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ABSTRACT

Adpversarial training has been demonstrated to be useful for improving the robust-
ness of deep neural networks (DNNs). However, the impacts of basic network
components (e.g., ReLU, the widely used activation function for DNNs) to ad-
versarial training effectiveness received less attention and has not been compre-
hensively investigated so far. To fill this gap, in this paper, we argue that the
spatially-shared and input-independent activating properties of the ReLU make
the DNNs under both standard training and adversarial training less robust to
white-box adversarial attacks. To address such challenges, we design a novel
activation function, i.e., SPARTA: Spatially Attentive and Adversarially Robust
Activation, which enables DNNs to achieve higher robustness (i.e., lower error
rate on adversarial examples) and accuracy (i.e., lower error rate on clean exam-
ples) than the DNNs based on the state-of-the-art activation functions. We further
investigate the relationships between our SPARTA and the state-of-the-art search-
based activation function, i.e., Swish, and feature denoising method, providing
insights about the advantages of our method. Moreover, comprehensive evalu-
ation has demonstrated two important properties of our method: First, superior
transferability across DNNs. Our adversarially trained SPARTA function for one
DNN (e.g., ResNet-18) can be fixed to train another adversarially robust DNN
(e.g., ResNet-34), achieving higher robustness than the one using vanilla ReLU as
activation. Second, superior transferability across datasets. The SPARTA function
trained on one dataset (e.g., CIFAR-10) can be employed to train adversarially ro-
bust DNNs on another dataset (e.g., SVHN) and helps achieve higher robustness
than DNNs with vanilla ReLU as activation. These properties have highlighted
the flexibility and versatility of SPARTA. Accompanying code is also submitted in
the supplementary material.

1 INTRODUCTION

Ever since the identification of the adversarial examples (Szegedy et al., 2013) posing severe security
threats to deep neural networks (DNNs), studies have been pouring in to improve the adversarial
robustness of the DNNs (Papernot et al., 2016; Buckman et al., 2018; Xie et al., 2017; Dhillon
et al., 2018; Liu et al., 2018; Wang et al., 2018; Bhagoji et al., 2018; Guo et al., 2017; Prakash
et al., 2018; Song et al., 2017; Samangouei et al., 2018; Liao et al., 2018). Among these various
methods, adversarial training (Goodfellow et al., 2014) is regarded as one of the most effective
attempts to improve the adversarial robustness of the neural network. Adversarial training aims at
solving a min-max game by training on adversarial examples (on-the-fly) until the model learns to
classify them correctly. Given training data-label pairs (z,y) € X, loss function £(-), DNN F, with
network weights 6, and a pre-specified e-ball range where = can perturb, the adversarial training
approach (Madry et al., 2017) solves: 6% = argming E, ,yex[maxsei— qv £(z + 85 y; Fp)]. As
can be seen, adversarial training is composed of two iterative steps: (1) an inner max(-) step that
finds the adversarial examples and (2) an outer min(-) step that carries out network parameters
updates. Under this paradigm and in this work, we set out to investigate the impacts of basic network
components, such as the commonly used ReLU activation, to the adversarial training effectiveness.
We argue that the spatially-shared and input-independent activating properties of the ReLU make
the DNNs under both standard training and adversarial training less robust to white-box adversarial
attacks. Such uniformity across input spatial dimensions and among different input data may be
less ideal in suppressing adversarial patterns, rendering the adversarial training less effective, as
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we will thoroughly explore in the experimental sections. To address such challenges, we design
a novel activation function, i.e., SPARTA: spatially attentive and adversarially robust activation by
allowing the activation to allocate different amounts of attention across input spatial dimensions, as
well as to be dynamically adapted for each individual input. The flexibility in SPARTA, as opposed
to the uniformity in ReLU, enables DNNs to achieve higher robustness (i.e., lower error rate on
adversarial examples) and accuracy (i.e., lower error rate on clean examples) than the DNNs based
on the state-of-the-art (non-spatially attentive and non-dynamic) activation functions.

We further investigate the relationships between our SPARTA and the state-of-the-art search-based
activation function, i.e., Swish (Ramachandran et al., 2017), and feature denoising method (Xie
et al., 2019), providing insights about the advantages of our method. Moreover, comprehensive
evaluation demonstrates two important properties of our method: 1) superior transferability across
DNNs. The adversarially trained activation function for one DNN (e.g., ResNet-18) can be fixed
to train another adversarially robust DNN (e.g., ResNet-34), achieving higher robustness than the
one using ReLU; 2) superior transferability across datasets. The SPARTA function trained on one
dataset (e.g., CIFAR-10) can be employed to train adversarially robust DNNs on another dataset
(e.g., SVHN) and helps achieve higher robustness than DNNs with ReL.U. These properties demon-
strate the advantage of SPARTA in terms of flexibility and versatility.

2 METHODOLOGY

In this section, we introduce our spatially attentive and adversarially robust activations (SPARTA) and
investigate its effects to the adversarial robustness under standard training and adversarial training,
so that to answer a key question: whether or not the spatial-wise, dynamic, and attentive activation
can benefit DNN’s adversarial robustness?

2.1 EXISTING ACTIVATION FUNCTIONS AND CHALLENGES
Given an input tensor X, the widely used activation function, e.g., ReLU, can be represented as

Y, = max(X,,0), Vp € P, (D

where X, is the p-th element in X and P denotes the set of all element positions of X. The
corresponding derivative of this function w.r.t. the input X is
ay, 1, ifX, >0,
X, {o, ifX, <0, PEP @

We argue that such unified activation across all elements of input tensor during the both forward
and backward processes makes the adversarial training less effective. Intuitively, the white-box
adversarial attack can be easily achieved due to: @ for the forward process, both clean and corrupted
elements in X are equally activated, making the adversarial noise easily propagate to the deeper
layers, thus affecting the prediction results, directly. @ during the back-propagation process of the
white-box attack, the gradients of all elements in X pass evenly the activation function for generating
the adversarial perturbations, making the white-box attack re-searching optimized solution easily.
As shown in Figure 3, during the targeted adversarial attack, the loss is easily minimized when we
use the ReLU as the activation function.

To overcome above limitations, we take the following two factors into consideration to design novel
activation function: @ a spatial-wise and attentive activation should be developed, allowing different
elements in X having different activation scores. For example, the elements corrupted by adversarial
noise should be suppressed during the activating while the clean ones should be preserved. @ The
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activation function should be dynamic, that is, it could be tuned to adapt to different inputs. Ac-
tually, the first factor hints that the activation should have the spatial-wise and attentive properties,
where the semantic and clean elements should be highlighted while the corrupted ones should be
suppressed. The second factor indicates that the activated value of each element should consider the
whole input.

There are quite a few works in exploring how to improve the ReLLU activation function from the
viewpoint of enhancing DNNs’ accuracy (Nair & Hinton, 2010; Maas et al., 2013; Goodfellow
et al., 2013; He et al., 2015; Clevert et al., 2016; Ramachandran et al., 2017; Hu et al., 2018; Chen
et al., 2020; Xie et al., 2020). However, none of them could perfectly fit the above two factors.
We summarize their basic Table 1: Main activation functions for accuracy enhancements and ad-
information in terms of the versarial robustness.

Spatial-WiSC, attentive and dy— Designing for | Activation | Spatial-wise | Dynamic | Attentive
namic properties in Table 1. ReLU (Nair & Hinton, 2010) x X x
: LeakyReLU (Maas et al., 2013) X X X
Among these lmproved RCLU Accuracy PReLU (He et al., 2015) X X X
variants, LeakyReLU, and expo-  Enshancement | ELU (Clevertetal,2016) X X X
. . . GELU (Hendrycks & Gimpel, 2016) X X X
nential _hne'ar unit (ELU) eXte.nd Swish (Ramachandran et al., 2017) X Pt X
the activation range to negative Dynamic ReLU (Chen et al., 2020) % 4 X
values while all input elements  Adversarial Smooth ReLU (Xie et al., 2020) X X X
Robustness SPARTA (Ours) v v v

share the same activation condi-
tion, which cannot be tuned according to inputs. PReLU adds extra learnable parameters to the basic
ReLU and can be offline trained. However, they are still fixed for different inputs after training.
Dynamic ReLU is a spatial-wise and dynamic activation function where each input element has
an exclusive activation function represented by several linear functions whose slope and bias
parameters are dynamically predicted by a network. Nevertheless, dynamic ReLU is specifically
designed for accuracy enhancement, which lacks generality and does not consider the attentive
requirement of adversarial robustness, failing to suppress adversarial corrupted elements. As shown
in Figure 1, the feature maps of ResNet-18 with dynamic ReLLU before and after activation are
almost the same and the noise patterns are not removed. We will further discuss the quantitative
results in the experimental section. In addition to above activations, MaxOut (Goodfellow et al.,
2013) and squeeze-and-excitation networks (SE) (Hu et al., 2018) can be also used to realized
activations as introduced in (Chen et al., 2020). MaxOut has learnable parameters for the ReLU and
can be offline trained but the parameters cannot change according to different inputs. SE lets the
activation rely on the input and realize dynamic activation which however is shared by all elements.

2.2  SPATIALLY ATTENTIVE ACTIVATION FUNCTION
2.2.1 FORMULATION

To address the robustness challenges, we propose the spatially attentive activation function. Given
an input tensor X, we have

Y, = max(X,,0) - pg(X)[p], Yp € P, 3)

where ¢y (-) is a sub-network with 6 as the parameters. The sub-network takes all elements of X as
inputs, predicts a new tensor that has the same size with X, and assigns a weight for each element
of X. Hence, ¢g(X)[p] denotes the p-th element of ¢¢(X) and we have {0 < ¢(X)[p] < 1|Vp,p €
P}. Then, we get the derivative of Eq. 3 w.r.t. the input X

e (X .
dyY, :{m(X)LpHXp Bo s X, 20, g )

X, 0, if X, <0,

Comparing with the formulations in Eq. 1 and 2, we notice that: @ for the forward process, each
activated element is further processed by a scalar estimated from ¢g(X) that considers the whole
input. Intuitively, the offline trained ¢y (-) decides whether the p-th element of X should be sup-
pressed according to the understanding of the whole input. @ In terms of the backward process, in
contrast to Eq. 2, the activated elements’ gradients are not propagated to the earlier layers directly

but determined by ¢¢(X) and X, a‘g‘;éx). When ¢y () is a deep neural network with the Sigmoid
¢ (X)
o%,

function as the last layer for activation, the gradient of its input

dY,
aX,
white-box attack based on back-propagation can be affected by the ¢ (X)[p]. For example, if X, is

tends to be very small (Glo-

rot & Bengio, 2010). Then, we can see that mainly relies on ¢g(X)[p], which means that the
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the element that should be adversarially corrupted for effective attack and we have ¢p(X)[p] < 1,
the white-box attack would be harder to be optimized due to the less effective back-propagated gra-
dients. We will validate the two concerns under both standard training and adversarial training in
Sec. 2.3. Note that, Eq. 4 does not harm the DNN’s accuracy under standard training and can even
be helpful to achieve lower error rate. As shown in Table 2, ResNet-18s with our new activation
function (i.e., SPARTA-w/0-DPNet and SPARTA that will be introduced in Sec. 2.2.2) achieve lower
top-1 error rate than the network using ReL.U under both standard training and adversarial training.

2.2.2 ARCHITECTURE OF ¢g(-)

A simple architecture for ¢ () is a convolutional neural network (CNN) that takes the X as the input
and outputs a tensor having the same size with X to decide the activation weights of each element.
However, such a architecture requires a large amount | X

of parameters, making the whole network difficult to ! I

train. Moreover, since an activation function could be | Conv3 [ Convi

deployed at different locations of a CNN (i.e., from the | conve Convd | RelU

shallow layers to deep ones), the inputs X would be di- ReLU

verse (e.g., the X from shallow layers mainly contain ReLU RN Conus

spatial details while the deep ones focus on semantic |Softmax — Conv5 | SP. Pool

information). Hence, a dynamic architecture that could »
tune the attentive network according to the input is de- E
sired. To this end, we propose the dynamic spatial- b0 2
channel-attentive network as ¢g(-) Y

Channel Attentive Network
Spatial Attentive Network

$9(X) = Sigmoid(¢g, (X) X ¢g.(X)),  (5)

where ¢ () and ¢p, () denote the spatial-attentive 0.0 nerwork ( ¢6(-)) containing 3 sub-
network and channel-attentive' network, respectively. perworks, ie.. channel attentive net (0. ()),
When we have X € R7*WxC, $0.(X) € RH*W spatial attentive net (¢g, (+)), and dynamicc pre-
is the spatial attentive map across all channels and dictive net (¢o, (+)), where 8 = {0, 0., 04}.
#g, (X) € RI¥1XC denotes the channel attentive vec-

tor across all spatial positions. Moreover, we construct a dynamic predictive network to predict
partial parameters of 6, according to the input X. We show the whole architecture in Figure 2,
which contains three sub-networks where the Convl, Conv2, Conv3, and Conv6 are with the size
of ‘C x C x 3 x 3, Conv4 is with the size of ‘C x 1 x 3 x 3’, and Conv5 is with the size of
‘1 x 1 x 3 x 3. In particular, the parameters of Conv5 are estimated from the dynamic predictive
network. We will further discuss the influence of different architectures in the Sec. 2.3.

Dynamic Predictive Network
Figure 2: Proposed dynamic spatial-channel-

2.3 ANALYSIS OF SPATIALLY ATTENTIVE ACTIVATION FUNCTION

In this section, we aim to analyze and validate the proposed method by comparing with the basic
activation function, i.e., ReLU in Sec. 2.1, and answer the following questions: @ whether does the
proposed SPARTA help achieve higher adversarial robustness under standard training and adversar-
ial training, respectively? @ whether does the advantages stem from the spatial-wise, dynamic, and
attentive architectures?

2.3.1 SETUP

For comprehensive analysis of the proposed activation function, we use ResNet-18 (He et al., 2016)
as the backbone network and modify it by replacing the last ReLU layers of the four groups in
ResNet-18 with our SPARTA. We further discuss the influence of replacement strategies in Ap-
pendix A.l. Then, we conduct the image classification task on CIFAR-10 dataset, comparing the
top-1 error rate of the raw ResNet18 and the modified one under both standard training and adver-
sarial training. For adversarial training, we follow the setups in (Xie et al., 2019) and perform the
targeted Projected Gradient Descent (PGD) attack (Madry et al., 2018) to generate adversarial ex-
amples with the step size of 1.0, and the maximum perturbation of 16.0. We implement three PGD
attacks according to the iteration number of 10, 30, and 50 and denote them as PGD-10, PGD-30,
and PGD-50, respectively. Note that, in all sub-sequence experiments, the top-1 error rate on ad-
versarial images (adv. images) means that we first generate adversarial examples by using PGD to
attack the evaluated DNN and calculate the classification error rate on these adversarial images. For
the DNN updating, we set the learning rate to be 0.1 with the 10x attenuation at the 30th and 60th
epochs, and the weight decay is set to be le—4.
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Figure 3: Comparing loss values of ResNet-18 with ReLU, SPARTA, and SPARTA-w/o-DPNet during the PGD
attack under the standard training (a) and adversarial training (b), respectively.

2.3.2 DYNAMIC AND ATTENTIVE ACTIVATION BENEFITS ADVERSARIAL ROBUSTNESS

Table 2 shows the top-1 error rates of three versions of ResNet-18 on the adversarial and
clean images of CIFAR-10 under both adversarial training and standard training, from which
we have the following observations and conclusions: @ Compared with ReL.U, SPARTA does
help the DNN achieve much better adversarial robustness (i.e., lower top-1 error rate on ad-
versarial examples from white-box PGD attacks) under adversarial training while further im-
proving the accuracy on clean images, concluding that SPARTA improves adversarial robust-
ness without the sacrifice of classification accuracy for clean images. @ In terms of the stan-
dard training, the SPARTA leads to lower top-1 error rate (i.e., 100% for ReLU vs. 99.85%
for SPARTA) under the PGD-10 attack while achieving much higher accuracy (i.e., lower er-
ror rate on clean images), demonstrating that SPARTA does not rely on adversarial train-
ing and still benefits to both adversarial robustness and accuracy under standard training.
® Compared with SPARTA-W/0- Table 2: Comparing ResNet-18s equipped with ReLU, SPARTA-w/o-
DPNet where the DPNet in ¢9(-) DPNet, and SPARTA, respectively.

is removed, SPARTA achieves
lower top-1 errors under all PGD ‘

Top-1 error on Adv. Images
PGD-10 \ PGD-30 \ PGD-50

Top-1 error

ResNet-18 with ‘ on Clean Images

attacks in the cases of adversarial g Tpin. | RV 3L.54% | 68.93% | 75.64% 15.66%
. S bGD.1G | SPARTA-w/o-DPNet | 29.43% | 66.13% | 7235% 15.44%

and standard fraining, confirm- o SPARTA 29.31% 65.81% 72.55% 15.48%
ing that the dynamic activation ReLU 100.0% | 100.0% | 100.0% 7.71%
Std. Train. | SPARTA-w/o-DPNet | 99.94% | 100.0% | 100.0% 6.98%

function via the proposed DPNet

SPARTA

99.85%

100.0%

100.0%

6.90%

helps the DNN achieve higher ad- ‘
versarial robustness. @ When further comparing ReLU with SPARTA-w/o-DPNet, we see that
ResNet-18 with SPARTA-w/o-DPNet has lower top-1 error rates on most of the PGD attacks and
clean images. Under the standard training, SPARTA-w/0-DPNet always improves the DNN with
lower error rates on clean images. These results demonstrate attentive activation introduced by the
SANet and CANet does enhance the DNNs’ adversarial robustness and accuracy and also benefit
the standard training for higher accuracy.

To better understand the above results, we further conduct an experiment to compare the loss values
of pre-trained DNNs during PGD attacks, to validate whether the proposed activation function makes
the adversarial attack harder as explained in Sec. 2.3.2. Specifically, we perform PGD-50 attack
on 20% examples of CIFAR-10 testing dataset and collect the loss values during the optimization
process. Then, we calculate the mean and standard variation of loss values at each iteration step
across all examples, and draw three plots of the ResNet-18s with ReLU, SPARTA-w/0o-DPNet, and
SPARTA, respectively. As shown in Figure 3, we see that the loss values of DNNs based on SPARTA
and SPARTA-w/o-DPNet are always larger than that of ReLU-based DNN along the iteration steps. It
demonstrates that the proposed attentive and dynamic activation function does make the optimization
of adversarial attack harder for both adversarial and standard trained DNNs.

2.3.3 SPATIAL-WISE ACTIVATION BENEFITS ADVERSARIAL ROBUSTNESS

In addition to the attentive and dynamic properties, we further analyze the importance of spatial-wise
activation. To this end, we set spatial-neighboring elements of X sharing the same attentive scores
and control the neighboring size to study the influence of spatial-wise activation. We reformulate

For brevity, spatially attentive and channel-wise attentive networks are sometimes paraphrased as spatial-attentive and channel-attentive networks.
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Eq. 3 to represent the above process as

Y, = max(X,,0) - ng(X)[L%J], VpeP, ©6)
where we set the output size of ¢y(X) to be % X % x C'and N controls the neighboring size. For

example, when we set N = 2, every four elements in X share the same attentive scores; when
we have N = 1, Eq. 6 becomes Eq. 3, that is, each element has its exclusive attentive score.

TO analyze the effects of'dlfferent N, we mo‘,i‘ Table 3: Comparing ResNet-18s equipped with ReL.U,
ify ResNet-18 by replacing the fourth block’s SPARTA-w/0-DPNet, and SPARTA, respectively.
ReLU with SPARTA and get three DNNs by set- ———— ‘ Top- 1 error on Adv. Tmages

ting N = 1,2,4. Then, we perform the adver-  winsearta | PGD-10 | PGD-30 | PGD-50
sarial training and evaluate the robustness and N
accuracy, respectively. We present the results in N
Table 3 and have following observations: @ for
all three PGD attacks, the top-1 error rate on adversarial images increases as the /N becomes larger
(i.e., more elements share the same attentive score), indicating that spatial-wise activation benefits
the adversarial robustness. @ In terms of the results on clean images, the DNN with N = 1 has
higher top-1 error rate than the ones with N = 2 and N = 4, which indicates the spatial-wise
activation could reduce the accuracy to some extent. Even then, SPARTA with N = 1 still enables
the DNN to achieve lower error rate than ReLL.U.

Top-1 error
on Clean Images

65.93%
66.27%
66.58%

=N =

30.11%
30.17%

73.40% 14.98%
73.45% 15.07%

‘ 29.73%

72.98% ‘ 15.25%

3 RELATIONSHIP TO EXISTING ADVERSARIAL TRAINING (AT) METHODS

3.1 RELATIONSHIP TO SMOOTH AND SEARCH-BASED ACTIVATION FOR AT AND BEYOND

More recently, Xie et al. (2020) identify the importance of the smooth activation function for ad-
versarial training and show the search-based activation function, i.e., Swish (Ramachandran et al.,
2017), which achieves the state-of-the-art adversarial robustness and can be represented as

Y, =X, - Sigmoid(X,,), Vp € P. (7)
Meanwhile, we can reformulate the SPARTA by combining Eq. 3 and 5 and get
Y, = max(X,,0) - Sigmoid((¢g, (X) x ¢p, (X))[p]), Vp € P, (®)

Comparing Eq. 7 with Eq. 8, we can see that Swish is very similar to our SPARTA, but having
two main differences: @ the first term X, in the right part of Eq. 7 is further processed via
ReLU in Eq. 8. @ In terms of the variable in Sigmoid(-), Table 4: Comparing ResNet-18s with
Eq. 7 uses the X itself while Eq. 8 adopts the spatial and Swish, Swish-ReLU, and SPARTA under
channel attentions that consider all elements in X. We have 3 PGD attacks.

demonstrated the advantages of the spatial and channel at-  genei18 witn ‘ PGg?]p(;' crrggg_f;\gvv Imgécg_so
tentions in Sec. 2.3.2. Here, we further study the influence p— ‘ o -

68.65 %
67.70%
65.81%

76.21%
75.07%
72.55%

of the first difference and show that the adversarial robust- 4 reLu 30.10%
ness of Swish can be further enhanced by simply adding the = Searra 29.31%
ReLU to Eq. 7. As shown in Table 4, when equipping Swish

with ReLU (i.e., Swish-ReLU), the top-1 error rates on all PGD attacks decrease.

3.2 RELATIONSHIP TO FEATURE-DENOISING-BASED ADVERSARIAL TRAINING

Xie et al. (2019) propose to improve the adversarial robustness of DNNs by adding extra blocks for
feature denoising, inspired by the fact that the pixel-level adversarial noise poses large perturbations
to the deep features and leads to noisy activation overwhelming the true ones, resulting in erroneous
predictions. Actually, SPARTA can also be regarded as a denoising block and has the capability of
feature denoising, since the perturbed elements in X are selectively activated or suppressed accord-
ing to the predictive results of ¢y(X). As shown in Figure 1, in terms of ResNet-18-SPARTA, we see
obvious noise patterns before the activation, which are suppressed after the activation. As a result,
the feature map after activation becomes similar to the clean one. Compared with the method of
(Xie et al., 2019), SPARTA has the following difference as well as advantages: @ from the viewpoint
of denoising, SPARTA uses multiplication for denoising and dynamically tunes the parameters via
DPNet according to the inputs while the feature denoising method adopts the addition with fixed
denoising operations. The higher level of flexibility of SPARTA helps DNNs achieve much better
adversarial robustness. Please find the quantitative analysis in Sec. 4.2. ® SPARTA is a new kind of
activation function that can directly replace existing ReLUs in a DNN without changing its original
architecture. On the other hand, the feature denoising method needs to add new blocks to existing
DNN:gs, requiring extra adaption costs, which are often non-trivial and expensive.

6
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Table 6: Comparing SPARTA with ReLU, ELU, GELU, feature denoising operation (FD), Dynamic ReLU
(DyReLU), and Smooth ReLU (SmReLU) by equipping them to ResNet-18 and ResNet-34 for adversarial
training and standard training on CIFAR-10 dataset.

ResNet-18 ResNet-34

Adv. Training Std. Training Adv. Training Std. Training
Error on Adv. Imgs Error on Error on Error on Adv. Imgs Error on Error on

PGD-10 ‘ PGD-30 ‘ PGD-50 Clean Imgs Clean Imgs PGD-10 ‘ PGD-30 ‘ PGD-50 Clean Imgs Clean Imgs
ReLU 31.54% 68.93% 75.64% 15.66% 7.71% 31.00% 67.88% 75.15% 17.18 % 7.36%
ELU 31.44% 67.57% 72.98% 17.08% 7.99% 31.31% 67.67% 74.02% 17.16% 7.88%
GELU 30.27% 68.95% 75.30% 14.55% 6.85% 29.66% 65.95% 73.68% 15.03% 6.52%
FD 31.81% 67.03% 73.52% 16.81% 7.99% 30.71 % 65.72 % 73.90 % 17.49% 8.05%
DyReLU 32.57% 68.54% 75.08% 16.97% 7.40% 31.56% 68.40% 75.84% 17.63% 8.78%
SmReLU 30.38% 68.65% 76.21% 14.26% 7.00% 32.20% 67.51% 74.42% 16.74% 7.28%
SPARTA 29.31% 65.81% 72.55% 15.48% 6.90% 29.17% 64.13% 72.91% 14.47% 6.78%

4 EXPERIMENTS

4.1 SETUP

Following the setup in Sec. 2.3.1, we further consider ResNet-18 and ResNet-34 (He et al., 2016)
as the backbones and evaluate on CIFAR-10 Krizhevsky et al. (2009) and SVHN datasets (Netzer
et al., 2011), mainly investigating the following questions: How is the performance of SPARTA
compared with state-of-the-art activation functions, including ReLLU (Nair & Hinton, 2010), ELU
(Clevert et al., 2016), GELU (Hendrycks & Gimpel, 2016), Swish (Ramachandran et al., 2017; Xie
et al., 2020), Dynamic ReLU (DyReLU) (Chen et al., 2020), and the feature denoising method (FD)
(Xie et al., 2019)? Can SPARTA be shared across DNNs? Can SPARTA be shared across Datasets?
Moreover, in the appendix, we discuss how to perform replacement with SPARTA in a DNN.

4.2 COMPARISON WITH STATE-OF-THE-ART ACTIVATION FUNCTIONS

We compare our SPARTA with five state-of-the-art activations and the feature denoising method
through ResNet-18 and ResNet-34 architectures. Note that, we implement all baseline activations
according to their public released codes. As the results Table 5: Comparing SPARTA with four
on CIFAR-10 shown in Table 6, we have the following baseline activations on SVHN datasets.

observations: @ Under adversarial training, DNNs with .. e is wit Top-1 error on Adv. Images

SPARTA achieve the lowest top-1 error on all three lev- PGD-10 | PGD20 | PGD30
els of PGD attack as well as lower top-1 error than DNNs oY DR IS B i
with ReLU, demonstrating that the proposed activation = DyReLU 17.11% | 6350% | 70.71%
does help DNNs realize better adversarial robustness with- mReLU (S| G | ST

out sacrificing the accuracy. @ Under standard training,
DNNs with SPARTA have the second best accuracy (i.e., second lowest top-1 error on clean images),
hinting that the proposed activation architecture not only benefits to adversarial training for better
robustness but also helps achieve higher accuracy. Then, we further conduct the comparison with
more recent baselines, i.e., FD, DyReLU, and SmReLLU, on SVHN dataset and present the results in
Table 5. Similar with the results on CIFAR-10, our SPARTA achieves the lowest top-1 error rates on
the three PGD attacks.

4.3 CAN SPARTA BE SHARED ACROSS DNNs?

In this part, we study the transferability of SPARTA across DNNG, that is, we regard the pre-trained
SPARTA borrowed from one DNN as the activation function for another DNN and see whether it
helps achieve better adversarial robustness. To this end, we take ResNet-18 and ResNet-34 as the
backbones and conduct the following steps based on CIFAR-10 dataset: First, we adversarially train
a DNN (e.g., ResNet-34) equipped with SPARTA and get the pre-trained SPARTA at different blocks.
We denote the pre-trained acti- Table 7: Comparing the transferred SPARTA with the standard SPARTA
vations as SPARTAResNe-34. Sec- and ReLU.
ond, we equip another DNN (e.g., Backbone
ResNet-18) with SPARTAResNet-34
and perform the adversarial train-

Top-1 error
on Clean Images

Top-1 error on Adv. Images
PGD-10 \ PGD-30 \ PGD-50

Activations ‘

ReLU 31.54% 68.93% 75.64% 15.66%

larly, we can also train ResNet-34
by using the pre-trained SPARTA
from ResNet-18 (i.e., SPARTAResNer-18). As shown in Table 7, we see that: @ DNNs (i.e., ResNet-18
and ResNet-34) with the transferred SPARTA achieve lower top-1 error rate than DNNs using ReLU
under all three attacks (i.e., PGD-10, 30, and 50) and the clean images. Such results demonstrate that

SPARTAResNer34 | 27.73% | 4223% | 46.40% 23.84%

¢ > . ResNet-18 | SPARTAResnerss | 31.06% | 68.11% | 75.03% 15.17%
ing without updating the param- SPARTAResNer1s | 2931% | 65.81% | 72.55% 15.48%
eters of SPARTAResNet-34. Slmi- ReLU 31.00% | 67.88% | 75.15% 17.18%

ResNet-34 | SPARTAResneris | 28.96% | 65.51% | 72.40% 14.60%
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pre-trained SPARTA has the transferability to some extent and can help other DNNs achieve better
adversarial robustness and accuracy than the ones using ReLU. ® Compared with the DNNs with
standard SPARTA (e.g., ResNet-34 with SPARTAResNet.34) Whose parameters are jointly updated dur-
ing adversarial training, the DNNs with transferred SPARTA (e.g., ResNet-34 with SPARTAResNet-18)
achieves worse adversarial robustness (i.e., higher error rate under the three attacks) but much better
accuracy (i.e., lower error rate on clean images). For example, ResNet-34 with SPARTAResNet.34 Ob-
tains much lower top-1 error rates than ResNet-34 with SPARTAResNet-1s under all three PGD attacks
but gets much higher error on clean images, i.e., 23.84% vs. 14.60%.

4.4  CAN SPARTA BE SHARED ACROSS DATASETS?

We further study the transferability of SPARTA across datasets. Specifically, we first adver-
sarially train a ResNet-18 with SPARTA on CIFAR-10 and get the pre-trained SPARTA de-
noted as SPARTAcipar. Then, we regard SPARTAcpar as the activation function for an-
other random initialized ResNet-18 and adversarially train it on SVHN to see whether
the ResNet-18 with SPARTAcpar achieves better adversarial robustness or higher accuracy
than the one with ReLU and standard SPARTA that are jointly trained with ResNet-18.
As shown in Table 8, we have the Table 8: Transferability of SPARTA across Datasets.
following observations: @ On both
CIFAR-10 and SVHN, ResNet-18
with the transferred SPARTA achieves
lower top-1 error rate than the one us-
ing ReLU under all three attacks. Such ReLU
results demonstrate that pre-trained — SVHN ‘ zggﬁjgljgg
SPARTA on one dataset still works on -
another dataset, helping DNN achieve better adversarial robustness than the one using ReLU. @
Compared with the standard case where the parameters of ResNet-18 and SPARTA are jointly up-
dated during adversarial training, ResNet-18 with transferred SPARTA has higher top-1 error rates
on adversarial images but lower error rate on clean images.

Top-1 error on Adv. Images
PGD-10 \ PGD-30 \ PGD-50

Top-1 error

Datasets ResNet-18 with
on Clean Images

ReLU
SpartagyHN
Spartacipar

15.66%
15.36%
15.48%

CIFAR-10 30.68% 66.93% 74.47%

29.31% 65.81% 72.55%

31.54% ‘ 68.93% ‘ 75.64%

16.59% 61.88% 69.45% 6.52%
15.30% 59.29% 67.29% 7.05%

18.27% ‘ 63.71% ‘ 71.42% ‘ 6.45%

5 RELATED WORK

Apart from adversarial training, numerous studies have shown to be effective, to some extent, to-
wards enhancing adversarial robustness of DNNs. These methods can be roughly fall into the
following four categories. (1) The ones that involve non-differentiable operators, intentionally or
unintentionally. The introduced non-differentiability and numeric instability lead to incorrect and
degenerate gradients such as applying the thermometer encoding (Buckman et al., 2018), perform-
ing various image transformations (cropping, bit-depth reduction, etc.) (Guo et al., 2017), and using
local intrinsic dimensionality to characterize adversarial subspaces (Ma et al., 2018). However, they
may be circumvented by computing the backward pass using a differentiable approximation of the
function (Athalye et al., 2018). (2) The ones involve either a randomized network such as (Dhillon
et al., 2018; Liu et al., 2018; Wang et al., 2018) or randomly transformed inputs such as (Xie et al.,
2017; Bhagoji et al., 2018; Guo et al., 2017), which hinder correct estimate of the true gradient
when using a single sample of the randomness. However, they may be countered by computing the
gradient correctly over the expected transformation to the input (Athalye et al., 2018). (3) The ones
involve adversarial input data purification such as high-level representation guided denoiser Liao
et al. (2018), pixel deflection (Prakash et al., 2018), PixelDefend (Song et al., 2017), and Defense-
GAN (Samangouei et al., 2018). However, re-parameterization can greatly diminish these attempts
for improving the adversarial robustness of the DNNs (Athalye et al., 2018). (4) Others such as de-
fensive distillation (Papernot et al., 2016) and adversarially robust architecture (Dong et al., 2020).

6 CONCLUSIONS

In this paper, we have designed a novel activation function, named SPARTA, which is designed
to be spatially attentive and adversarially robust. It enables DNNs to achieve higher robustness
and accuracy than the DNNs based on the state-of-the-art activation functions. We have further
investigated the relationships between our SPARTA and the state-of-the-art search-based activation
function, i.e., Swish, and feature denoising method, providing insights and discussion about the
advantages of our method. Furthermore, comprehensive evaluation has performed, the results of
which demonstrated two important properties of our method: superior transferability across DNNs
and superior transferability across datasets. Backed by extensive experiments, these properties have
highlighted the flexibility and versatility of SPARTA.
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A APPENDIX

A.1 WHICH RELU LAYER IN A DNN SHOULD WE REPLACE WITH THE SPARTA?

Since SPARTA contains extra parameters for the three sub-networks in Figure 2, it is ideal to per-
form as fewer ReLU replacements as possible to avoid heavy costs. To this end, we study the
influence of replacement positions based on the widely used ResNet architecture and take the repre-
sentative ResNet-18 as a representative case to study. Specifically, ResNet-18 contains four groups
and each group has two blocks. We focus on replacing the last ReLU layer of each block and set
the following strategies: First, we replace the last ReLU layer of the second block of each group
with our SPARTA and get four DNNs denoted as ResNet-18-G;.B, where ¢ denotes the ith group
of ResNet-18. This setup helps explore the influence of SPARTA at different depths of a DNN.
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Second, we perform the replacements on all Table 9: Comparing ResNet-18s with SPARTA employed at
groups simultaneously and study whether different depths with different amounts.

more substitutions lead to better adversar- ResNet-18: replacing ‘ Top-1 error on Adv. Images Top-1 error
ial robustness. In particular we consider ReLU with SPARTA at PGD-10 | PGD-30 | PGD-50 on Clean Images
. ’ ’ G1.Bo 3233% | 67.23% | 74.38% 17.41%
two versions denoted as G{1,2,3,4}-B{1,2} G2.Ba 3161% | 67.76% | 75.50% 15.68%
and G{l 2.3 4}_B2’ respectlveIY. The ﬁrst G3.Bo 31.15% 68.12% 75.01% 15.77%
199 G4.By 29.73% | 65.93% | 72.98% 15.25%
one replaces the last ReLU layers of the two
. G B 3132% | 65.83% | 72.28% 16.70%
{1,2,3,43B{1,2}
blocks of all groups, while the second one 2031% | 6581 | 7255 15.48%

G{1,2,3,4} B2

only conducts replacement on the second
block of all groups.

According to the results in Table 9, we have the following observations: @ In general, using SPARTA
at deeper groups helps to achieve better adversarial robustness (i.e., lower top-1 error on adversarial
examples) as well as better accuracy (i.e., lower top-1 error rate on clean examples). For example,
ResNet-18-G4.B, achieves the lowest top-1 error on both adversarial and clean examples. @ Re-
placing more ReLU layers is not helpful to obtain even better adversarial robustness or accuracy.
For example, ResNet-18-Gy 3 3.43.By; 2} has eight SPARTA layers but gets higher error rates than
Gy1,2,3,4)-B2 with only four SPARTA layers. Moreover, replacing the last ReLU layers of all groups,
i.e., G(1,2 34)-B2, achieves the best adversarial robustness and the second best accuracy among all
variants, indicating the importance of the output activation layers of ResNet groups for adversarial
training.
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