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Abstract

Learning molecular representations that are robust to 3D rotations typically requires1

architectures with built-in symmetry priors or extensive data augmentation. In this2

work, we investigate whether contrastive multimodal pretraining alone can induce3

SO(3) invariance in molecular embeddings. We jointly train a continuous 3D-field4

encoder, based on a vector-quantized generative adversarial network (VQGAN),5

and a SMILES-based transformer encoder on a dataset of 855,000 molecules,6

each represented by a DFT-computed electron density grid and a corresponding7

canonical SMILES string. Both CLIP-style and SigLIP contrastive objectives are8

used to align representations across modalities. Because SMILES embeddings are9

invariant to molecular orientation, the contrastive loss implicitly encourages the10

3D encoder to produce rotation-consistent representations by aligning different11

poses of the same molecule to a fixed symbolic anchor. To evaluate geometric12

generalization, we construct a benchmark comprising 1,000 molecules with five13

unseen random SO(3) rotations each. The CLIP-based model retrieves at least one14

rotated variant among its top-10 results for 77% of queries, compared to 9.8% for a15

unimodal VQGAN baseline, and retrieves three or more variants for 45% of queries16

(versus 0% baseline). Functional group-wise Recall@10 exceeds 98% for most17

chemical classes, and clustering by HOMO energy yields a Davies–Bouldin index18

of 2.35 (versus 34.46 for the baseline), indicating strong chemical organization in19

the latent space. Additionally, fine-tuning with rotated samples reveals a trade-off20

between retrieval precision and pose diversity. These results suggest that contrastive21

multimodal pretraining can yield symmetry-aware molecular representations, even22

in the absence of explicit equivariant design.23

1 Introduction24

Learning molecular representations that are both chemically expressive and geometrically invariant25

remains a central challenge in molecular machine learning [1, 2]. Most 3D molecular models achieve26

invariance to spatial transformations by explicitly encoding symmetry through architectural design or27

by leveraging rotation-based data augmentation [3, 4, 5]. These methods assume that symmetry priors28

must be built into the model to preserve physical consistency, particularly under SO(3) rotations. This29

raises a fundamental question: Can pose-invariant representations instead emerge implicitly from the30

training objective, without enforcing geometric priors through model design? [6, 7].31

We hypothesize that contrastive alignment between invariant symbolic descriptors (e.g., SMILES) and32

spatially variant 3D fields (e.g., electron densities) can induce pose-consistent molecular embeddings,33

even in the absence of symmetry-aware architectures [6, 8, 9]. This builds on the intuition that34

multimodal contrastive learning can serve as a functional regularizer, promoting semantic alignment35

across heterogeneous modalities despite differences in spatial representation [10, 11, 12].36
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Multimodal contrastive learning has shown promise in molecular domains by aligning symbolic and37

topological views of a molecule [9, 13, 14]. However, existing approaches predominantly operate on38

graph-based or discrete representations and do not evaluate whether learned embeddings are robust39

to arbitrary spatial transformations [15]. In particular, it remains unexplored whether contrastive40

pretraining over unaligned continuous 3D fields can give rise to emergent SO(3) invariance.41

In this work, we investigate whether a CLIP-style model trained to align SMILES strings with ab42

initio-derived 3D electron density grids can learn pose-invariant representations, despite lacking43

architectural equivariance or rotation augmentation. Our model is pretrained on a dataset of 855,00044

molecules, each presented in a canonical orientation, and jointly embeds both symbolic and volumetric45

views.46

To evaluate generalization under spatial transformations, we construct a benchmark of 1,00047

molecules, each paired with five randomly rotated SO(3) variants. Our contrastive model retrieves48

at least one rotated instances in the top-10 for 77.3% of queries, approaching the performance of49

the SE(3)-equivariant Pos-EGNN baseline (79.1%). Pos-EGNN is a large-scale foundation model50

trained on 1.4M ab initio simulation snapshots from the Materials Project Trajectory dataset to predict51

energies, forces, and stress tensors using symmetry-aware message passing [16].52

Beyond retrieval, we probe the latent space for chemical coherence. Without any supervision on53

quantum properties, the model organizes molecules based on HOMO energies and functional groups:54

for example, nitrogen-containing species cluster tightly in HOMO-aligned regions. In contrast, the55

Pos-EGNN latent space—while geometrically grounded—exhibits weaker clustering around frontier56

orbital descriptors, suggesting that symbolic anchoring plays a critical role in inducing chemically57

meaningful structure. This organization is quantified by a Davies–Bouldin index of 2.35, compared58

to 34.46 for a unimodal 3D baseline and 5.53 for the SE(3)-equivariant Pos-EGNN model, indicating59

superior alignment between geometry and electronic structure.60

These findings demonstrate that multimodal contrastive pretraining can induce symmetry-aware61

molecular representations through emergent behavior, without hard-coded inductive biases. While62

our approach assumes rotational equivalence across poses—an idealization that may not hold in63

stereochemically sensitive tasks—it offers a flexible and scalable alternative to equivariant model-64

ing. All code and pretrained models are available at: https://anonymous.4open.science/r/65

anonymous-B0BB/README.md.66

2 Related Work67

Learning molecular representations that incorporate 3D structure has been a longstanding objective68

in machine learning for chemistry. Early approaches relied on graph-based models augmented with69

spatial features [17, 18], while more recent methods leverage equivariant neural networks [2, 3, 5, 19].70

These architectures enforce rotational and translational symmetry by design, often using group71

convolutions or tensor representations. Although effective, these methods hard-code geometric priors72

into the model, which may limit flexibility across tasks where symmetries are not strictly preserved.73

Beyond equivariance, several works explore data-driven approaches to learning molecular 3D struc-74

ture. Models such as GemNet [20] and DimeNet++ [21, 22] use angle and distance information75

explicitly, while diffusion-based models [23, 24] attempt to generate 3D conformers in a probabilistic76

manner. These methods assume access to accurate conformations or focus on generating new 3D77

geometries, rather than studying robustness to transformations applied to known structures.78

Multimodal learning in molecular domains has focused largely on combining symbolic and graph-79

based modalities [25, 26, 27]. Works such as MolCLR [9] and Smiclr [28] demonstrate that contrastive80

pretraining over graphs or SMILES can improve downstream property prediction. AMOLE [29]81

applies a CLIP-style objective to graphs and text but does not incorporate continuous 3D field-82

based inputs. As a result, existing multimodal methods primarily operate over discrete structural83

abstractions, limiting their capacity to exploit fine-grained geometric information available in physical84

electron density fields.85

Invariance learning without explicit symmetry enforcement has been explored in vision [30, 31],86

where models trained without augmentations nonetheless exhibit partial viewpoint robustness. In87

molecular machine learning, such emergent invariance remains largely unexplored, with most models88
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enforcing rotational symmetry by design [2, 3]. Recent works on SO(3)-equivariant diffusion [23]89

primarily address generative modeling rather than retrieval robustness under unseen transformations.90

Our work contributes to this landscape by demonstrating that contrastive multimodal pretraining91

over symbolic descriptors and continuous 3D grids can induce pose invariance without requiring92

symmetry-aware architectures. We provide systematic evaluation over rotated benchmarks and relate93

retrieval stability to chemical and geometric consistency.94

3 Methodology95

Figure 1: Architecture of the multimodal con-
trastive model.

We propose a multimodal contrastive pretrain-96

ing framework to learn molecular representa-97

tions that align symbolic descriptors and contin-98

uous 3D fields—without relying on symmetry-99

aware architectural priors. The model jointly100

embeds SMILES strings and electron density101

grids derived from ab initio calculations using102

independent encoders optimized under a con-103

trastive loss. As illustrated in Figure 1, our104

architecture combines a transformer-based en-105

coder for SMILES with a 3D VQGAN-style106

convolutional encoder for electron densities. All107

parameters—including those from SMI-TED and the 3DGrid-VQGAN encoder—are trained jointly108

from scratch.109

3.1 Pretraining Dataset110

We curate a dataset of 855,000 molecules from PubChem, filtered to include: (i) only main-group111

elements up to Barium; (ii) a maximum of 30 heavy atoms; (iii) zero net charge; and (iv) no formal112

charge separation.113

Each SMILES string is converted into 50 conformers using RDKit’s distance geometry and MMFF94114

optimization [32]. The five lowest-energy conformers are reoptimized using MINDO3 in PySCF [33],115

and the conformer with the lowest energy is retained. This structure is further evaluated at the116

RHF/STO-3G level, and its electron density is projected onto a 128× 128× 128 voxel grid, yielding117

a physically grounded 3D representation without relying on classical graph approximations.118

3.2 Multimodal Contrastive Pretraining119

We align SMILES and 3D electron density representations via contrastive learning. Let g : X → Rd120

and h : T → Rd denote the 3D and SMILES encoders, respectively. For a batch of N molecule pairs121

{(xi, ti)}Ni=1, we compute embeddings as zgrid
i = Projg(g(xi)) and zsmiles

i = Projh(h(ti)), where122

Proj denotes a learnable projection head.123

SMILESDFT-CLIP uses the symmetric InfoNCE loss:124

LCLIP =
1

2N

∑
i

[
ℓ(zgrid

i , zsmiles
i ) + ℓ(zsmiles

i , zgrid
i )

]
,

where ℓ(z, z′) = − log exp(sim(z,z′)/τ)∑
j exp(sim(z,z′

j)/τ)
and sim(z, z′) is cosine similarity.125

SMILESDFT-SigLIP employs a sigmoid-based contrastive loss. After normalization z̃ = z/∥z∥2,126

we define:127

logitsij = exp(τ) · ⟨z̃grid
i , z̃smiles

j ⟩+ b, LSigLIP = − 1

N

∑
i,j

log σ(yij · logitsij),

where σ is the sigmoid function and yij = 1 for positive pairs, −1 otherwise.128
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3.3 3D Electron Density Encoder129

We use a 3DGrid-VQGAN adapted for volumetric inputs to encode electron density grids [16]. The130

encoder E(·) maps G to a latent tensor:131

ze(G) ∈ R
H
s ×W

s ×D
s ×k, s = 4, k = 512.

Latents are quantized using a learned codebook {ej}16384j=1 :132

zq(G) = ek∗ , where k∗ = argmin
j

∥ze(G)− ej∥2.

The 3DGrid-VQGAN is trained with:133

LVQGAN = Lrec + βLcommit + γLadv,

where Lrec is an L1 reconstruction loss, Lcommit encourages codebook usage, and Ladv is a 3D134

PatchGAN adversarial loss. During contrastive training, we use the encoder output before quantization135

and fine-tune all encoder parameters jointly.136

3.4 SMILES Encoder137

The SMILES modality is encoded using SMI-TED289M [16], a pretrained transformer encoder trained138

on 91 million canonical SMILES strings. Input tokens X ∈ RD×L are processed via RoFormer-style139

attention:140

Attentionm(Q,K, V ) =

∑N
n=1⟨φ(Rmqm), φ(Rnkn)⟩vn∑N
n=1⟨φ(Rmqm), φ(Rnkn)⟩

,

where Rm is a position-specific rotation matrix and φ(·) is a Fourier feature mapping. A pooled141

embedding is computed as:142

z = LayerNorm (GELU(XW1 + b1))W2.

Unlike prior work, we fine-tune the SMI-TED encoder during contrastive learning, which we find143

improves performance in both retrieval and structure–property clustering.144

3.5 Training Details145

We train using AdamW with batch size 128 and learning rate 3× 10−4, employing a linear warmup146

over 1,000 steps. Models are trained for 50,000 steps using both CLIP and SigLIP objectives, with147

checkpoints selected by retrieval accuracy on a held-out validation set. All experiments are conducted148

on 4 NVIDIA A100 GPUs.149

4 Experimental Setup150

We conduct a comprehensive evaluation to assess the extent to which our multimodal model exhibits151

geometric generalization, chemical organization, and transferability. Our evaluation protocol includes152

retrieval under both canonical and unseen SO(3) rotations, unsupervised structure–property clustering,153

and molecular property prediction on the QM9 benchmark.154

Retrieval under SO(3) Rotations. We evaluate retrieval performance in two settings:155

1. Canonical retrieval – Each query is matched against a corpus of unrotated (canonical)156

molecules.157

2. Unseen rotation retrieval – Each query is matched against five rotated spatial variants of158

each molecule, not observed during training.159

To generate unseen rotations, we apply random rigid-body transformations to the160

atomic coordinates of each molecule. Rotation axes are sampled from the set161

{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, and rotation angles are drawn uni-162

formly from [0◦, 360◦]. For each rotated conformer, we recompute the electron density using the163

same RHF/STO-3G procedure as used during pretraining, ensuring physically valid volumetric fields.164

4



Table 1: Evaluation metrics used to assess geometric and chemical generalization.
Metric Description

Accuracy@10 Proportion of queries retrieving the correct molecule within the top-10 results.
Recall@10 Fraction of retrieved molecules belonging to the same functional group.
Group-wise Recall@10 Recall@10 computed for six chemical classes: amines, aromatics, ethers, ketones, halides, and

carboxylic acids.
Pose diversity Mean number of distinct rotational variants retrieved in the top-10.
Multi-pose retrieval rate Proportion of queries retrieving at least three distinct rotated variants among the top-10.

We report the following metrics as in Table 1:165

To benchmark invariance, we compare our model against a unimodal 3D electron density baseline166

(3DGrid-VQGAN) trained without symbolic alignment. This evaluation probes both instance-level167

and class-level generalization under unseen spatial transformations.168

Structure–Property Clustering. We assess whether the latent space reflects chemically meaningful169

organization by analyzing clustering behavior of molecules with similar frontier orbital properties.170

In particular, we focus on nitrogen-containing species with high HOMO energies—chemically171

important due to lone-pair reactivity. We quantify cluster quality using the Davies–Bouldin (DB)172

index, where lower values indicate compact, well-separated clusters. This analysis tests whether the173

model implicitly learns structure–property relationships without supervision.174

Property Prediction on QM9. To evaluate transferability to downstream tasks, we train linear175

regression models on frozen multimodal embeddings to predict 12 molecular properties from the176

QM9 dataset [34]. The encoders are not fine-tuned, ensuring that performance reflects the intrinsic177

quality of the pretrained representation. We report mean absolute error (MAE) on the standard178

train/validation/test splits and compare against an equivariant baseline embeddings from Pos-EGNN179

encoder.180

5 Results181

We evaluate the capacity of our multimodal model to achieve pose-invariant molecular retrieval and182

chemically consistent embeddings without architectural equivariance. The evaluation is organized183

along two main axes: retrieval under unseen SO(3) rotations and retrieval consistency across known184

rotations observed during training. Additional analyses include functional group-specific recall and185

structural similarity assessments.186

5.1 Retrieval under SO(3) Rotations187

We evaluate the ability of our multimodal model to achieve chemically and geometrically consistent188

retrieval without architectural symmetry constraints. Our experiments are organized into two main189

settings: retrieval among canonical poses (known rotations) and retrieval under unseen SO(3)190

rotations.191

Retrieval among Canonical Poses. In the first setting, retrieval is performed among unrotated192

(canonical) molecular conformations. Each molecule is embedded in a fixed pose, and retrieval relies193

solely on feature similarity without any unseen spatial transformations. This setting tests whether the194

learned embeddings capture molecular identity and functional similarity under ideal alignment.195

Retrieval metrics include Top-k Match Accuracy (the fraction of queries retrieving the exact molecule)196

and functional group (FG) recall, measuring how many retrieved molecules share dominant chemical197

groups with the query.198

Both SMILESDFT-CLIP and SMILESDFT-SigLIP achieve high retrieval performance. At Top-199

10, SMILESDFT-CLIP achieves 98.8% accuracy, while SMILESDFT-SigLIP reaches 97.6%. The200

average number of functional group matches within the Top-10 retrieved molecules exceeds eight for201

both models, demonstrating chemically aligned latent organization.202
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Model Top-1 Top-10
FG Matches

(Top-10)

SMILESDFT-SigLIP 68.9% ± 1.96 97.6% ± 0.21 8.33
SMILESDFT-CLIP 71.4% ± 0.83 98.8% ± 0.14 8.43

Table 2: Retrieval performance among canon-
ical poses.

Figure 2: Group-wise Recall@1 for canonical
retrieval.

As shown in Figure 2, aromatic systems exhibit the highest recall (97.9% SMILESDFT-CLIP, 96.8%203

SMILESDFT-SigLIP), consistent with their distinct electronic signatures. Carboxylic acids, by204

contrast, show lower recall (77.8% SMILESDFT-CLIP, 75.0% SMILESDFT-SigLIP), likely due205

to their conformational flexibility. Across all groups, SMILESDFT-CLIP consistently outperforms206

SMILESDFT-SigLIP at Top-1, indicating sharper discrimination from InfoNCE-based alignment.207

Retrieval under SO(3) Rotations. In this experiment, we evaluate the ability of pretrained models208

to retrieve molecular representations under unseen rigid-body transformations. To simulate SO(3)209

rotation invariance, molecules are randomly rotated around arbitrary axes, with rotation angles210

uniformly sampled from [0◦, 360◦]. Retrieval is performed by querying canonical molecules against211

rotated versions in embedding space, testing whether models generalize across poses without having212

observed such transformations during training.213

Table 3 summarizes the performance across four models using three metrics: (i) Accuracy@10, which214

captures exact retrieval of a rotated instance; (ii) Recall@10, which measures class-level or functional215

group recovery; and (iii) the proportion of queries for which three or more rotated variants appear216

among the top-10 candidates.217

Table 3: Retrieval performance under unseen SO(3) rotations. Equivariant indicates SE(3)-
equivariant models. Accuracy@10 measures instance-level retrieval; Recall@10 captures functional
group recovery; final column reports the percentage of queries retrieving 3 distinct rotated variants in
the top-10.

Model Equiv. Modality Acc@10 Rec@10 3 Rot.
Retrieved

Ours
SMILESDFT-CLIP ✗ 3D Grids + SMILES 77.3% ± 0.51 98.4% ± 0.13 45.3% ± 0.57

SMILESDFT-SigLIP ✗ 3D Grids + SMILES 46.1% ± 0.57 98.9% ± 0.13 43.0% ± 0.63

SMILESDFT-CLIP (finetuned) ✗ 3D Grids + SMILES 85.4% ± 0.42 99.4% ± 0.09 57.9% ± 0.54

SMILESDFT-SigLIP (finetuned) ✗ 3D Grids + SMILES 88.4% ± 0.37 99.6% ± 0.08 59.1% ± 0.52

Baselines
Pos-EGNN ✓ Atom Positions (SE(3)) 79.1% ± 0.44 99.2% ± 0.12 51.2% ± 0.51

3DGrid-VQGAN ✗ 3D Grids Only 9.1% ± 0.22 2.3% ± 0.02 0.0% ± 0.01

Table 3 reports retrieval performance under unseen SO(3) rotations, comparing our multimodal218

models to both equivariant and non-equivariant baselines. Fine-tuned variants of SMILESDFT-CLIP219

and SMILESDFT-SigLIP—trained on 1,000 randomly selected molecules with five randomly rotated220

poses each—achieve the highest Accuracy@10 (85.4% and 88.4%, respectively), outperforming221

the SE(3)-equivariant Pos-EGNN baseline (79.1%) despite lacking explicit symmetry priors. All222

multimodal models exhibit strong functional group recovery (Recall@10), with fine-tuned versions223

reaching 99.6% (SMILESDFT-SigLIP). Furthermore, over 57% of fine-tuned model queries retrieve224

at least three distinct rotated variants in the top-10, exceeding the equivariant baseline (51.2%) and225

substantially outperforming the unimodal 3DGrid-VQGAN model, which fails under rotation. These226
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results suggest that contrastive multimodal pretraining, when exposed to a modest set of diverse227

poses, can induce rotation-consistent representations without requiring architectural equivariance.228

This result underscores the central contribution of our approach: emergent rotational invariance229

arises from multimodal contrastive pretraining, even in the absence of architectural equivariance or230

rotation augmentation. The SMILES representation remains invariant under rotation and acts as a231

semantic anchor. Minimizing the contrastive loss aligns the spatially-variant 3D electron density232

fields with these invariant anchors, inducing consistent embeddings across different orientations.233

Pooling operations further reduce sensitivity to local spatial deformations, contributing to pose-robust234

representations.235

Figure 3: Visualization of retrieval results under unseen rotations using SMILESDFT-CLIP. Query
SMILES: CC(C)(C)c1ccc2c(c1)c1ccccc1n2CCC(N)=O. Retrieved electron density grids are
matched with corresponding SMILES and cosine similarity scores. The model retrieves four perfect
matches and one close structural analogue, illustrating robustness to SO(3) transformations.

Figure 3 illustrates a retrieval example using SMILESDFT-CLIP. Among the six closest retrieved236

samples, four are exact matches under distinct rotations, and one is a structurally similar analogue.237

This highlights the model’s ability to capture both spatial and semantic consistency.238

Group-wise Recall@10 scores (Table 4) reveal high
retrieval robustness across functional groups. Both mul-
timodal models achieve near-perfect recovery for aro-
matic and ketone-containing compounds. Slightly lower
recall for carboxylic acids may stem from their confor-
mational flexibility and smaller spatial extent in grid
representation, which challenges invariant matching.

Table 4: Recall@10 across func-
tional groups under unseen SO(3)
rotations.

Functional Group SMILESDFT-CLIP SMILESDFT-SigLIP

Amine 0.987 0.994
Aromatic 0.999 1.000
Ether 0.987 0.981
Ketone 0.987 1.000
Halide 0.961 0.978
Carboxylic Acid 0.893 0.890

In summary, our results show that contrastive multimodal pretraining can induce pose-invariant239

molecular representations without relying on symmetry-aware inductive biases. By leveraging the240

invariant nature of symbolic descriptors during alignment, the model internalizes spatial consistency241

across orientations. This emergent behavior bridges the gap between architectural equivariance242

and semantic invariance, opening new directions for building chemically robust models from weak243

supervision alone.244

5.2 Structure–Property Relationship245

To evaluate whether the learned latent representations reflect chemically meaningful struc-246

ture–property relationships, we analyze clustering behavior based on the HOMO (Highest Occupied247

Molecular Orbital) energy, a key descriptor of molecular reactivity. Nitrogen-containing species are248

of particular interest due to the strong influence of nitrogen lone pairs, which elevate HOMO energy249

and enhance molecular reactivity.250
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In the QM9 dataset, nitrogen-containing molecules comprise only 9.10% of the total population but251

represent 32.81% of the top decile in HOMO energy. Capturing such functional and electronic trends252

in the learned embedding space—without direct supervision on quantum properties—is a critical test253

of the model’s chemical fidelity.254

To quantify clustering quality, we compute the Davies–Bouldin (DB) index, which penalizes overlap-255

ping or diffuse clusters (lower is better). Table 5 summarizes the DB scores across models. Notably,256

the SMILESDFT-CLIP-based multimodal model achieves the lowest DB index (2.35), indicating a257

tightly organized latent space with well-separated clusters that align with HOMO energy variations.258

In contrast, the position-equivariant Pos-EGNN model, despite its architectural symmetry priors,259

yields a higher DB index (5.53), suggesting weaker alignment with electronic structure. This is260

surprising, as equivariant models are expected to encode physically grounded representations, but261

lack symbolic anchoring to enforce chemical alignment.262

Table 5: Davies–Bouldin (DB) index for structure–property clustering by HOMO energy (lower
is better). SMILESDFT-CLIP achieves the lowest Davies–Bouldin index, indicating tight HOMO-
aligned clustering. Symbolic input (SMILES) plays a critical role in structuring latent space, even in
the absence of equivariant design.

Model SMILES 3D Grids / Atom Positions DB Index

SMILESDFT-CLIP ✓ 3D Grids 2.35
SMI-TED ✓ ✗ 2.82
MoLFormer ✓ ✗ 4.28
Pos-EGNN ✗ Atom Positions (SE(3)) 5.53
3DGrid-VQGAN ✗ 3D Grids 34.46

Figures 4 visualize 2D projections of the learned latent spaces, with colors representing HOMO263

energy and triangle markers highlighting nitrogen-containing species. The SMILESDFT-CLIP264

latent space reveals compact clusters strongly correlated with HOMO energy and clearly segregated265

nitrogen-rich regions, supporting the hypothesis that contrastive multimodal pretraining promotes266

chemically meaningful representation learning.267

In contrast, Pos-EGNN—despite encoding atom positions in an equivariant manner—produces a268

more diffuse and intermixed embedding space, with nitrogen-containing species scattered across269

regions of varying energy. This suggests that architectural symmetry alone does not guarantee270

property-aligned representations unless supported by complementary semantic signals. VQGAN271

and SMI-TED provide further contrast: the former shows disorganized embeddings due to lack272

of symbolic anchoring, while the latter partially captures structure–property alignment, but lacks273

geometric context.274

((a)) SMILESDFT-CLIP ((b)) Pos-EGNN

Figure 4: Latent space projections colored by HOMO energy. Triangular markers denote nitrogen-
containing molecules. SMILESDFT-CLIP shows compact, chemically coherent clusters with strong
alignment to HOMO energy and nitrogen enrichment. Pos-EGNN yields more diffuse structure,
despite its SE(3)-equivariance.
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These findings emphasize that contrastive multimodal learning acts not merely as a cross-modal align-275

ment strategy, but as a functional regularizer that filters and reinforces task-relevant structural patterns.276

The invariant SMILES anchor encourages the 3D encoder to focus on chemical features consistent277

across orientations, facilitating the emergence of rotationally robust, semantically grounded embed-278

dings. Importantly, the superior performance of SMILESDFT-CLIP over Pos-EGNN challenges279

the assumption that architectural equivariance alone is sufficient for property-aware representation280

learning, and points to the power of symbolic supervision in organizing chemical space.281

5.3 Property Prediction on QM9282

We assess the downstream utility of our pretrained representations on the QM9 benchmark, which283

comprises 12 regression tasks spanning electronic, thermodynamic, and geometric properties. Mean284

absolute error (MAE) is reported in QM9-standard units.285

Using a pre-trained linear probe setup, we evaluate SMILESDFT-CLIP and SMILESDFT-SigLIP with-286

out task-specific fine-tuning to isolate representation quality. As shown in Table 6, both SMILESDFT-287

CLIP and SMILESDFT-SigLIP consistently outperform the SE(3)-equivariant Pos-EGNN baseline288

across most tasks. SMILESDFT-CLIP achieves the lowest MAE on 8 of 12 properties—including289

ϵHOMO, Cv , and ⟨R2⟩—while SigLIP is competitive, especially on thermodynamic targets (U , U0, H ,290

G)291

Table 6: Mean Absolute Error (MAE) on QM9 regression tasks. All models are evaluated in a frozen
linear probe setting. Blue and Orange highlight the best and second-best results, respectively.

Category Property (Unit) Pos-EGNN
(Equivariant)

SMILESDFT-CLIP
(Non-equivariant)

SMILESDFT-SigLIP
(Non-equivariant)

Electronic

HOMO energy ϵHOMO (eV) 0.0093 0.0083 0.0090
LUMO energy ϵLUMO (eV) 0.0141 0.0110 0.0118
Energy gap (eV) 0.0165 0.0135 0.0144
Dipole moment µ (Debye) 0.6288 0.6836 0.7243

Thermodynamic

Internal energy U (eV) 6.8596 2.8141 2.3437
Internal energy at 0K U0 (eV) 6.8308 2.8403 2.3316
Enthalpy H (eV) 6.8503 2.8137 2.3402
Free energy G (eV) 6.8335 2.8098 2.3706

Geometric

Heat capacity Cv (cal/mol·K) 0.6622 0.4450 0.4455
Polarizability α (bohr3) 1.5346 1.0771 1.1791
Spatial extent ⟨R2⟩ (bohr2) 70.5140 45.2012 46.5561
ZPVE (eV) 0.0064 0.0038 0.0040

Despite lacking symmetry-aware priors, both models outperform Pos-EGNN on geometry-sensitive292

metrics such as polarizability (α) and spatial extent (⟨R2⟩), suggesting that contrastive symbolic293

alignment can induce symmetry-consistent behavior through emergent structure in the latent space.294

6 Limitations295

Our approach assumes that rigid SO(3) rotations preserve molecular semantics, which may not296

generalize to stereochemically sensitive or highly flexible molecules. The use of RHF/STO-3G297

electron densities, while providing quantum-consistent inputs, adds computational cost and may298

limit scalability. Although both encoders are fine-tuned jointly, the model is not explicitly trained to299

align different conformers of the same molecule. Future extensions could incorporate conformer-300

invariant objectives, lightweight electronic representations, or hybrid training with physicochemical301

supervision.302

7 Conclusion303

We show that contrastive multimodal pretraining between SMILES and 3D electron densities yields304

chemically meaningful, pose-invariant representations—without symmetry-aware architectures or305

rotation augmentation. The model generalizes across SO(3) rotations and reflects orbital energy306

structure, despite no geometric or quantum supervision. Symbolic anchoring emerges as a simple but307

effective inductive signal. Future work may explore conformer-aware or property-specific extensions.308
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