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Abstract—We propose a novel EEG-based approach for re-
constructing surface EMG signals using deep sequence learning,
enabling accurate decoding of muscle activity without requiring
direct muscular sensing. This paper presents a foundational
proof-of-concept, establishing the feasibility of using a deep
learning framework to learn direct cortico-muscular mappings
from non-invasive EEG. The framework integrates advanced
signal preprocessing with spatio-temporal modeling to achieve
this goal. By replacing traditional dual-modality EEG-EMG
systems with a single EEG modality, this method significantly
reduces hardware complexity while maintaining high fidelity in
neuromuscular decoding. The synthesized surface EMG signal
from the trained model closely matches the true EMG signal.
The proposed model holds promise for streamlined wearable
neurotechnology in assistive control, rehabilitation feedback, and
motor intent interpretation.

Index Terms—EEG, EMG, deep learning, CNN-LSTM,
sequence-to-sequence, SoftDTW, cortico-muscular coupling,
neuro-technology

I. INTRODUCTION

Surface electromyography (EMG) is widely used in neuro-
rehabilitation, prosthetic control, and human-machine inter-
action as a means of assessing muscle activation [1], [1]–
[6]. While effective, EMG acquisition relies on direct contact
with the skin, making it susceptible to signal degradation
due to electrode displacement, motion artifacts, perspiration,
and user discomfort, particularly in long-term or wearable
settings [7], [8]. These challenges limit its scalability and ease
of deployment in real-world applications. Electroencephalog-
raphy (EEG), on the other hand, offers a non-invasive alter-
native by capturing cortical activity through scalp-mounted
electrodes [9], [10]. Crucially, motor-related regions of the
brain exhibit distinct oscillatory patterns, most notably in the
mu (8–13 Hz) and beta (13–30 Hz) frequency bands that
precede and accompany voluntary movement [11], [12]. This
phenomenon, known as cortico-muscular coupling, reflects the
functional linkage between motor planning in the brain and
downstream muscular activity. However, EEG is not without
its own challenges, including a lower spatial resolution com-
pared to invasive methods and a high susceptibility to motion
and myogenic artifacts. A key goal of modern neural engineer-
ing is to develop signal processing and modeling techniques
robust enough to overcome these limitations. Recent work by
[13] has demonstrated successful extraction of neuromuscular
primitives from EEG in spinal cord injury patients, showing
the clinical potential of such decoding approaches. Empirical

evidence has demonstrated that these EEG rhythms often
synchronize with EMG bursts during movement, highlighting
the potential for EEG to serve as a surrogate for peripheral
muscle signals [14]. The ability to decode muscle activation
directly from EEG holds transformative potential for wearable
neuro-technology. Such approaches offer a route toward EMG-
free systems that are easier to wear, more comfortable over
long durations, and less prone to signal variability due to
environmental or user-induced noise. Moreover, EEG-based
muscle decoding eliminates the need for frequent electrode
repositioning, calibration, or the application of conductive gel,
which are common bottlenecks in EMG-based systems.

With the emergence of deep learning, particularly sequence
modeling techniques [15] such as Long Short-Term Memory
(LSTM) and encoder-decoder architectures, there has been
substantial progress in decoding motor intention from neural
signals. Most of these studies focus on the classification of
discrete motor events, such as left versus right hand motor
imagery, or gesture recognition from EEG [16]–[18]. These
approaches, while useful, typically reduce complex motor
activity into a set of labels, discarding the continuous nature
of muscle dynamics. In contrast, our work tackles the more
ambitious challenge of reconstructing the full, continuous
EMG waveform, providing a richer, real-valued representation
of motor intent suitable for nuanced control applications.
Despite growing interest in cortico-muscular modeling, rel-
atively few approaches fully leverage the rich temporal and
physiological coupling [19] between EEG and EMG to enable
true EMG-free decoding. Some recent works attempt to regress
EMG from EEG using linear models or shallow architectures;
however, these often fall short in capturing the nonlinear,
multiscale dependencies that exist across time and spatial
electrode configurations.

To address these limitations, we propose a novel sequence-
to-sequence deep learning framework that can reconstruct
full EMG signals directly from EEG recordings. Our model
architecture—RawSeq2SeqNet is specifically tailored to han-
dle multichannel time-series EEG input and map it to cor-
responding EMG envelopes. It is trained on synchronized
EEG-EMG datasets collected during voluntary elbow flexion
and extension tasks, capturing both phasic and tonic patterns
of muscular activity. Once trained, the model infers muscle
activation solely from EEG, eliminating the need for physical
EMG sensors at inference time. This not only reduces hard-
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Fig. 1: Visualization of CSP-filtered EEG heatmaps. (a) The top CSP component extracted from stationary trials exhibits
warmer colors, indicating higher variance activity and typically reflecting background or non-task-related cortical signals. (b)
Top CSP component extracted from movement trials with high activation localized over contralateral motor cortex regions
(e.g., C3, Cz), consistent with right elbow flexion.

ware complexity but also enhances the comfort and usability
of neuro-technology in practical settings.

By learning the temporal relationships between cortical and
muscular signals, our framework enables fully EEG-driven
wearable systems for motor decoding. These systems are
applicable to assistive technologies for individuals with motor
impairments, rehabilitation monitoring, and brain-computer
interfaces (BCIs) that require minimal sensor configurations.
Integrating deep learning with cortico-muscular modeling ad-
vances the development of scalable, interpretable, and user-
friendly neuro-technology. Moreover, this framework lays the
groundwork for future exploration in sensor reduction and
subject-independent generalization.

II. PRELIMINARY STUDY - COMMON SPATIAL PATTERN
(CSP) ANALYSIS

To validate the cortico-motor capability, we investigated the
spatial distribution of EEG activity associated with voluntary
muscle movement, we applied the Common Spatial Pattern
(CSP) algorithm as an exploratory pre-processing step. CSP
is a spatial filtering technique widely used in brain-computer
interface (BCI) researches [20]. It operates by learning spatial
filters that maximize variance for one class while minimizing
it for the other, effectively projecting multichannel EEG into a
low-dimensional space where class separability is maximized.
In this study, we computed CSP filters using labeled EEG
segments from stationary (rest) and movement (elbow flexion-
extension) trials. The raw EEG data from 19 motor-related
channels were segmented into 2-second windows and filtered
using CSP to extract the most discriminative spatial patterns
for the two conditions. The top spatial components were then
visualized as heatmaps representing the spatial distribution
of neural activity across the scalp. As shown in Figure 1,
the CSP-filtered spatial patterns reveal distinct distributions
for stationary versus movement conditions. During movement,
CSP projections revealed consistent central motor activation
patterns, as seen in (Figure 1b), corresponding to senso-
rimotor areas involved in upper limb control. In contrast,
stationary trials (Figure 1a) display more diffuse or posterior
activation patterns, lacking consistent focal motor engagement.
These CSP-based visualizations offer interpretable evidence of
cortico-muscular engagement and validate the discriminative

spatial signatures of the movement-related EEG data. While
CSP filtering was not used during final model training, this
analysis supports the effort to investigate the relevance of
spatially localized motor EEG patterns for EMG decoding.

III. DATA ACQUISITION

Fig. 2: Workflow of EEG-to-EMG prediction pipeline that
includes data acquisition, pre-processing, segmentation, model
training, and inference.

This study employed a single-subject experimental proto-
col with a 20-year-old healthy male participant. The study
was ethically approved by the Institutional Ethics Committee
(IEC). Necessary informed ethical consent was taken from the
healthy subject with a declaration approving that the subject
had no prior weakness or injury. The data was collected
in accordance with the Helsinki Declaration of 1975, as
revised in 2000 [21]. A total of 204 trials were recorded,
comprising both movement and stationary conditions. In the
movement trials, the participant performed a complete right
elbow flexion-extension cycle in response to an audio cue, cap-
turing voluntary upper limb activity. In contrast, the stationary
trials involved no physical movement and served as baseline
recordings; these trials were of the same duration as the
movement trials to ensure temporal consistency. Importantly,
movement and stationary trials were interleaved in a random-
ized order and were not pre-labeled during recording. The



aim was to simultaneously capture electroencephalographic
(EEG) and corresponding electromyographic (EMG) signals
to investigate the cortical and muscular correlates of both
dynamic motor execution and resting states [22]. An overview
of the entire workflow including data collection, preprocessing,
data segmentation, training & prediction is shown in Figure 2.

Fig. 3: Experimental setup. The participant is seated while
wearing the EEG cap and EMG armband. During move-
ment trials, the subject performed a full right elbow flexion-
extension cycle, moving from a relaxed state to full flexion
and back, in response to an auditory cue.

EEG Recording Setup

Scalp EEG signals were recorded using a SmartDRYx24
wireless dry-electrode cap (Mitsar Co. Ltd., St. Petersburg,
Russia) configured with the international 10-20 system. This
cap is designed for use with the SmartBCI wireless wearable
EEG system. The SmartDRYx24 features active dry electrodes
with signal pre-amplification, making it suitable for applica-
tions such as Neurofeedback, QEEG, and Brain Computer
Interface design. It typically includes 19 scalp electrodes, plus
one each for ground and reference, often utilizing soft, dry
sensors. The system is known for its wireless data transmission
over distances of 10+ meters and supports real-time impedance
monitoring. Mitsar systems are FDA 510K registered for
medical device use in recording brain electrical activity. A
total of 19 EEG channels were retained and no electrodes were
removed due to noise. Signals were sampled at 250 Hz and
transmitted in real-time via LabStreamingLayer (LSL), which
enabled cross-device timestamp synchronization. Electrode
impedances were verified to remain below 5 kΩ throughout
data collection. The full 10-20 system layout used in this study
is illustrated in Figure 4.

EMG Recording Setup

Surface EMG signals were collected from the upper arm
using a Myo Gesture Control Armband (Thalmic Labs, Wa-
terloo, Ontario, Canada). This armband, is a wearable device
that controls gestures and senses motion. It is equipped with

Fig. 4: Electrode layout of the Mitsar SmartDRYx24 EEG
cap following the international 10-20 system. FCz served as
reference; AFz was used as ground.

8 equally spaced dry electrodes that measure the electrical
activity of muscles in the forearm. Beyond EMG, the Myo
device also incorporates a 9-axis Inertial Measurement Unit
(IMU), comprising a 3-axis gyroscope, a 3-axis accelerometer,
and a 3-axis magnetometer, which enables it to sense motion,
orientation, and rotation of the forearm. The Myo communi-
cated wirelessly via Bluetooth Low Energy (BLE) at its native
EMG sampling rate of 200 Hz, and data were acquired using
a custom Python interface based on the bleak library. The
model was trained exclusively to predict the EMG envelope
from Channel 2 (biceps brachii), which served as the sole
target for all training and quantitative evaluation.

Synchronization and Trial Management

A custom acquisition pipeline was implemented to ensure
real-time synchronization of EEG and EMG signals. For
temporal alignment and uniform resolution during analysis,
EEG signals were maintained at 250 Hz while EMG signals
were downsampled to 100 Hz to match the desired temporal
resolution for envelope extraction. Temporal synchronization
between the modalities was achieved by aligning both streams
around detected EMG peak events. The protocol included:
i) GUI automation via pyautogui to initiate EEG data
collection, ii) LSL stream resolution to identify and subscribe
to EEG input streams, iii) BLE discovery and initialization
of the Myo EMG device, and iv) Real-time data recording
into structured CSV format with matching system timestamps.
Each trial lasted approximately 10 seconds, followed by a 20-
second rest period. A total of 204 valid trials were completed
across multiple sessions.

IV. PREPROCESSING AND SEGMENTATION

The raw EEG and EMG data underwent several pre-
processing steps. All 19 scalp recording channels from the
EEG cap were used as input to the model, providing a compre-
hensive topographical representation of cortical activity. The
EEG signals were first band-pass filtered between 1-50 Hz
using a fourth-order Butterworth filter to remove DC drift and



high-frequency noise. Subsequently, a 50 Hz notch filter was
applied [23] to all channels to mitigate power-line interference.
This narrow band suppression ensures the preservation of the
broader spectral content of the EEG signals while effectively
removing this dominant noise component. For the Electromyo-
graphy (EMG) signals, a 1.5 Hz low-pass filter was used
to attenuate motion artifacts while preserving the dominant
energy of voluntary muscle contractions. By focusing on the
enveloped form, the filtered EMG data provides a clearer and
more robust representation of the neuromuscular activity under
investigation.

EEG data were temporally segmented into non-overlapping
2-second windows (500 samples at 250 Hz), producing five
segments per 10-second trial. EMG signals were processed
using the Hilbert transform to extract signal envelopes at 200
Hz, then downsampled to 100 Hz, resulting in 1000 samples
per 10-second trial. Each training set comprised of EEG
segments with the corresponding EMG envelopes. The EEG
segments as input consists of a tensor of shape B×5×500×19,
where batch size B is of 5 segments, 500 samples, of 19 EEG
channels. The target vector represented the EMG envelope
sampled at 100 Hz from the biceps brachii (Channel 2).

V. PROPOSED MODEL

Our proposed RawSeq2SeqNet is a sophisticated Convo-
lutional Neural Network–Long Short-Term Memory (CNN-
LSTM) architecture specifically designed to decode spatio-
temporal patterns from raw EEG signals and reconstruct
corresponding EMG envelopes [24]. This end-to-end model
effectively captures both spatial features within individual
EEG segments and temporal dependencies across a sequence
of segments. The architecture is modular, comprising of three
core components: a Feature Extraction Block, a Temporal
Modeling Block, and a Decoding Block. The complete struc-
ture of this model is depicted in Figure 5.

The EEG and EMG time-series recordings were prepro-
cessed and segmented around movement events. Each synchro-
nized EEG–EMG pair was stored in CSV format, where EEG
signals comprised of 19 channels sampled at 250 Hz and EMG
signals consisted of 8 channels sampled at 100 Hz. Movement
events were identified by scanning for peaks in the EMG
channel. A dynamic threshold comprised of the mean and
two standard deviations ensured that only significant biceps
activations were selected. For each detected peak, a symmetric
window was extracted: ±1.2 seconds around the peak for EEG
(±300 samples at 250 Hz = 600 total samples) and ±5 seconds
around the peak for EMG envelope (±500 samples at 100 Hz
= 1000 total samples). These extracted windows were stored
as paired input–target data as listed below:

• Input: a tensor of shape B × 5 × 500 × 19, where B
is the batch size, 5 represents the number of 2-second
EEG segments, 500 is the number of samples per segment
(2 seconds × 250 Hz), and 19 is the number of EEG
channels.

• Target: 1000× 1 vector representing the EMG envelope
sampled at 100 Hz over a 10-second duration.

A. Implementation Details

The model was implemented in PyTorch with the following
key specifications - i) Single-layer unidirectional LSTM with
128 hidden units, ii) Dropout rate of 0.3 applied to LSTM
outputs, iii) Channel selection based on motor cortex cov-
erage (C3, C4, Cz, etc.), iv) On-the-fly data augmentation
via random temporal warping (±5%), v) Weight initialization
using Xavier uniform for linear layers, and and vi) Gradient
clipping at 1.0 to prevent explosion. To ensure robust model
evaluation and prevent overfitting, the dataset was partitioned
into training, validation, and test subsets. Specifically, 20% of
the data was employed for testing the model. The remaining
80% was further split into training using 64% of dataset and
16% for validation using random stratified sampling. This
hierarchical splitting strategy ensured that the model was
trained on a majority of the data, validated on an unseen
subset during training, and finally evaluated on a strictly
held-out test set, thereby enabling a rigorous assessment of
its generalization capability on completely unseen data and
providing a robust measure of its performance.

B. Feature Extraction Block

This initial block is responsible for spatially and tempo-
rally abstracting raw EEG segments. The model receives an
input tensor of dimensions B×5×500×19, where B denotes
the batch size, 5 represents the number of sequential EEG
segments processed at once, 500 is the number of data samples
in a 2 seconds window, and 19 corresponds to the number of
EEG channels. The feature extraction block employs spatio-
temporal convolutions optimized through hyperparameter tun-
ing, with final layer configurations determined empirically
during model development. The convolutional output is passed
through a Batch Normalization layer to stabilize training
and then through a Rectified Linear Unit (ReLU) activation
function to introduce non-linearity. A MaxPooling layer with
a kernel size of 4×1 is applied along the temporal dimension.
This operation downsamples the temporal features from 500
to 125 time points per segment, which helps extract more
abstract features and reduces the computational load for sub-
sequent layers. The output of this block is a tensor of di-
mensions B×5×32×125×19. This representation encodes lo-
calized spatio-temporal features for each segment, preserving
both inter-channel and intra-segment dynamics. This output
represents the spatial and locally temporal extracted features
for each of the 5 input segments.

C. Temporal Modeling Block

This block focuses on capturing the temporal dependencies
and long-range contextual information across the sequence of
EEG segments. Each segment’s features (32 × 125 × 19)
were flattened to a 76000-dimensional vector. This prepares
the data for input into the recurrent layer. A Long Short-
Term Memory (LSTM) network with 128 units processes the
flattened sequence of 5 segments. LSTMs are particularly
adept at learning long-term dependencies in sequential data,
which is crucial for understanding the evolving patterns of



Fig. 5: CNN-LSTM architecture for synthesizing EMG from EEG signals. The model includes convolutional feature extraction,
temporal modeling via LSTM, and fully connected decoding.

brain activity related to muscle control. The LSTM outputs
an encoded sequence of dimensions B×5×128, where each
128-dimensional vector represents a temporally contextualized
encoding for each of the 5 input EEG segments.

D. Decoding Block

The final block is responsible for transforming the learned
temporal representations back into the desired EMG envelope.
The encoded sequence from the LSTM is flattened by concate-
nating the 5 temporal embeddings, resulting in a single feature
vector of 5×128 = 640 features for each sample in the batch.
This combines the temporal context into a comprehensive
representation. The FC1 transforms the 640 features to 512
features. This is followed by a ReLU activation function, and
FC2 further transforms the 512 features to 1000 features,
corresponding to the 1000-sample EMG envelope extracted
around each movement event. The final output is a 1000-
point EMG envelope, representing the reconstructed muscle
activation profile for the corresponding 2-second EEG input
sequence.

E. Loss Function

A hybrid loss function was employed to robustly guide the
model’s learning process, combining the precision of Mean
Squared Error (MSE) with the temporal alignment capabilities
of Soft Dynamic Time Warping (SoftDTW) [25]. The total loss
L is defined as: L = 0.9 · MSE + 0.1 · SoftDTW(γ = 0.2)
The Mean Squared Error (MSE) component (0.9 · MSE)
primarily ensures that the reconstructed EMG envelope is
quantitatively close to the ground truth, penalizing point-wise
discrepancies. The Soft Dynamic Time Warping (SoftDTW)
component (0.1 ·SoftDTW(γ = 0.2)) is crucial for addressing
potential temporal misalignments between the predicted and
true EMG envelopes, ensuring that the shape and sequence of
muscle activations are accurately captured, even if there are
slight temporal shifts. This combination allows the model to
simultaneously minimize absolute error and maintain temporal
structure in sequential EMG predictions. The γ parameter in
SoftDTW controls the ”softness” of the alignment, enables
differentiable backpropagation through temporal alignment
operations, a critical advantage over classic DTW in deep
learning workflows. The weighting factors (0.9 for MSE, 0.1
for SoftDTW) were determined empirically to balance the
importance of point-wise accuracy and temporal fidelity. This
hybrid loss uniquely positions the model to learn not just what
level of muscle activation occurs, but also when it occurs in
the correct sequence, a critical factor for functional motor
decoding.

F. Optimizer and Hyperparameters

The model was optimized using the Adam optimizer, a
popular adaptive learning rate optimization algorithm. A learn-
ing rate (η) of 10−3 was chosen, striking a balance between
convergence speed and stability. Training was performed with
a batch size of 8, meaning 8 sets of EEG segments and
their corresponding EMG envelopes were processed in parallel
during each training iteration. The model was trained for
500 epochs, allowing sufficient iterations for convergence and
feature learning from the training data.

VI. RESULTS AND DISCUSSION

A. Quantitative Performance Evaluation

The proposed CNN-LSTM-based RawSeq2SeqNet model
was evaluated on the unseen test set comprising 20% of
the total dataset. Across all trials, the model consistently
demonstrated robust performance in reconstructing EMG sig-
nals from EEG inputs. This underscores the effectiveness
of its hierarchical spatiotemporal learning design, wherein
convolutional layers extract local features and LSTM units
capture temporal dependencies over longer durations. Quan-
titative evaluation revealed low mean squared error (MSE),
high Pearson correlation coefficients, and strong coefficients
of determination across training, validation, and test splits.
The small relative increase in MSE from training to test
sets indicates desired generalization and limited overfitting,
even with a modest dataset size. To determine the optimal
objective function for this task, we performed an ablation study
comparing MSE, SoftDTW, and a combined loss on the val-
idation set. These metrics collectively validate that the model
accurately maps cortical activity to muscular output across
various instances of elbow flexion–extension movement.

As shown in Table I, the model achieved a loss of 72.135,
an R2 score of 0.364, and a strong correlation of 0.795,
demonstrating effective learning and good temporal alignment.
The custom loss function—combining 90% Mean Squared
Error (MSE) and 10% Soft Dynamic Time Warping (Soft-
DTW)—was designed to guide the model toward both accurate
value prediction and temporal consistency. All performance
metrics reported correspond to predictions of biceps brachii
(Channel 2) EMG.

B. Temporal Dynamics Reconstruction

To assess the model’s ability to preserve the temporal
characteristics of EMG activity, we compared the predicted
and ground truth envelopes for multiple representative trials.
The network successfully captured both phasic bursts that



Fig. 6: Comparison of predicted and ground truth EMG envelopes across four representative trials. The model accurately tracks
movement onset, peak contractions, and duration of muscle activity.

TABLE I: Ablation Study of Loss Functions on Validation Set
Performance

Method Loss Correlation R2 Score
MSE 73.6105 0.7871 0.1465

SoftDTW 72.1354 0.7954 0.3646

Combined 73.9941 0.7913 0.2564

initiate movement and sustained tonic activity that maintains
muscular contraction. Notably, the predicted signals exhibited
a mean delay of approximately 12 ms relative to ground truth,
which aligns with physiologically plausible cortico-muscular
conduction latencies reported in the literature [26]. Amplitude
fidelity was preserved across high-contraction regions, and
waveform morphology, including burst symmetry, duration,
and inter-burst intervals, was well reconstructed.

Figure 6 provides a visual comparison of the predicted
and actual EMG envelopes across four trials. Each subfigure
illustrates the models ability to retain both amplitude and
timing characteristics of EMG activity, even in trials with
subtle variations or background EEG noise. Note that three
of the subplots where the EMG onset is visible represents
the elbow flexion-extension activity, whereas the one with
minimal raise in the amplitude represents stationary position of
the hand. The reconstruction model not only works for motor
activity but also for stationary trials.

The reconstructed EMG envelopes capture the essential
temporal and shape features of true muscular activity. The high
correlation between predicted and ground truth EMG confirms
that motor-related EEG activity carries sufficient information
for muscle reconstruction, aligning with neurophysiological
principles. The model’s high correlation with ground truth
EMG confirms that motor-related EEG activity carries suffi-
cient information for reconstructing muscular activity, consis-
tent with established findings in neurophysiology. CNN layers
captured transient, localized features (e.g., movement onsets),

while LSTM units modeled long-range temporal dependen-
cies, such as sustained contractions and inter-burst patterns.
This architectural synergy reflects the natural hierarchy of
motor encoding in the brain. This synergy is particularly
promising for neuroprosthetics, where accurately decoding
both the onset (from CNN features) and sustained control
(from LSTM states) of muscle activity is essential for fluid
and intuitive device operation. The model’s average inference
time per 2-second window was 2.11 ms on an RTX 3050 GPU,
confirming real-time feasibility for assistive BCI applications.

The model demonstrates strong generalization, with training
and validation losses remaining closely aligned as shown
in Figure 7. To prevent overfitting, we employed an early
stopping mechanism with a patience of 50 epochs. Training
was halted at epoch 347, indicating that performance had
stabilized. A transient fluctuation in validation loss around
epoch 265 did not lead to a sustained increase, confirming
the absence of overfitting.

Fig. 7: Training and validation plots with early stopping.

CONCLUSION

This work demonstrates the feasibility of predicting mus-
cle activity directly from brain signals using a sequence-to-
sequence deep learning framework. By training on synchro-
nized EEG and EMG data, our model learns the temporal pat-
terns that link cortical activity to muscle activation, allowing it



to reconstruct EMG waveforms using EEG alone. This elim-
inates the need for physical EMG sensors at inference time,
representing a significant step toward building simpler, more
practical, and more comfortable neuro technological systems.
The proposed approach addresses key limitations of traditional
EMG-based setups, including sensor placement challenges,
discomfort during long-term wear, and signal variability. By
relying solely on non-invasive EEG, our method enables
a cleaner and more scalable solution for decoding motor
intent [27], with applications in assistive technology, rehabil-
itation monitoring [28], and brain–computer interface (BCI)
systems. Our results reinforce the physiological relationship
between EEG and EMG, and demonstrate that deep learning
can effectively capture this connection to generate high-fidelity
muscle activation patterns. Looking forward, this framework
can be extended to support multi-muscle decoding, cross-
subject generalization, and real-time feedback applications.
Further improvements, such as integrating spatial filtering
techniques like Common Spatial Patterns (CSP), may enhance
performance and interpret ability. Ultimately, this work opens
the door to EEG-only systems [29] that are not only more
user-friendly, but also capable of delivering reliable, wearable
solutions for movement decoding in both clinical and everyday
environments. The dataset, and model files are made freely
available at [30] to facilitate easy adoption and further usage
by the research and engineering community.
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