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ABSTRACT

In this paper, we present a time-decaying encoding as an alternative to sinusoidal
positional encoding in the transformer architecture. We evaluate our approach in
the context of an educational domain involving 14,043 question-solving interac-
tions from 1,260 students. We argue that including time-based attention can be
beneficial for event sequence modeling applications where the inter-event time
intervals and the interpretation of the model’s prediction both are crucial.

1 INTRODUCTION

Transformer architectures need positional embedding. In this paper, we ask: do we always need
positional embedding? We present an empirical analysis of a weighted temporal event sequence
modeling to encode timestamps as an alternative to positional embedding. We argue that temporal
information can be more valuable to capture sequential events in the health and education sector.

2 BACKGROUND AND RELATED WORK

Researchers have used time-decaying attention (Ghosh et al., 2020), inter-event embedding (Gu,
2021) instead of positional encoding. We present our study in the context of deep knowledge tracing
(DKT)–an approach to predict a student’s correctness in question-solving based on the student’s past
question-solving records (Piech et al., 2015; Pandey & Karypis, 2019; Pandey & Srivastava, 2020;
Ghosh et al., 2020). In the education domain, the forgetting curve theory states that the students’
memory decay exponentially with time (Ebbinghaus, 2013). Thus, researchers incorporated forget-
ting behavior into DKT: elapsed time between the consecutive events (Shin et al., 2021; Nagatani
et al., 2019), and elapsed time between events with similar skill tagging (Nagatani et al., 2019).

3 METHODOLOGY

We present our model architecture below. The study context is in the Appendix.

Text Embedding. We use the universal sentence encoder USE (Cer et al., 2018) to encode action
text into a d = 512 vector, E∈ Rd

Action Type Embedding. We learn an action embedding size of d = 512 for four actions.
Score Encoding. We extend the score of each question to a vector size d.
Response Encoding. We compute the cosine similarity between questions and responses and extend
the value to a vector size d.

We concatenate these four feature vectors to form an input for each timestamp i, xi ∈ R4d.

Time Relation. This component takes into account students’ forgetting behavior. We took the
negative exponential of the elapsed time ∆i between the Tth action timestamp, tT and ith previous
action’s timestamp, ti as: RT = [exp(−∆1), exp(−∆2), ..., exp(−∆T−1)]

Question Relation. This component computes the cosine similarities between the text embedding
of Tth question, ET and a previous question at ti, Ei. We denote this component as RQ.
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Table 1: Mean of 5-fold CV on test fold. Params. = Parameter Count, Mem. = Memory in MB

Sinusoidal Positioning Embedding Time Decaying Relation

Method AUC Accuracy Params. Mem. AUC Accuracy Params. Mem.
Full 0.85 0.79 11763728 11.22 0.80 0.76 11558928 11.02
Qrem 0.72 0.74 11763728 11.22 0.73 0.72 11558928 11.02

Attention. We compute the dot product attention αi,j (Vaswani et al., 2017) for a qi query vector
of a student’s question attempted at time i. We combine αi,j with the Time and Question relation,
R as: βi,j = λαi,j + (1− λ)Rj. Here, Rj is the jth coefficient of R and λ is a trainable parameter.
The final attention is Atti =

∑
j<i βi,j .x̂jW

V, vj = value vectors (Details in Appendix).

4 EXPERIMENT DESIGN AND RESULT

Table 1 presents results of two forms of encodings: sinusoidal position encoding (Vaswani et al.,
2017) and exponential time decaying relation. We present two sets of experiments for each encod-
ing. The Full denotes the full model and Qrem denotes excluding the question relation from the
full model. We report five-fold cross-validation results. The task is a binary classification task.
Hyperparameter details and dataset statistics are in the Appendix.

Table 2: The Student’s Action Sequence of Figure 1

Time Action Text (Score)
T1 In your own words, explain how the arches

were formed. Use some of the science terms
we used in the past. (Score = 0)

T2 Explain the meaning of physical change. What
does it affect? (Score = 0)

T3 Explain the meaning of physical change. What
does it affect? (Score: True = 0, Predicted = 0)

Figure 1: Attention Weight Averaged
on Four Heads: Full Model (Test Fold)

Result. The sinusoidal encoding Full model outperforms the time-decaying relation Full model.
In both encodings, removing the Qrem component from the Full model results in a performance
drop. Our model’s parameter size and memory are relatively smaller. From Table 1, we observe the
model’s size and other components both contribute to performance.

Figure 1 shows the attention weight assigned by our model for one student. Table 2 shows question
texts and scores. We observe the model puts more weight on “T2” as a time-decaying result in
predicting the question score at “T3”. The question at “T3” is a resubmission of “T2”. The student
scored zero on both questions at “T1” and “T2”. The model predicted zero at “T3”.

5 DISCUSSION AND CONCLUSIONS

Incorporating time and model interpretation in the sequential prediction is important in the health
sector, (e.g., disease progression modeling (Zhang, 2019)) and education domain (See Section 2).
However, the sinusoidal positional encoding does not capture the inter-event time intervals. In this
paper, we present an alternative encoding that puts decayed weight on distant events. Our proposed
approach’s strength is education theory-informed design that incorporates (i) students’ forgetting
behavior and (ii) provides a rationale for the model’s prediction. Although the sinusoidal model
outperforms ours, we are not looking for the best performance. Rather, we advocate for an alternative
of positional encoding with comparable performance and domain application specificity.
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A APPENDIX

Study Context and Dataset Statistics. Our dataset is from a K-12 science reading platform, Ac-
tively Learn (AL). AL is a popular online reading platform used in US Schools. We identified four
types of actions within the AL system: question attempts, annotating, highlighting, and vocabulary
lookup.
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The dataset statistics are: the number of assignments = 378, number of questions = 1,260, number of
students = 1,680, and number of interactions = 14,043. The mean, standard deviation, and median
of the sequence are 6.4, 3.6, and 6.

Experiment Settings. We report five-fold cross-validation results. The task is a binary classification
task.

1. Full Model.
(a) Time Decaying Relation: Proposed architecture.
(b) Sinusoidal Positioning Embedding. This model uses the sinusoidal position embed-

ding Vaswani et al. (2017) and does not include the time-decaying relation.

2. Qrem. Excluding the Question Relation component from the model architecture.

Hyperparameters. We used a batch size of 200, embedding size of 512, 300 epochs, learning rate
= 1e−3, number of attention heads = 4, and early stopping if the validation AUC did not increase
over five epochs.

Attention: WQ,WK, and WV are projection matrices for query, key, and value space, respectively
with dimension Rd∗d.

αi,j = Softmax(
qiW

Q.(kjW
K)T

d
), allj < i

Atti =
∑
j<i

αi,j .vjW
V

(1)

kj and vj denote respectively key and value vectors for previous actions, j < i. In DKT models,
keys and values are past events, so j < i.

R = Softmax(RT +RQ).

Source Code: Link to source code.
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