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ABSTRACT

Transition path sampling (TPS), which involves finding probable paths connecting
two points on an energy landscape, remains a challenge due to the complexity of real-
world atomistic systems. Current machine learning approaches rely on expensive
training procedures and under-utilize growing quantities of atomistic data, limiting
scalability and generalization. Generative models of atomistic conformational en-
sembles sample temporally independent states from energy landscapes, but their
application to TPS remains mostly unexplored. In this work, we address TPS by inter-
preting candidate paths as trajectories sampled from stochastic dynamics induced by
the learned score function of generative models, namely denoising diffusion and flow
matching. Under these dynamics, finding high-likelihood transition paths becomes
equivalent to minimizing the Onsager-Machlup (OM) action functional, enabling us
to repurpose pre-trained generative models for TPS in a zero-shot fashion. We demon-
strate our approach on a Müller-Brown potential and several fast-folding proteins,
where we obtain diverse, physically realistic transition pathways, as well as tetrapep-
tides, where we demonstrate successful TPS on systems not seen by the generative
model during training. Our method can be easily incorporated into new generative
models, making it practically relevant as models continue to scale and improve.

1 INTRODUCTION

Efficiently sampling the configurational distribution of high-dimensional molecular systems is a grand
challenge in statistical mechanics and computational chemistry Tuckerman (2023); Frenkel & Smit
(2023). A key area of interest is the sampling of rare, transition events between two stable configurations,
such as chemical reactions or protein unfolding Bolhuis et al. (2002); Dellago et al. (2002). This task,
broadly known as transition path sampling (TPS), is challenging due to the presence of energy barriers,
which create a substantial difference in timescales between rare events and the fastest dynamical motions
of the system (e.g., bond vibrations). This has inspired a rich line of literature on enhanced sampling
techniques Torrie & Valleau (1977); Swendsen & Wang (1986); Laio & Parrinello (2002b); Laio & Ger-
vasio (2008); Tiwary & Parrinello (2013); Valsson & Parrinello (2014). More recently, machine learning
(ML) based methods have gained popularity for accelerating TPS by learning a control drift term to bias
a system towards a desired target state Sipka et al. (2023); Holdijk et al. (2024); Du et al. (2024); Seong
et al. (2024). However, these approaches rely on highly specialized training procedures and fail to
exploit the growing quantity of atomistic simulation and structural data Bank (1971); Vander Meersche
et al. (2024); Lewis et al. (2024), limiting their ability to scale and generalize to new systems.

Generative models can produce unbiased, independent samples from atomistic conformational ensem-
bles Noé et al. (2019); Zheng et al. (2024); Jing et al. (2024a) and have shown the potential to generalize
across chemical space Klein & Noé (2024); Lewis et al. (2024). However, they have not been directly
used for TPS due to the use of uncorrelated states during training. In this work, we propose a conceptu-
ally simple post-training method to repurpose generative models to perform TPS in a zero-shot fashion.
Our core idea exploits the fact that generative models based on denoising diffusion Ho et al. (2020) and
flow matching Lipman et al. (2022) induce a set of stochastic Langevin dynamics on the data manifold,
governed by their learned score function. Drawing inspiration from statistical mechanics, the prob-
ability of paths sampled from these dynamics can be characterized by a quantity known as the Onsager-
Machlup (OM) action functional Onsager & Machlup (1953). As a result, it is possible to find, from first
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Figure 1: Proposed Onsager-Machlup Action Optimization Schematic. (Left) Atomistic generative
models produce statistically independent samples via integration along a learned vector field, from
which a score estimate, sθ≈∇logpdata(x), can be extracted. The score can be interpreted as a drift term
in the stochastic dynamics induced by the generative model. (Right) This connection can be leveraged
to repurpose atomistic generative models to find high-probability transition paths between samples on
the data manifold by minimizing the OM action functional, Eq. (12). The OM action has three terms
which prioritize (I) low distance between adjacent points on the discretized path, (II) low-norm drifts,
and (III) convexity of the underlying energy landscape. Although valid for any data distribution, in the
special case of Boltzmann-distributed data, our approach has the natural interpretation of transition
path sampling on a potential energy surface with an atomistic force field.

principles, high-probability paths between arbitrary points on the data manifold by minimizing the OM
action with gradient-based optimizers. In the specific case where the data are Boltzmann-distributed,
the learned score approximates the underlying atomistic force field Arts et al. (2023), and our approach
has the direct, physical interpretation of TPS on a potential energy surface at a finite temperature.

Our approach has a number of key advantages:

1. Scalability: We do not require any complex training procedure specific to TPS, and instead ex-
ploit the representations learned by generative models trained on large datasets. This makes our
approach scalable as models and datasets continue to grow, and generalizeable to new systems.

2. Flexibility: We do not rely on system-specific collective variables (CVs), and can easily
incorporate physical parameters such as temperature without retraining.

3. Efficient Diversity: Unlike force field-based alternatives, we leverage the stochasticity of
generative models to quickly produce diverse candidate paths.

We demonstrate our method on several systems, progressively increasing in complexity. We start with
a toy 2D Müller-Brown (MB) potential in Section 5.1, where we convey an intuitive understanding
of our approach. We then show that we can handle more complex, fast-folding proteins in Section 5.2
using both diffusion and flow-matching models. We find that OM action minimization yields transition
path ensembles with a high degree of agreement with reference simulations, and at a fraction of the
computational cost compared to unbiased MD or i.i.d. sampling from the generative models. Overall,
our work points to the promise of large-scale generative modeling for enabling general-purpose,
system-agnostic, and efficient transition path sampling for atomistic systems.

2 RELATED WORK

Transition path sampling. Traditional TPS approaches like umbrella sampling Torrie & Valleau
(1977) and metadynamics Laio & Parrinello (2002a) employ biasing potentials along representative
collective variables (CV). However, defining suitable CVs is challenging near transition states, even with
automated approaches Sultan & Pande (2018); Šı́pka et al. (2023). While ML approaches, including
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reinforcement learning Das et al. (2021); Rose et al. (2021); Singh & Limmer (2023); Seong et al.
(2024), differentiable simulations Sipka et al. (2023), andh-transform learning Singh & Limmer (2023);
Du et al. (2024), have been used to design CVs or biasing potentials with promising results, they require
expensive sampling procedures, must be retrained for each new system of interest, and fail to exploit
atomistic simulation data, limiting their scalability and generalization. The OM action has been used
in trajectory sampling Vanden-Eijnden & Heymann (2008); Fujisaki et al. (2010); Lee et al. (2017), but
its application has been restricted to low-dimensional systems due to computational challenges, such as
avoiding higher-order derivative terms. For a more extensive review of TPS methods, see Appendix A.

Atomistic generative models. Generative models can produce unbiased, independent samples from
the configurational ensemble of molecular systems, pioneered by Boltzmann generators Noé et al.
(2019) and since further developed for proteins Arts et al. (2023); Zheng et al. (2024); Jing et al. (2024a);
Lewis et al. (2024), small molecules Huang et al. (2024); Schneuing et al. (2024); Igashov et al. (2024),
and materials Zeni et al. (2023); Zheng et al. (2024). Generative models are typically trained to match the
distribution of atomistic configurations from large-scale datasets, including structural databases Bank
(1971) and long-timescale MD simulations Lindorff-Larsen et al. (2011); Vander Meersche et al. (2024).
The latest models are typically trained with the denoising diffusion Ho et al. (2020) or flow matching
Lipman et al. (2022) generative frameworks. Since the models generally reproduce the training
distribution and thus cannot natively be used for studying dynamical or rare events, recent works adapt
generative models to produce more diverse samples Corso et al. (2023), perform rare event sampling
Falkner et al. (2023), perform MD simulations using the connection between diffusion models and
force fields Arts et al. (2023), and learn generative models directly over trajectories Jing et al. (2024b).

Interpolations in generative models. Analagous to TPS, interpolation has been used to evaluate
the smoothness and continuity of learned data manifolds and to generate realistic transitions between
data points using generative models. While linear interpolation in model latent spaces is known to
capture some continuity Kingma & Welling (2013); Goodfellow et al. (2014), geometric techniques
such as geodesic interpolation and optimal transport Arjovsky et al. (2017); Arvanitidis et al. (2018);
Leśniak et al. (2018); Michelis & Becker (2021); Struski et al. (2023); Psenka et al. (2024) better align
with the intrinsic manifold structure of the data. Our proposed OM optimization approach can be seen
as a novel interpolation mechanism which leverages the inductive bias of stochastic dynamical systems
to generate high-probability transition paths.

3 PRELIMINARIES AND THEORY

We now introduce the main mathematical formalisms used in this work. First, in Section 3.1 we
introduce the Onsager-Machlup action as a general way to compute path probabilities under a particular
stochastic differential equation (SDE). We then show the applicability of this method to two core
settings: 1) transition path sampling and 2) score-based generative modeling. In the special case where
the data used to train the generative models are Boltzmann-distributed, settings 1) and 2) become
equivalent. This provides a unified way to find high-likelihood transition paths with generative models.

3.1 PROBABILITY OF PATHS UNDER STOCHASTIC DYNAMICS

We introduce the following constant variance SDE which will underpin our proposed TPS framework:

ẋ=
1

ζ
Φ(x)dt+

√
2DdWt, (1)

where Φ(x) : Rk → Rk is a drift function in Euclidean space of dimension k, Wt is a standard
Weiner process, and D,ζ > 0 are scalar constants governing diffusion noise levels and damping
respectively. We consider drifts which can be written as the gradient of a scalar: Φ(x)=−∂ϕ(x)

∂x , where
ϕ(x) :Rk→R. By solving a Fokker-Planck equation for the time evolution of the state distribution
p(x,t), we can obtain an expression for the probability of a path x(·)={x(t)}1t=0 sampled from the
SDE in Eq. (1) (see Appendix C for complete details):

P (x(·))∝e(−S[x(·)]). (2)

To maximize this probability with respect to a path, we can equivalently minimize the negative log
probabilityS, which is called the Onsager-Machlup action functional. This is the stochastic analogue of
the well-known principle of least action from optics and quantum mechanics Rojo et al. (2018). Since
we only consider discretized paths in this work, we focus on the discretized form of the OM action:
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Definition 3.1. For a discrete path X={x(0),...,x(L)} generated by the SDE in Eq. (1) with
drift Φ, the discretized form of the Onsager-Machlup action functional at timestep size ∆t is
given by:

S[X]=
1

2D

(
A[X]+B[X]+C[X]

)
, where A[X]=

1

2∆t

L−1∑
i=0

∥∥∥x(i+1)−x(i)
∥∥∥2
2
,

B[X]=
∆t

2ζ2

L−1∑
i=1

∥∥∥Φ(x(i))
∥∥∥2
2
, C[X]=

D∆t

ζ

L−1∑
i=1

∇·Φ(x(i)).

(3)

The three summands of the OM action each have an intuitive interpretation. Term A encourages
smooth transitions along the discretized path. Term B encourages paths remaining in regions with
low-norm drifts, which are equilibria or saddle points of the underlying dynamics. Finally, term C
encourages paths to remain in regions with low divergence of the drift, which can be interpreted as
entropically favoring regions of convexity in the landscape of ϕ, where dynamics are more stable. The
parameters ζ,∆t, and D control the relative contribution of these three terms in a physically intuitive
manner. For instance, at larger values of ∆t, the contribution of term A is diminished, consistent
with the intuition that larger “jumps” are more probable with larger timesteps. In the limiting case
of negligible diffusivity D (analogous to temperature, see Appendix C), the divergence term can be
omitted, yielding the Truncated OM Action:

Definition 3.2. The truncated OM action of a discretized path X is given by:

S[X]=
1

2D

(
A[X]+B[X]

)
. (4)

In this work, we use both the truncated and full OM actions depending on the system considered.

3.2 TRANSITION PATH SAMPLING IN MOLECULAR SYSTEMS

The connection between the SDE in Eq. (1) and TPS is straightforward. Formally, in TPS we consider
d-dimensional molecular systems with Np-many particles interacting under a potential energy function
U(x) :RNp×d→R, where x∈Ω is a configuration of the system, and Ω∈RNp×d is the configuration
space. The goal of TPS is to, for the given system and temperature, find most likely paths

{
x(t)

}
0≤t≤L

over a time horizon L between two endpoints x(0) ∈ A ⊂ Ω, x(L) ∈ B ⊂ Ω, where A,B typically
represent distinct minima on the potential energy surface U(x). The underlying particle dynamics
are governed by the SDE in Eq. (1), known in this context as overdamped Langevin dynamics. ϕ and Φ
have a clear physical interpretation as the potential energy and forces, respectively, i.e., ϕ(x) :=U(x)
and Φ(x) := F(x) =−∇U(x). Thus, if the forces F(x) are known, the OM action in Eq. (3) can
be used to compute the probability of paths connecting endpoints x(0),x(L) under the governing
stochastic dynamics.

3.3 SCORE-BASED GENERATIVE MODELING

We now describe the connection between the SDE in Eq. (1) and generative models, namely denoising
diffusion and flow matching. Specifically, we show that these models induce a set of stochastic
dynamics whose drift is given by their learned score function. This provides a powerful framework
to reason about high-probability transition paths on a broad class of data manifolds.

3.3.1 STOCHASTIC DYNAMICS UNDER DENOISING DIFFUSION MODELS.

Denoising diffusion probabilistic models (DDPM) Ho et al. (2020) are a class of score-based generative
models that learn how to de-noise corrupted samples. The DDPM objective Eq. (18) is closely linked
to the score-matching objective Vincent (2011); Song & Ermon (2019) for training a score model
sθ(x,τ) :Rk×R+→Rk parametrized by θ:

LSM(θ)=Eτ,x∼pτ

[
∥sθ(x,τ)−∇log(pτ (x))∥22

]
, (5)
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where ∇ logpτ (x) is the score of the noised marginal distribution pτ at time τ . This establishes
the connection between the score and the optimal noise model: ϵθ∗(x, τ) ∝ −∇ logpτ (x). See
Appendix B.2 for detailed statements and proofs. In order to use the OM action to compute path
probabilities with a DDPM, we must construct a surrogate SDE in the form of Eq. (1), such that paths
under this SDE have high likelihood under the data distribution used to train the model. While the
denoising (i.e., sampling) process of a DDPM (see Appendix B.1) may appear to be a natural candidate,
a closer inspection reveals that it is unsuitable, as it optimizes for different likelihoods at different
points of the trajectory. A large portion of the denoising trajectory thus has low likelihood under the
data distribution. Therefore, we need to consider an alternative approach.

Iterative denoising and noising as a candidate SDE. Another hypothesis for constructing an SDE
is to leverage the process of iterative one-step denoising and noising at a fixed time marginal τ of the
diffusion process. Intuitively, this balances the likelihood-maximizing drift of the denoising step with
the stochasticity of the noising step. Specifically, we consider the following iterated denoise-noise
updates, writing sθ(x,τ)=−ϵθ(x,τ), where ϵθ(x,τ) is the trained denoising model from the DDPM:

x(i,mid)=
1√

1−βτ

(
x(i)+

βτ√
1−ᾱτ

sθ(x
(i),τ)

)
+
√
βτz, (6)

x(i+1)=
√
1−βτx

(i,mid)+
√
βτz

′, (7)

where z,z′∼N (0,I),α,β denote the usual diffusion model noise schedule variables, and ᾱτ =
∏τ

i=1αi.
Combining the two updates yields a single update equivalent in distribution:

x(i+1)=x(i)+
βτ√
1−ᾱτ

sθ(x
(i),τ)+

√
2βτ−β2

τz, (8)

where z∼N (0,I). Taking the continuum limit βτ→0, and noting that 2βτ−β2
τ ≈2βτ and ᾱτ→ ᾱτ−1

at this limit, we see that Eq. (8) is an Euler-Maruyama discretization, with timestep βτ , of the following
SDE:

dx=
1√

1−ᾱτ−1
sθ(x,τ)dt+

√
2dWt. (9)

Note that the above construction holds for any τ ∈{1,...,Td}where Td is the maximum diffusion time.
A similar derivation can be found in Arts et al. (2023) for τ=0.

Eq. (9) is the same equation as Eq. (1) with the equivalence (up to constants),

ϕ(x)∝−logpτ (x), (10)
Φ(x)∝sθ(x,τ)≈∇logpτ (x). (11)

This means that, as introduced in Eq. (2)and Eq. (3), the likelihood of discrete pathsX=
(
x(t)

)
0≤t≤L

un-
der the constructed SDE Eq. (9)can be evaluated via the OM action defined by the DDPM score sθ(x,τ):

Sθ(X)=
1

2D

(
L−1∑
i=0

1

2∆t

∥∥∥x(i+1)−x(i)
∥∥∥2
2
+

∆t

2ζ2

∥∥∥sθ(x(i),τ)
∥∥∥2
2
+
D∆t

ζ
∇·sθ(x(i),τ)

)
, (12)

where ζ=
√
1−ᾱτ−1 and D=1. While we define ζ here based off of the DDPM variance parameters

ατ , in practice ∆t, ζ, and D can be treated as hyperparameters to balance the relative contributions
of the action’s summands.

Extension to Flow Matching. We show in Appendix B.3 that it is possible to extract a learned score
sθ from flow matching models, meaning that our OM action framework readily applies beyond DDPM
to a broader class of generative models.

3.3.2 PHYSICAL INTERPRETATION FOR BOLTZMANN-DISTRIBUTED DATA

By assuming underlying dynamics of the form Eq. (9), our framework combining generative models
and the OM action can be used to compute the log-probabilities of paths between samples from any
data distribution with a well-defined score. However, in the special case where the data are Boltzmann
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distributed, i.e., p(x)∝exp(−U(x)
kBT ), where kB is Boltzmann’s constant and T is the temperature, the

learned score sθ(x,τ=0):RNp×d→RNp×d is interpretable as a physical, atomistic force field:

sθ(x,τ=0)≈∇logp(x)∝−∇U(x)=F(x). (13)

The constructed dynamics in Eq. (9) at τ = 0 reduce to physical, overdamped Langevin dynamics
governing particles on a potential energy surface. Thus, under our OM framework, finding
high-probability paths between points on a Boltzmann-distributed data manifold directly aligns with
the conventional notion of TPS for atomistic systems.

4 REPURPOSING GENERATIVE MODELS VIA ACTION MINIMIZATION

We now introduce our OM optimization approach to produce high probability transition paths
between atomistic structures using pre-trained generative models. Given two atomistic configurations,
x(0),x(L) ∈RNp×d where x(0) ∈A,x(L) ∈B, we aim to sample a transition path X=

{
x(i)
}
i∈[0,L]

comprised of L discrete steps. Our core inductive bias is to interpret candidate paths as realizations
of the denoise-noise SDE in Eq. (9), enabling tractable computation and optimization of path
log-likelihoods via the OM action. Our approach proceeds in three primary steps: 1) computing an
initial guess path, 2) performing OM optimization, and (in some cases) 3) decoding the optimized
path back to the configurational space Ω. See Algorithm 1 for a precise description.

Computing an initial guess path. The choice of initial path connecting the endpoints x(0) ∈ A
and x(L) ∈B is crucial in determining the quality of the subsequently optimized path. Naı̈ve linear
interpolations in configurational space are unlikely to generate physical paths, since plausible atomistic
structures typically lie on a highly non-convex, low-dimensional manifold of Ω. Instead, we opt
to linearly interpolate at a latent level τinitial of our pretrained generative model, which is known to
produce samples closer to the data manifold (Ho et al., 2020). We can then either decode the initial
guess path back to the configurational space, in which case the subsequent OM optimization would
occur in configurational space, or defer decoding, in which case optimization occurs at the latent level
τinitial. Both are justified, since the proposed dynamics in Eq. (9) are valid for any τ . See Appendix
F for a complete description of the initial path guess method. Generally, larger values of τinitial yield
more diverse initial paths at expense of decreased correspondence to the endpoints x(0),x(L).

Optimization of the OM action. Starting from the initial guess, we find paths which have high
probability, or equivalently low action, under the SDE in Eq. (9) induced by the generative model.
The optimization problem simply becomes,

X∗= argmin
X={x(i)}

i∈[0,L]

Sθ[X], (14)

where Sθ is the generative model action in Eq. (12), and x(0) and x(L) are kept fixed. We approximate
this minimum via gradient descent on the path until the action is converged. Note that since Sθ

is a discretized integral, the entire trajectory must be optimized in parallel, which we achieve via
vectorization over the path. In principle, when optimizing in configurational space, τopt≈0 ensures that
sθ(x,τ) approximates the true, atomistic forces. However, in line with previous work Arts et al. (2023),
we find that a small, nonzero value leads to better alignment with the true forces, and thus treat τopt as
a hyperparameter. To accelerate computation of the divergence term, we use the Hutchinson estimator
Hutchinson (1989), which enables computation of the trace without materializing the divergence
matrix (see Appendix F for details on usage and convergence properties).

Decoding back to configurational space. If OM-optimization was performed at a nonzero latent
time τinitial, we decode the final path, obtained after K iterations of gradient descent, back to the
configurational space. If optimization was performed in configurational space (i.e., decoding was
already done in the first step), then this step is skipped.

5 RESULTS

We now present the results of our OM optimization approach for TPS with pre-trained generative
models. In Appendix G, we further show that generative models trained on tetrapeptide configurations
can be used for zero-shot generation of transition pathways on held-out sequences. Finally, in Appendix
H, we demonstrate an additional use case beyond generative modeling, namely using a classical force
field with OM optimization to generate all-atom transition paths for Chignolin and Trp-Cage.
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5.1 2D MÜLLER-BROWN POTENTIAL

We first demonstrate our method on the 2D Müller-Brown potential Müller & Brown (1979), a canonical
test system for TPS with a global minimum and two local minima, separated by saddle points.

Problem setup. Using a denoising diffusion model pretrained on samples from the underlying
potential energy surface, we generate transitions between the two deepest energy minima using OM
optimization. We generate the initial guess path via linear interpolation at τinitial =8 (the maximum
diffusion model time is Td=1,000). We perform 200 steps of OM optimization directly at τinitial=8
using τopt=8, and finally decode the path back to the data distribution via the denoising process.

Figure 2: OM optimization with a diffusion
model on the 2D Müller-Brown potential. In-
dividual points along the OM-optimized paths are
shown as dots. Increasing the diffusivity D causes
the path to cross at a higher barrier. An equivalent
number of I.I.D samples (red) fail to sample the
transition region.

Results. As shown in Fig. 2, OM optimiza-
tion with the truncated action yields a transition
path (shown in blue) between the energy min-
ima which passes through the lowest energy bar-
rier. Due to the stochastic decoding process, the
samples around the transition path exhibit natu-
ral diversity. Increasing D and optimizing the
full OM action results in qualitatively different
transition paths (shown in orange and yellow).
Samples are more concentrated in the three en-
ergy minima, and the path crosses a higher en-
ergy barrier, consistent with the larger scale of
thermal fluctuations at increased temperatures.
Meanwhile, 2500 i.i.d. samples (shown in red)
from the diffusion model sample only the three
energy minima, and fail to sample the transition
region. This provides a proof-of-concept that
our OM optimization procedure can be used to
repurpose generative models to sample transition
paths without specialized training. See Appendix
I for additional results and analysis on the MB
potential, including with a flow matching model.

5.2 FAST-FOLDING
COARSE-GRAINED PROTEINS

We next consider proteins exhibiting fast dynamical transitions, for which millisecond-scale, reference
MD simulations were performed in Lindorff-Larsen et al. (2011).

Problem setup. We adopt a coarse-graining (CG) scheme which represents each amino acid with
the position of its Cα atom. We utilize the pre-trained diffusion models from Arts et al. (2023), and
we train our own flow matching models. Separate models are trained for each protein. To facilitate
analysis and interpretation of results, we divide the conformational space into discrete states and make
use of Markov State Models (MSMs) Prinz et al. (2011); Noé et al. (2013) to obtain state transition
probabilities. Similar to Jing et al. (2024b), we evaluate the quality of transition paths by discretizing
them over the MSM states and computing the following metrics (see Appendix J for complete details):

1. Path negative log probability. The negative log probability of the discretized path under the
reference MSM, averaged over all paths.

2. Fraction of valid paths. The fraction of paths with nonzero probability under the reference
MSM.

3. Jensen-Shannon divergence. The JSD between the distribution of states visited by the
generated paths and those sampled from the reference MSM.

We also analyze the committor function q(x), which is defined as the probability that a trajectory
initiated at x(0)=x reaches the target state B before the starting stateA. We compute an empirical
committor estimated from the reference MD simulations (see Appendix J for details and theory).

Results. As shown in Fig. 3a, OM optimization yields diverse transition paths which intuitively
pass through high density regions of the free energy landscape, projected onto the two slowest Time
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Figure 3: OM optimization with diffusion and flow matching models trained on coarse-grained,
fast-folding proteins. (a) Reference free energy surfaces of fast-folding proteins, alongside transition
paths produced by OM optimization (yellow) overlaid against the landscape of the empirically computed
committor function q(x). The transition state ensemble (black) is the set {x :0.45≤q(x)≤0.55}. (b)
Samples from the predicted transition state ensemble of BBA. (c) Runtime of OM optimization and
varying lengths of MD simulation of BBA using the diffusion model’s approximate force field. (d)
MSM results averaged across 5 fast-folding proteins. Plotted are the Jensen-Shannon Divergence (JSD)
between the sampled path and reference MSM state distributions, fraction of sampled paths which are
valid (i.e have non-zero probability under the reference MSM), and average negative log likelihood of a
path under the reference MSM.

Independent Component (TIC) Noé et al. (2013) axes. For the BBA protein, the paths robustly sample
the transition state ensemble, defined by the level set {x :0.45≤q(x)≤0.55} of the committor function
(Fig. 3b). We also find that sampling transition paths of the BBA protein with OM optimization requires
considerably less wall-clock time than performing an equivalent number of parallel MD simulations
using the diffusion model’s learned score as a force field (Fig. 3c). Across all proteins and both classes
of generative model (diffusion and flow matching), OM optimization yields a higher percentage of valid
paths and lower negative log likelihood under the reference MSM, compared with MD simulations
of any of the considered lengths up to 12 ns (Fig. 3d). The JSD is also the lowest, indicating that the
sampled paths traverse a similar distribution of MSM states as the reference simulations.

Robustness to sparse data in transition regions. To simulate the scenario in which transition states
are not well-represented in the training data, we retrain diffusion models on datasets from which 99%
of configurations with committor probability between 0.1 and 0.9 are removed. We find that our OM
optimization approach is still able to sample plausible transition paths using this data-starved model
(see Appendix J for more details), suggesting that our approach can be useful even if the underlying
data distribution is far from an exhaustively sampled Boltzmann distribution.

6 CONCLUSION

Limitations. Our approach does not provably sample the full posterior distribution over paths, as in
traditional shooting methods and recent ML approaches Du et al. (2024). However, we sample diverse
paths by exploiting the stochastic generative model encoding and decoding process.

Future work. Incorporating OM optimization into larger generative models trained on more diverse
data Lewis et al. (2024); Jing et al. (2024a) is a natural area for future development. Given the success
of large-scale, co-evolutionary modeling of proteins Jumper et al. (2021), it would be interesting to
investigate the extent to which pre-training generative models on large structural databases enables
TPS on unseen systems. More broadly, OM action-minimization could be a powerful framework to
generate interpolation paths in a variety of data modalities, including images, videos, and audio.
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A EXTENDED RELATED WORK: TRANSITION PATH SAMPLING

A rich landscape of tools has been developed for TPS, for which we refer to existing surveys for a
more exhaustive description Bolhuis et al. (2002); Dellago et al. (2002); Vanden-Eijnden et al. (2010).
Traditional shooting methods perturb the initial or intermediate states of a known trajectory to generate
new trajectories via a Metropolis-Hasting criterion Mullen et al. (2015); Borrero & Dellago (2016);
Jung et al. (2017); Bolhuis & Swenson (2021). These often suffer from high rejection rates, correlated
samples, and the need for expensive molecular dynamics (MD) simulations during sampling. Another
class of methods is based on adding an adjustable biasing potential to enhance the sampling of slow
events, which includes umbrella sampling Torrie & Valleau (1977), metadynamics Laio & Parrinello
(2002a), and more advanced techniques such as eABF Darve & Pohorille (2001). These approaches
require a carefully constructed, low-dimensional mapping of the problem via collective variables
(CVs), which can be challenging, particularly when the characterization of the system around the
transition state is uncertain. Attempts were made to design CVs with ML methods Sultan & Pande
(2018); Šı́pka et al. (2023), yet they remain a challenge for many-atom systems. ML approaches have
also been used to learn the biasing potential directly, including approaches based on stochastic optimal
control Holdijk et al. (2024), differentiable simulation Sipka et al. (2023), reinforcement learning
Das et al. (2021); Rose et al. (2021); Singh & Limmer (2023); Seong et al. (2024), and h-transform
learning Singh & Limmer (2023); Du et al. (2024). In all of these approaches, unlimited access to
the underlying potential energy and force field are assumed, but samples from the underlying data
distribution are not available. As a result, the methods must be retrained from scratch for every new
system of interest. Additionally, expensive, simulation-based training procedures are often employed,
limited scalability to larger systems. Interpolation-based methods, such as the Nudged Elastic Band
(NEB) method Henkelman et al. (2000) and the spring method Dellago et al. (1998), introduce springs
between images to construct transition paths (spring method) or to directly locate saddle points (NEB).
However, a significant challenge for both approaches lies in generating an initial guess, which is
inherently unknown a priori. Among interpolation-like approaches, the Onsager-Machlup (OM) action
has also been explored for TPS. Due to the limited availability of automatic differentiation techniques
at the time, Laplacian operators were consistently avoided. This restriction limited its application to
very low-dimensional problems, as in Vanden-Eijnden & Heymann (2008); Fujisaki et al. (2010), or
led to the development of Laplace-free action formulations, as in Lee et al. (2017).

B PROOFS FOR SCORE-RELATED GENERATIVE MODEL OBJECTIVES

For the sake of readability, we replicate proofs showing that both the training objectives for DDPM
and flow matching models are equivalent to training against the score of a noised version of the data
distribution (or in the case of flow matching, an invertible polynomial transformation of this score). See
Vincent (2011) and Lipman et al. (2024) for example proofs for DDPM and flow matching respectively.

B.1 A NOTE ON THE DDPM REVERSE PROCESS

The sampling process for a DDPM can be written as the terminal condition x(0) of the following
process:

x(Td)∼N (0,I), (15)

x(i−1)=
1√

1−βτ

(
x(i)+

βτ√
1−ᾱτ

sθ(x
(i),i)

)
+
√
βτz. (16)

While this process is definable as an Euler-Maruyama discretization of an SDE, it is not well suited for
optimization over trajectories over the data distribution, since the vector field sθ(x

(i),i) is changing
throughout the trajectory, and iterates near the noise i = Td will not necessarily follow dynamics
determined by the data distribution.

B.2 DDPM AND SCORE MATCHING

Below is a proof for the equivalence of standard DDPM training to score matching.
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Theorem B.1 (DDPM-Score Matching Equivalence). Let pdata(x0) be the data distribution, and let
xτ be the noised variable defined through the forward process:

xτ =
√
ᾱτx0+

√
1−ᾱτ ϵ, τ∼Unif({1,...,Td}), x0∼pdata, ϵ∼N (0,I), (17)

where ᾱτ ∈(0,1). Let pτ (xτ )=
∫
pdata(x0)N (xτ ;

√
ᾱτx0,(1−ᾱτ )I)dx0 be the marginal distribution

of xτ . Then the DDPM objective, defined as the following:

LDDPM(θ)
def
=Eτ,x0,ϵ

[
∥ϵ−ϵθ(xτ ,τ)∥22

]
, (18)

satisfies the following equality:

LDDPM(θ)=Eτ,xτ

[
(1−ᾱτ )∥∇xτ logpτ (xτ )−sθ(xτ ,τ)∥22

]
+C, (19)

where sθ(xτ ,τ)
def
=−ϵθ(xτ ,τ)/

√
1−ᾱτ , and C is a constant independent of θ.

Proof. We begin with the DDPM training objective:
LDDPM(θ)=Eτ,x0,ϵ

[
∥ϵ−ϵθ(xτ ,τ)∥22

]
. (20)

The core of the desired result is Tweedie’s formula, which relates Gaussian-based denoising to the score
of the noised distribution. For any random variable z generated as z=µ+ση where µ is an arbitrary
random vector, η∼N (0,I), and σ>0, Tweedie’s formula gives the following posterior expectation:

E[µ|z]=z+σ2∇zlogp(z), (21)
where p(z)=

∫
N (z;µ,σ2I)p(µ)dµ is the full marginal distribution of z. In the forward process, xτ is

generated via xτ =
√
ᾱτx0+

√
1−ᾱτ ϵ, which corresponds to:

µ=
√
ᾱτx0, σ=

√
1−ᾱτ , z=xτ , η=ϵ. (22)

Here, µ is a random variable (dependent on x0), not a fixed parameter. Applying Tweedie’s formula to
the marginal distribution pτ (xτ ), we obtain:

E
[√

ᾱτx0

∣∣xτ

]
=xτ+(1−ᾱτ )∇xτ logpτ (xτ ). (23)

Dividing through by
√
ᾱτ gets the posterior of the original sample x0:

E[x0|xτ ]=
xτ√
ᾱτ

+
1−ᾱτ√

ᾱτ
∇xτ logpτ (xτ ). (24)

From the forward process definition, we rewrite in terms of ϵ:

ϵ=
xτ−
√
ᾱτx0√

1−ᾱτ
, (25)

and take conditional expectations given xτ to get the following:

E[ϵ|xτ ]=
xτ−
√
ᾱτE[x0|xτ ]√
1−ᾱτ

, (26)

=
xτ−
√
ᾱτ

(
xτ√
ᾱτ

+ 1−ᾱτ√
ᾱτ
∇xτ

logpτ (xτ )
)

√
1−ᾱτ

, (27)

=
xτ−xτ−(1−ᾱτ )∇xτ

logpτ (xτ )√
1−ᾱτ

, (28)

=−
√
1−ᾱτ∇xτ logpτ (xτ ). (29)

Using the law of total expectation, we can expand the DDPM loss conditioned on xτ ,τ :
LDDPM(θ)=Eτ,xτ

[
Eϵ

[
∥ϵ−ϵθ(xτ ,τ)∥22 |xτ ,τ

]]
. (30)

For any random vector ξ, E[∥ξ−c∥2] is minimized when c=E[ξ]. We can then make the following
bias-variance decomposition:

Eϵ

[
∥ϵ−ϵθ(xτ ,τ)∥22 |xτ ,τ

]
=∥E[ϵ |xτ ,τ ]−ϵθ(xτ ,τ)∥22+E

[
∥ϵ−E[ϵ |xτ ,τ ]∥22 |xτ ,τ

]
. (31)

Since the variance term is independent of θ, substituting E[ϵ |xτ ,τ ] and factoring out−
√
1−ᾱτ leads

to:

LDDPM(θ)=Eτ,xτ

[
(1−ᾱτ )

∥∥∥∥∇xτ logpτ (xτ )−
(
−ϵθ(xτ ,τ)√

1−ᾱτ

)∥∥∥∥2
2

]
+C. (32)

By defining sθ(xτ ,τ) :=−ϵθ(xτ ,τ)/
√
1−ᾱτ , we obtain the score matching objective.
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B.3 FLOW MATCHING AND SCORE MATCHING

We link our OM action-minimization framework introduced in Section 3.3 with a broader class of
generative models beyond DDPM. Flow matching models Lipman et al. (2022) are a natural choice due
to their strong performance in generative modeling tasks across modalities Jing et al. (2024a); Polyak
et al. (2024). Similarly to DDPM, flow matching generates samples through a repeated integration
process over a learned vector field. For affine flows considered in this work, the training objective for
the learned velocity field uθ(x,τ) takes the form,

LFM(θ)=Eτ,x∼pτ

[
∥uθ(x,τ)−uτ (x)∥22

]
, (33)

uτ (x)= E
x0∼p0,x1∼p1

[α̇τx1+σ̇τx0 |x=ατx1+στx0], (34)

where p0 and p1 are the source and target distributions, ατ ,στ : [0,1]→ [0,1] define a curve from x0 to
x1: α0=σ1=0, α1=σ0=1, and ατ ,−στ are both strictly increasing functions.

While extracting the learned score sθ from DDPM is straightforward via sθ(x,τ)=−ϵθ(x,τ), it is less
clear how to do so for flow matching. However, we note the following:

1. By Eq. (5), the targets for the denoising model ϵθ(x,τ) in DDPM are equivalently the negative
scores of the noised distribution,−∇logpτ (x).

2. The targets ut(x) for the flow matching model uθ(x,τ) can be converted to scores of the
marginal distribution∇logpτ (x) through the formula:

∇logpτ (x)=
ατ

σ̇τστατ−α̇τσ2
τ

(
α̇τ

ατ
x−uτ (x)

)
. (35)

We can thus extract an approximate score sFMθ (x,τ) from a trained flow matching model uθ(x,τ) via,

sFMθ (x,τ)=
ατ

σ̇τστατ−α̇τσ2
τ

(
α̇τ

ατ
x−uθ(x,τ)

)
. (36)

By inserting sFMθ (x,τ) into the denoise-noise process Eq. (9), we again obtain an SDE of the form of
Eq. (1). Hence, we can use the OM action to compute the log-probabilities of paths between arbitrary
datapoints.

We now provide proof for this flow matching setting, showing that the training objective is also similar
to a score matching objective, with a simple transformation between the flow matching targets and the
scores.

Theorem B.2 (Flow Matching – Score Matching Conversion). Let pdata(x0) be the data distribution,
and let xτ be the noised variable defined through the interpolation process:

xτ =ατx1+στx0, τ∼Unif([0,1]), x1∼pdata, x0∼N (0,I), (37)

where ατ ,στ : [0,1]→ [0,1] are strictly increasing and decreasing functions respectively that satisfy
α0=σ1=0, α1=σ0=1. Let pτ (xτ )=

∫
pdata(x0)N (xτ ;ατx1,σ

2
τI)dx0 be the marginal distribution

of xτ . Then the flow matching objective, defined as the following:

LFM(θ)
def
=Eτ,x0,x1

[
∥uθ(xτ ,τ)−vτ (x0,x1)∥22

]
, (38)

where vτ (x0,x1)= α̇τx1+σ̇τx0 the instance-wise curve velocity. The flow matching objective then
satisfies the following equalities:

1. We can equivalently train against targets of the unconditional velocities uτ (x) =
Ex0∼p0,x1∼p1

[α̇tx1+σ̇tx0 |x=αtx1+σtx0]:

LFM(θ)=Eτ,x0,x1

[
∥uθ(xτ ,τ)−uτ (xτ )∥22

]
+C, (39)

where C is some constant independent of θ, and
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2. The equality∇xlogpτ (x)=
α̇τ

ατ
x− σ̇τστατ−α̇τσ

2
τ

ατ
uτ (x) holds, allowing us to write the flow

matching objective in terms of the score:

LFM(θ)=Eτ,x0,x1

[
∥uθ(xτ ,τ)−

(
α̇τ

ατ
xτ−

σ̇τστατ−α̇τσ
2
τ

ατ
∇xτ logpτ (xτ )

)
∥22
]
+C.

(40)

Proof. For part 1, we can expand the flow matching loss integrand by telescoping with respect to
uτ (xτ ):

∥uθ(xτ ,τ)−vτ (x0,x1)∥2=∥uθ(xτ ,τ)−uτ (xτ )+uτ (xτ )−vτ (x0,x1)∥2, (41)

=∥uθ(xτ ,τ)−uτ (xτ )∥2+2⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−vτ (x0,x1)⟩+∥uτ (xτ )−vτ (x0,x1)∥2.
(42)

Since Eτ,x0,x1∥uτ (xτ )−vτ (x0,x1)∥2 is constant with respect to θ, it suffices to show the following:

Eτ,x0,x1⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−vτ (x0,x1)⟩=0. (43)

Note that by definition we have the following relation between u and v:

E
x0,x1

[vτ (x0,x1) |xτ ,τ ]= E
x0,x1

[α̇τx1+σ̇τx0 |xτ ,τ ]=uτ (xτ ). (44)

We can then write the following by expanding the expectation using the tower rule:

Eτ,x0,x1⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−vτ (x0,x1)⟩=Exτ ,τ

[
E

x0,x1

[⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−vτ (x0,x1)⟩ |xτ ,τ ]

]
,

(45)
= E

xτ ,τ
[⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−Ex0,x1 [vτ (x0,x1) |xτ ,τ ]⟩],

(46)
= E

xτ ,τ
[⟨uθ(xτ ,τ)−uτ (xτ ),0⟩], (47)

=0. (48)

This concludes part 1. Note that the interpolations xτ = ατx1+στx0 also follow proper form for
Tweedie’s formula, allowing us to write the following:

E[ατx1|xτ ,τ ]=xτ+σ2
τ∇xlogpτ (xτ ), (49)

E[x1|xτ ,τ ]=
1

ατ
xτ+

σ2
τ

ατ
∇xlogpτ (xτ ). (50)

Noting that x0=
xτ−ατx1

στ
, we can write uτ as the following:

uτ (x)= E
x0,x1

[α̇tx1+σ̇tx0 |xτ =xτ ], (51)

= α̇t E
x0,x1

[x1 |xτ =x,τ ]+σ̇t E
x0,x1

[x0 |xτ =x,τ ], (52)

=
σ̇τ

στ
x+

(
α̇τ−

ατ σ̇τ

στ

)
E

x0,x1

[x1 |xτ =x,τ ], (53)

=
σ̇τ

στ
x+

(
α̇τ−

ατ σ̇τ

στ

)(
1

ατ
x+

σ2
τ

ατ
∇xlogpτ (x)

)
, (54)

=
α̇τ

ατ
x− σ̇τστατ−α̇τσ

2
τ

ατ
∇xlogpτ (x). (55)

This proves the desired relation between uτ and∇logpτ , and plugging into part 1 achieves the desired
flow matching loss equality.
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C DERIVATION OF THE ACTION

C.1 OVERDAMPED LANGEVIN DYNAMICS

We shall start the description of our system by formulating well-known Hamilton equations. The
variables we are solving are xi(t) :R+→Rd and the corresponding momenta pi(t) :R+→Rd with a
constant vector mi representing the mass of every particle i in the system. Hamiltonian equations are
formulated as follows

ẋi(t)=
pi(t)

mi
,

ṗi(t)=−
∂U(x(t))

∂xi
.

(56)

While these equations maintain energy and contain no representation of temperature, a modified SDE,
with the term W(t) representing a Wiener procees and a damping constant γ

ẋi(t)=
pi(t)

mi
,

ṗi(t)=−
∂U(x(t))

∂xi
−γpi(t)

mi
+
√
2γkBTW(t),

(57)

or equivalently in one second order equation:

miẍi(t)=−
∂U(x(t))

∂xi
−γmiẋi+

√
2miγkBTW(t), (58)

can now represent a system that experiences thermal fluctuation. While the original Hamiltonian
system is trapped in an energy well forever, the one guided by Langevin dynamics may overcome
barriers between wells in finite time.

A questions then arises. Of all the possible paths of fixed physical parameters and time that connect
two minima, which is the most probable? How do we calculate probabilities and penalize high energy
regions or path that are making too large steps? The answer is provided by Onsager and Machlup in
their works Onsager & Machlup (1953); Machlup & Onsager (1953). The second reference handles the
full equation Eq. (57) while the first one is a reduction to a so-called overdamped state where the term
ẍ(t) can be neglected. After introduction of two auxiliary vector quantities ζi=miγ and Di=

kbT
ζi

we
get the form

ẋi=−
1

ζi

∂U(x(t))

∂xi
+
√

2DiW(t). (59)

or equally just with F(x(t))=−∂U(x(t))
∂xi

ẋi=
1

ζi
F(x(t))+

√
2DiW(t). (60)

Further we will follow a more general setting of the langevin equation consistent with Eq. (1). To recall:

ẋ=
1

ζ
Φ(x)dt+

√
2DdW, (61)

and

ϕ(x) :=U(x) (62)
Φ(x) :=F(x)=−∇U(x) (63)

C.2 MOST PROBABLE PATH UNDER LANGEVIN DYNAMICS

Considering a single particle (for more particle systems see e.g. Kappler & Adhikari (2020)), since
Eq. (1) is a stochastic differential equation, we can also write a partial differential equation for the
probability density of the particle guided by this equations. In this case it is a well-known Fokker-Planck
equation (note ∂

∂x of a vector will be understood as a divergence operator to save space)

∂P

∂t
=−

∂
(

Φ
ζ P
)

∂x
+

∂

∂x

(
D
∂P

∂x

)
. (64)
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As we will consider only potential forces in this work, let us denote Φ(x)=− 1
ζ
∂ϕ(x)
∂x . Now we will

split the derivation into two parts.

1. Φ=0:

Let us consider the solution in the following form:

P (x,t |x0)=(4πDt)
− 3

2 e
−(x−x0)2

4Dt . (65)

Then for the sequence of points in space and time (x1, t1), (x2, t2), ... (xN , tN ) we can write the
following probability:

P (x1,t1 |x2,t2 | ··· |xN ,tN )=

N+1∏
j=1

P (xj ,tj−tj−1 |x0). (66)

Let us denote tj−tj−1=ϵ as we will be passing into a continuum limit in time. The probability can be
rewritten by plugging in a solution Eq. (65) into

N+1∏
i=1

P (xj ,tj−tj−1 |x0)=(4πDt)
− 3

2 (N+1)
exp

− 1

4Dϵ

N+1∑
j=1

(xj−xj−1)
2

. (67)

To make sure we can pass into the limit let us rewrite

ϵ−
3
2 (N+1)=e

3
2 lnϵ. (68)

Important will be the part in the argument of the exp function. We can modify it to the form

1

4D

N+1∑
j=1

(
x−x0

ϵ

)2

ϵ. (69)

By passing into the limit N→∞ and realizing epsilon can be rewritten by its definition to ϵ= t
N we

get the definition of an integral
1

4D

∫ t

0

(ẋ)
2
dt. (70)

Regarding the first term, while it may appear that

lim
N→∞

(
4πD

t

N

)− 3
2 (N+1)

=∞, (71)

evaluation of this limit directly would be too hasty. One must consider the probability derived in
the broader context of integration across the path. In that case, the constant will serve to normalize
the probability. The fact that it does not depend on x also mean the probability of the path does
not, relatively with respect to other paths, depend on this prefactor and only the exponential part is
important. To find out more about precise mathematical justification we refer the reader to Gel’fand &
Yaglom (1960). We shall denote the constant before exponential as C from now on because, as it is not
dependent on x it will not influence our calculations. The final probability of a path is then given as
follows:

P (x,t)=

∫ x,t

x0,t

[
Cexp

(
− 1

4D

∫ t

0

(ẋ(s))2ds

)]
dxdt. (72)

To maximize the likelihood of the path we clearly need to minimize the action

S0(x(t))=
1

4D

∫ t

0

(ẋ(s))2ds. (73)

Intuitively, the most probable path under no drift is the one that does not move from it’s origin. The
longer the trajectory, the least probable it is.
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1. Φ ̸=0:

We will recall the assumption Φ=− 1
ζ∇ϕ(x) and shall use a transformation

P (x,t |x0)=G(x,t,|x0)exp

(
1

2Dζ

∫ x(t)

x(0)

Φ(s)ds

)
, (74)

where from the properties of a potential function we can evaluate the integral to

−ϕ(x)def
=

1

2Dζ

∫ x(t)

x(0)

Φ(s)ds=
1

2Dζ

∫ x(t)

x(0)

Φ(s)ds=
1

2Dζ
(−ϕ(x)+ϕ(x0)). (75)

So for clarity:

P (x,t)=G(x,t)e−ϕ(x), (76)

G(x,t)=P (x,t)eϕ(x), (77)

∇ϕ(x)= 1

2Dζ
∇ϕ(x). (78)

And plug it in Eq. (64). We will now try to derive the equation that G(x,t) has to fulfill. Let us evaluate
left-hand side of the Eq. (64)

∂P (x,t)

∂t
=

∂G(x,t)

∂t
e−ϕ(x). (79)

For the right-hand side lets evaluate first the term

∂
(
− 1

ζ
∂ϕ(x)
∂x P (x,t)

)
∂x

=−P (x,t)
1

ζ

∂2ϕ(x)

∂x2
− 1

ζ

∂P (x,t)

∂x

∂ϕ(x)

∂x
,

=−2DP (x,t)
∂2ϕ

∂x2
−2D∂P (x,t)

∂x

∂ϕ

∂x
,

=−2DGe−ϕ(x) ∂
2ϕ

∂x2
−2D∂G

∂x
e−ϕ(x) ∂ϕ

∂x
+2DP

(
∂ϕ

∂x

)2

.

(80)

While the other term

∂P (x,t)

∂x
=

∂G(x,t)

∂x
e−ϕ−G(x,t)e−ϕ ∂ϕ

∂x
,

=
∂G(x,t)

∂x
e−ϕ−P (x,t)

∂ϕ

∂x
.

(81)

The second derivative then with function arguments omitted for brevity, yet remaining the same

D
∂2P

∂x2
=D

∂2G

∂x2
e−ϕ−D∂G

∂x
e−ϕ ∂ϕ

∂x
−D∂P

∂x

∂ϕ

∂x
−DP

∂2ϕ

∂x2
,

=D
∂2G

∂x2
e−ϕ−2D∂G

∂x
e−ϕ ∂ϕ

∂x
+DP

(
∂ϕ

∂x

)2

−DGe−ϕ ∂
2ϕ

∂x2
.

(82)

After subtracting the terms right-hand side:

∂G

∂t
e−ϕ=D

∂2G

∂x2
e−ϕ−DGe−ϕ

(
∂ϕ

∂x

)2

+DGe−ϕ ∂
2ϕ

∂x2
. (83)

Or written nicely after exponential cancels and we return to ϕ(x) from ϕ

∂G(x,t)

∂t
=D

∂2G(x,t)

∂x2
−G(x,t)

(
1

4D

(
1

ζ

∂ϕ(x)

∂x

)2

− 1

2ζ

∂2ϕ(x)

∂x2

)
. (84)

Which is a well studied diffusion-reaction equation

∂u(x,t)

∂t
=D

∂2u(x,t)

∂x2
−ku(x,t). (85)
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Notice for ϕ(x)≡0 we already solved this equation as it is identical to Fokker-Planck where F =0.
Lets call this solution u0 Another observation is that for this equation we can formulate a solution in
the form

u(x,t)=u0(x,t)e
−
∫ t
0
k(s)ds,

u0(x,t)=Ce
−(x−x0)2

4Dt ,
(86)

where C is some normalization constant which we will not be careful about as it would not matter by
the same argument as in the previous solution:

G(x,t)=Cexp

(
−
(
x−x0)

2

4Dϵ
−
∫ t

0

k(s)ds

)
, (87)

and the original P (x,t) using Eq. (74):

P (x,t)=Cexp

(
−(x−x0)

2

4Dϵ
+

∫ t

0

(
−k(s)+ 1

2Dζ
Φ(s)

)
ds

)
. (88)

Now we would repeat same multiplication of probabilities for small time increments. However, this
time, situation is easier as integrals would simply extend in the sum. Therefore the only limit would be
in the first term exactly as done before. The final probability of the path is then

P (x,t)=C

∫ x,t

x0,0

exp
[
− 1

4D

∫ t

0

(ẋ)2+

(
1

ζ

∂ϕ

∂x

)2

− 2D

ζ

∂2ϕ

∂x2
−2Φds

]
dxdt. (89)

The negative argument of the exponential will yet again be an action to minimize

S(x(t))=
1

4D

∫ t

0

(ẋ)2+

(
1

ζ

∂ϕ

∂x

)2

− 2D

ζ

∂2ϕ

∂x2
−2Φ(s)ds. (90)

Which can be further, by integrating forces along the path and using forces instead of a potential,
modified to the more common form

S(x(t))=
1

2D
(ϕ(x)−ϕ(x0))+

1

4D

∫ t

0

ẋ2+

(
1

ζ

∂ϕ

∂x

)2

− 2D

ζ

∂2ϕ

∂x2
ds. (91)

This procedure to derive the Onsager-Machlup action is similar to that in Mauri (2012).

D FIXED ENDPOINTS

In the whole course of the paper we will be operating with fixed endpoints. This means the actual
minimized action will be reduced simply to the following:

S(x(te))=
1

4D

∫ t

0

ẋ2+

(
1

ζ

∂ϕ

∂x

)2

− 2D

ζ

∂2ϕ

∂x2
ds. (92)

The first and simplest strategy to keep endpoint constant is to include a penalty in the form

Lp=Cspring

[
(x(0)−x0)

2+(x(t)−xT )
2
]
. (93)

Interestingly, as verified experimentally the penalty term effectively works the same as using a more
simple and straightforward method. The method of choice was to set gradients of the endpoint to 0
manually. Only a couple of points will be affected and the majority of the trajectory will the same for
both approaches.

E NUMERICAL DISCRETIZATION

Another aspect to consider is the numerical discretization of the action. The work Adib (2008) discusses
the aspect of different numerical evaluation of this actions stemming from stochastic nature of the

21



Published as a workshop paper at ICLR 2025

Langevin equation. We shall follow the discretization S2 as it is derived that the action can be used for
direct probability maximization. The discretization we shall use in the code is

S(x0,x1...xn)=
1

4D

N∑
j=1

− (xj−xj−1)
2

∆t
+∆t

(
Φ(xj)

ζ

)2

+
2D∆t

ζ
∇·Φ. (94)

To make also multidimensional, multiparticle system discretization clear we just extend the sum along
spatial dimensions (index j) and we sum also particles (index k). The coefficient ζ is now a vector
since it is originally ζk=γ/Mk where Mk is the vector of masses. The total action is then

S[x(0),...,x(L)]=

L−1∑
i=1

Np∑
j=1

1

4D∆t

∥∥∥x(i+1)
j −x(i)

j

∥∥∥2+ ∆t

4Dζ2j

∥∥∥Φj(x
(i))
∥∥∥2− ∆t

2ζj
∇·Φj(x

(i)). (95)

F ADDITIONAL DETAILS ON ONSAGER-MACHLUP ACTION MINIMIZATION
METHOD

Algorithmic Description of OM Action Optimization with Generative Models We provide a full
algorithmic description of our main OM action optimization method with generative models.

Algorithm 1 Onsager-Machlup Transition Path Optimization with Generative Models

1: Input:
2: Optimization time τopt
3: Generative model with learned time-conditional score sθ(·,τopt)

4: Two atomistic configurations x(0)∈A⊂RNp×d, x(L)∈B⊂RNp×d

5: Compute initial guess X=
{
x(0),...,x(L)

}
= InitialGuess(x(0),x(L),τinitial) (Algorithm 2)

6: while not converged do
7: Compute the OM action, Sθ[X], with the learned vector field sθ(·,τopt), using Eq. (12).
8: Update X←optimizer(X,∇XSθ[X]) (keeping the endpoints x(0),x(L) fixed)
9: end while

Initial Path Guess Methods. We provide a complete description and algorithmic formulation of the
initial path guess method using a generative model, mentioned in Section 4.

Formally, consider a generative model with a non-parametric, probabilistic encoding (i.e corruption)
process q(xτ |x0), and a corresponding, parametric decoding (i.e generative) process pθ(x0|xτ ). We
encode the endpoints of the path into the chosen latent level for the initial guess, τinitial to produce
two latent endpoints z(0)∼ q(zτinitial |x(0)) and z(L)∼ q(zτinitial |x(L)). We then interpolate linearly to
generate a latent path Z=

{
z(i)=(1− i

L )z
(0)+ i

Lz
(L)
}
i∈[0,L]

. We can then either decode the path

back to the configurational space via pθ(x|z(i)) to obtain a path X, in which case the subsequent OM
optimization would occur in configurational space, or defer decoding, in which case optimization
occurs at the latent level τinitial starting from the latent path Z

Algorithm 2 Initial Guess Path Generation with a Generative Model

1: Given a generative model with non-parametric encoder q, and decoder pθ.
2: Function InitialGuess(x(0),x(L),τinitial)
3: Encode both samples into latent level τinitial of the generative model:
4: z(0)∼q(zτinitial |a), z(L)∼q(zτinitial |b)
5: Interpolate linearly (or spherically) in the latent space to generate an initial guess latent path:
6: Z=

{
z(i)=(1− i

L )z
(0)+ i

Lz
(L)
}
i∈[0,L]

7: Decode each point on the initial latent path Z from τinitial to τ=0 to produce a data path:
8: X=

{
x(i)∼pθ(x|z(i))

}
i∈[0,L]

9: Return X
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When using a classical FF, we do not have access to a generative model. Thus, we must use a different
scheme than what is described in 4 to compute the initial guess path. We first start with a small number
of replicas in each basin, creating a large gap in the middle of the path. We then optimize with an
unphysically heavily weighted path term, creating short, but interpolating trajectory. After we are
satisfied with the initial guess we multiply each replica twice, creating a path of double that we then
optimize again. This simple procedure is repeated until we reach desired length of the path.

Algorithm 3 Initial Guess Path Generation with Iterative Unwrapping

1: Function InitialGuess(x(0),x(L),L1,N)
2: Initialize trajectory by copying boundary points L1/2 times on both ends.
3: X=

{
x(0),...,x(0),x(L),...,x(L)

}
4: For m from 1 to N repeat:
5: Duplicate every point along the path: −→ X =

{
x(0),x(0),x(1),x(1)...,x(L)x(L)

}
6: Optimize Truncated Onsager-Machlup action: Strunc −→ X = argminSθ(X)

7: Obtain initial guess X=
{
x(0),x(1),...,x(2N∗L1−1),x(L)

}

Hutchinson Trace Estimator The third term in Eq. (12)involves the trace of the Jacobian of the force,
∇·Fθ(x

(i),τopt), or equivalently for conservative forces, the trace of the Hessian (Laplacian) of a scalar
energy. Naively computing gradients of this quantity can be prohibitively expensive. We thus employ
the Hutchinson trace estimator Hutchinson (1989) to accelerate computation. Formally, letH(x)=
∇ ·Fθ(x,τopt) ∈ RNp∗d×Np∗d. We approximate the trace of H as tr(H(x)) ≈ 1

N

∑N
i=1v

⊺H(x)v,
where v∼N (0,I). By leveraging vector-Jacobian products (VJP), we can compute the trace without
materializingH or its diagonal elements.

In practical terms, the estimator converges rather slowly. Let us denote the approximated trace by T̂r.
One can derive the variance of the estimator as

V ar(T̂r)=
1

N
Var(vi ·H(x)vi), (96)

which, when vi are distributed identically means the error of the trace estimator decays as

|T̂r−Tr(H(x))|≤ C√
N

. (97)

Where C depends on the properties of the matrix. This convergence is rather slow and means that one
requires many iterations to arrive to an accurate value of the trace. In practice, however, we found
that N =15 worked well and led to smooth OM optimization. This is likely due to the fact that our
trajectories were composed of many neighboring points that likely had similar Laplacian values.

G GENERALIZATION TO UNSEEN TETRAPEPTIDES

As another evaluation of our OM optimization approach, we consider tetrapeptide systems, which
exhibit interesting dynamics and pose the challenge of generalization to held-out amino acid sequences.

Problem setup. We train denoising diffusion and flow matching generative models on a subset of the
tetrapeptides simulated in Jing et al. (2024b), and apply our OM interpolation procedure to generate an
ensemble of 100 transition paths between min-flux states for each of 59 held-out tetrapeptides that were
not seen during training. We use the same MSM-based metrics as in Section 5.2 to evaluate the quality
of generated transition paths. Following Jing et al. (2024b), we consider replicate MD simulations of
varying lengths as baselines.

Results. As shown in Fig. 4, OM optimization achieves MSM metrics which are competitive with
50-100 ns MD simulations, which are considerably more computationally expensive to generate. This
suggests the promise of OM optimization to generate transition paths on atomistic systems not explicitly
seen during training.

We now provide additional details on these experiments. All experiments were performed on a single
NVIDIA RTX A6000 GPU.
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Figure 4: OM optimization on held-out tetrapeptide sequences. OM optimization with diffusion
and flow models yields transition paths which compare strongly with variable-length MD simulations.

Coarse Graining. We coarse grain the tetrapeptides at the backbone level. That is, we represent each
residue by three beads, representing the N , Cα, and C atoms. This yields a 12-bead representation for
each tetrapeptide.

Training. We train diffusion and flow matching models, parameterized by a Graph Transformer with
all the same architecture and training hyperparameters used for the fast-folding proteins (Section J),
with the only difference being the inclusion of learnable bead embeddings for differentiating the amino
acid backbone atoms. These are concatenated to the residue ordering and the diffusion/flow timestep to
form the node features. We train on a subset of 700 tetrapeptides simulated in Jing et al. (2024b), taking
10,000 evenly spaced configurations from the simulations for each tetrapeptide.

OM Optimization on Held-Out Proteins. We perform OM optimization on 58 held-out tetrapeptide
sequences not seen during training (again using the same splits as in Jing et al. (2024b)). The
optimization hyperparameters are given in Table 1.

Evaluation. We use the same Markov State Model-based evaluation pipeline described in Section J
for the fast-folding proteins. Following Jing et al. (2024b), the TIC dimensions are fit on the backbone
torsion angles. The reported metrics are averaged over the 58 held-out test proteins.
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Table 1: Hyperparameters used for OM action optimization on tetrapeptides with diffusion models.

Hyperparameter Value

Number of Generated Paths 100
Action Type Truncated
Initial Guess Time 100
Optimization Time 0
Optimization Steps 250
Optimizer Adam
Learning Rate 0.2
Path Length (L) 25
Action Timestep (∆t) 1
Action Friction (γ) 10
Action Diffusivity (D) 0

Visualization of Sampled Paths. We provide TIC visualizations of sampled transition paths for
selected tetrapeptides in Figure 5.

Transition Path Ensemble Sampled Paths

D
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I
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N
TG

EH
D

Y
G

RE
Q

Figure 5: Sampled transition paths from OM optimization on selected, held-out tetrapeptide
sequences. The sampled paths are diverse and intuitively pass through high density regions in the TIC
free energy landscape.
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H CLASSICAL FORCE FIELDS ON ALL-ATOM PROTEINS

We demonstrate that our OM action optimization framework is broadly useful for transition path
sampling even beyond the setting of generative modeling. Specifically, we aim to find all-atom
transition paths between the unfolded and folded states of the protein Chignolin and Trp-Cage, using a
differentiable PyTorch implementation Doerr et al. (2020); Sipka et al. (2023) of the Amber ff14SBMaier
et al. (2015) forcefield and the TIP3P implicit water model. We choose the physical parameters of the
OM action to be consistent with commonly used values in molecular simulations (see Table 2). Since
we do not have a generative model from which to obtain an initial path guess via latent interpolation
as described in 4, we instead employ a hierarchical unwrapping warm-up procedure described in
the Appendix F to obtain initial paths. As the classical force field is dominated by quadratic terms
whose Laplacian is constant and thus uninformative for optimization, we use a zero-temperature
approximation and optimize with the Truncated OM action. Using the Truncated action, we obtain
a physical transition path of length 2.6ps (shown in Figure 6). This is much lower than previously
reported transition path lengths for Chignolin Sobieraj & Setny (2022); Lindorff-Larsen et al. (2011),
which can be explained by the fact that our trajectories proceed between the target states without
fluctuations that would occur in unbiased simulations. The entire optimization took on the order of
hours on one NVIDIA RTX A6000 GPU, including the generation of initial trajectory.

Ch
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ge

Time (ps) 0.5 1.0 1.5 2.0 2.50.0

Figure 6: Transition paths from OM optimization of all-atom chignolin and trp-cage with a classical
force field.

Table 2: Hyperparameters used for OM action optimization on all-atom proteins with a classical force
field.

Hyperparameter Chingolin - warmup Chingolin TRP Cage - warmup TRP Cage

Number of points per path 40 - 2600 2600 40 - 2600 2600
Action Type Truncated Truncated Truncated Truncated
Optimizer Adam Adam Adam Adam
Learning Rate 10−4 10−5 10−4 10−5

Action Timestep (∆t) 1 fs 1 fs 1 fs 1 fs
Action Friction (γ) 10 ps−1 10 ps−1 10 ps−1 10 ps−1

I MÜLLER-BROWN POTENTIAL EXPERIMENTS

We provide further details on the Müller-Brown experiments in Section 5.1. All experiments were
performed on a single NVIDIA RTX A6000 GPU.

Potential Parameters. The exact form of the potential used is the following:

U(x,y)=−17.3e−0.0039(x−48)2−0.0391(y−8)2

−8.7e−0.0039(x−32)2−0.0391(y−16)2

−14.7e−0.0254(x−24)2+0.043(x−24)(y−32)−0.0254(y−32)2

+1.3e0.00273(x−16)2+0.0023(x−16)(y−24)+0.00273(y−24)2

26



Published as a workshop paper at ICLR 2025

Figure 7: OM optimization can be done with an analytical potential. We show paths generated
with OM optimization using the analytical potential with a timestep of 1, a friction of 1, and multiple
diffusivities. Higher diffusivities, corresponding to higher temperatures in physical interpretation, can
cross higher energy barriers, aligning with physical intuition.

This generates the potential shown in Figure 1. Figure 7 shows OM optimization using the analytical
potential as the force field. Increasing the diffusivity yields paths that cross higher energy barriers,
aligning with physical intuition. The results with the diffusion model in Section 5.1 align with the paths
derived from the analytical potential, confirming the validity of the diffusion model as an approximation
of the forces.

Data generation. To ensure that the transition region is adequately represented with relatively short
simulation times, we choose initial conditions for the simulations by uniformly sampling the transition
path resulting from OM optimization under the true MB potential. We generate training data by running
unbiased, constant-temperature simulations with the MB potential under Langevin dynamics. We run
1,000 parallel simulations for 1,000 steps, yielding a total of 1 million datapoints. Of these, 800,000 are
used for training, and 200,000 are reserved for validation.

Training. We then train a standard denoising diffusion model on this dataset, with the denoising
model parameterized by a 3-layer MLP with a GELU activation (Hendrycks & Gimpel, 2023) and a
hidden dimension of 256. The model is trained for 10 epochs, with a batch size of 4096 and a learning
rate of 1e−3 using the Adam optimizer (Kingma & Ba, 2017).

Energy Laplacian Term. We estimate the Laplacian of the potential energy surface by using the
Hutchinson Trace Estimator (see Section F). As shown in Figure 9, one random vector (N = 1) is
enough to capture the local minima and the energy barrier using the Hutchinson Trace Estimator, so we
use N=1 in our experiments. Using more random vectors gives a less noisy estimate of the Laplacian,
trading off accuracy for computational expense.

OM Optimization Details. We pick two points on the potential energy surface (PES) at alternate ends
of the transition barrier as target points for interpolation. The hyperparameters for the OM optimization
are given in Table 3

J FAST-FOLDING PROTEIN EXPERIMENTS

We present additional details on the fast-folding protein results in Section 5.2. All experiments were
performed on a single NVIDIA RTX A6000 GPU.

MD Simulations with Diffusion Model To assess the computational efficiency and accuracy of our
OM optimization relative to alternative methods of sampling the configurational space (see Figure 3a
and b), we run Langevin MD simulations for varying lengths of time (up to 12 ns) using the diffusion
model’s score function as an effective force field Arts et al. (2023), with a timestep of 2 fs. To ensure
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Figure 8: OM optimization from a flow matching model. The analogous experiment to Fig. 7, but
using a flow matching model trained on Müller-Brown data, and using the extracted score via Eq. (35)
for OM optimization. Since the stochastic encoding/decoding processes of flow matching models are
deterministic and the Müller-Brown setting has a single minimal landscape, the encoding/decoding
scheme in itself cannot generate diversity in this setting. Note that for higher diffusivities, OM
optimization can find some erroneous minima left from the generative model (here at D = 4, OM
optimization finds a local minima in the center, where a crease is formed).

Figure 9: Hutchinson Trace Estimator accurately estimates the Laplacian. The diffusion model
learns an estimate of the Laplacian that captures the Müller-Brown energy wells. The Hutchinson
Trace Estimator efficiently approximates this Laplacian, and the estimate becomes less noisy when
using more random samples.

a fair comparison, we set the number of parallel MD trajectories to be the same as the number of
transition paths sampled with OM optimization.

Markov State Model Construction. We provide further details on the Markov State Model analysis
used to evaluate the quality of transition paths for the fast-folding protein experiments. We largely
follow the procedure described in Jing et al. (2024b).

We perform k-means clustering of the reference MD simulations into 20 clusters using the top 2 Time
Independent Component (TIC) dimensions, which are fit on the pairwise distances and dihedral angles
of the protein configurations. We then fit a Markov State Model (MSM) with a lagtime of 200ps (the
frequency at which the simulations were saved) to obtain a transition probability matrix T between the
20 discrete states in the MSM (e.g, Tj,k=p(st+1=k|st=j), where st and st+1 are the states at time t
and t+1). This constitutes the reference MSM.

To evaluate transition paths sampled from our OM optimization method, we first discretize them
under the reference MSM (i.e represent them as a sequence of cluster indices between 1 and 20). We
subsample the paths to be of length 10. From this, we compute the probability of the path under the
reference MSM via:

We also sample 1,000 discrete, reference paths of length L=20 (corresponding to a transition time of
200ps×20=4ns) from the reference MSM, conditioned on the start and end states s1 and sL (these are
the cluster indices of the transition endpoints x(0) and x(L) . This can be achieved by sampling states
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Table 3: Hyperparameters used for OM action optimization on the Müller-Brown potential with
diffusion.

Hyperparameter Value

Number of Generated Paths 50
Action Type Full
Initial Guess Time (τinitial) 8
Optimization Time (τopt) 8
Optimization Steps 200
Optimizer Adam
Learning Rate 0.2
Path Length (L) 50
Action Timestep (∆t) 0.01
Action Friction (γ) 0.01
Action Diffusivity (D) 0, 1.0, 4.0

s2...s19 iteratively as

st+1∼
T

(L−t−1)
:,sL TsL,:

T
(L−t
st,sL )

, (98)

where the superscipt denotes a matrix exponential. See Jing et al. (2024b) for precise details.

With both the reference and generated discretized paths, we compute the following metrics:

1. Jensen-Shannon Divergence. We compute the probability of each MSM state based on
the frequency at which each state is visited in the discretized paths. We compute these
probabilities for both the reference and generated paths, and compute the JSD between the
categorical distributions.

2. Path Negative Log Probability. We compute the negative log probability of the generated
paths (conditioned on the starting and ending states) under the reference MSM, averaged over
all generated paths. Under the Markovian assumption, this is given by−log(P (s1...sL)=

−
∑L−1

i=1 log

(
T (L−t−1)
st,sL

·Tst,st+1

T
(L−t)
st,sL

)
.

3. Fraction of Valid Paths. We compute the fraction of generated paths with nonzero probability
under the reference MSM.

When considering replicate MD simulations of different lengths (e.g 2 ns, 4 ns), we fit a MSM to the
simulations using the same discretized clusters as were used to fit the reference MSM, and sample
1,000 paths in the same way described above.

Committor Function Analysis. For a transition event between endpointsA,B∈Ω, the committor
function q(x), captures the probability that a trajectory initiated at x0=x reaches B beforeA:

q(x)=E[hB(xτ ) |x0=x]; τ=arg min
t∈[0,+∞)

{xt∈A∪B :x0=x}, (99)

where hB is the indicator function for reaching state B.

The transition state ensemble is formally defined as the level set {x∈Ω:q(x)=0.5}. The committor
is obtainable as the solution to the steady-state backward Kolmogorov equation (BKE) Hasyim et al.
(2022), which is generally infeasible to solve directly or numerically for high-dimensional systems.
For the fast-folding proteins, we obtain an empirical estimate of the committor function by dividing
the TIC configuration space of each protein into 1002 discrete bins, and replacing the expectation in
Equation 99 with an empirical average over trajectories starting from each bin in the reference MD
simulations from Lindorff-Larsen et al. (2011). The resulting committor estimates for the fast-folding
proteins are shown in Figure 10.

Model Architecture and Training. Our denoising diffusion and flow matching generative models
are parameterized by a Graph Transformer architecture identical to what was used in Arts et al. (2023)
(in the case of diffusion, we use the exact pretrained model from Arts et al. (2023)). To summarize,

29



Published as a workshop paper at ICLR 2025

Chignolin Trp-Cage

BBA Villin Protein G

Figure 10: Empirical committor landscapes for fast-folding proteins. The committor is computed
by binning the conformational space into 1002 bins and measuring the frequency at which reference
MD trajectories initiated in each bin reach the target state before the start state. The empirical transition
ensemble is defined as the level set {x :0.45≤q(x)≤0.55}.

nodes are featurized by the ordering of each residue in the overall sequence, while edges are featurized
by the pairwise Cα-Cα distances. Nodes and edges are then jointly treated as tokens for input to the
Transformer, which updates the token representations. A scalar output is obtained by summing learned
linear projections of the token representations. Both the denoising diffusion vector field ϵθ and the flow
model velocity field vθ are parameterized as the gradient of the final scalar output of the model with
respect to the input Cα coordinates.

For denoising diffusion, we use the pretrained models from Arts et al. (2023). For flow matching,
we train our own models. We train models with 3 attention layers for 1 million iterations, using an
Adam optimizer with a learning rate of 0.0004 and a cosine annealing schedule reducing to a minimum
learning rate of 0.00001. We use an exponential moving average with α=0.995. The diffusion models
use 1,000 integration steps at inference time, while the flow matching models use 10 steps.

Protein-specific training and architecture hyperparameters are given in Table 4.

Table 4: Architecture and training hyperparameters for diffusion and flow matching generative models
on fast-folding proteins.

Hyperparameter Chignolin Trp-cage BBA Villin Protein G

Batch size 512 512 512 512 256
Number of hidden features 64 128 96 128 128

OM Optimization Details. We list all the optimization hyperparameters used to perform OM
optimization on the fast-folding proteins, for both diffusion and flow matching models, in Tables 5 and
6.

Complete Quantitative Results. In Table 7, we report Markov State Model metrics for all fast-
folding proteins, showing results of OM optimization with diffusion and flow matching, and Langevin
MD simulations of varying lengths, using the diffusion model’s score function as the force field.

Visualization of Transition Paths. In Figures 11, 12, and 13, we provide additional visualizations
of transition paths sampled by our diffusion and flow matching models for the fast folding proteins,
both in TIC and atomic space.
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Table 5: Hyperparameters used for OM action optimization on fast-folding proteins with diffusion
models.

Hyperparameter Chignolin Trp-cage BBA Villin Protein G

Number of Generated Paths 8 8 32 4 4
Action Type Truncated Truncated Full Truncated Truncated
Initial Guess Time (τinitial) 250 250 250 250 250
Optimization Time (τopt) 20 15 20 10 10
Optimization Steps 2000 2000 2000 2000 2000
Optimizer Adam Adam SGD SGD SGD
Learning Rate 0.2 0.2 0.001 0.001 0.001
Path Length (L) 200 200 200 200 200
Action Timestep (∆t) 0.1 0.1 0.1 1.0 0.1
Action Friction (γ) 10 10 10 10 10
Action Diffusivity (D) 0 0 0.01 0 0

Table 6: Hyperparameters used for OM action optimization on fast-folding proteins with flow matching
models.

Hyperparameter Chignolin Trp-cage BBA Villin Protein G

Number of Generated Paths 8 8 32 4 4
Action Type Truncated Truncated Truncated Truncated Truncated
Initial Guess Time (τinitial) 7 7 7 7 7
Optimization Time (τopt) 0.5 0.5 0.5 0.5 0.5
Optimization Steps 5000 5000 5000 5000 5000
Optimizer SGD SGD SGD SGD SGD
Learning Rate 0.001 0.001 0.001 0.001 0.001
Path Length (L) 200 200 200 200 200
Action Timestep (∆t) 0.05 0.05 0.05 0.05 0.05
Action Friction (γ) 10 10 10 10 10
Action Diffusivity (D) 0 0 0 0 0

Training without Transition Regions. We provide additional details on the data-starved experiment
described in Section 5.2. Transition states are challenging to sample, and therefore may not be
abundant in reference MD simulations or structural databases, which typically serve as training
datasets for generative models. To simulate the scenario in which the underlying dataset is not
exhaustive and under-represents the rare, transition regions, we remove 99% of the datapoints for which
0.1≤ q(x)≤ 0.9, where q(x) is the empirical committor value (described in Committor Function
Analysis). Thus, most of the remaining datapoints have committor values close to 0 or 1, meaning they
initiate trajectories which stay in their respective local energy minima without transitioning across the
path. For Chignolin, Trp-Cage, and BBA, the subsampling procedure removes 1.4%, 68%, and 85% of
the datapoints, respectively. We train diffusion models on these subsampled datasets using the same
hyperparameters described earlier, followed by OM optimization between the same endpoints, using
the same hyperparameters as used before. As shown in Figure 14, the produced transition paths are
similar to those shown in Figures 3a and 13. The paths still pass through the expected transition state
regions (denoted in black), despite having seen them at a much lower frequency during training.
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Table 7: Complete Markov State Model metrics for for fast-folding proteins. Metrics evaluated are:
Fraction of Valid Paths (FVP), Path Negative Log Likelihood Mean (PNLLM), and Jensen-Shannon
Divergence (JSD)

Protein Sampling Method FVP (↑) PNLLM (↓) JSD (↓)

Chignolin
Langevin MD (Diffusion) (2 ns) 0.005 34.5 0.40
Langevin MD (Diffusion) (6 ns) 0.029 34.5 0.41
Langevin MD (Diffusion) (12 ns) 0.035 34.5 0.36
OM Optimization (Diffusion) (ours) 1.0 20.8 0.47
OM Optimization (Flow Matching) (ours) 1.0 21.9 0.47

Trp Cage
Langevin MD (Diffusion) (2 ns) 0.046 27.3 0.40
Langevin MD (Diffusion) (6 ns) 0.071 29.2 0.35
Langevin MD (Diffusion) (12 ns) 0.078 23.9 0.37
OM Optimization (Diffusion) (ours) 1.0 13.7 0.19
OM Optimization (Flow Matching) (ours) 1.0 12.6 0.18

BBA
Langevin MD (Diffusion) (2 ns) 0.079 28.2 0.53
Langevin MD (Diffusion) (6 ns) 0.19 21.8 0.48
Langevin MD (Diffusion) (12 ns) 0.22 21.9 0.48
OM Optimization (Diffusion) (ours) 0.91 17.4 0.42
OM Optimization (Flow Matching) (ours) 1.0 13.2 0.3

Villin
Langevin MD (Diffusion) (2 ns) 0.0 34.5 1.0
Langevin MD (Diffusion) (6 ns) 0.0 34.5 1.0
Langevin MD (Diffusion) (12 ns) 0.387 15.7 0.32
OM Optimization (Diffusion) (ours) 1.0 13.2 0.18
OM Optimization (Flow Matching) (ours) 1.0 12.1 0.18

Protein G
Langevin MD (Diffusion) (2 ns) 0.0 34.5 1.0
Langevin MD (Diffusion) (6 ns) 0.0 34.5 1.0
Langevin MD (Diffusion) (12 ns) 0.0 34.5 1.0
OM Optimization (Diffusion) (ours) 0.5 11.1 0.43
OM Optimization (Flow Matching) (ours) 1.0 12.3 0.23

Trp-Cage

BBA

Chignolin

Protein G

Figure 11: Visualization of sampled transition paths from OM optimization with pretrained diffusion
models for fast-folding proteins.
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Figure 12: Visualization of sampled transition paths from OM optimization with pretrained flow
matching models for fast-folding proteins.

Figure 13: Visualization of sampled fast-folding protein transition paths in TIC space.
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Figure 14: Training datasets and sampled transition paths resulting from removing intermediate
committor function values. (Top Row) Original training datasets. Middle Row Datasets resulting
from removing 99% of datapoints with committor values (obtained empirically) between 0.1 and 0.9.
Bottom row. Transition paths resulting from OM optimization with a diffusion model trained on the
subsampled datasets.
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