Under review as a conference paper at ICLR 2023

TEACH ME HOW TO INTERPOLATE A MYRIAD OF EM-
BEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixup refers to interpolation-based data augmentation, originally motivated as a
way to go beyond empirical risk minimization (ERM). Yet, its extensions focus
on the definition of interpolation and the space where it takes place, while the
augmentation itself is less studied: For a mini-batch of size m, most methods
interpolate between m pairs with a single scalar interpolation factor \.

In this work, we make progress in this direction by introducing MultiMix, which
interpolates an arbitrary number n of tuples, each of length m, with one vector
A per tuple. On sequence data, we further extend to dense interpolation and loss
computation over all spatial positions. Overall, we increase the number of tuples
per mini-batch by orders of magnitude at little additional cost. This is possible
by interpolating at the very last layer before the classifier. Finally, to address
inconsistencies due to linear target interpolation, we introduce a self-distillation
approach to generate and interpolate synthetic targets.

We empirically show that our contributions result in significant improvement over
state-of-the-art mixup methods on four benchmarks. By analyzing the embedding
space, we observe that the classes are more tightly clustered and uniformly spread
over the embedding space, thereby explaining the improved behavior.

1 INTRODUCTION

Mixup (,) is a data augmentation method that interpolates between pairs of training
examples, thus regularizing a neural network to favor linear behavior in-between examples. Besides
improving generalization, it has important properties such as reducing overconfident predictions and
increasing the robustness to adversarial examples. Several follow-up works have studied interpola-
tion in the latent or embedding space, which is equivalent to interpolating along a manifold in the
input space (,), and a number of nonlinear and attention-based interpolation mech-
anisms (s ; s ; ; s ; ,). However,
little progress has been made in the augmentation process itself, i.e., the number of examples being
interpolated and the number of interpolated examples being generated.

Mixup was originally motivated as a way to go beyond empirical risk minimization (ERM) (,

) through a vicinal distribution expressed as an expectation over an interpolation factor A\, which
is equivalent to the set of linear segments between all pairs of training inputs and targets. In practice
however, in every training iteration, a single scalar A is drawn and the number of interpolated pairs
is limited to the size of the mini-batch, as illustrated in Figure 1(a). This is because, if interpolation
takes place in the input space, it would be expensive to increase the number of examples per iteration.
To our knowledge, these limitations exist in all mixup methods.

In this work, we argue that a data augmentation process should augment the data seen by the model,
or at least by its last few layers, as much as possible. In this sense, we follow manifold mixup (

,) and generalize it in a number of ways to introduce MultiMix, as illustrated in Figure 1(b).
First, rather than pairs, we interpolate tuples that are as large as the mini-batch. Effectively, instead
of linear segments between pairs of examples in the mini-batch, we sample on their entire convex
hull. Second, we draw a different vector A for each tuple. Third, and most important, we increase the
number of interpolated tuples per iteration by orders of magnitude by only slightly decreasing the
actual training throughput in examples per second. This is possible by interpolating at the deepest

Under review as a conference paper at ICLR 2023

o
e mixed KD
® clean s @
dw & s e U
Y [.. . ®d 0 o8 o S L
° be Le ©ce O
. 2% @ . (A
® s o, @ ». e N
o o ° 2800%, &
oo & 8 & &y
° -, * L28 P
° foe 5 o
° o @ 2 .
® o PR 1 -~
D) °
(a) mixup (b) MultiMix (ours)

Figure 1: Data augmentation from a mini-batch B consisting of m = 10 points in two dimensions.
(a) mixup: sampling of m points on linear segments between m pairs of points in B, using the same
interpolation factor A. (b) MultiMix: sampling of n = 300 points in the convex hull of B.

layer possible, i.e., just before the classifier, which also happens to be the most effective choice. The
interpolated embeddings are thus only processed by a single layer.

Apart from increasing the number of examples seen by the model, another idea is to increase
the number of loss terms per example. In many modalities of interest, the input is a sequence in
one or more dimensions: pixels or patches in images, voxels in video, points or triangles in high-
dimensional surfaces, to name a few. The structure of input data is expressed in matrices or tensors,
which often preserve a certain spatial resolution until the deepest network layer before they collapse
e.g. by global average pooling (, ; ,) or by taking the output of a
classification token (s ; ,).

In this sense, we choose to operate at the level of sequence elements rather than representing ex-
amples by a single vector. We introduce dense MultiMix, which is the first approach of this kind in
mixup-based data augmentation. In particular, we interpolate densely the embeddings and targets of
sequence elements and we also apply the loss densely, as illustrated in Figure 2. This is an extreme
form of augmentation where the number of interpolated tuples and loss terms increases further by
one or two orders of magnitude, but at little cost.

Finally, linear interpolation of targets, which is the norm in most mixup variants, has a limitation:
Given two examples with different class labels, the interpolated example may actually lie in a region
associated with a third class in the feature space, which is identified as manifold intrusion (

,). In the absence of any data other than the mini-batch, a straightforward way to address
this limitation is to devise targets originating in the network itself. This naturally leads to self-
distillation, whereby a moving average of the network acts as a teacher and provides synthetic soft
targets (,), to be interpolated exactly like the original hard targets.

In summary, we make the following contributions:

1. We introduce MultiMix, which, given a mini-batch of size m, interpolates an arbitrary
number n > m of tuples, each of length m, with one interpolation vector A per tuple—
compared with m pairs, all with the same scalar A for most mixup methods (subsection 3.2).

2. We extend to dense interpolation and loss computation over all spatial positions (subsec-
tion 3.4).

3. We use online self-distillation to generate and interpolate soft targets for mixup—compared
with linear target interpolation for most mixup methods (subsection 3.3).

4. We improve over state-of-the-art mixup methods on image classification, robustness to
adversarial attacks, object detection and out-of-distribution detection (section 4).

2 RELATED WORK

Mixup: interpolation methods In general, mixup interpolates between pairs of input exam-

ples (,) or embeddings (,) and their corresponding target labels.
Several follow-up methods mix input images according to spatlal position, either at random rectan-
gles (,) or based on attention (, ;), in an attempt

to focus on a different object in each image. We also use attentlon in our dense MultiMix variant, but

Under review as a conference paper at ICLR 2023

in the embedding space. Other definitions of interpolation include the combination of content and
style from two images (,) and the spatial alignment of dense features (

,). Our dense MultiMix variant also uses dense features but without aligning them,
hence it can mix a very large number of images and generate a large number of interpolated sam-
ples. Our work is orthogonal to these methods as we focus on the sampling process of augmentation
rather than on the definition of interpolation.

Mixup: sampling To the best of our knowledge, the only methods that interpolate more than two
examples for image classification are OptTransMix (,), SuperMix (

) and ¢-Mixup (,). All three methods operate in the input space and 11m1t
the number of interpolated examples to the mini-batch size, m; whereas our MultiMix generates
an arbitrary number of interpolated examples (n = 1000 in practice) in the embedding space. To
determine the interpolation weights, OptTransMix involves a complex optimization process and
only applies to images with clean background; (-Mixup uses random permutations of a fixed vector;
and SuperMix uses a Dirichlet distribution over not more than 3 samples in practice. We also sample
weights from the Dirichlet distribution but interpolate as many examples as the mini-batch, m.

Beyond classification, m-Mix (,) uses graph neural networks in a self-supervised
setting with pair-based loss functions. The interpolation weights are deterministic and based on
pairwise similarities. Essentially, this operation resembles a layer of a graph neural network.

Self-distillation Distillation refers to a two-stage knowledge transfer process where a larger
teacher model or ensemble is tralned before predlctmg soft targets to train a smaller student model on
the same (, ; s :

s) or dlfferent (, ; s) tralnmg data. The
architecture of the two models may be the same with tralmng at multiple stages, for example in
continual learning (s). In self-distillation or co-distillation,
not only the models are the same but the knowledge transfer process is also online, e.g. between
layers of the same model (s) or between two versions of the model (s

), where the teacher parameters may be obtained from the student rather than learned (
,). The latter approach has been successful in self-supervised representation

learning (s ; s ; ,).

As far as we know, distillation has only been used for mixup in SuperMix (,) as
a two-stage process from a large pre-trained teacher model to a small student model. We are the first
to use single-stage, online self-distillation in this context, following (,),

where the teacher model is a moving average of the student.

Dense loss functions Although standard in dense tasks like semantic segmentation (,

; ,), where dense targets commonly exist, dense loss functions are less common
otherwise. Few examples are in few-shot learning (, ; ,), where
data augmentation is of utter importance, and in unsupervised representation learning, e.g. dense
contrastive learning (, ,), learmng from spatial correspon-
dences (, ; ,) and masked language or image modeling (,

; , ; , ; ,). Some of these methods use dense dis-
tillation (s ; s), which is also studied in continual learning (

,). To our knowledge, we are the first to use dense interpolation and

a dense loss function for mixup. Our setting is supervised, similar to dense classification (

s), but we also use dense distillation (s).

3 METHOD

3.1 PRELIMINARIES AND BACKGROUND

Problem formulation Letx € & be aninput example and y €) its one-hot encoded target, where
X = RP is the input space,) = {0, 1} and c is the total number of classes. Let fy : X — R4
be an encoder that maps the input « to an embedding z = fy(z), where d is the dimension of the
embedding. A classifier gy : R? — A~ maps 2 to a vector p = gy (z) of predicted probabilities

Under review as a conference paper at ICLR 2023

over classes, where A” C R™"*! is the unit n- 51mp1ex ie,p>0and1]p=1,and 1. € R®is an
all-ones vector. The overall network mapping is f := gw o fp.

Parameters (6, W) are learned by optimizing over mini-batches. Given a mini-batch of m exam-
ples, let X = (z1,...,2,) € RP*™ be the inputs, Y = (y1,...,ym) € R™ the targets and
P = (p1,...,pm) € R™ the predicted probabilities of the mini-batch, where P = f(X) :=
(f(z1),..., f(zm)). The objective is to minimize the cross-entropy

H(Y,P):= =1 (Y ®log(P))1,,/m)

of predicted probabilities P relative to targets Y averaged over the mini-batch, where ® is the
Hadamard (element-wise) product. In summary, the mini-batch loss is

Mixup Mixup methods commonly interpolate pairs of inputs or embeddings and the correspond-
ing targets at the mini-batch level while training. Given a mini-batch of m examples with inputs
X and targets YV, let Z7 = (21,...,2m) € R?*™ be the embeddings of the mini-batch, where
Z = fo(X). Manifold mixup (,) interpolates the embeddings and targets by form-
ing a convex combination of the pairs with interpolation factor A € [0, 1]:

7 = Z(M + (1 — M)II) 3)

Y =Y (M + (1= N), (4)

where A ~ Beta(a, «), I is the identity matrix and II € R™*"™ is a permutation matrix. Input
mixup (,) interpolates inputs rather than embeddings:

X = XM+ (1—N1). (5)

Whatever the interpolation method and the space where it is performed, the interpolated data, e.g.

X (,) or Z~ (,), replaces the original mini-batch data and gives rise

to predicted probabilities P = (p1,...,pm) € R™ over classes, e.g. P = f() ,

Yor P = gw(Z)(,). Then, the average Cross-entropy H (Y P) (1) between

the predicted probabilities P and mterpolated targets Y is minimized. The number of interpolated
data is m, same as the original mini-batch data.

3.2 MULTIMIX

Interpolation Given a mini-batch of m examples with embeddings Z and targets Y, we draw
interpolation vectors A\, ~ Dir(a) for & = 1,...,n, where Dir(«) is the symmetric Dirichlet
distribution and A\, € A™ ! thatis, A, > 0 and l,Tn)\k = 1. We then interpolate embeddings and
targets by taking n convex combinations over all m examples:

Z=ZA (6)
Y = YA,)
where A = (Aq,...,\,) € R™*™. We thus generalize manifold mixup (,):

1. from pairs to tuples of length m, as long as the mini-batch: m-term convex combina-
tion (6),(7) vs. 2-term in (3),(4), Dirichlet vs. Beta distribution;

2. from m to an arbitrary number n of tuples: interpolated embeddings Z € Rixn (6) vs.
R¥*™ in (3), interpolated targets Y € R*™ (7) vs. R*™ in (4);
3. from fixed X across the mini-batch to a different A\, for each interpolated item.
Loss Again, we replace the original mini-batch embeddings Z by the interpolated embeddings

Z and minimize the average cross-entropy H (377]5) (1) between the predicted probabilities P =
gw (Z) and the interpolated targets Y (7). Compared with (2), the mini-batch loss becomes

Under review as a conference paper at ICLR 2023

Figure 2: Dense MultiMix (subsection 3.4) for the special case m = 2 (two examples), n = 1
(one interpolated embedding), r = 9 (spatial resolution 3 x 3). The embeddings z1,zs € R4X9 of
input images x1, x2 are extracted by encoder fy. Attention maps ai,as € R? are extracted (10),
multiplied element-wise with interpolation vectors A, (1 — \) € R? (11) and ¢;-normalized per
spatial position (12). The resulting weights are used to form the interpolated embedding z € R¢*?
as a convex combination of z1, z, per spatial position (13). Targets are interpolated similarly (14).

3.3 MULTIMIX WITH SELF-DISTILLATION

Networks We use an online self-distillation approach whereby the learned network f := gy o fy
becomes the student, whereas a teacher network f' := gy o fo: of the same archltecture is obtained
by exponential moving average of the parameters (,).
The teacher parameters (6', W) are not learned: We stop the gradient in the computatlon graph.

Views Given two transformations 7" and 7", we generate two different augmented views v = ¢(x)
and v' = t/(x) for each input z, where ¢ ~ T and ¢ ~ T’. Then, given a mini-batch of m
examples with inputs X and targets Y, let V = t(X), V' = #/(X) € RP*™ be the mini-batch views
corresponding to the two augmentations and Z = fp(V), Z' = fo (V') € R¥™ the embeddings
obtained by the student and teacher encoders respectively.

Interpolation We obtain the interpolated embeddings Z Z' from Z,Z' by (6) and targets Y from
Y by (7), using the same A. The predicted class probabilities are given by P= gw (Z) and P =
gw(Z'), again obtained by the student and teacher classifiers, respectively.

Loss We learn parameters (6, W) by minimizing a classification and a self-distillation loss:
YH(Y,P)+ (1=)H(P',P), ©

where «y € [0, 1]. The former brmgs the probabilities P predlcted by the student close to the targets
Y, asin (8). The latter brings P close to the probabilities P predicted by the teacher.

3.4 DENSE MULTIMIX

We now extend to the case where the embeddings are structured, e.g. in tensors. This happens e.g.
with token vs. sentence embeddings in NLP and patch vs. image embeddings in vision. This works
by removing spatial pooling and applying the loss function densely over all tokens/patches. The idea
is illustrated in Figure 2. For the sake of exposition, our formulation uses sets of matrices grouped
either by example or by spatial position. In practice, all operations are on tensors.

Preliminaries The encoder is now fy : X — R*" mapping the input z to an embedding z =
fo(x) € R4X", where d is the number of channels and 7 is its spatial resolution—if there are more
than one spatial dimensions, these are flattened.

Given a mini-batch of m examples, we have again inputs X = (x1,...,7,,) € RP*™ and targets
Y = (y1,--,Ym) € R*™. Bachembedding z; = fo(x;) = (2},...,2) e R™"fori=1,...,m
consists of features zj € R? for spatial position j = 1,...,r. We group features by position in
matrices Z, ..., Z", where Z7 = (2],...,2),) € R&>™ fOI'j =1,.

Under review as a conference paper at ICLR 2023

Attention Each feature vector will inherit the target of the corresponding input example. However,
we also attach a level of confidence according to an attention map. Given an embedding z € R*"
with target y €) and a vector v € R?, the attention map

a=h(z"u) eR" (10)

measures the similarity of features of z to u, where h is a non-linearity, e.g. softmax or ReLU
followed by ¢, normalization. There are different ways to define vector u. For example, v = z1,./r
by global average pooling (GAP) of z, or u = Wy assuming a linear classifier with W € R?*¢,

similar to class activation mapping (CAM) (,). In the case of no attention, a = 1,./r
is uniform.

Given a mini-batch, let a; = (a;,...,a’) € R” be the attention map of embedding z; (10). We
group attention by position in vectors al, ..., a", where @ = (a},...,al,) € R™ forj =1,...,7.
Interpolation For each spatial position j = 1, ..., 7, we draw interpolation vectors)\f; ~ Dir(«)
for k = 1,...,n and define A7 = (M, ...,)\{1) € R™*™. Because input examples are assumed to

contribute according to the attention vector a’ € R™, we scale the rows of A7 accordingly and then
we normalize its columns back to A"~ so that they can define convex combinations:

M’ = diag(a’)A? (11)
M = M7 diag(1) M7)~! (12)
We then interpolate embeddings and targets by taking n convex combinations over m examples:
71 = ZI N (13)
Yi =Y NI, (14)
This is similar to (6),(7), but there is a different interpolated embedding matrix Z7 € R¥*" a5 well

as target matrix Y7 € R®X™ per position, even though the original target matrix Y is one.

Classifier The classifier is now gy : R?X" — R*", maintaining the same spatial resolution
as the embedding and generating one vector of predicted probabilities per spatial position. This is
done by removing average pooling or any down-sampling operation. The interpolated embeddings

Z Lo, Z" (13) are grouped by example into z,...,z, € Rdx’>,~mapped~by gw to predicted
probabilities P, . . ., P, € R°*" and grouped again by position into P!, ..., P" € R*",

In the simple case where the original classifier is lglear, i.e. W € R%¢ itisseen as 1 x 1 convolution
and applied densely to each column (feature) of Z7 for j = 1,...,r.

Loss Finally, we learn parameters 6, W by minimizing the weighted cross-entropy H (?j , ﬁj; s)
of P7 relative to the interpolated targets Y7 again densely at each position j, where

H(Y,P;s):= -1 (Y ®log(P))s/(1, s) (15)

generalizes (1) and the weight vector is defined as s = 1,}, M7 € R™. This is exactly the vector used
to normalize the columns of M7 in (12). The motivation is that the columns of M7 are the original
interpolation vectors weighted by attention: A small /; norm indicates that for the given position 7,
we are sampling from examples of low attention, hence the loss is to be discounted.

4 EXPERIMENTS

4.1 SETUP

We use a mini-batch of size m = 128 examples in all experiments. For every mini-batch, we ap-
ply MultiMix with probability 0.5 or input mixup otherwise. For MultiMix, the default settings are
given in subsection 4.4. We follow the experimental settings of AlignMixup (,

) and use PreActResnet-18 (R-18) (s) and WRN16-8 (s

Under review as a conference paper at ICLR 2023

DATASET CIFAR-10 CIFAR-100 TI
NETWORK R-18 W16-8 R-18 W16-8 R-18
Baseline 95.41+0.02 94.93+0.06 76.69+0.26 78.80+0.55 56.49+0.21
Manifold mixup (s)Jr 97.00+0.05 96.44+-0.02 80.004+-0.34 80.77+0.26 59.3140.49
PuzzleMix (s)T 97.04+-0.04 97.00+0.03 79.9840.05 80.78+0.23 63.5240.42
Co-Mixup (s)T 97.10+0.03 96.44+0.08 80.2840.13 80.39+0.34 64.1240.43
AlignMixup (R Y 97064004 96914001 81714007 81.24£0.02 66.85+0.07
¢-Mixup (s)* 96.26+0.04 96.35+0.04 80.46-+0.26 79.73+0.15 63.18+0.14
MultiMix (ours) 97.07+0.03 97.06+0.02 81.82+0.04 81.444+0.03 67.114+0.04
+ distil 97.12+£0.02 97.1240.03 82.18+0.11 82.06+0.07 68.0640.03
+ dense 97.09-+0.02 97.09+0.02 81.93+0.04 81.77+0.03 68.44+0.05
+ dense + distil 97.16+0.02 97.20+0.02 82.35+0.13 82.32+0.03 69.11+0.05
Gain +0.06 +0.20 +0.64 +1.08 +2.26

Table 1: Image classification on CIFAR-10/100 and TI (TinyImagenet). Mean and standard devia-
tion of Top-1 accuracy (%) for 5 runs. R: PreActResnet, W: WRN. *: reproduced, : reported by
AlignMixup, Bold black: best; Blue: second best; underline: best baseline. Gain: improvement
over best baseline. Comparison with additional baselines is given in subsection A.2

NETWORK RESNET-50 VIT-S/16
METHOD SPEED ERROR SPEED ERROR
Baseline® 1.17 76.32 1.01 73.9
Manifold mixup (s)T .15 77.50 0.97 75.2
PuzzleMix (,)f 0.84 7876 0.73 757
Co-Mixup (,) 0.62 - 057 759
AlignMixup (, y'o103 0 7932 - -
MultiMix (ours) 1.16 78.81 0.98 75.2
+ distil 1.06 80.12 0.93 76.7
+ dense 095 7932 0.88 76.1
+ dense + distil 0.83 80.21 0.81 76.9
Gain +0.89 +1.0

Table 2: Image classification and training speed on ImageNet. Top-1 accuracy (%): higher is better.
Speed: images/sec (x103): higher is better. T: reported by AlignMixup. Bold black: best; Blue:
second best; underline: best baseline. Gain: improvement over best baseline. Comparison with
additional baselines is given in subsection A.2

) as encoder on CIFAR-10 and CIFAR-100 datasets (); R-18 on Tiny-
Imagenet (,) (TT); and Resnet-50 (R-50) and ViT-S/16 (,)
on ImageNet (,).

We report the mean and standard deviation of the top-1 accuracy (%) for five runs on image clas-
sification. On robustness to adversarial attacks (subsection 4.2), we report the top-1 error. We also
experiment on object detection (subsection 4.3) and out-of-distribution detection (subsection A.3).

4.2 RESULTS: IMAGE CLASSIFICATION AND ROBUSTNESS

Image classification In Table | we observe that MultiMix and Dense MultiMix already outper-
form SoTA on all datasets except CIFAR-10 with R-18, where they are on par with Co-Mixup. The
addition of distillation increases the gain and outperforms SoTA on all datasets. Both distillation
and dense improve over vanilla MultiMix and their effect is complementary on all datasets. On TI
for example, distillation improves by 0.95%, dense by 1.33% and their combination by 2.0%. This
combination brings an impressive gain of 2.26% over the previous SoTA — AlignMixup. We provide
additional analysis of the embedding space on 10 classes of CIFAR-100 in subsection A.4.

In Table 2 we observe that on ImageNet with R-50, vanilla MultiMix outperforms all methods except
AlignMixup. Adding dense, distillation or both outperforms all SOTA with both R-50 and ViT-S/16.
Importantly, it brings an overall gain of 4% over the baseline with R-50 and 3% with ViT-S/16.

Training speed Table 2 shows the training speed of MultiMix and its variants compared with
SoTA mixup methods, measured on NVIDIA V-100 GPU, including forward and backward pass. In

Under review as a conference paper at ICLR 2023

ATTACK FGSM PGD
DATASET CIFAR-10 CIFAR-100 TI CIFAR-10 CIFAR-100
NETWORK R-18 W16-8 R-18 W16-8 R-18 R-18 W16-8 R-18 W16-8
Baseline 88.84+0.11 88.3+40.33 87.240.10 72.6+0.22 91.9+0.06 | 99.94+-0.0 99.94+0.01 99.940.01 99.940.01
Manifold mixup (s)Jr 76.9+0.14 76.0-0.04 80.24+0.06 56.3-£0.10 89.3+0.06 | 97.24+0.01 98.4-+0.03 99.6+0.01 98.4-+0.03
PuzzleMix (N)]L 5744022 60.7-£0.02 78.840.09 57.8-£0.03 83.84-0.05|97.74+0.01 97.0-£0.01 96.440.02 95.2-£0.03
Co-Mixup (s)T 60.14+0.05 58.840.10 77.540.02 56.540.04 - 97.5+0.02 96.1+0.03 953+0.03 94.240.01
AlignMixup (s)1L 54.840.03 56.0-£0.05 74.14+0.04 55.0-£0.03 78.840.03]95.34+0.04 96.7-£0.03 90.440.01 92.1-£0.03
¢-Mixup (s)* 7284023 6734024 7534021 68.04+0.21 84.7+0.18 | 98.0-£0.06 98.6+0.03 97.4-+0.10 96.1+0.10
MultiMix (ours) 54.140.09 55340.04 75840.04 54.54+0.01 77.54+0.01]94.24+0.04 94.840.01 90.040.01 91.64+0.01
+ distillation 52.540.05 51.440.01 73.540.03 52.740.02 76.24+0.05|92.6+0.01 93.940.02 88.840.01 90.540.01
+ dense 54.140.01 53.340.03 74.540.03 52.940.04 755+0.04]92.940.04 92.6+0.01 88.64+0.03 90.840.01
+ dense + distillation 52.0+£0.03 50.14+0.04 73.0+0.02 52.140.02 75.1+0.01 | 90.8£0.01 90.540.03 87.5+0.01 90.140.03
Gain +2.8 +5.9 +1.1 +2.9 +3.7 \ +4.5 +5.6 +2.9 +2.0

Table 3: Robustness to FGSM & PGD attacks. Mean and standard deviation of Top-1 error (%) for
5 runs: lower is better. *: reproduced, T: reported by AlignMixup. Bold black: best; Blue: second
best; underline: best baseline. Gain: reduction of error over best baseline. TI: Tinylmagenet. R:
PreActResnet, W: WRN. Comparison with additional baselines is given in subsection A.2

terms of training speed, the vanilla MultiMix is on par with the baseline, bringing a gain of 2.49%.
The addition of distillation is on par with SOTA AlignMixup, bringing a gain of 0.80%. Adding
both dense and distillation brings a gain of 0.89% over AlignMixup, while being 19.4% slower. The
inference speed is the same for all methods.

Robustness to adversarial attacks We follow the experimental settings of Align-
Mixup (,) and use 8/255 [, e-ball for FGSM (,

) and 4/255 [, e-ball with step size 2/255 for PGD (,) attack. In Table 3 we
observe that vanilla MultiMix is already more robust than SoTA on all datasets and settings except
FGSM on CIFAR-100 with R-18, where it is on par with AlignMixup. The addition of dense,
distillation or both again increases the robustness and shows that their effect is complementary. The
overall gain is more impressive than in classification error. For example, against the strong PGD
attack on CIFAR-10 with W16-8, the SoTA Co-Mixup improves the baseline by 3.8% and our best
result improves the baseline by 9.4%, which is more than double.

4.3 RESULTS: TRANSFER LEARNING TO OBJECT DETECTION

We evglgate the effect.of mixup on the generaliza- DATASET VOC07+12 MS-COCO
tion ability of a pre-trained network to object detec- DETECTOR SSD FASTER R-CNN
tion as a downstream task. Following the settings of Baseline’ 767 3327
CutMix (,), we pre-train R-50 on Ima- Input mixup® 76.6 34.18
geNet with MultiMix and its variants and use it as the CurMix" . 77.6 35.16
backbone for SSD (,) with fine-tuning AlignMixup 84 3584
on Pascal VOCO07+12 (,) and MultiMix (ours) 77.9 3573

: : + distil 78.7 35.97
Faster-RCNN (,) with fine-tuning on T d;nse 85 3558
MS-COCO (s). + dense + distil 79.1 36.41
In Table 4, we observe that, while vanilla MultiMix Gain +0.7 +0.57

is slightly worse than AlignMixup, dense and dis-))

tillation bring improvements over the SoTA on both Table 4: Transfer learning to object detec-
datasets and are still complementary. This is con- tion. Mean average precision (mAP, %):
sistent with classification results. Compared with the higher is better. I: reported by AlignMixup.
baseline, our best setting brings a gain of 2.40% mAP Bold black: best; Blue: second best; under-
on Pascal VOCO7+12 and 3.14% on MS-COCO. line: best baseline. Gain: increase in mAP.

4.4 ABLATIONS

All ablations are performed using R-18 on CIFAR-100. For MultiMix, we study the effect of the
layer where we interpolate, the number of tuples n and a fixed value of Dirichlet parameter a. More
ablations are given in the supplementary material.

Under review as a conference paper at ICLR 2023

—@— MultiMix - @- MultiMix + distill —@— Dense MultiMix - ®~- Dense MultiMix + distill

83

82

Accuracy

0,1 0.2 03 0,4 10*

(a) Mixing layers (b) # tuples n (c) Dirichlet parameter o

Figure 3: Ablation study of MultiMix and its variants on CIFAR-100 using R-18. (a) Interpolation
layers (R-18 block; O: input mixup). (b) Number of tuples n. (c) Dirichlet parameter c.

Interpolation layer For MultiMix, we use the entire network as the encoder fy by default, except
for the last fully-connected layer, which we use as classifier gy,. Thus, we interpolate embeddings
in the deepest layer by default. Here, we study the effect of different decompositions of the network
f = gw o fo, such that interpolation takes place at a different layer. When using distillation, we
interpolate at the same layer for both the teacher and the student. In Figure 3(a), we observe that
mixing at the deeper layers of the network significantly improves performance. The same behavior
is observed when adding dense, distillation, or both. This validates our default choice.

It is interesting that the authors of input mixup (,) found that convex combinations
of three or more examples in the input space with weights from the Dirichlet distribution do not
bring further gain. This agrees with the finding of SuperMix (,) for four or more

examples. Figure 3(a) suggests that further gain emerges when mixing in deeper layers.

Number of tuples n Since our aim is to increase the amount of data seen by the model, or at least
part of the model, it is important to study the number n of interpolated embeddings. We observe
from Figure 3(b) that accuracy increases overall with n and saturates for n > 1000 for all variants of
MultiMix. Our best setting, Dense MultiMix with distillation, works best at n = 1000. We choose
this as default, given also that the training cost increases with n. The training speed as a function of
n is given in the supplementary material and is nearly constant for n < 1000.

Dirichlet parameter o Our default setting is to draw « uniformly at random from [0.5, 2] for every
interpolation vector (column of A). Here we study the effect of a fixed value of . In Figure 3(c), we
observe that the best accuracy comes with a = 1 for most MultiMix variants, corresponding to the
uniform distribution over the convex hull of the mini-batch embeddings. However, all measurements
are lower than the default « ~ UJ0.5,2]. For example, from Table 1 (CIFAR-100, R-18), dense
MultiMix + distillation has accuracy 82.52, compared with 82.23 in Figure 3(c) for o = 1.

5 CONCLUSION

In terms of input interpolation, the take-home message of this work is that, instead of devising
smarter and more complex interpolation functions in the input space or the first layers of the repre-
sentation, it is more beneficial to just perform linear interpolation in the very last layer where the
cost is minimal, and then increase as much as possible the number of interpolated embeddings for
mixup. This is more in line with the original motivation of mixup as a way to go beyond ERM. In
terms of target interpolation, the take-home message is the opposite: instead of linear interpolation
of original targets, find new synthetic targets for the interpolated embeddings with the help of the
network itself, then interpolate them linearly. This idea fits nicely with self-distillation, which is
popular in settings such as self-supervised representation learning and continual learning. Interest-
ingly, self-distillation can be seen as yet another form of augmentation, but in the model space.

A natural extension of this work is to settings other than supervised classification. A limitation is that
it is not straightforward to combine the sampling scheme of MultiMix with complex interpolation
methods, unless they are fast to compute in the embedding space.

Under review as a conference paper at ICLR 2023

REFERENCES

Kumar Abhishek, Colin J Brown, and Ghassan Hamarneh. Multi-sample (-mixup: Richer, more
realistic synthetic samples from a p-series interpolant. arXiv preprint arXiv:2204.03323,2022. 3,
7,8, 1,2

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E Dahl, and Geoffrey E
Hinton. Large scale distributed neural network training through online distillation. arXiv preprint
arXiv:1804.03235, 2018. 3

Cristian Bucilud, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In ACM
SIGKDD, 2006. 3

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021. 3

Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, and Nasser M. Nasrabadi. Supermix: Super-
vising the mixing data augmentation. In CVPR, 2021. 3,9, 1,2, 5, 6

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2019. 3

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning
without memorizing. In CVPR, 2019. 3

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2,7

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. PODNet:
Pooled outputs distillation for small-tasks incremental learning. In ECCV, 2020. 3

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010. 8

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015. 8

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020. 3, 5

Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as locally linear out-of-manifold regular-
ization. In AAAI 2019. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016. 2, 6

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN. In /ICCV, 2017. 3

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. 3

Minui Hong, Jinwoo Choi, and Gunhee Kim. Stylemix: Separating content and style for enhanced
data augmentation. In CVPR, 2021. 1,3, 2,5

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In ICML, 2020. 1,2,7,8, 3,5

Jang-Hyun Kim, Wonho Choo, Hosan Jeong, and Hyun Oh Song. Co-mixup: Saliency guided joint
mixup with supermodular diversity. In ICLR, 2021. 1,2,7,8,3,5

10

Under review as a conference paper at ICLR 2023

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. 7

Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and Jiebo Luo. Revisiting local descriptor
based image-to-class measure for few-shot learning. In CVPR, 2019. 3

Z. Li and D. Hoiem. Learning without forgetting. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 40(12):2935-2947, Dec 2018. 3

Zhaowen Li, Zhiyang Chen, Fan Yang, Wei Li, Yousong Zhu, Chaoyang Zhao, Rui Deng, Liwei Wu,
Rui Zhao, Ming Tang, et al. MST: Masked self-supervised transformer for visual representation.
In NeurIPS, 2021. 3

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei Bursuc. Dense classification and im-
planting for few-shot learning. In CVPR, 2019. 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014. 8

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, 2016. 8

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In /CLR, 2018. 8

Leland MclInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform manifold
approximation and projection. The Journal of Open Source Software, 2018. 4

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for seman-
tic segmentation. In ICCV, 2015. 3

Pedro O Pinheiro, Amjad Almahairi, Ryan Benmalek, Florian Golemo, and Aaron Courville. Un-
supervised learning of dense visual representations. In NeurIPS, 2020. 3

Ilija Radosavovic, Piotr Dollar, Ross Girshick, Georgia Gkioxari, and Kaiming He. Data distillation:
Towards omni-supervised learning. In CVPR, 2018. 3

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
Incremental classifier and representation learning. In CVPR, 2017. 3

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS, 2015. 8

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. FitNets: Hints for thin deep nets. In /CLR, 2014. 3

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 2015. 7

Zhiqiang Shen, Zhankui He, and Xiangyang Xue. MEAL: Multi-model ensemble via adversarial
learning. In AAAI, 2019. 3

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, 2015. 2

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. In NeurIPS, 2017. 2, 3,5

A FM Uddin, Mst. Monira, Wheemyung Shin, TaeChoong Chung, and Sung-Ho Bae. SaliencyMix:
A saliency guided data augmentation strategy for better regularization. In ICML, 2021. 1, 2, 3, 4,
5

11

Under review as a conference paper at ICLR 2023

VN Vapnik. An overview of statistical learning theory. Neural Networks, IEEE Transactions on, 10
(5):988-999, 1999. 1

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 2

Shashanka Venkataramanan, Ewa Kijak, Laurent Amsaleg, and Yannis Avrithis. Alignmixup: Im-
proving representation by interpolating aligned features. In CVPR, 2022. 3,6, 7, 8, 1, 2, 4,
5

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, loannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
InICML, 2019. 1,2,4,7,8,3,5

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In ICML, 2020. 4

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning
for self-supervised visual pre-training. In CVPR, 2021. 3

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 4

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In CVPR, 2020. 3

Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. Propagate yourself: Ex-
ploring pixel-level consistency for unsupervised visual representation learning. In CVPR, 2021a.
3

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. arXiv preprint arXiv:2111.09886,
2021b. 3

Yuwen Xiong, Mengye Ren, Wenyuan Zeng, and Raquel Urtasun. Self-supervised representation
learning from flow equivariance. In ICCV, 2021. 3

Leon Yao and John Miller. Tiny imagenet classification with convolutional neural networks. Tech-
nical report, Standford University, 2015. 7

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015. 2

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV,
2019. 1,2,8,3,5

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. In /CLR, 2016a. 3

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016b. 6

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR, 2018. 1,2,4,9,3,5

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
ICCV,2019. 3

Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang, Pinyan Lu, and Xiaokang

Yang. m-mix: Generating hard negatives via multiple samples mixing for contrastive learning. In
ACM SIGKDD, 2022. 3

12

Under review as a conference paper at ICLR 2023

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In CVPR, 2016. 6, 5

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. iBOT:
Image bert pre-training with online tokenizer. In /CLR, 2022. 3

Jianchao Zhu, Liangliang Shi, Junchi Yan, and Hongyuan Zha. Automix: Mixup networks for
sample interpolation via cooperative barycenter learning. In ECCV, 2020. 3

13

Under review as a conference paper at ICLR 2023

A APPENDIX

A MORE EXPERIMENTS

A.1 MORE ON SETUP

Settings and hyperparameters We train MultiMix and its variants with mixed examples only.
We use a mini-batch of size m = 128 examples in all experiments. For every mini-batch, we
apply MultiMix with probability 0.5 or input mixup otherwise. For input mixup, we interpolate the
standard m pairs (5). For MultiMix, we use the entire network as the encoder fy by default, except
for the last fully-connected layer, which we use as classifier gyy. We use n = 1000 tuples and
draw a different o ~ UJ0.5,2.0] for each example from the Dirichlet distribution by default. For
multi-GPU experiments, all training hyperparameters including m and n are per GPU.

For dense MultiMix, the spatial resolution is 4 X 4 (r = 16) on CIFAR-10/100 and 7 x 7 (r =
49) on Imagenet by default. We obtain the attention map by (10) using GAP for vector v and
ReLU followed by ¢; normalization as non-linearity h by default. To predict class probabilities and
compute the loss densely, we use the classifier gy as 1 x 1 convolution by default; when interpolating
at earlier layers, we follow the process described in subsection 3.4. For distillation, both the teacher
and student networks have the same architecture. By default, we use v = % in (9), that is, equal
contribution of original labels and teacher predictions.

CIFAR-10/100 training Following the experimental settings of AlignMixup (

,), we train MultiMix and its variants using SGD for 2000 epochs using the same random
seed as AlignMixup. We set the initial learning rate to 0.1 and decay it by a factor of 0.1 every 500
epochs. The momentum is set to 0.9 and the weight decay to 0.0001. We use a batch size m = 128
and train on a single NVIDIA RTX 2080 TI GPU for 10 hours.

TinyImageNet training Following the experimental settings of PuzzleMix (,),
we train MultiMix and its variants using SGD for 1200 epochs, using the same random seed as
AlignMixup. We set the initial learning rate to 0.1 and decay it by a factor of 0.1 after 600 and 900
epochs. The momentum is set to 0.9 and the weight decay to 0.0001. We train on two NVIDIA RTX
2080 TI GPUs for 18 hours.

ImageNet training Following the experimental settings of PuzzleMix (,), we train
MultiMix and its variants using the same random seed as AlignMixup. We train R-50 using SGD
with momentum 0.9 and weight decay 0.0001 and ViT-S/16 using AdamW with default parameters.
The initial learning rate is set to 0.1 and 0.01, respectively. We decay the learning rate by 0.1 at 100
and 200 epochs. We train on 32 NVIDIA V100 GPUs for 20 hours.

Tasks and metrics We use top-1 error (%, lower is better) or top-1 accuracy (%, higher is better)
as evaluation metric on image classification and robustness to adversarial attacks (subsection 4.2
and subsection A.2). Additional datasets and metrics are reported separately for transfer learning to
object detection (subsection 4.3) and out-of-distribution detection (subsection A.3).

A.2 MORE RESULTS: CLASSIFICATION AND ROBUSTNESS

Using the experimental settings of subsection A.1, we extend Table 1, Table 2 and Table 3 of subsec-
tion 4.2 by comparing MultiMix and its variants with additional mixup methods in Table 6 and Ta-

ble 7. The additional methods are Input mixup (,), Cutmix (,),
SaliencyMix (s), StyleMix (,), StyleCutMix (s),
SuperMix (,) and (-Mixup (,). We reproduce ¢-Mixup and

SuperMix using these settings. For Supermix, we use the official code', which first trains the teacher
network using clean examples and then the student using mixed. For fair comparison, we use the
same network as the teacher and student models.

"https://github.com/alldbi/SuperMix

https://github.com/alldbi/SuperMix

Under review as a conference paper at ICLR 2023

In Table 6 and Table 7, we observe that MultiMix and its variants outperform all the additional mixup
methods on image classification. Furthermore, they are more robust to FGSM and PGD attacks as
compared to these additional methods. The remaining observations in subsection 4.2 are still valid.

DATASET CIFAR-10 CIFAR-100 TI
NETWORK R-18 W16-8 R-18 W16-8 R-18
Baseline 95.41+0.02 94.93+0.06 76.69+026 78.80+0.55 56.4940.21
Input mixup (N yf 95.98+0.10 96.18+£0.06 79.39-£0.40 80.16+0.1 56.60-+0.16
CutMix (R) 96.79+0.04 96.48+0.04 80.56+0.09 80.25+0.41 56.87+0.39
Manifold mixup (s yf 97.00+0.05 96.44+0.02 80.00+034 80.77+0.26 59.314+0.49
PuzzleMix (s)Jr 97.04+0.04 97.00£0.03 79.98-+0.05 80.78+0.23 63.52+0.42
Co-Mixup (s) 97.10+0.03 96.44+0.08 80.28+0.13 80.39+0.34 64.1240.43
SaliencyMix (s)" 96.94+-0.05 96.27+0.05 80.364+0.56 80.29+0.05 66.144-0.51
StyleMix (s)’f 96.254+-0.04 96.274+0.04 80.014+-0.79 79.77+0.17 63.8840.27
StyleCutMix (s) 96.94+0.05 96.9540.04 80.67+0.07 80.79+0.04 66.55+0.13
SuperMix (s)* 96.03+0.05 96.13+0.05 79.07+0.26 79.42+0.05 64434039
AlignMixup (s) 97064004 96914001 81714007 81.241002 66.85-0.07
¢-Mixup (R)* 96.26£0.04 96.354+0.04 80.46+026 79.73+0.15 63.1840.14
MultiMix (ours) 97.07+0.03 97.06+0.02 81.82-+0.04 81.44+0.03 67.11+0.04
+ distil 97.12+0.02 97.19+0.03 82.18+0.11 82.06+0.07 68.06+0.03
+ dense 97.09+0.02 97.09+0.02 81.93+0.04 81.77+0.03 68.4440.05
+ dense + distil 97.16+0.02 97.20+0.02 82.35+0.13 82.32+0.03 69.11-+0.05
Gain +0.06 +0.20 +0.64 +1.08 +2.26

Table 5: Image classification on CIFAR-10/100 and TI (TinyImagenet). Top-1 accuracy (%): higher
is better. R: PreActResnet, W: WRN. *: reproduced, ': reported by AlignMixup, *: reproduced with
same teacher and student model. Bold black: best; Blue: second best; underline: best baseline.
Gain: improvement over best baseline.

NETWORK RESNET-50 VIT-S/16
METHOD SPEED ERROR SPEED ERROR
Baseline 117 7632 101 739
Input mixup (,) 1.14 7742 099 747
CutMix (R) 1.16 78.60 099 744
Manifold mixup (,) 1.15 7750 097 752
PuzzleMix (, yf 0.84 7876 073 757
Co-Mixup (,) 0.62 - 057 759
SaliencyMix (,) 1.14 7874 096 758
StyleMix (,) 099 7594 085 748
StyleCutMix (,) 076 7729 071 75.1
SuperMix (R)* 092 77.60 - -
AlignMixup (, yo1.03 7932 - -
MultiMix (ours) 1.16 7881 1.0 752
+ distil 1.06 80.12 093 767
+ dense 095 7932 088 76.1
+ dense + distil 0.83 8021 081 769
Gain +0.89 +1.0

Table 6: Image classification and training speed on ImageNet. Top-1 accuracy (%): higher is better.
Speed: images/sec (x10%): higher is better. *: reproduced with same teacher and student model,
f: reported by AlignMixup. Bold black: best; Blue: second best; underline: best baseline. Gain:
improvement over best baseline.

A.3 MORE RESULTS: OUT OF DISTRIBUTION DETECTION

This is a standard benchmark for evaluating over-confidence. Here, in-distribution (ID) are examples
on which the network has been trained, and out-of-distribution (OOD) are examples drawn from
any other distribution. Given a mixture of ID and OOD examples, the network should predict an ID
example with high confidence and an OOD example with low confidence, i.e., the confidence of the
predicted class should be below a certain threshold.

Following AlignMixup (,), we compare MultiMix and its variants with
SoTA methods trained using R-18 on CIFAR-100 as ID examples, while using LSUN (,

Under review as a conference paper at ICLR 2023

ATTACK FGSM PGD
DATASET CIFAR-10 CIFAR-100 TI CIFAR-10 CIFAR-100
NETWORK R-18 W16-8 R-18 W16-8 R-18 R-18 W16-8 R-18 W16-8
Baseline T 88.840.11 88.3-£0.33 87.240.10 72.6-£0.22 91.940.06 | 99.94-0.0 99.9-£0.01 99.940.01 99.9-£0.01
Input mixup (Zhang et al., Jlih)T 79.140.07 79.140.12 81.440.23 67.34+0.06 88.7+0.08 [99.7-£0.02 99.4-+0.01 99.940.01 99.340.02
CutMix (Yun et al,, ZHI‘))T 77.34+0.06 78.3-+£0.05 86.94+0.06 60.2--0.04 88.64+0.03 [99.84-0.03 98.1-£0.02 98.6+0.01 97.9+0.01
Manifold mixup (Verma et al., 2019)F 76.9-£0.14 76.040.04 80.2-£0.06 56.340.10 89.3:-0.06 | 97.2-£0.01 98.440.03 99.6-£0.01 98.440.03
PuzzleMix (Kim et al., JUZU)T 5744022 60.7-+£0.02 78.84+0.09 57.8-£0.03 83.840.05|97.74+0.01 97.0-£0.01 96.440.02 95.2-+0.03
Co-Mixup (Kim et al,, 2021)]L 60.1+0.05 58.840.10 77.540.02 56.5+0.04 - 97.54+0.02 96.14+0.03 95340.03 94.240.01
SaliencyMix (Uddin et al,, 202 |)T 57.440.08 68.0£0.05 77.840.10 58.1-£0.06 81.14+0.06 | 97.44+0.03 97.0-£0.04 95.6+0.03 93.7-0.05
StyleMix (Hong et al., 202 i 80.04+0.23 71.2-£0.21 80.6+0.15 68.2-£0.17 85.14+0.16 | 98.140.09 97.5-£0.07 98.340.09 98.3-£0.09
StyleCutMix (Hong et al., 202 l)f 57.74+0.04 56.0-£0.07 77.440.05 56.8--0.03 80.540.04 | 97.84+0.04 96.7-+0.02 91.84+0.01 93.7-+0.01
SuperMix (Dabouei et al., 2021)* 60.0+0.11 58.2-+0.12 78.840.13 58.3+0.19 81.14+0.12]97.64+0.02 97.2+£0.09 91.440.03 92.7+0.01
AlignMixup (Venkataramanan et al., 2022)T 5484003 56.0-£0.05 74.140.04 55.040.03 78.8-:0.03(953-£0.04 96.7+0.03 9044001 92.1:0.03
¢-Mixup (Abhishek et al.,, 2022)* 72.8+0.23 67.3+0.24 753+0.21 68.0£0.21 84.7-0.18 | 98.0+-0.06 98.6+0.03 97.4-+0.10 96.1-£0.10
MultiMix (ours) 54.140.09 55340.04 75840.04 54.54+0.01 77.540.01|94.24+0.04 94.840.01 90.040.01 91.640.01
+ distillation 5254005 51.4-£0.01 73.540.03 52.7-£0.02 76.240.05|92.64+0.01 93.9-£0.02 88.840.01 90.5-+0.01
+ dense 54.140.01 53.340.03 74.540.03 52.940.04 755+0.04]92.940.04 92.6+0.01 88.640.03 90.840.01
+ dense + distillation 52.0£0.03 50.14-0.04 73.0+0.02 52.14+0.02 75.1+0.01 | 90.8£0.01 90.540.03 87.5+0.01 90.140.03
Gain +2.8 +5.9 +1.1 +2.9 +3.7 ‘ +4.5 +5.6 +2.9 +2.0

Table 7: Robustness to FGSM & PGD attacks. Top-1 error (%): lower is better. *: reproduced,
reported by AlignMixup. *: reproduced, same teacher and student model. Bold black: best; Blue:
second best; underline: best baseline. Gain: reduction of error over best baseline. TI: TinyImagenet.
R: PreActResnet, W: WRN.

TASK OUT-OF-DISTRIBUTION DETECTION
DATASET LSUN (cropr) ISUN TI (CROP)
METRIC DET AUROC AUPR AUPR [DET AUROC AUPR AUPR |DET AUROC AUPR AUPR
Acc (ID) (OOD)|Acc (D) (OOD)|Acc (ID) (OOD)
Baseline 54.0 47.1 545 456 |665 723 745 692 [61.2 648 67.8 60.6
Input mixup (Zhang et al.,, 201 8)‘L 575 593 614 552 |59.6 63.0 60.2 634 [58.7 62.8 63.0 62.1
Cutmix (Yun et al., 2019)7 63.8 63.1 619 634 |67.0 763 81.0 77.7 |704 843 87.1 80.6
Manifold mixup (Verma et al., 20]‘))7 589 603 578 595 |647 731 80.7 76.0 |674 699 693 70.5
PuzzleMix (Kim et al., 2()2())Jr 643 69.1 80.6 73.7 |739 772 793 71.1 [71.8 76.2 782 819
Co-Mixup (Kim et al., ll)ll)T 704 75.6 823 703 [68.6 80.1 825 754 |71.5 8438 86.1 80.5
SaliencyMix (Uddin et al., 3()3|)T 68.5 79.7 822 644 (656 769 783 79.8 [733 83.7 87.0 82.0
StyleMix (Hong et al., 3“3|)T 623 642 70.9 639 |61.6 684 67.6 60.3 [67.8 739 715 784
StyleCutMix (Hong et al., ll'II)T 70.8 78.6 83.7 749 |70.6 824 837 765 |753 82.6 829 784
SuperMix (Dabouei et al., 2021)* 709 774 80.1 723 [71.0 76.8 796 767 |75.1 82.8 825 78.6
AlignMixup (Venkataramanan et al., Z()Zl)T 742 799 84.1 75.1 [72.8 832 84.1 803 |77.2 85.0 87.8 85.0
¢-Mixup (Abhishek et al., 2022)* 68.1 732 80.8 73.1 [72.2 823 822 794 |744 843 822 772
MultiMix (ours) 79.2 82.6 852 776 |75.6 85.1 87.8 83.1 |783 86.6 89.0 88.2
+ distillation 80.3 844 863 764 [79.0 85.6 88.2 849 |80.7 87.8 89.9 88.2
+ dense 80.8 843 859 78.0 [76.8 854 88.0 84.6 |81.4 89.0 90.8 88.0
+ dense + distillation 81.0 849 864 782 (792 860 885 848 (819 893 903 883
Gain +6.8 +5.0 423 431 [+53 428 444 +4.6 |+47 +43 430 433

Table 8: Out-of-distribution detection using R-18. Det Acc (detection accuracy), AuROC, AuPR
(ID) and AuPR (OOD): higher is better. *: reproduced, ': reported by AlignMixup. *: reproduced,
same teacher and student model. Bold black: best; Blue: second best; underline: best baseline.
Gain: increase in performance. TI: TinyImagenet.

Under review as a conference paper at ICLR 2023

- . w
\- x 'f"""* “ e, .
: /)‘A “ | 3 V&lﬁﬁ "o
e N T
¥ % .
(a) Baseline (b) Manifold mixup (c) SaliencyMix (d) AlignMixup (e) Dense MultiMix +

(,) (,) (,) distillation (ours)

Figure 4: Embedding space visualization for 100 test examples per class of 10 randomly chosen
classes of CIFAR-100 with PreActResnet-18, using UMAP (R).

), iSUN (,) and TI to draw OOD examples. We use detection accuracy, Area
under ROC curve (AuROC) and Area under precision-recall curve (AuPR) as evaluation metrics.
In Table 8, we observe that MultiMix and its variants outperform SoTA on all datasets and metrics
by a large margin. Although the gain of vanilla MultiMix and Dense MultiMix over SoTA mixup
methods is small on image classification, these variants significantly reduce over-confident incorrect
predictions and achieve superior performance on out-of-distribution detection.

A.4 ANALYSIS OF THE EMBEDDING SPACE

Qualitative analysis We qualitatively analyze the embedding space on 10 CIFAR-100 classes in
Figure 4. We observe that the quality of embeddings of the baseline is extremely poor with severely
overlapping classes, which explains its poor performance on image classification. All mixup meth-
ods result in clearly better clustered and more uniformly spread classes. Manifold mixup (

,) produces five tightly clustered classes but the other five are still severely overlapping.
SaliencyMix (,) and AlignMixup (,) yield four some-
what clustered classes and 6 moderately overlapping ones. Our best setting, i.e., dense MultiMix
with distillation, results in five tightly clustered classes and another five somewhat overlapping but
less than all competitors. More plots including variants of MultiMix are given in the supplementary
material.

Quantitative analysis We also quantitatively assess the embedding space on the CIFAR-100 test
set using alignment and uniformity (,). Alignment measures the expected pair-
wise distance of examples in the same class. Lower alignment indicates that the classes are more
tightly clustered. Uniformity measures the (log of the) expected pairwise similarity of all examples
using a Gaussian kernel as a similarity function. Lower uniformity indicates that classes are more
uniformly spread in the embedding space. On CIFAR-100, we obtain alignment 3.02 for baseline,

1.27 for Manifold Mixup (,), 2.44 for SaliencyMix (R), 2.04 for
AlignMixup and 0.92 for Dense MultiMix with distillation. We also obtain uniformity -1.94 for the
baseline, -2.38 for Manifold Mixup (,), -2.82 for SaliencyMix (),
-4.77 for AlignMixup (,) and -5.68 for dense MultiMix with dlstlllatlon

These results validate the qualitative analysis of Figure 4.

A.5 MORE ABLATIONS
As in subsection 4.4, all ablations here are performed using R-18 on CIFAR-100.

Mixup methods with distillation In subsection 4.2 and Table 6, we observe that distillation sig-
nificantly improves the performance when used with MultiMix. Here, we also study its effect when
applied to SOTA mixup methods.

Given a mini-batch of m examples with inputs X and targets Y, we obtain the augmented views V
and V' as discussed in subsection 3.3. We then follow the mixup strategy of each mixup method and

obtain the corresponding predicted class probabilities P P’ from the student and teacher classifier,
respectively. E.g., for manifold mixup (,), we interpolate the embeddings Z =

fo(V), Z' = fo (V") using (3) and obtain P = gy (Z) and P’ = gyy+(Z'). In each case, we obtain
the interpolated targets Y using (4) and train the student network using (9).

Under review as a conference paper at ICLR 2023

METHOD VANILLA + DiIsTIL + DENSE + DENSE + DISTIL
Baseline 76.76 78.28 78.16 79.07
Input mixup (s) 79.79 80.19 80.21 80.54
CutMix (s) 80.63 81.51 81.40 81.61
Manifold mixup (s) 80.20 81.32 80.87 81.47
PuzzleMix (s) 79.99 81.26 80.62 81.44
Co-Mixup (s) 80.19 81.39 80.84 81.69
SaliencyMix (s) 80.31 81.57 81.21 81.73
StyleMix (R) 79.96 81.22 80.76 81.30
StyleCutMix (R) 80.66 81.60 81.41 81.75
SuperMix (s)* 79.01 80.83 80.12 80.83
AlignMixup (S) 81.71 81.80 81.36 81.40
MultiMix (ours)* - - 81.84 82.30
MultiMix (ours) 81.81 82.28 81.88 82.52

Table 9: Image classification on CIFAR-100 using R-18: The effect of distillation, dense loss and
both on SoTA mixup methods. Top-1 accuracy (%): higher is better. *: ‘vanilla’ refers to teacher
pre-training and ‘distil’ to self-distillation where teacher and student are trained concurrently from
scratch. *: Instead of dense MultiMix, we only apply the loss densely.

METHOD u h - +DISTIL
Uniform - - 81.33 81.59

CAM softmax 81.21 81.45
CAM /¢y orelu 81.63 81.91

GAP softmax 81.78 82.01
GAP ¢1 orelu 81.88 82.52

Attention (10)

Table 10: Variants of spatial attention in dense MultiMix, with and without distillation, on CIFAR-
100 using R-18. Top-1 accuracy (%): higher is better. GAP: Global Average Pooling; CAM: Class
Activation Maps (s); £1 o relu: ReL.U followed by ¢; normalization.

In Table 9, we observe that with distillation, the performance of all SOTA mixup methods improve.
For example, the baseline improves by 1.52% accuracy (76.76 — 78.23) and manifold mixup by
1.12% (80.20 — 81.32). On average, we observe a gain of 1% brought by distillation. An exception
is AlignMixup (,): distillation brings a marginal improvement of 0.09%
(81.71 — 81.80), making it on-par with vanilla MultiMix.

Mixup methods with dense loss In Table 6 we observe that dense interpolation and dense loss
improve vanilla MultiMix. Here, we study the effect of the dense loss when applied to SoOTA mixup
methods.

Given a mini-batch of m examples, we follow the mixup strategy of the SOTA mixup methods
to obtain the mixed embedding Zi € R¥™ for each spatial position j = 1,...,7. Then, as
discussed in subsection 3.4, we obtain the predicted class probabilities Pi g Rexm again for each
j = 1,...,r. Finally, we compute the cross-entropy loss [(}N/, Pi) (1) densely at each spatial
position j, where the interpolated target label Y € ReXm s given by (4).

In Table 9, we observe that using a dense loss improves the performance of all SOTA mixup methods.
The baseline improves by 1.4% accuracy (76.76 — 78.16) and manifold mixup by 0.67% (80.20
— 80.87). On average, we observe a gain of 0.7% brought by the dense loss. An exception is
AlignMixup (,), which drops by 0.35% (81.71 — 81.36). This may be
due to the alignment process, whereby the interpolated dense embeddings are not very far from the
original.

Finally, we study the effect of using a dense distillation loss on SoTA mixup methods. Here, simi-
larly with (9), the loss has two terms for each spatial position j: the first is the dense cross-entropy
loss H(Y', P7) as above and the second is the dense distillation loss H ((P’')7, P7), where P’ is ob-
tained by the teacher. In Table 9, we observe that dense distillation further improves the performance
of SoTA mixup methods as compared to using the dense loss only.

Under review as a conference paper at ICLR 2023

Two-stage distillation Following SuperMix (), we also study the effect of
using a two-stage distillation process with MultiMix, rather than online self-distillation.

In the first stage, we train the teacher using only clean examples for 300 epochs, and we achieve a
top-1 accuracy of 75.62%. This is slightly lower than the 76.76% of the baseline from Table 9, which
is trained for 2000 epochs. In the second stage, we fix the teacher parameters and train the student
using the predictions from the teacher network as targets. In particular, we use the second term
H(P', P) of (9), that is, v = 0. At inference, the top-1 accuracy drops by 16% (75.62 — 59.77).
This shows that using the setting of SuperMix is not effective, while also being computationally
expensive because of the two-stage training.

We also study the effect of training the student with both the interpolated labels }7(7) and the in-

terpolated predictions P’ of the pretrained teacher as targets. In particular, we use (9) with our
default v = % At inference, the top-1 accuracy improves by 4.7% compared with the teacher
(75.62 — 80.35). However, the student accuracy of 80.35% is still inferior to our 82.28% by online

self-distillation (Table 9). This shows that joint training of teacher and student is beneficial.

1,800 |-
1,600 == ==--_ D
3
< 1,400 |-
z
2
E 1,200 |- Baseline
—e— MultiMix
1,000 || - ®- MultiMix + distill
—— Dense MultiMix
800 || - ®- Dense MultiMix + distill >
I I |
10t 10? 108 104 10°

tuples n

Figure 5: Training speed (images/sec) of MultiMix and its variants vs. number of tuples n on CIFAR-
100 using R-18. Measured on NVIDIA RTX 2080 TI GPU, including forward and backward pass.

Training speed In Figure 5, we analyze the training speed of MultiMix and its variants as a func-
tion of number of tuples n. In terms of speed, vanilla MultiMix is on par with the baseline up to
n = 1000, while bringing an accuracy gain of 5%. The best performing variant—dense Multi-
Mix with distillation—is only slower by 15.6% at n = 1000 as compared to the baseline, which
is arguably worth given the impressive 5.8% accuracy gain. Further increasing beyond n > 1000
brings a drop in training speed, due to computing A and then using it to interpolate (6),(7). Because
n > 1000 also brings little performance benefit according to Figure 3(b), we set n = 1000 as default
for all MultiMix variants.

Dense MultiMix: Spatial attention In subsection 3.4, we discuss different options for attention
in dense MultiMix. In particular, no attention amounts to defining a uniform ¢ = 1,./r. Otherwise,
a is defined by (10). The vector u can be defined as u = z1,./r by global average pooling (GAP) of
z, which is the default, or u = Wy assuming a linear classifier with W € R?%¢_ The latter is similar
to class activation mapping (CAM) (), but here the current value of W is used
online while training. The non-linearity / can be softmax or ReLU followed by ¢; normalization
(¢4 o relu), which is the default. Here, we study the affect of these options on the performance of
dense Multimix.

In Table 10, we observe that using GAP for v and ¢; o relu as h yields the best performance overall.
Changing GAP to CAM or /¢; o relu to softmax is inferior, more so in the presence of distillation.
The combination of CAM with softmax is the weakest, even weaker than uniform attention. CAM
may fail because of using the non-optimal value of W while training; softmax may fail because of
being too selective. Compared to our best result, uniform attention is clearly inferior, by nearly 1%
in the presence of distillation. This validates that the use of spatial attention in dense MultiMix is
clearly beneficial. The intuition is the same as in weakly supervised tasks: In the absence of dense

Under review as a conference paper at ICLR 2023

targets, assuming the same target of the entire example at every spatial position naively implies that
the object of interest is present everywhere, whereas spatial attention provides a better hint as to
where the object may really be.

Dense MultiMix: Spatial resolution We study the effect of spatial resolution on dense MultiMix.
By default, we use a resolution of 4 x 4 at the last residual block of R-18 on CIFAR-100. Here, we
additionally investigate 1 x 1 (downsampling by average pooling with kernel size 4, same as GAP),
2 x 2 (downsampling by average pooling with kernel size 2) and 8 x 8 (upsampling by using stride
1 in the last residual block). We measure accuracy 81.07% for spatial resolution 1 x 1, 81.43% for
for 2 x 2, 81.88% for 4 x 4 and 80.83% for 8 x 8. We thus observe that performance improves with
spatial resolution up to 4 x 4, which the optimal, and then drops at 8 x 8. This drop may be due
to assuming the same target at each spatial position. The resolution 8 x 8 is also more expensive
computationally.

	Introduction
	Related Work
	Method
	Preliminaries and background
	MultiMix
	MultiMix with self-distillation
	Dense MultiMix

	Experiments
	Setup
	Results: Image classification and robustness
	Results: Transfer learning to object detection
	Ablations

	Conclusion
	Appendix
	More experiments
	More on setup
	More results: Classification and robustness
	More results: Out of distribution detection
	Analysis of the embedding space
	More ablations

