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Abstract

We propose a surrogate function for efficient use of score-based priors for Bayesian1

inverse imaging. Recent work turned score-based diffusion models into probabilis-2

tic priors for solving ill-posed imaging problems by appealing to an ODE-based3

log-probability function. However, evaluating this function is computationally4

inefficient and inhibits posterior estimation of high-dimensional images. Our5

proposed surrogate prior is based on the evidence lower-bound of a score-based6

diffusion model. We demonstrate the surrogate prior on variational inference for7

efficient posterior sampling of large images. Compared to the exact prior used8

in previous work, our surrogate prior accelerates optimization of the variational9

distribution by at least two orders of magnitude. We also find that our principled ap-10

proach achieves higher-fidelity image-reconstruction than non-Bayesian baselines11

that involve hyperparameter-tuning at inference. Our work establishes a practical12

path forward for using score-based diffusion models as general-purpose priors for13

computational imaging.14

1 Introduction15

Ill-posed image reconstruction requires a prior to constrain the reconstruction according to desired16

image statistics. From a Bayesian perspective, the prior influences both the uncertainty and the17

richness of the estimated image. Although diffusion-based generative models represent rich image18

priors, leveraging these priors for Bayesian image-reconstruction remains a challenge. True posterior19

sampling with an unconditional diffusion model is intractable, so most previous methods heavily20

approximate the posterior [9; 13; 14; 19] or disregard measurement noise [5; 7; 8; 6; 11; 24; 1].21

Recent work demonstrated how to turn score-based diffusion models into probabilistic priors (score-22

based priors) for Bayesian imaging [10]. However, this method requires the exact probability of23

a proposed image to be evaluated with a computationally-expensive ordinary differential equation24

(ODE), requiring days to a week to reconstruct even a 32× 32 image [10]. We present a method for25

Bayesian inference with a score-based prior that is both principled and computationally efficient.26

Although computing exact probabilities under a diffusion model is inefficient or even intractable,27

computing the evidence lower-bound [22; 12] is computationally efficient and feasible for high-28

dimensional images. Thus we propose to use this evidence lower-bound as a surrogate for the29

exact score-based prior. In particular, we use the evidence lower-bound of a score-based diffusion30

model [22] as a substitute for the exact log-probability function. This function can be plugged into31

any inference algorithm that requires the value or gradient of the posterior log-density. When it is32

used in variational inference, we find at least two orders of magnitude in speedup of optimizing the33

variational distribution. Furthermore, our approach reduces GPU memory requirements, as there34

is no need to evaluate and backpropagate through an ODE. These efficiency improvements make it35

practical to perform inference with score-based priors.36
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Figure 1: High-dimensional Bayesian inference with a surrogate score-based prior. We propose
a surrogate prior for efficient use of score-based diffusion models as priors for Bayesian imaging.
Here we show posterior samples (estimated with variational inference) for accelerated MRI of
256× 256 knee images with a score-based diffusion-model prior. The first row shows reconstruction
from 16×-reduced MRI measurements. The second row shows reconstruction given more κ-space
measurements, i.e., 4×-reduced MRI. Bayesian imaging at this image resolution is computationally
infeasible with the previous ODE-based approach. Our proposed surrogate prior enables efficient yet
principled inference with diffusion-model priors, resulting in inferred posteriors where the true image
is within three standard deviations of the posterior mean for 96% and 99% of the pixels for 16×- and
4×-acceleration, respectively.

In this paper, we describe our variational-inference approach to efficiently estimate a posterior with37

a surrogate score-based prior. We provide experimental results to validate the proposed surrogate38

prior, including high-dimensional posterior samples of sizes up to 256× 256, a resolution infeasible39

with the exact prior. In the setting of accelerated MRI, we quantify time- and memory-efficiency40

improvements of the surrogate over the exact prior. We also demonstrate how our proposed approach41

achieves higher-quality image reconstructions than methods that deviate from true Bayesian inference.42

2 Related work43

2.1 Bayesian inverse imaging44

Image reconstruction can be framed as an inverse problem: a hidden image x∗ ∈ RD must be45

recovered from measurements y ∈ RM , where46

y = f(x∗) + ϵ. (1)

It is usually assumed that the forward model f : RD → RM is known and that the measurement47

noise ϵ ∈ RM is a random variable with a known distribution. With an ill-posed inverse problem,48

there is inherent uncertainty in image reconstruction.49

Bayesian imaging accounts for the uncertainty by formulating a posterior distribution p(x | y). The50

posterior can be decomposed into a likelihood term and a prior term:51

log p(x | y) = log p(y | x) + log p(x) + const. (2)

Given a log-likelihood function log p(y | x) and a prior log-probability function log p(x), we can52

use established techniques for sampling from the posterior, such as Markov chain Monte Carlo53

(MCMC) [3] or variational inference [2]. MCMC algorithms generate a Markov chain whose54

stationary distribution is the posterior, but they are generally slow to converge for high-dimensional55

data like images. Variational inference instead approximates the posterior with a tractable distribution56

(e.g., Gaussian). The variational distribution is usually parameterized and thus can be efficiently57

optimized to represent high-dimensional data distributions. Deep Probabilistic Imaging (DPI) [25; 26]58

proposed an efficient variational-inference approach specifically for computationtal imaging with59

traditional regularizers; in DPI, the variational distribution is a discrete normalizing flow [15], which60

is an invertible generative model capable of representing complex distributions.61
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2.2 Diffusion models for inverse problems62

Primarily developed for image generation, diffusion models [18; 12; 20; 21; 23] learn to model a63

rich image distribution that could be useful as a prior for image reconstruction. A diffusion model64

generates an image by starting from an image of noise and gradually denoising it until it becomes a65

clean image. We discuss this process, known as reverse diffusion, in more detail in Sec. 3.1.66

Given an inverse problem, simply adapting a pretrained diffusion model to sample from the posterior67

instead of the learned prior is intractable [10]. Therefore, most diffusion-based approaches do68

not infer a true Bayesian posterior. Some methods project images onto a measurement-consistent69

subspace [24; 8; 6; 5; 7], but the projection does not account for measurement noise and might70

pull images away from a true posterior. Other methods follow a gradient toward higher likelihood71

throughout reverse diffusion [9; 13; 11; 14; 1; 19; 17], but these methods heavily approximate the72

posterior. Overall, these diffusion-based methods require hyperparameter-tuning to balance the73

measurements and the prior. As soon as hyperparameters are introduced, there is no guarantee of74

sampling from a posterior that represents the true uncertainty.75

Score-based priors. Alternatively, a score-based diffusion model can be turned into a standalone,76

probabilistic prior (score-based prior) that can be paired with any measurement-likelihood function77

and plugged into established Bayesian-inference approaches. Feng et al. [10] proposed to do this78

with a log-density function based on the ODE associated with reverse diffusion (see Sec. 3.2). This79

function provides the log-probability of any image under the diffusion model’s generative distribution,80

but it is computationally expensive to evaluate. When used in iterative optimization algorithms, it81

incurs prohibitively high time and memory costs.82

3 Background83

In this section, we review background on score-based diffusion models with an emphasis on evaluating84

probabilities of images with a pretrained diffusion model. We then describe how a diffusion process85

gives rise to an efficient denoising-based lower-bound on these image probabilities.86

3.1 Score-based diffusion models87

The core idea of a diffusion model is that it transforms a simple distribution π to a complex image88

distribution through a gradual process. In this work, we follow the popular framework of denoising89

diffusion models, which transform noise samples from π = N (0, I) to clean samples from the90

data distribution pdata through gradual denoising. With knowledge of the noise distribution and the91

denoising process, we can assess the probability of a novel image under this generative model.92

The transformation from a simple distribution to a complex one occurs over many steps. To determine93

how the data distribution should look at each step of the denoising process, we turn to a stochastic94

differential equation (SDE) that describes a diffusion process from clean images to noise. The95

diffusion SDE is defined on the time interval t ∈ [0, T ] and has the form96

dx = f(x, t) + g(t)dw, (3)

where w ∈ RD denotes Brownian motion. g(t) ∈ R is the diffusion coefficient, which controls the97

rate of noise increase. f(·, t) : RD → RD is the drift coefficient, which controls the deterministic98

evolution of x(t). By defining a stochastic trajectory {x(t)}t∈[0,T ], this SDE gives rise to a time-99

dependent probability distribution pt, which is the marginal distribution of x(t). We construct f(·, t)100

and g(t) so that if p0 = pdata, then pT ≈ π. Image generation amounts to reversing the diffusion,101

which requires the gradient of the data log-density (score) at every noise level in order to nudge102

images toward high probability under pdata. A convolutional neural network sθ known as a score103

model is trained to approximate the true score: sθ(x, t) ≈ ∇x log pt(x).104

3.2 Image probabilities under a score-based diffusion model105

Once trained, sθ(x, t) is used in a reverse-diffusion process to generate clean images from noise.106

The generated image distribution theoretically assigns a probability density to every possible image.107

However, reverse diffusion does not lead to an image distribution with tractable probabilities. In this108
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subsection, we describe two workarounds: one based on an ordinary differential equation (ODE) and109

the other based on a denoising score-matching objective.110

Sampling with a reverse-time SDE. Reversing diffusion (Eq. 3) with a score model sθ(x, t) results111

in a distribution pSDE
θ , denoted as such because it is determined by a reverse-time SDE:112

dx =
[
f(x, t)− g(t)2sθ(x, t)

]
dt+ g(t)dw̄. (4)

w̄ ∈ RD denotes Brownian motion, and f(·, t) and g(t) are the same as in Eq. 3. To generate an113

image, we first sample x(T ) ∼ N (0, I) and then numerically solve the reverse-time SDE for x(0).114

pSDE
θ is the marginal distribution of x(0), which for a well-trained score model is close to pdata.115

To compute the probability of an image x under pSDE
θ , we need to invert this image from x(0) = x to116

x(T ). However, this is not tractable through the SDE: just as it is intractable to reverse a random117

walk, it is intractable to account for all the possible starting points x(T ) that could have resulted in118

x(0) through the stochastic process. Probability computation calls for an invertible process that lets119

us map any point from pdata to N (0, I) and vice versa.120

Computing probabilities with an ODE. The probability flow ODE [23] defines an invertible121

sampling function for an image distribution pODE
θ theoretically the same as pSDE

θ . It is given by122

dx

dt
= f(x, t)− 1

2
g(t)2sθ(x, t) =: f̃θ(x, t). (5)

The absence of Brownian motion makes it possible to solve this ODE in both directions of time. To123

compute the log-probability of an image x, we map x(0) = x to its corresponding noise image x(T ).124

Under the framework of neural ODEs [4], the log-probability is given by the log-probability of x(T )125

under N (0, I) plus a normalization factor accounting for the change in density through time:126

log pODE
θ (x(0)) = log π(x(T )) +

∫ T

0

∇ · f̃θ(x(t), t)dt, x(0) = x, (6)

Although tractable to evaluate with an ODE solver, this log-probability function is computationally127

expensive, requiring hundreds to thousands of discrete ODE time steps to accurately evaluate.128

Additional time and memory costs are incurred by backpropagation through the ODE and Hutchinson-129

Skilling trace estimation of the divergence.130

Equivalence of pSDE
θ and pODE

θ . Song et al. [22] proved that if sθ(x, t) ≡ ∇x log pt(x, t) for all t ∈131

[0, T ] and pT = π, then pODE
θ = pSDE

θ = pdata. In our work, we assume that sθ(x, t) ≈ ∇x log pt(x, t)132

for almost all x ∈ RD and t ∈ [0, T ] and that pT ≈ N (0, I), so that pODE
θ ≈ pSDE

θ ≈ pdata. This133

assumption empirically performed well in previous work that appealed to pODE
θ as the exact probability134

distribution of the diffusion model [10; 23].135

3.3 Evidence lower bound of a score-based diffusion model136

In lieu of an exact log-probability function, Song et al. [22] derived an evidence lower-bound for137

pSDE
θ such that bSDE

θ (x) ≤ log pSDE
θ (x) for any proposed image x. Essentially, this lower-bound138

corresponds to how well the diffusion model is able to denoise a given image: an image with high139

probability under the diffusion model is easy to denoise, whereas a low-probability image is difficult.140

The lower-bound, or the negative “denoising score-matching loss” [22], is defined as141

bSDE
θ (x) := Ep0T (x′|x)

[
log π(x′)

]
− 1

2

∫ T

0

g(t)2h(t)dt, (7)

where142

h(t) := Ep0t(x′|x)

[∥∥sθ(x′, t)−∇x′ log p0t(x
′ | x)

∥∥2

2
−

∥∥∇x′ log p0t(x
′ | x)

∥∥2

2
− 2

g(t)2
∇x′ · f(x′, t)

]
.

(8)

p0t(x
′ | x) denotes the transition distribution from x(0) = x to x(t) = x′. For a drift coefficient143

that is linear in x, this transition distribution is Gaussian: p0t(x′ | x) = N (x′;α(t)x, β(t)2I). This144

means that the gradient ∇x′ log p0t(x
′ | x) is directly proportional to the Gaussian noise that is145

subtracted from x′ to get x. Eq. 7 is efficient to compute since we can evaluate it by adding Gaussian146
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noise to x without having to solve an initial-value problem as with the ODE. In fact, Eq. 7 is closely147

related to the denoising score-matching objective used to efficiently train diffusion models [23].148

Intuitively, we can interpret Eq. 7 as associating an image’s probability with how well the score model149

sθ could denoise that image if it underwent diffusion. This is represented by the first term in h(t)150

(Eq. 8). To assess the probability of an image x, we perturb it with Gaussian noise to get x′ and then151

ask the score model to estimate the noise that was added. If sθ(x, t) accurately estimates the noise,152

then ∥sθ(x′, t)−∇x′ log p0t(x
′ | x)∥22 is small, and the value of bSDE

θ (x) becomes larger.153

The remaining terms in h(t) are normalizing factors independent of θ. The term Ep0T (x′|x) [log π(x′)]154

accounts for the probabilities of the noise images x(T ) that could result from x being entirely diffused.155

4 Method156

Inspired by previous theoretical work [22], we propose bSDE
θ as an efficient surrogate prior for the157

exact score-based prior in Bayesian imaging. In this section, we describe our approach for efficient158

posterior inference with a score-based prior.159

4.1 Variational inference with a surrogate score-based prior160

Given measurements y ∈ RM (with a known log-likelihood function) and a score-based diffusion161

model (parameterized by θ) as the prior, our goal is to sample from the image posterior pθ(x | y).162

We follow a variational-inference approach by optimizing the parameters of a variational distribution163

to closely approximate the target posterior.164

Let qϕ denote the variational distribution with parameters ϕ, and we assume qϕ to have tractable165

log-probabilities. We optimize ϕ to minimize the KL divergence from qϕ to the target posterior:166

ϕ∗ = argmin
ϕ

DKL(qϕ∥pθ(· | y)) = argmin
ϕ

Ex∼qϕ

[
− log p(y | x)− log pODE

θ (x) + log qϕ(x)
]
. (9)

qϕ can be various types of distributions. For example, it could be a Gaussian distribution with a167

diagonal covariance matrix so that ϕ := [µ⊤, σ⊤]⊤, where µ ∈ RD and σ ∈ RD (σ > 0) are168

the mean and pixel-wise standard deviation. As DPI showed [25], qϕ could also be a RealNVP169

normalizing flow with network parameters ϕ.170

To circumvent the computational challenges of evaluating the prior term log pODE
θ (x), we replace it171

with the surrogate bSDE
θ (x). This results in the following objective:172

ϕ∗ = argmin
ϕ

Ex∼qϕ

[
− log p(y | x)− bSDE

θ (x) + log qϕ(x)
]
. (10)

We can also think of bSDE
θ as replacing the intractable log pSDE

θ in Eq. 9. Since − log pSDE
θ ≤ −bSDE

θ ,173

our surrogate objective minimizes the upper-bound of a valid KL divergence involving pSDE
θ .174

4.2 Implementation details175

Evaluating bSDE
θ (x). The formula for bSDE

θ (x) (Eq. 7) contains a time integral and expectation176

over p0t(x′ | x) that can be estimated with numerical methods. Following Song et al. [22], we use177

importance sampling with time samples t ∼ p(t) for the time integral and Monte-Carlo approximation178

with noisy images x′ ∼ N (α(t)x, β(t)2I) for the expectation. The proposal distribution p(t) :=179

g(t)2

β(t)2Z was empirically verified to result in lower variance in the estimation of bSDE
θ (x) [22]. We180

provide the following formula used in our implementation, which estimates the time integral with181

importance sampling and the expectation with Monte-Carlo approximation, for reference:182

bSDE
θ (x) ≈ 1

Nz

Nz∑
j=1

log π(x′
j)

− 1

2NtNz

Nt∑
i=1

Zβ(t)2
Nz∑
j=1

[∥∥∥∥sθ(x′
ij , ti) +

zij
β(ti)

∥∥∥∥2

2

−
∥∥∥∥ zij
β(ti)

∥∥∥∥2

2

− 2

g(ti)2
∇x′

ij
· f(x′

ij , ti)

]
s.t. ti ∼ p(t), zij ∼ N (0, I), x′

ij = α(ti)x+ β(ti)zij , x
′
j ∼ N (α(T )x, β(T )2I)

∀ i = 1, . . . , Nt, j = 1, . . . , Nz. (11)
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Nt is the number of time samples used to approximate the time integral, and Nz is the number183

of noise samples taken to approximate the expectation over p0t(x′ | x). In our experiments, we184

set Nt = Nz = 1. Increasing the number of time and noise samples does not efficiently decrease185

variance in the estimated value of bSDE
θ (x). We use the Variance Preserving (VP) SDE.186

Optimization. We use stochastic gradient descent to optimize ϕ, Monte-Carlo approximating the187

expectation in Eq. 10 with a batch of x ∼ qϕ. We find that estimating bSDE
θ (x) has higher variance188

than estimating log pODE
θ (x). For example, in Fig. 4, bSDE

θ (x) with Nt = 2048, Nz = 1 shows higher189

variance than log pODE
θ (x) with 16 trace estimators. When optimizing a complex distribution like190

RealNVP, a lower learning-rate helps mitigate training instabilities caused by variance. For example,191

in Fig. 3b the learning rate with the exact prior was 0.0002, while the learning rate with the surrogate192

prior was 0.00001. Please refer to the supplemental text for more optimization details.193

5 Experiments194

We validate our proposed approach on the tasks of accelerated MRI, image denoising, and reconstruc-195

tion from low spatial frequencies. We highlight accelerated (or compressed sensing) MRI because in196

addition to being a real-world imaging problem that calls for accurate posterior estimation, it is the197

focus of much related work [24; 13]. In MRI, measurements in a spatial-frequency space (κ-space) are198

obtained to help reveal a hidden anatomical image. Accelerated MRI reduces the number of κ-space199

measurements, thus reducing the scan time but also making the image reconstruction ill-posed. The200

supplemental text provides details on how measurements were generated for all tasks.201

5.1 Efficiency improvements202

Image size Surrogate Exact
16× 16 0.029 19.5
32× 32 0.038 41.9
64× 64 0.090 123

128× 128 0.294 N/A
256× 256 1.115 N/A

Table 1: Iteration time [sec/step].
Each iteration of gradient-based op-
timization of the variational distri-
bution is 2 to 3 orders of magnitude
faster with the surrogate prior.

In Tab. 1 and Fig. 2, we quantify the efficiency improvements203

of the surrogate prior for an accelerated MRI task at different204

image resolutions. We drew a test image from the fastMRI knee205

dataset [27] and resized it to 16× 16, 32× 32, 64× 64, 128×206

128, and 256 × 256. For each image size, we trained a score207

model on training images of the corresponding size from the208

fastMRI dataset of single-coil knee scans. We then optimized a209

Gaussian distribution with diagonal covariance to approximate210

the posterior. The batch size was 64 for the surrogate and 32 for211

the exact prior (a smaller batch size was needed to fit 64× 64212

optimization into GPU memory). Convergence was defined213

by setting a minimum acceptable change in the mean of the214

estimated posterior between optimization steps.215

We find at least two orders of magnitude in time improvement216

with the surrogate prior. Tab. 1 compares the iteration time217

between the two priors. Fig. 2 compares the total time it takes to optimize the variational distribution.218

The surrogate also significantly improves memory consumption, which in turn enables optimizing219

higher-dimensional posteriors. Following standard practice, we just-in-time (JIT) compile the220

optimization step to reduce time/step at the cost of GPU memory. Fig. 2 shows how the surrogate221

prior significantly reduces memory requirements and scales better with image size. The exact prior222

could only handle up to 32 × 32 before exceeding GPU memory (we tested on 4x 48GB GPUs).223

While memory could be reduced with a smaller batch size, this would make optimization more time-224

consuming. On the other hand, our surrogate prior supports much larger images, as we demonstrate in225

Fig. 1 for 256× 2561 MRI with a Gaussian-approximated posterior. This type of principled inference226

of high-dimensional image posteriors was not possible before with the exact score-based prior.227

5.2 Posterior estimation under the surrogate vs. exact prior228

We cannot expect the surrogate prior bSDE
θ to be an identical substitute for the exact prior log pODE

θ .229

Importantly, though, we verify in Fig. 3a that both the surrogate and the exact prior recover a ground-230

truth Gaussian posterior derived from a Gaussian likelihood and prior. The variational distribution231

1Larger images may be feasible but are more memory-intensive, which imposes more restrictions on the
batch size and the complexity of the variational distribution.
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Figure 3: Estimated posteriors under surrogate vs. exact prior. For each task, the variational distri-
bution is a RealNVP, and the score model is the same between both prior functions. (a) Both prior
functions recover the correct (Gaussian) posterior. The score-based prior was trained on samples
from a known Gaussian distribution (originally fit to 16× 16 face images), and the measurements are
the lowest 6.25% spatial frequencies of a test image from the prior. Since the prior and likelihood
are both Gaussian, we know the ground-truth Gaussian posterior. (b) We estimate posteriors for (i)
denoising a CelebA image and (ii) denoising a CIFAR-10 image. The score-based prior was trained
on CelebA in (i) and CIFAR-10 in (ii). Visual differences between the estimated posteriors appear
mostly in the image background, and the prior functions result in comparable image quality.

used for inference is a RealNVP, and the score model (used by both the surrogate and exact prior)232

was trained on samples from the known Gaussian prior.233

Nonetheless, the surrogate could result in a different locally-optimal variational posterior, particularly234

if the posterior is complex with various local minima in the variational objective. Fig. 3b compares235

posteriors (with unknown true distribution) approximated by a RealNVP under the surrogate versus236

exact prior. For each task (CelebA denoising and CIFAR-10 denoising), both prior functions used the237

same pretrained score model. We observe in these comparisons that most of the differences appear in238

the image background and that both priors result in a plausible mean reconstruction and uncertainty.239

Visualizing the bound bap throughout optimization helps shed light on why the two priors converge240

to different solutions even if the underlying score model is the same. Fig. 4 shows probabilities of241

samples generated by qϕ (in this case, a RealNVP) as optimization progresses. At each checkpoint242

of qϕ, we plot log pODE
θ (x) versus bSDE

θ (x) (approximated with Nt = 2048 for reduced variance)243

for samples x ∼ qϕ coming from both the exact and surrogate optimization of qϕ. Importantly, we244

find that the surrogate is a valid bound for the ODE log-density: bSDE
θ (x) ≤ log pODE

θ (x) for all245
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x ∼ qϕ(x), except for some outliers due to variance of bSDE
θ (x). However, we find that optimization246

follows a different trajectory depending on the prior. With the surrogate, samples x ∼ qϕ tend toward247

a region where the bound gap is small (i.e., bSDE
θ (x) is close to log pODE

θ (x)). Meanwhile, the exact248

prior follows a loss landscape whose structure appears to be independent of the lower-bound. Note249

that samples from qϕ optimized under the exact prior obtain higher values of bSDE
θ (x) than samples250

obtained under the surrogate. The observations in Fig. 4 suggest that gradients under the surrogate251

tend to push the qϕ distribution along the boundary of equality between bSDE
θ and log pODE

θ . This252

constrains the path taken through gradient descent and subsequently the converged solution.253
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<latexit sha1_base64="oPUrUeiPUAiQl2O3PR65FmlFHoU=">AAACDXicbVDJSgNBEO1xN26jHr00RiFewowoegwu4M0IxgQyMfR0apImPQvdNWIY8gNe/BUvHhTx6t2bf2NnOajxQcHjvSqq6vmJFBod58uamp6ZnZtfWMwtLa+srtnrGzc6ThWHCo9lrGo+0yBFBBUUKKGWKGChL6Hqd08HfvUOlBZxdI29BBoha0ciEJyhkZr2jifjNk2aHnYA2a2HcI/Z5dl5v+CFDDt+kN3395p23ik6Q9BJ4o5JnoxRbtqfXivmaQgRcsm0rrtOgo2MKRRcQj/npRoSxrusDXVDIxaCbmTDb/p01ygtGsTKVIR0qP6cyFiodS/0TefgRP3XG4j/efUUg+NGJqIkRYj4aFGQSooxHURDW0IBR9kzhHElzK2Ud5hiHE2AOROC+/flSXKzX3QPi87VQb50Mo5jgWyRbVIgLjkiJXJByqRCOHkgT+SFvFqP1rP1Zr2PWqes8cwm+QXr4xuyVpv0</latexit>

log pODE
✓ (x)

Figure 4: bSDE
θ (x) vs. log pODE

θ (x) for samples x ∼ qϕ as optimization of ϕ progresses. The task
is from Fig. 3b(i). For each plot, we took 128 samples x ∼ qϕ and performed 20 estimates each
of bSDE

θ (x) and log pODE
θ (x). The density map is a KDE plot of all 128 · 20 = 2560 values; the 128

scatter points represent the mean estimate for each x. The black line indicates perfect agreement
between bSDE

θ (x) and log pODE
θ (x). We expect all points to lie below this black line for bSDE

θ to be
a lower-bound. We find that bSDE

θ (x) ≤ log pODE
θ (x) (up to variance error), but the optimization

progresses differently depending on the prior. Gradients under the surrogate push qϕ(x) along the
black line to increase bSDE

θ (x) without exceeding log pODE
θ (x). Optimization under the exact prior

proceeds more freely, although eventually achieves higher bSDE
θ (x) at convergence. This visualization

may help explain differences in the posterior estimated with the surrogate vs. exact prior.

5.3 Image-reconstruction quality254

It would be reasonable to assume that diffusion-based approaches discussed in Sec. 2, although less255

principled, may lead to better visual quality than a Bayesian approach. However, we find that in256

addition to providing more-reliable uncertainty, our approach achieves higher-fidelity reconstructions.257

We note that similarity to a ground-truth image does not indicate a correct posterior. Still, for a good258

prior, it might be desirable for posterior samples to accurately reflect the true underlying image.259

We performed multiple MRI tasks at different acceleration rates and compared our approach to three260

baselines: SDE+Proj [24], Score-ALD [13], and Diffusion Posterior Sampling (DPS) [9]. SDE+Proj261

projects images onto a measurement subspace. Score-ALD and DPS approximate the posterior262

throughout reverse diffusion. All baselines involve at least one measurement-weight hyperparameter.263

The implementations and hyperparameter settings for SDE+Proj and Score-ALD were provided by264

Song et al. [24]. For DPS, we followed the implementation of Chung et al. [9] and performed a265

hyperparameter search on an 8×-acceleration test image to find the optimal PSNR.266

We simulated MRI at three different acceleration factors for ten test images, resulting in thirty267

posterior distributions to be estimated. As baseline implementations do not account for measurement268

noise, we gave the baselines noiseless measurements and set a near-zero measurement noise for our269

method. The test images were randomly sampled from the fastMRI dataset and resized to 64× 64.270
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Figure 5: Accelerated MRI of knee images. (a) For each acceleration factor (4×, 8×, 16×), we
estimated posteriors for ten images measured at that acceleration rate. Baseline methods do not
capture a true posterior: Score-ALD and DPS strongly approximate the posterior uncertainty, and
SDE+Proj is a non-Bayesian projection-based approach. For each method, we computed the average
PSNR and SSIM of 128 estimated posterior samples. The line plot shows the average result across
the ten tasks; the shaded region shows one std. dev. above and below the average. (b) An example of
16×-accel. MRI. The cropped region exemplifies how baselines hallucinate incorrect more features
than necessary. (a) and (b) are evidence that a principled Bayesian approach can capture a more
accurate posterior than previous unsupervised methods.

Our approach was DPI with the surrogate prior, meaning we optimized a RealNVP to approximate271

each posterior and used the lower-bound function bSDE
θ as the prior log-density. The score model sθ272

was trained on 64× 64 images of knee scans from fastMRI and stayed fixed across all methods.273

Our method achieves a marked improvement in PSNR and SSIM over the three baselines (Fig. 5).274

Across all acceleration factors and baselines, our method improves PSNR by between 2.7 and 8.5 dB.275

Even though each method uses the same score model, restoration quality depends on how the prior is276

used for inference; whereas baselines loosely approximate the posterior and involve hyperparameters,277

our approach treats the diffusion model as a standalone prior in Bayesian inference.278

6 Conclusion279

We have presented a surrogate function that provides efficient access to score-based priors for280

Bayesian inference. We empirically verify that the evidence lower-bound bSDE
θ (x) ≤ log pSDE

θ (x) can281

serve as a proxy for evaluating the log-prior of an image under a trained diffusion model. Paired282

with any log-likelihood function, bSDE
θ (x) can be plugged into a Bayesian-inference algorithm. Our283

experiments with variational inference show at least two orders of magnitude in runtime improvement284

and significant memory improvement over the ODE-based prior. This enables inference of images285

previously too large for a strictly Bayesian approach, such as 256× 256 pixels. We also establish286

that a principled approach like ours outperforms baselines on image-restoration metrics, evidence287

that following a Bayesian approach results in more-reliable image reconstructions.288

Limitations. A variational approach like ours depends on the expressiveness of the variational distri-289

bution. Improvements may be possible by using a diffusion model instead of a discrete normalizing290

flow as the variational distribution. We also note that there are open theoretical questions about bSDE
θ291

as it relates to pODE
θ [16]. Broader impact. Our proposed framework for efficient estimation of292

high-dimensional, sophisticated posteriors has broad potential impact for computational imaging.293

Many imaging tasks, especially in science and medicine, would benefit from accurate uncertainty294

quantification with principled, data-driven priors.295
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