dle structured chemical representations, from simple formulas to ASCII molecular diagrams and
systematic nomenclature. The input contains CH4, an ASCII diagram of methane, H2S04, and the
systematic name “Dihydrogen sulfur tetraoxide”:

BLOOM:

— Simple formulas: CH,

4 and H2,

S04

— ASCII structure: H, |, H-C-H, |, H (preserves structural elements)

— Systematic name: D,

XGLM:

— Simple formulas: CH,
- ASCI structure: H, |, H-, C,

ih, yd,

4andH, 2,

rogen,

SO,

-, H, |, H (aggressive fragmentation)

sulfur,

4

te

t, ra,

-, H, |, H(fragments bonds)

, tra,

##4

sul,

— Systematic name: Di, hydro, gen, su, lfur, te
mBERT:

— Simple formulas: CH, ##4 and H, ##2, ##S, ##0O,

- ASCI structure: H, |, H, -, C,

— Systematic  name: Di, ##hy, ##dro, ##gen,

##tra, ##ox, ##ide

Gemma-2:

— Simple formulas: CH, 4andH, 2, SO, 4

— ASCII structure: Uses special spacing tokens (____) for whitespace

— Systematic name: Di, hydrogen, sulfur, tetra,

34
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¢ GPT-4o:
— Simple formulas: CH, 4andH, 2, SO, 4
— ASCII structure: H, |, H-C-H, |, H (clean structural preservation)
— Systematic name: D, ih, yd, rogen, sulfur, tetra, oxide
GPT-2:
— Simple formulas: CH, 4andH, 2, SO, 4
- ASCI structure: H, |, H-, C, -, H, |, H
— Systematic name: D, ih, yd, rogen, sulfur, tet, ra, oxide
¢ Tekken:
— Simple formulas: CH, 4andH, 2, SO, 4
- ASCI structure: H, |, H-C-H, |, H (preserves structure well)
— Systematic name: D, ihydro, gen, sulfur, tetra, oxide

¢ TokenMonster:

— Simple formulas: ch, 4 and h2, so, 4 (lowercase normalization)
— ASCII structure: Complex Unicode handling with encoding artifacts
— Systematic name: di, hydrogen, sul, fur, tet, ra, ox, ide

While all models correctly identified CH4 as methane, only Llama and GPT-2 models correctly inter-
preted the ASCII molecular diagram. For H2S04, all models succeeded, while spelled-out system-
atic nomenclature achieved 65% accuracy. The ASCII diagram failure is particularly revealing—the
structured representation that humans easily recognize as methane becomes nearly incomprehensible
to models when tokenized, despite containing identical chemical information. XGLM and mBERT
normalize the whitespaces in the diagram, however they still fail to identify the molecule, maybe
due to—characters. Gemma-2’s special whitespace handling (___) and GPT-40’s clean structural
preservation suggest different approaches to spatial formatting, yet neither prevented the semantic
confusion in the ASCII representation.

E.5 STYLING & UNICODE CHALLENGES

Table 17: Tokenization robustness under Unicode formatting, NFKC normalization used by XGLM
. . p AcCean—ACCpert v,
strips away all normalizations below. Values represent relative performance drop (—3——%);

lower values indicate greater robustness.

Model Decorative Fullwidth Scripted Text Double Enclosed (Sup/sub) Avg
Unicode Characters Struck Characters script
EN EN EN EN EN EN
XGLM 0.07 0.07 0.02 0.12 0.19 0.08 0.09
ByT5 0.40 0.54 0.58 0.56 0.73 0.66 0.58
GPT-2 0.47 0.59 0.59 0.68 0.61 0.65 0.60
TokenMonster 0.36 0.62 0.57 0.64 0.72 0.70 0.60
Tekken 0.41 0.73 0.57 0.62 0.73 0.62 0.62
Gemma-2 0.53 0.54 0.67 0.62 0.68 0.66 0.62
GPT-40 0.47 0.62 0.61 0.70 0.67 0.67 0.62
Phi-3 0.47 0.54 0.59 0.75 0.73 0.67 0.62
Aya 0.36 0.68 0.71 0.63 0.69 0.69 0.63
BLOOM 0.59 0.51 0.62 0.67 0.72 0.65 0.63
Qwen-3 0.60 0.67 0.69 0.62 0.57 0.64 0.63
mBERT 0.36 0.73 0.70 0.69 0.81 0.71 0.67
Llama-3.2 0.59 0.60 0.70 0.69 0.76 0.68 0.67
Comma 0.67 0.60 0.67 0.81 0.70 0.58 0.67
Avg | 0.45 0.57 0.59 0.63 0.67 0.62 0.59

Using Unicode characters and applying styling to the questions (or all choices) causes performance
degradation across all models (see Tables 17 and 18). Although some tokenizers maintain distinct
tokens for certain styled characters, they nevertheless exhibit significant failure rates. These styling
variations could potentially be mitigated through normalization techniques, such as the NFKC nor-
malization employed by XGLM. However, this is not always desirable, as these transformations are
irreversible. We include the sample transformations in Fig. 5.
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Table 18: Tokenization robustness under different styling formats. Values represent relative perfor-
ACCean —ACCpert . PR
mance drop (—5——==); lower values indicate greater robustness.

AcCean
Model Diacriticized Lowercase Capitalized Upside Down Spaced Hyphenated Avg
EN EN EN EN EN EN
TokenMonster 0.60 0.01 -0.03 0.47 0.66 0.69 0.40
Aya 0.66 0.08 0.15 0.42 0.54 0.67 0.42
GPT-2 0.52 0.06 0.21 0.52 0.63 0.63 0.43
Tekken 0.57 0.03 0.16 0.60 0.63 0.61 0.43
Gemma-2 0.69 0.06 0.15 0.47 0.64 0.67 0.45
GPT-40 0.57 0.00 0.16 0.62 0.62 0.70 0.45
Phi-3 0.58 0.11 0.18 0.47 0.68 0.66 0.45
Comma 0.58 0.06 0.11 0.60 0.68 0.68 0.45
Llama-3.2 0.60 0.11 0.05 0.54 0.68 0.75 0.45
Qwen-3 0.58 0.09 0.11 0.67 0.53 0.76 0.46
ByT5 0.61 0.06 0.06 0.73 0.69 0.67 0.47
BLOOM 0.61 0.08 0.12 0.65 0.72 0.65 0.47
mBERT 0.64 0.09 0.16 0.80 0.59 0.65 0.49
XGLM 0.63 0.11 0.32 0.87 0.61 0.63 0.53
Avg | 0.60 0.07 0.14 0.60 0.64 0.67 0.45
Style Text
Style Text Underline Python
. Macron Python
Full width Python Y
) Overline Python
Script Pythion
a Upside down PAlyou
Enclosed/ Circled eYTHON
Ring above Pythan
Enclosed/ Parenthesized  (P)Y)t)h)o)n) - N
Diacritics Pythafi
Superscript ik Strikethrough Python-
rikethrou orward slas
Subscript pytnon Strikethrough/ Forward slash
rikethrou ackward slas
Double struck Python Striketh h/ Backward slash P

Figure 5: Left: Styling challenges that are normalized by NFKC, Right: Styling challenges that
NFKC cannot
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F EVALUATING INDUSTRY-LEVEL MODELS ON TokSUITE BENCHMARK

Table 19: Tokenization robustness of original (industry) pre-trained models under multilingual
text perturbations. Values represent relative performance drop (2%e—A%en). Jower values indi-

AcCean
cate greater robustness. NEN=non-English.
Model Input Diacr. Orth. Gram. Morph Noise LaTeX STEM Unic Avg
NEN NEN EN NEN EN NEN EN NEN EN EN EN
bert-base-multilingual-cased 0.02 -0.18 0.03 -0.10 0.10 -0.04 -0.15 0.03 0.05 -0.83 -0.12 -0.11
xglm-564M -0.26 -0.30 0.15 0.04 0.14 0.09 0.13 0.06 0.24 0.05 0.11 0.04
Phi-3-mini-4k-instruct -0.14 0.13 0.07 -0.21 0.24 -0.26 0.08 -0.02 0.04 0.08 0.59 0.05
GPT-2 -0.30 0.00 0.09 0.09 0.13 0.11 0.18 -0.01 023 -0.12 0.49 0.08
phi-15 -0.13 0.13 0.10 -0.09 0.29 -0.17 0.18 -0.04 0.11 0.20 0.62 0.11
Qwen3-0.6B-Base -0.03 0.40 0.10 -0.16 0.25 -0.10 0.12 0.06 0.04 0.18 0.50 0.12
Llama-3.2-1B-Instruct 0.14 -0.25 0.05 0.03 0.27 0.13 0.10 0.16 0.04 0.13 0.62 0.13
gemma-2-9b 0.27 0.15 0.00 0.05 0.25 0.02 0.01 0.21 0.16 0.06 0.34 0.14
gemma-2-2b-it 0.21 0.07 0.03 0.16 0.22 0.10 0.04 0.21 0.00 0.08 0.41 0.14
aya-expanse-8b 0.18 0.36 0.03 0.04 0.16 0.07 0.03 0.09 0.11 0.14 0.49 0.16
Qwen3-1.7B-Base 0.25 0.39 0.03 0.06 0.25 0.06 0.06 0.19 -0.02 0.06 0.52 0.17
babbage-002 0.09 0.10 0.10 0.03 0.27 0.05 0.10 0.13 0.22 0.26 0.56 0.17
Llama-3.2-3B 0.22 0.29 0.01 0.12 0.25 0.05 0.04 0.21 0.02 0.18 0.53 0.17
gemma-2-2b 0.30 0.30 -0.02 0.27 0.23 0.13 0.02 0.25 0.16 0.08 0.37 0.19
Llama-3.2-1B 0.13 0.11 0.04 0.21 0.24 0.11 0.08 0.15 0.14 0.42 0.59 0.20
blt 0.15 0.49 0.06 0.09 0.25 0.06 0.06 0.23 0.16 0.11 0.61 0.21
Avg ‘ 0.07 0.14 0.05 0.04 0.22 0.03 0.07 0.12 0.11 0.07 0.45 0.12

While direct comparisons between our models and their original pre-trained counterparts must be
interpreted with caution due to fundamental differences in training data, model architectures, and
coverage, several noteworthy patterns emerge (see Tables 19 and 1). It should be noted that these
models are trained significantly longer than our controlled experiments—for example, Gemma-2-
2B (Team et al., 2024) is trained on 2 trillion tokens.

Notably, model size does not appear to be the determining factor, as evidenced by Aya-Expanse-
8B (Dang et al., 2024a) performing comparably to smaller models. Instruction-tuned models show
marginally better robustness compared to their base counterparts, though the improvement is modest.

Industry models exhibit better overall robustness, with mBERT demonstrating negative degradation
values, indicating improved performance on perturbed inputs. This performance gain could stem
from training data or training procedure. However, they still struggle significantly with Unicode
styling (0.43 average degradation), suggesting that even extensive real-world training data may not
adequately cover such specialized character variations. Conversely, our controlled study isolates
the effect of tokenization differences by maintaining identical initialization and training data across
models, revealing that tokenization choices alone can account for substantial performance variations
and more data doesn’t always translate into robustness under input variations. The consistent pat-
terns observed across both settings suggest that these robustness challenges are fundamental rather
than artifacts of specific training regimes.

Table 20: Tokenization Robustness of the Llama-3.2 Tokenizer across 1B and 7B model Ascales
under multilingual text perturbations. Values represent relative performance drop (W);
lower values indicate greater robustness, same as Table 1.

Model Input Diacr. Orth. Gram. Morph Noise LaTeX STEM Unic Avg
NEN NEN EN NEN EN NEN EN NEN EN EN EN

7B 0.30 0.52 0.05 0.06 0.24 0.08 0.09 0.14 0.17 0.26 0.60 0.23

1B 0.33 0.55 0.11 0.10 0.25 0.08 0.15 0.24 0.18 0.29 0.59 0.26

Avg | 031 0.53 0.08 0.08 0.25 0.08 0.12 0.19 0.18 0.28 0.60 0.24

Model Scale While a comprehensive study across all tokenizers at larger architectural scales re-
mains computationally challenging, we trained a 7 billion parameter model (excluding embeddings)
using the Llama-3.2 tokenizer. We compare its performance against the 1B model in Table 20. De-
spite the 7B model demonstrating superior performance over all fourteen baseline LMs in TokSuite
on canonical questions, the underlying tokenization robustness profile remains largely unchanged
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across scales. The two models exhibit highly similar robustness metrics, with the noise categories
being the primary exception.

To further investigate the impact of architectural scale, we performed a secondary analysis using the
same architectural families: Qwen-3 family (ranging from 0.6B to 30B), Llama-3.2 (1B and 3B),
Gemma-2 (2B, 9B and 27B). As models within the same family share an identical tokenizer, this ap-
proach provides a proxy for assessing scaling effects on robustness. However, these models were not
generally trained with uniform data or duration (e.g., Qwen-3 (Yang et al., 2025) reports distillation
for smaller models). Therefore, we refrain from drawing direct performance comparisons between
different families. The results, detailed in Table 21 (in the Appendix), reinforce that tokenization
robustness remains a challenging issue relevant across all evaluated scales.

Table 21: Tokenization robustness within architectural families (Qwen-3, Llama-3.2, Gemma-2)
under multilingual text perturbations. Values represent relative performance drop (%);
lower values indicate greater robustness. NEN=non-English.

Model Input Diacr. Orth. Gram. Morph Noise LaTeX STEM Unic Avg
NEN NEN EN NEN EN NEN EN NEN EN EN EN
Qwen3-8B-Base 0.24 0.28 -0.06 0.08 0.23 0.04 -0.03 0.22 -0.01 0.04 0.30 0.12
Qwen3-0.6B-Base -0.03 0.40 0.10 -0.16 0.25 -0.10 0.12 0.06 0.04 0.18 0.50 0.12
Qwen3-14B-Base 0.22 0.10 0.01 0.09 0.27 0.06 0.04 0.18 0.04 0.04 0.37 0.13
Qwen3-30B-A3B-Base 0.19 0.27 0.03 0.08 0.25 0.05 0.03 0.19 0.02 -0.01 0.36 0.13
Qwen3-4B-Base 0.28 0.31 -0.04 0.09 0.22 0.10 0.01 0.25 0.02 -0.01 0.38 0.15
Qwen3-1.7B-Base 0.25 0.39 0.03 0.06 0.25 0.06 0.06 0.19 -0.02 0.06 0.52 0.17
Avg \ 0.19 0.29 0.01 0.04 0.25 0.03 0.04 0.18 0.01 0.05 0.40 0.14
Model Input Diacr. Orth. Gram. Morph Noise LaTeX STEM Unic Avg
NEN NEN EN NEN EN NEN EN NEN EN EN EN
Llama-3.2-3B 0.55 0.64 0.02 0.34 0.26 0.29 0.06 0.48 0.00 0.27 0.56 0.32
Llama-3.2-1B 0.56 0.59 0.05 0.45 0.26 0.38 0.08 0.49 0.15 0.50 0.58 0.37
Llama-3.2-1B-Instruct 0.63 0.50 0.07 0.49 0.29 0.54 0.13 0.60 0.12 0.25 0.63 0.39
Avg \ 0.58 0.58 0.05 043 0.27 0.40 0.09 0.53 0.09 0.34 0.59 0.36
Model Input Diacr. Orth. Gram. Morph Noise LaTeX STEM Unic Avg
NEN NEN EN NEN EN NEN EN NEN EN EN EN
gemma-2-9b 0.38 0.28 0.00 0.22 0.25 0.19 0.01 0.34 0.13 0.12 0.34 0.21
gemma-2-2b-it 0.44 0.35 0.03 0.39 0.22 0.34 0.03 0.43 0.09 0.19 0.42 0.27
gemma-2-2b 0.50 0.53 0.03 0.43 0.27 0.32 0.06 0.45 0.17 0.19 0.39 0.30
Avg \ 0.44 0.38 0.02 0.35 0.25 0.29 0.03 0.41 0.10 0.17 0.35 0.21

F.1 STATISTICAL SIGNIFICANCE

To ensure the robustness and reliability of our results, we employed two distinct statistical methods:
bootstrapping to estimate variability and a non-parametric test to confirm performance differences.

Estimating Variability (Bootstrapping) We estimated the distributional statistics for robustness
through a 10,000-trial bootstrap procedure. This process yielded reliable standard deviations, which
are presented alongside the mean performance scores in Fig. 6. We highlight that all of the per-
formance differences discussed in Section 5 exceed one standard deviation, confirming that these
observations are unlikely due to random variation.

In Fig. 6 we plotted the 95% confidence interval (2.5-97.5 percentile) of the robustness metrics
obtained from 10,000 bootstrap samples, with colors indicating the statistical significance (in terms
of standard deviation from the mean) of each model’s performance.

Significance (Wilcoxon Test) To formally test the statistical significance of the differences be-
tween tokenizer performance, we utilized the Wilcoxon signed-rank test (Wilcoxon, 1945). This
non-parametric test is appropriate for comparing two related samples (the performance of two dif-
ferent tokenizers on the same set of tasks). The results of the pairwise Wilcoxon signed-rank tests
across all perturbation categories are presented in Table 22. Specifically, a p-value threshold of
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o = 0.05 was adopted, and the results clearly demonstrate that the majority of the observed dif-
ferences in robustness are statistically significant, further validating the conclusions drawn in our

study.

Table 22: Statistically Significant Performance Differences (Paired Wilcoxon Signed-Rank Test).

Note: Results where P < 0.05 are shown.

The Median Drop Difference is calculated as

Median(Scorepetter) — Median(Scoreworse). A negative value indicates that the tested model
has a statistically significant lower (better) robustness than the baseline model.

Perturbation Baseline Model Model Median Drop Diff. P-Value
Input (Non-EN) Gemma-2 TokenMonster —0.088 <1074
Qwen-3 0.041 <107
Diacritics (Non-EN) mBERT TokenMonster —0.110 <107
BLOOM —0.093 <1074
GPT-40 0.074 <1074
Llama-3.2 0.109 < 107*
Orthographic Errors (EN) Llama-3.2 ByT5 —0.069 < 107*
Comma —0.056 < 107*
Phi-3 0.050 <1074
Tekken 0.076 < 10~*
Orthographic Errors (Non-EN) Phi-3  TokenMonster —0.075 < 107*
Tekken —0.057 <1074
Gemma-2 0.064 <1074
Morphological (EN) Gemma-2 Comma —0.058 < 107*
BLOOM —0.054 < 107*
Tekken 0.075 <107
Morphological (Non-EN) GPT-40 TokenMonster —0.113 < 107*
Comma —0.0564 < 107*
Tekken 0.042 <107%
BLOOM 0.052 <107
Noise (EN) Llama-3.2 TokenMonster —0.045 <1074
Comma —0.034 < 107*
XGLM —0.027 < 107*
mBERT 0.030 <107*
BLOOM 0.034 <1074
Aya 0.041 <107
Noise (Non-EN) Tekken ByT5 —0.031 < 107*
BLOOM —0.027 <1074
TokenMonster —0.023 < 107*
Llama-3.2 0.027 < 107*
Gemma-2 0.034 <1074
Aya 0.040 < 107*
LaTeX Comma mBERT —0.085 < 107%
Llama-3.2 —0.056 <1074
ByT5 —0.052 <1074
Tekken 0.041 <107*
XGLM 0.066 <1074
STEM (EN) ByT5 TokenMonster —0.184 < 107*
BLOOM —0.184 <1074
Aya 0.088 <1074
Tekken 0.145 <1074
Unicode ByT5 XGLM —0.418 < 107*
NEW
NEW
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Figure 6: Distribution of tokenization robustness. Error bars represent the 2.5th to 97.5th percentile
range across bootstrap samples. Models are ordered by their vocabulary size. The gray shaded
region indicates +1 standard deviation from the mean across all models for each perturbation type.
Points are colored to highlight statistical significance: green indicates models that are significantly
more robust (> 1 SD below mean), red indicates models that are significantly more fragile (> 1 SD

above mean), and blue indicates performance within one standard deviation of the mean.
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Figure 7: Same as Fig. 6 but grouped by vocabulary buckets.
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Figure 8: Same as Fig. 6 but grouped by underlying algorithm.
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LARGE LANGUAGE MODEL USAGE

We used Claude throughout the research process for dataset design brainstorming, generating pertur-
bation ideas, rephrasing sentences, summarizing related work, and assisting with literature review.
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