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Abstract

Learning molecular representations that are robust to 3D rotations typically requires
architectures with built-in symmetry priors or extensive data augmentation. In this
work, we investigate whether contrastive multimodal pretraining alone can induce
SO(3) invariance in molecular embeddings. We jointly train a continuous 3D-field
encoder, based on a vector-quantized generative adversarial network (VQGAN),
and a SMILES-based transformer encoder on a dataset of 855,000 molecules,
each represented by a DFT-computed electron density grid and a corresponding
canonical SMILES string. Both CLIP-style and SigLIP contrastive objectives are
used to align representations across modalities. Because SMILES embeddings are
invariant to molecular orientation, the contrastive loss implicitly encourages the
3D encoder to produce rotation-consistent representations by aligning different
poses of the same molecule to a fixed symbolic anchor. To evaluate geometric
generalization, we construct a benchmark comprising 1,000 molecules with five
unseen random SO(3) rotations each. The CLIP-based model retrieves at least one
rotated variant among its top-10 results for 77% of queries, compared to 9.8% for a
unimodal VQGAN baseline, and retrieves three or more variants for 45% of queries
(versus 0% baseline). Functional group-wise Recall@ 10 exceeds 98% for most
chemical classes, and clustering by HOMO energy yields a Davies—Bouldin index
of 2.35 (versus 34.46 for the baseline), indicating strong chemical organization in
the latent space. Additionally, fine-tuning with rotated samples reveals a trade-off
between retrieval precision and pose diversity. These results suggest that contrastive
multimodal pretraining can yield symmetry-aware molecular representations, even
in the absence of explicit equivariant design.

1 Introduction

Learning molecular representations that are both chemically expressive and geometrically invariant
remains a central challenge in molecular machine learning [[1} [2]. Most 3D molecular models achieve
invariance to spatial transformations by explicitly encoding symmetry through architectural design or
by leveraging rotation-based data augmentation [3} 4} I5]. These methods assume that symmetry priors
must be built into the model to preserve physical consistency, particularly under SO(3) rotations. This
raises a fundamental question: Can pose-invariant representations instead emerge implicitly from the
training objective, without enforcing geometric priors through model design? (6} 7).

We hypothesize that contrastive alignment between invariant symbolic descriptors (e.g., SMILES) and
spatially variant 3D fields (e.g., electron densities) can induce pose-consistent molecular embeddings,
even in the absence of symmetry-aware architectures [6l |8, 9]. This builds on the intuition that
multimodal contrastive learning can serve as a functional regularizer, promoting semantic alignment
across heterogeneous modalities despite differences in spatial representation [LLO, |11} 112].
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Multimodal contrastive learning has shown promise in molecular domains by aligning symbolic and
topological views of a molecule [9, 13} [14]. However, existing approaches predominantly operate on
graph-based or discrete representations and do not evaluate whether learned embeddings are robust
to arbitrary spatial transformations [[15]. In particular, it remains unexplored whether contrastive
pretraining over unaligned continuous 3D fields can give rise to emergent SO(3) invariance.

In this work, we investigate whether a CLIP-style model trained to align SMILES strings with ab
initio-derived 3D electron density grids can learn pose-invariant representations, despite lacking
architectural equivariance or rotation augmentation. Our model is pretrained on a dataset of 855,000
molecules, each presented in a canonical orientation, and jointly embeds both symbolic and volumetric
views.

To evaluate generalization under spatial transformations, we construct a benchmark of 1,000
molecules, each paired with five randomly rotated SO(3) variants. Our contrastive model retrieves
at least one rotated instances in the top-10 for 77.3% of queries, approaching the performance of
the SE(3)-equivariant Pos-EGNN baseline (79.1%). Pos-EGNN is a large-scale foundation model
trained on 1.4M ab initio simulation snapshots from the Materials Project Trajectory dataset to predict
energies, forces, and stress tensors using symmetry-aware message passing [[16]].

Beyond retrieval, we probe the latent space for chemical coherence. Without any supervision on
quantum properties, the model organizes molecules based on HOMO energies and functional groups:
for example, nitrogen-containing species cluster tightly in HOMO-aligned regions. In contrast, the
Pos-EGNN latent space—while geometrically grounded—exhibits weaker clustering around frontier
orbital descriptors, suggesting that symbolic anchoring plays a critical role in inducing chemically
meaningful structure. This organization is quantified by a Davies—Bouldin index of 2.35, compared
to 34.46 for a unimodal 3D baseline and 5.53 for the SE(3)-equivariant Pos-EGNN model, indicating
superior alignment between geometry and electronic structure.

These findings demonstrate that multimodal contrastive pretraining can induce symmetry-aware
molecular representations through emergent behavior, without hard-coded inductive biases. While
our approach assumes rotational equivalence across poses—an idealization that may not hold in
stereochemically sensitive tasks—it offers a flexible and scalable alternative to equivariant model-
ing. All code and pretrained models are available at: https://anonymous.4open.science/r/
anonymous-B0OBB/README . md.

2 Related Work

Learning molecular representations that incorporate 3D structure has been a longstanding objective
in machine learning for chemistry. Early approaches relied on graph-based models augmented with
spatial features [[17, [18], while more recent methods leverage equivariant neural networks [2} 13} |5, [19]].
These architectures enforce rotational and translational symmetry by design, often using group
convolutions or tensor representations. Although effective, these methods hard-code geometric priors
into the model, which may limit flexibility across tasks where symmetries are not strictly preserved.

Beyond equivariance, several works explore data-driven approaches to learning molecular 3D struc-
ture. Models such as GemNet [20] and DimeNet++ [21} [22] use angle and distance information
explicitly, while diffusion-based models [23|24] attempt to generate 3D conformers in a probabilistic
manner. These methods assume access to accurate conformations or focus on generating new 3D
geometries, rather than studying robustness to transformations applied to known structures.

Multimodal learning in molecular domains has focused largely on combining symbolic and graph-
based modalities [25} 126l [27]]. Works such as MolCLR [9] and Smiclr [28]] demonstrate that contrastive
pretraining over graphs or SMILES can improve downstream property prediction. AMOLE [29]
applies a CLIP-style objective to graphs and text but does not incorporate continuous 3D field-
based inputs. As a result, existing multimodal methods primarily operate over discrete structural
abstractions, limiting their capacity to exploit fine-grained geometric information available in physical
electron density fields.

Invariance learning without explicit symmetry enforcement has been explored in vision [30, 31]],
where models trained without augmentations nonetheless exhibit partial viewpoint robustness. In
molecular machine learning, such emergent invariance remains largely unexplored, with most models
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enforcing rotational symmetry by design [2 [3]. Recent works on SO(3)-equivariant diffusion [23]
primarily address generative modeling rather than retrieval robustness under unseen transformations.

Our work contributes to this landscape by demonstrating that contrastive multimodal pretraining
over symbolic descriptors and continuous 3D grids can induce pose invariance without requiring
symmetry-aware architectures. We provide systematic evaluation over rotated benchmarks and relate
retrieval stability to chemical and geometric consistency.

3 Methodology

We propose a multimodal contrastive pretrain- o

ing framework to learn molecular representa-
tions that align symbolic descriptors and contin-
uous 3D fields—without relying on symmetry-
aware architectural priors. The model jointly
embeds SMILES strings and electron density
grids derived from ab initio calculations using
independent encoders optimized under a con-
trastive loss. As illustrated in Figure [I} our
architecture combines a transformer-based en- Figure 1: Architecture of the multimodal con-
coder for SMILES with a 3D VQGAN:-style trastive model.

convolutional encoder for electron densities. All

parameters—including those from SMI-TED and the 3DGrid-VQGAN encoder—are trained jointly
from scratch.

3.1 Pretraining Dataset

We curate a dataset of 855,000 molecules from PubChem, filtered to include: (i) only main-group
elements up to Barium; (ii) a maximum of 30 heavy atoms; (iii) zero net charge; and (iv) no formal
charge separation.

Each SMILES string is converted into 50 conformers using RDKit’s distance geometry and MMFF94
optimization [32]. The five lowest-energy conformers are reoptimized using MINDO3 in PySCF [33],
and the conformer with the lowest energy is retained. This structure is further evaluated at the
RHF/STO-3G level, and its electron density is projected onto a 128 x 128 x 128 voxel grid, yielding
a physically grounded 3D representation without relying on classical graph approximations.

3.2 Multimodal Contrastive Pretraining

We align SMILES and 3D electron density representations via contrastive learning. Let g : X — R?
and h : T — R? denote the 3D and SMILES encoders, respectively. For a batch of N molecule pairs

{(xi, 1)} ,, we compute embeddings as z&"* = Proj, (g(z;)) and ;™ = Projj, (h(t;)), where
Proj denotes a learnable projection head.

SMILESDFT-CLIP uses the symmetric InfoNCE loss:
ECLIP = ﬁ Z [E(zfind7 Z;mlles) + E(Z;mlles7 Z%rld>:|7

where £(z, 2') = —log %@% and sim(z, ') is cosine similarity.

SMILESDFT-SigLIP employs a sigmoid-based contrastive loss. After normalization z = z/||z]|2,
we define:

: ~erid ~smiles 1 :
logits;; = exp(7) - (75, Z™) + b, LsigLip = N E log o (y;; - logits;;),
,J

where o is the sigmoid function and y;; = 1 for positive pairs, —1 otherwise.
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3.3 3D Electron Density Encoder

We use a 3DGrid-VQGAN adapted for volumetric inputs to encode electron density grids [16]. The
encoder E(-) maps G to a latent tensor:

2(G) e REXTXExk o= 4 k=512

16384.

Latents are quantized using a learned codebook {e; J=1

24(G) = eg~, where k™ = arg min ||2.(G) — ej]|2.
J

The 3DGrid-VQGAN is trained with:
»CVQGAN = »Crec + ﬂﬁcommil + 'Y»Cadvv

where L. is an L; reconstruction loss, L.ommit €ncourages codebook usage, and L,q, is a 3D
PatchGAN adversarial loss. During contrastive training, we use the encoder output before quantization
and fine-tune all encoder parameters jointly.

3.4 SMILES Encoder

The SMILES modality is encoded using SMI-TED2ggn [LLO], a pretrained transformer encoder trained
on 91 million canonical SMILES strings. Input tokens X € RP”*% are processed via RoFormer-style

attention:
N

Attention,, (Q, K, V) = 2 =1 (P(Bimdm), p(Bnkn))vn

Zﬁle <80(RQO>7 W(Rnkn»

where R, is a position-specific rotation matrix and (-) is a Fourier feature mapping. A pooled
embedding is computed as:

z = LayerNorm (GELU(XW; + b)) Wa.

)

Unlike prior work, we fine-tune the SMI-TED encoder during contrastive learning, which we find
improves performance in both retrieval and structure—property clustering.

3.5 Training Details

We train using AdamW with batch size 128 and learning rate 3 x 10~*, employing a linear warmup
over 1,000 steps. Models are trained for 50,000 steps using both CLIP and SigLIP objectives, with
checkpoints selected by retrieval accuracy on a held-out validation set. All experiments are conducted
on 4 NVIDIA A100 GPUs.

4 Experimental Setup

We conduct a comprehensive evaluation to assess the extent to which our multimodal model exhibits
geometric generalization, chemical organization, and transferability. Our evaluation protocol includes
retrieval under both canonical and unseen SO(3) rotations, unsupervised structure—property clustering,
and molecular property prediction on the QM9 benchmark.

Retrieval under SO(3) Rotations. We evaluate retrieval performance in two settings:

1. Canonical retrieval — Each query is matched against a corpus of unrotated (canonical)
molecules.

2. Unseen rotation retrieval — Each query is matched against five rotated spatial variants of
each molecule, not observed during training.

To generate unseen rotations, we apply random rigid-body transformations to the
atomic coordinates of each molecule. Rotation axes are sampled from the set
{(0,0,1),(0,1,0),(1,0,0),(1,1,0),(1,0,1),(0,1,1)}, and rotation angles are drawn uni-
formly from [0°, 360°]. For each rotated conformer, we recompute the electron density using the
same RHF/STO-3G procedure as used during pretraining, ensuring physically valid volumetric fields.
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Table 1: Evaluation metrics used to assess geometric and chemical generalization.

Metric Description

Accuracy@10 Proportion of queries retrieving the correct molecule within the top-10 results.

Recall@10 Fraction of retrieved molecules belonging to the same functional group.

Group-wise Recall@10 Recall@10 computed for six chemical classes: amines, aromatics, ethers, ketones, halides, and
carboxylic acids.

Pose diversity Mean number of distinct rotational variants retrieved in the top-10.

Multi-pose retrieval rate Proportion of queries retrieving at least three distinct rotated variants among the top-10.

We report the following metrics as in Table

To benchmark invariance, we compare our model against a unimodal 3D electron density baseline
(3DGrid-VQGAN) trained without symbolic alignment. This evaluation probes both instance-level
and class-level generalization under unseen spatial transformations.

Structure-Property Clustering. We assess whether the latent space reflects chemically meaningful
organization by analyzing clustering behavior of molecules with similar frontier orbital properties.
In particular, we focus on nitrogen-containing species with high HOMO energies—chemically
important due to lone-pair reactivity. We quantify cluster quality using the Davies—Bouldin (DB)
index, where lower values indicate compact, well-separated clusters. This analysis tests whether the
model implicitly learns structure—property relationships without supervision.

Property Prediction on QM9. To evaluate transferability to downstream tasks, we train linear
regression models on frozen multimodal embeddings to predict 12 molecular properties from the
QMO dataset [34]]. The encoders are not fine-tuned, ensuring that performance reflects the intrinsic
quality of the pretrained representation. We report mean absolute error (MAE) on the standard
train/validation/test splits and compare against an equivariant baseline embeddings from Pos-EGNN
encoder.

5 Results

We evaluate the capacity of our multimodal model to achieve pose-invariant molecular retrieval and
chemically consistent embeddings without architectural equivariance. The evaluation is organized
along two main axes: retrieval under unseen SO(3) rotations and retrieval consistency across known
rotations observed during training. Additional analyses include functional group-specific recall and
structural similarity assessments.

5.1 Retrieval under SO(3) Rotations

We evaluate the ability of our multimodal model to achieve chemically and geometrically consistent
retrieval without architectural symmetry constraints. Our experiments are organized into two main
settings: retrieval among canonical poses (known rotations) and retrieval under unseen SO(3)
rotations.

Retrieval among Canonical Poses. In the first setting, retrieval is performed among unrotated
(canonical) molecular conformations. Each molecule is embedded in a fixed pose, and retrieval relies
solely on feature similarity without any unseen spatial transformations. This setting tests whether the
learned embeddings capture molecular identity and functional similarity under ideal alignment.

Retrieval metrics include Top-k Match Accuracy (the fraction of queries retrieving the exact molecule)
and functional group (FG) recall, measuring how many retrieved molecules share dominant chemical
groups with the query.

Both SMILESDFT-CLIP and SMILESDFT-SigLIP achieve high retrieval performance. At Top-
10, SMILESDFT-CLIP achieves 98.8% accuracy, while SMILESDFT-SigLIP reaches 97.6%. The
average number of functional group matches within the Top-10 retrieved molecules exceeds eight for
both models, demonstrating chemically aligned latent organization.
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Group-wise Recall@1 on Canonical Poses

097 098

= SigLiP
= CLP

Model Top-1 Top-10
FG Matches

(Top-10)

Recall@l

SMILESDFT-SigLIP 68.9% + 1.96 97.6% + 0.21 8.33
SMILESDFT-CLIP 71.4% + 0.83 98.8% +0.14 8.43 02

Table 2: Retrieval performance among canon- o0l
. S S
ical poses. & c

e ;
« & &8
N & *
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B

Figure 2: Group-wise Recall@1 for canonical
retrieval.

As shown in Figure 2] aromatic systems exhibit the highest recall (97.9% SMILESDFT-CLIP, 96.8%
SMILESDFT-SigLIP), consistent with their distinct electronic signatures. Carboxylic acids, by
contrast, show lower recall (77.8% SMILESDFT-CLIP, 75.0% SMILESDFT-SigLIP), likely due
to their conformational flexibility. Across all groups, SMILESDFT-CLIP consistently outperforms
SMILESDFT-SigLIP at Top-1, indicating sharper discrimination from InfoNCE-based alignment.

Retrieval under SO(3) Rotations. In this experiment, we evaluate the ability of pretrained models
to retrieve molecular representations under unseen rigid-body transformations. To simulate SO(3)
rotation invariance, molecules are randomly rotated around arbitrary axes, with rotation angles
uniformly sampled from [0°, 360°]. Retrieval is performed by querying canonical molecules against
rotated versions in embedding space, testing whether models generalize across poses without having
observed such transformations during training.

Table [3] summarizes the performance across four models using three metrics: (i) Accuracy @ 10, which
captures exact retrieval of a rotated instance; (ii) Recall@ 10, which measures class-level or functional
group recovery; and (iii) the proportion of queries for which three or more rotated variants appear
among the top-10 candidates.

Table 3: Retrieval performance under unseen SO(3) rotations. Equivariant indicates SE(3)-
equivariant models. Accuracy @ 10 measures instance-level retrieval; Recall @10 captures functional
group recovery; final column reports the percentage of queries retrieving 3 distinct rotated variants in
the top-10.

Model Equiv. Modality Acc@10 Rec@10 Rgtll'{i:\tz‘ed
Ours

SMILESDFT-CLIP X 3D Grids + SMILES 77.3% £ 0.51  98.4% £0.13  45.3% £ 0.57
SMILESDFT-SigLIP b 3D Grids + SMILES 46.1% +0.57  98.9% +0.13  43.0% =+ 0.63
SMILESDFT-CLIP (finetuned) X 3D Grids + SMILES 85.4% + 0.42 99.4% + 0.09 57.9% + 0.54
SMILESDFT-SigLIP (finetuned) X 3D Grids + SMILES 88.4% +0.837 99.6% £ 0.08 59.1% + 0.52

Baselines
Pos-EGNN
3DGrid-VQGAN

Atom Positions (SE(3)) 79.1% £ 0.44 99.2% + 0.12 51.2% £ 0.51
3D Grids Only 9.1% £ 0.22 2.3% £ 0.02 0.0% £ 0.01

*x N\

Table [3] reports retrieval performance under unseen SO(3) rotations, comparing our multimodal
models to both equivariant and non-equivariant baselines. Fine-tuned variants of SMILESDFT-CLIP
and SMILESDFT-SigLIP—trained on 1,000 randomly selected molecules with five randomly rotated
poses each—achieve the highest Accuracy @10 (85.4% and 88.4%, respectively), outperforming
the SE(3)-equivariant Pos-EGNN baseline (79.1%) despite lacking explicit symmetry priors. All
multimodal models exhibit strong functional group recovery (Recall@10), with fine-tuned versions
reaching 99.6% (SMILESDFT-SigLIP). Furthermore, over 57% of fine-tuned model queries retrieve
at least three distinct rotated variants in the top-10, exceeding the equivariant baseline (51.2%) and
substantially outperforming the unimodal 3DGrid-VQGAN model, which fails under rotation. These
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results suggest that contrastive multimodal pretraining, when exposed to a modest set of diverse
poses, can induce rotation-consistent representations without requiring architectural equivariance.

This result underscores the central contribution of our approach: emergent rotational invariance
arises from multimodal contrastive pretraining, even in the absence of architectural equivariance or
rotation augmentation. The SMILES representation remains invariant under rotation and acts as a
semantic anchor. Minimizing the contrastive loss aligns the spatially-variant 3D electron density
fields with these invariant anchors, inducing consistent embeddings across different orientations.
Pooling operations further reduce sensitivity to local spatial deformations, contributing to pose-robust
representations.

SMILES: cclC)Celceeac(cliclecece1n2CCCiN=0 SMILES: CC(0)(C)cLecezc(el)e1cceccln2CeciNI=0 SMILES: CC(ONCIcecezelelcleceecIn2CeciN=0
Similarity: 0.6302 Similarty: 0.6219 Similaity: 0.6218

Query SMILES:
CC(C)
(C)clccc2e(cl)cleccecln2CC

C(N)=0 S G

3
-

SMLEs: NCIC1cce2c(cTICH(CIC(=0IN2
Similarty: 0.8111

Figure 3: Visualization of retrieval results under unseen rotations using SMILESDFT-CLIP. Query
SMILES: CC(C) (C)clcecc2c(cl)cleccececin2CCC(N)=0. Retrieved electron density grids are
matched with corresponding SMILES and cosine similarity scores. The model retrieves four perfect
matches and one close structural analogue, illustrating robustness to SO(3) transformations.

Figure [3]illustrates a retrieval example using SMILESDFT-CLIP. Among the six closest retrieved
samples, four are exact matches under distinct rotations, and one is a structurally similar analogue.
This highlights the model’s ability to capture both spatial and semantic consistency.

Group-wise Recall@10 scores (Table [) reveal high
retrieval robustness across functional groups. Both mul- Table 4: Recall@10 across func-
timodal models achieve near-perfect recovery for aro-
matic and ketone-containing compounds. Slightly lower
recall for carboxylic acids may stem from their confor-

tional groups under unseen SO(3)
rotations.

Functional Group ~ SMILESDFT-CLIP  SMILESDFT-SigLIP

mational flexibility and smaller spatial extent in grid Amine 0987 0.994
. . . . . Aromatic 0.999 1.000
representation, which challenges invariant matching. Ether 0987 0981

Ketone 0.987 1.000
Halide 0.961 0.978
Carboxylic Acid 0.893 0.890

In summary, our results show that contrastive multimodal pretraining can induce pose-invariant
molecular representations without relying on symmetry-aware inductive biases. By leveraging the
invariant nature of symbolic descriptors during alignment, the model internalizes spatial consistency
across orientations. This emergent behavior bridges the gap between architectural equivariance
and semantic invariance, opening new directions for building chemically robust models from weak
supervision alone.

5.2 Structure-Property Relationship

To evaluate whether the learned latent representations reflect chemically meaningful struc-
ture—property relationships, we analyze clustering behavior based on the HOMO (Highest Occupied
Molecular Orbital) energy, a key descriptor of molecular reactivity. Nitrogen-containing species are
of particular interest due to the strong influence of nitrogen lone pairs, which elevate HOMO energy
and enhance molecular reactivity.
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In the QM9 dataset, nitrogen-containing molecules comprise only 9.10% of the total population but
represent 32.81% of the top decile in HOMO energy. Capturing such functional and electronic trends
in the learned embedding space—without direct supervision on quantum properties—is a critical test
of the model’s chemical fidelity.

To quantify clustering quality, we compute the Davies—Bouldin (DB) index, which penalizes overlap-
ping or diffuse clusters (lower is better). Table[5|summarizes the DB scores across models. Notably,
the SMILESDFT-CLIP-based multimodal model achieves the lowest DB index (2.35), indicating a
tightly organized latent space with well-separated clusters that align with HOMO energy variations.
In contrast, the position-equivariant Pos-EGNN model, despite its architectural symmetry priors,
yields a higher DB index (5.53), suggesting weaker alignment with electronic structure. This is
surprising, as equivariant models are expected to encode physically grounded representations, but
lack symbolic anchoring to enforce chemical alignment.

Table 5: Davies—Bouldin (DB) index for structure—property clustering by HOMO energy (lower
is better). SMILESDFT-CLIP achieves the lowest Davies—Bouldin index, indicating tight HOMO-
aligned clustering. Symbolic input (SMILES) plays a critical role in structuring latent space, even in
the absence of equivariant design.

Model SMILES 3D Grids/ Atom Positions DB Index
SMILESDFT-CLIP v 3D Grids 2.35
SMI-TED v X 2.82
MoLFormer v X 4.28
Pos-EGNN X Atom Positions (SE(3)) 5.53
3DGrid-VQGAN X 3D Grids 34.46

Figures [4] visualize 2D projections of the learned latent spaces, with colors representing HOMO
energy and triangle markers highlighting nitrogen-containing species. The SMILESDFT-CLIP
latent space reveals compact clusters strongly correlated with HOMO energy and clearly segregated
nitrogen-rich regions, supporting the hypothesis that contrastive multimodal pretraining promotes
chemically meaningful representation learning.

In contrast, Pos-EGNN—despite encoding atom positions in an equivariant manner—produces a
more diffuse and intermixed embedding space, with nitrogen-containing species scattered across
regions of varying energy. This suggests that architectural symmetry alone does not guarantee
property-aligned representations unless supported by complementary semantic signals. VQGAN
and SMI-TED provide further contrast: the former shows disorganized embeddings due to lack
of symbolic anchoring, while the latter partially captures structure—property alignment, but lacks
geometric context.

Molecules by HOMO Energy - CLIP - Molecules by HOMO Energy - Pos-EGNN -
A Nitrogen Included ‘{:
No Nitrogen o2 %‘»"\ /\% o1z
A R Aol
Hoh
A A & AN A
FAYN 014 Wﬁgﬁ 7 T\ A 014
A A é PR A{X\

£
HOMO Energy
&
ot
l>1>Dﬂ§>
>F

1>

>

Q’\k K -0.16 A % -0.16
4 A D AAN D g A
2 A
arketa
N ) 44
¥l fﬁ%&/@ A D aAA
A {7‘{ A 020 /\ Nitrogen Included -020
lj § No Nitrogen A
((a)) SMILESDFT-CLIP ((b)) Pos-EGNN

Figure 4: Latent space projections colored by HOMO energy. Triangular markers denote nitrogen-
containing molecules. SMILESDFT-CLIP shows compact, chemically coherent clusters with strong
alignment to HOMO energy and nitrogen enrichment. Pos-EGNN yields more diffuse structure,
despite its SE(3)-equivariance.
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These findings emphasize that contrastive multimodal learning acts not merely as a cross-modal align-
ment strategy, but as a functional regularizer that filters and reinforces task-relevant structural patterns.
The invariant SMILES anchor encourages the 3D encoder to focus on chemical features consistent
across orientations, facilitating the emergence of rotationally robust, semantically grounded embed-
dings. Importantly, the superior performance of SMILESDFT-CLIP over Pos-EGNN challenges
the assumption that architectural equivariance alone is sufficient for property-aware representation
learning, and points to the power of symbolic supervision in organizing chemical space.

5.3 Property Prediction on QM9

We assess the downstream utility of our pretrained representations on the QM9 benchmark, which
comprises 12 regression tasks spanning electronic, thermodynamic, and geometric properties. Mean
absolute error (MAE) is reported in QM9-standard units.

Using a pre-trained linear probe setup, we evaluate SMILESDFT-CLIP and SMILESDFT-SigLIP with-
out task-specific fine-tuning to isolate representation quality. As shown in Table[6] both SMILESDFT-
CLIP and SMILESDFT-SigLIP consistently outperform the SE(3)-equivariant Pos-EGNN baseline
across most tasks. SMILESDFT-CLIP achieves the lowest MAE on 8 of 12 properties—including
enomo, Cyp, and <R2>—While SigLIP is competitive, especially on thermodynamic targets (U, Uy, H,

G)

Table 6: Mean Absolute Error (MAE) on QM9 regression tasks. All models are evaluated in a frozen
linear probe setting. Blue and highlight the best and second-best results, respectively.

Category Property (Unit) Pos-EGNN SMILESDFT-CLIP  SMILESDFT-SigLIP

(Equivariant) (Non-equivariant) (Non-equivariant)
HOMO energy enomo (€V) 0.0093 0.0083
. LUMO energy er.ymo (eV) 0.0141 0.0110
Electronic Energy gap (€V) 0.0165 0.0135
Dipole moment p (Debye) 0.6288 0.7243
Internal energy U (eV) 6.8596 2.3437
. Internal energy at OK Ug (eV) 6.8308 2.3316
Thermodynamic g\ 100 B @V) 6.8503 2.3402
Free energy G (eV) 6.8335 2.3706
Heat capacity C, (cal/mol-K) 0.6622 0.4450
Geometric Polarizability «@ (gohrs) , 1.5346 1_.()771
Spatial extent (R“) (bohr~) 70.5140 45.2012
ZPVE (eV) 0.0064 0.0038

Despite lacking symmetry-aware priors, both models outperform Pos-EGNN on geometry-sensitive
metrics such as polarizability (o) and spatial extent ((R?)), suggesting that contrastive symbolic
alignment can induce symmetry-consistent behavior through emergent structure in the latent space.

6 Limitations

Our approach assumes that rigid SO(3) rotations preserve molecular semantics, which may not
generalize to stereochemically sensitive or highly flexible molecules. The use of RHF/STO-3G
electron densities, while providing quantum-consistent inputs, adds computational cost and may
limit scalability. Although both encoders are fine-tuned jointly, the model is not explicitly trained to
align different conformers of the same molecule. Future extensions could incorporate conformer-
invariant objectives, lightweight electronic representations, or hybrid training with physicochemical
supervision.

7 Conclusion

We show that contrastive multimodal pretraining between SMILES and 3D electron densities yields
chemically meaningful, pose-invariant representations—without symmetry-aware architectures or
rotation augmentation. The model generalizes across SO(3) rotations and reflects orbital energy
structure, despite no geometric or quantum supervision. Symbolic anchoring emerges as a simple but
effective inductive signal. Future work may explore conformer-aware or property-specific extensions.
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