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Abstract

Density functional theory (DFT) is a fundamental method for simulating quantum
chemical properties, but it remains expensive due to the iterative self-consistent
field (SCF) process required to solve the Kohn-Sham equations. Recently, deep
learning methods are gaining attention as a way to bypass this step by directly
predicting the Hamiltonian. However, they rely on deterministic regression and
do not consider the highly structured nature of Hamiltonians. In this work, we
propose QHFLOW, a high-order equivariant flow matching framework that gen-
erates Hamiltonian matrices conditioned on molecular geometry. Flow matching
models continuous-time trajectories between simple priors and complex targets,
learning the structured distributions over Hamiltonians instead of direct regres-
sion. To further incorporate symmetry, we use a neural architecture that predicts
SE(3)-equivariant vector fields, improving accuracy and generalization across di-
verse geometries. To further enhance physical fidelity, we additionally introduce a
fine-tuning scheme to align predicted orbital energies with the target. QHFLOW
achieves state-of-the-art performance, reducing Hamiltonian error by 73% on
MD17 and 53% on QH9 compared to the previous best model. Moreover, we
further show that QHFLOW accelerates the DFT process without trading off the
solution quality when initializing SCF iterations with the predicted Hamiltonian,
significantly reducing the number of iterations and runtime.

1 Introduction

Density functional theory (DFT) [1, 2] is a cornerstone of modern computational physics [3, 4],
chemistry [5, 6], and materials science [7, 8]. It offers a powerful trade-off between accuracy and
computational efficiency in predicting the electronic properties of atoms, molecules, and solids [9–
11]. The practical implementation of DFT relies mainly on solving the Kohn-Sham equations [12],
which describe a system of non-interacting electrons that yield the same ground-state density as
the interacting system [12]. These equations are typically solved using the self-consistent field
(SCF) method [13–15], an iterative procedure that updates the electron density until convergence.
To this end, at each iteration, the Kohn–Sham Hamiltonian must be reconstructed from the kinetic
operator, external potential, Coulomb (Hartree) potential, and exchange–correlation potential [16, 17].
However, this reconstruction of the Hamiltonian becomes computationally demanding for larger
systems, limiting the scalability of conventional DFT approaches [18].

To address this challenge, recent work has explored machine learning models to predict the Hamil-
tonian directly from atomic configurations, with the aim of bypassing or accelerating the SCF
loop [19–26]. A key challenge in this task is ensuring that the model preserves the physical symme-
tries of molecular systems, particularly SE(3) symmetry, which governs how Hamiltonians transform
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Figure 1: Overview of QHFLOW. (a) Initial Hamiltonian sampled from the tensor expansion-based
SE(3)-invariant prior (TE). (b) Initial Hamiltonian sampled from the Gaussian orthogonal ensemble
SE(3)-invariant prior (GOE). (c) QHFLOW transforms the initial Hamiltonian H0 into the target
Hamiltonian H1 using flow matching, guided by an SE(3)-equivariant vector field vθ(t,M) from
an invaraint prior p0. The predicted Hamiltonian H1 defines a learned target distribution pθ1 and is
used to compute the electronic density ρM, as well as the ϵLUMO and ϵHOMO. When H1 is used to
initialize SCF, QHFLOW can accelerate conventional DFT and SCF procedures.

under rotations and translations due to their construction in a spherical harmonics basis. SE(3)-
equivariant networks such as PhisNet [20], QHNet [23], WANet [25], and SHNet [26] have been
proposed to address this, using tensor representation and Clebsch–Gordan products to enforce rota-
tional equivariance. These approaches rely on pointwise regression, which may lead to high predictive
uncertainty and often struggle to capture the structural correlations present in the Hamiltonian matrix.

Contribution. In this work, we introduce QHFLOW, a high-order SE(3)-equivariant flow matching
for generating Kohn-Sham Hamiltonians. Our work uses flow matching to learn a neural ordinary
equation (ODE) that transforms a prior distribution to the target distribution of Hamiltonians. We
also parameterize the vector fields using high-order SE(3)-equivariant neural networks to ensure that
symmetry is preserved not only in the output, but throughout the entire ODE trajectory [27, 28].

To be specific, QHFLOW generates Hamiltonians conditioned on molecular geometries using equiv-
ariant architectures and is trained to match the distribution of Hamiltonians obtained from DFT. To
this end, we design two types of SE(3)-invariant priors to support equivariant flow-based learning:
a Gaussian orthogonal ensemble (GOE) and a tensor expansion-based (TE) prior that includes a
group-theoretic structure. To further enhance the accuracy of energy-related properties, we introduce
a fine-tuning stage that aligns the predicted orbital energies with those from the DFT, inspired by the
weight alignment loss in WANet [25]. We provide an overview of QHFLOW in Figure 1.

Our main contributions are as follows:

• Flow matching for Hamiltonian prediction: We are the first to formulate Hamiltonian pre-
diction as a generative problem, learning a trajectory to generate Kohn-Sham Hamiltonians
conditioned on molecular geometry using SE(3)-equivariant vector fields.

• Symmetry-aware prior distributions: We introduce two SE(3)-invariant priors, based
on the Gaussian orthogonal ensemble (GOE) and the tensor expansion (TE), ensuring
equivariant flow matching and symmetrical initialization of Hamiltonian priors.

• Energy alignment fine-tuning: We introduce a fine-tuning strategy that aligns the predicted
orbital energies with target orbital energies. This step encourages the model to match the
target orbital energies, resulting in physically consistent property predictions.

• Empirical performance: Extensive experiments on MD17 and QH9 demonstrate that
QHFLOW outperforms recent methods in terms of predicting the Hamiltonian MAE, orbital
energy prediction, HOMO, LUMO and gap energy accuracy. We also show that using QH-
FLOW’s predictions as initialization for the SCF procedure leads to significant acceleration
of the DFT process, reducing the number of iterations and total computation time.

2 Related work

Hamiltonian matrix prediction. Learning-based approaches for Hamiltonian matrix prediction
have emerged as promising alternatives to the computationally demanding traditional DFT method.
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Early work such as SchNOrb [19] extends SchNet [29] to enable accurate prediction of molecular
orbitals. PhiSNet [20] introduces an architecture that explicitly respects SE(3)-symmetry using tensor
representations and tensor product operations. QHNet [23] improves computational efficiency by
reducing the number of high-order tensor products, and WANet [25] further extends this direction to
larger molecular systems by incorporating a physically grounded loss function. Recently, SPHNet [26]
improves scalability through adaptive path selection in the tensor product. Despite these advances,
all preceding methods treat Hamiltonian prediction as a pointwise regression task. In contrast, our
approach leverages flow matching to model the structural correlation in the Hamiltonian.

Flow matching for prediction. Flow matching [30, 31] has gained significant attention in generative
modeling for its ability to leverage an ordinary differential equation (ODE)-based formulation,
enabling faster inference than diffusion models [27]. Flow matching has been increasingly applied
to machine learning problems in chemistry and drug discovery [32]. In particular, recent work has
shown its effectiveness in regression-style applications such as protein structure prediction [33],
crystal structure prediction [34, 35], and protein binding site identification [36], where modeling
complex target distributions is crucial. In this work, we further extend flow matching to Hamiltonian
matrix prediction. By framing the task as a distributional matching problem, our model learns
structured outputs with greater accuracy and physical fidelity than conventional regression-based
methods, illustrating the broader utility of flow matching in scientific prediction tasks.

3 Preliminary

3.1 Kohn-Sham density functional theory and Roothaan-Hall equation

Kohn-Sham density functional theory (KS-DFT). The Kohn-Sham (KS) equations [1, 12] are sim-
plified analogs of the many-body Schrödinger equation [37] that retain a one-to-one correspondence
with the ground-state density of the interacting electron system. This framework has revolutionized
quantum mechanical simulations of electronic structures in atoms, molecules, and solids [9–11],
offering a practical balance between computational efficiency and predictive accuracy.

Consider an N -particle system associated with the wavefunction Ψ : R3×N → C. In principle, the
system is governed by the stationary Schrödinger equation ĤΨ = ϵΨ, which describes the quantum
behavior of a system using the Hamiltonian operator Ĥ and the total energy ϵ. A direct solution is
generally intractable, as its computational cost scales exponentially with the number of particles N .

Kohn-Sham density functional theory (KS-DFT) provides a computationally feasible alternative.
Instead of solving the complex many-body wavefunction Ψ, KS-DFT uses the ground-state electron
density ρ(r) as its fundamental variable. This is achieved by introducing a fictitious system of non-
interacting electrons that share the same ground-state density with the real, interacting wavefunction
Ψ. The behavior of non-interacting system is described by a set ofN single-particle orbitals, {ψi}Ni=1,
which are the solutions to the KS equations:

H[ρ]ψi = ϵiψi, ρ(r) =

N∑
n=1

|ψi(ri)|2, (1)

where ρ : R3 → R+ is the electron density, H[ρ] is the effective single-particle KS Hamiltonian
constructed from ρ, and ϵi ∈ R is the orbital energy. The H[ρ] contains the external, Hartree, and
exchange-correlation terms. We provide a detailed explanation in Appendix A.1.

Roothann-Hall (RH) equation. In practice, the KS-equations are projected into a finite basis set,
converting differential equations into the matrix eigenvalue problem known as RH-equation [38, 39]:

H[C]C = SCϵ. (2)

Here, C ∈ RB×N denotes the set of coefficients where each row {Cbi}Bb=1 express an orbital ψi as a
linear combination of B basis functions {ϕb(r)}Bb=1i.e., ψi(r) =

∑B
i=1 Cbiϕb(r). Next, H[C] is the

Hamiltonian matrix H ∈ RB×B constructed by the coefficient C, and ϵ ∈ RN×N is the diagonal
matrix of orbital energies i.e., diag(ϵ1, . . . , ϵN ). Finally, S ∈ RB×B is the matrix of overlap
between basis functions Sbb′ =

∫
ϕ∗b(r)ϕb′(r)dr where ϕ∗b denotes the complex conjugate of ϕb. The

basis functions {ϕb(r)} is selected to match the system geometry and commonly chosen between
Slater-type orbitals (STOs) [40, 15], Gaussian-type orbitals (GTOs) [41], or plane waves [42, 10].
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3.2 SO(3)-equivariance in RH-DFT

SO(3)-equivariance and irreducible representations. Formally, a map f is said to be SO(3)-
equivariant if R · f(x) = f(R · x) for all R ∈ SO(3) where · denotes the SO(3) group action. This
equivariance can be described in terms of the representation theory [43]. A representation of SO(3)
is a matrix-valued function that describes the transforms under rotations, and it is called irreducible if
it cannot be decomposed into smaller invariant subspaces. These irreducible representations (irreps)
form the fundamental components for constructing SO(3)-equivariant function, and irrep vector is the
vector that transforms under a specific irrep. Each SO(3) irrep is indexed by a non-negative integer l,
and represented by a Wigner D-matrix D(ℓ)(R) ∈ C(2ℓ+1)×(2ℓ+1). These matrices characterize how
scalar (ℓ = 0), vector (ℓ = 1), and higher-order tensor features (ℓ ≥ 2) transform under rotation. A
rank-ℓ irrep vector w(ℓ) ∈ R(2ℓ+1) transforms under rotation R as: wℓ R−→ R ·w(ℓ) = D(ℓ)(R)w(ℓ)

where R−→ implies the transformation under R. We provide additional background on group theory
and equivariance in Appendices A.2 and A.3.
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Figure 2: Illustration of the Hamiltonian matrix
structure of H2O. Rows and columns are indexed
by quantum and angular momentum numbers (i.e.,
1s, 2s) ordered by atom (O, H, H). The full matrix
(right) is partitioned into atomic blocks with gray
dashed line; the top-left 9 × 9 sub-matrix corre-
sponds to O and is shown in detail (left), grouped
by quantum and angular momentum. Colors indi-
cate the sign and magnitude of matrix elements.

High-order SO(3)-equivariance of RH-DFT.
The Hamiltonian matrix in RH-DFT exhibits
a highly structured form of equivariance. As
shown in Figure 2, the matrix can be organized
into blocks, where each block corresponds to
interactions between two sets of orbital basis
functions indexed by pairs of quantum prin-
cipal numbers and angular momentum num-
bers, i.e., (n1, ℓ1) and (n2, ℓ2). For example,
a block labeled 1s-2p denotes interactions be-
tween (n1, ℓ1) = (1, 0) and (n2, ℓ2) = (2, 1).
These orbital groupings induce a higher-order
structure, where the Hamiltonian must remain
equivariant not only at the global matrix level
but also within each individual block. This
makes Hamiltonian modeling more challeng-
ing than conventional equivariant tasks such as
force or energy prediction, as it requires explicit
handling of block-level symmetry constraints.

This symmetry arises naturally in RH-DFT when the basis set is constructed from spherical harmonics,
which serve as irrep vectors of SO(3). In particular, standard basis functions such as STO or GTO are
defined using spherical harmonics Y m

ℓ , where ℓ and m denote the angular momentum and magnetic
quantum numbers, respectively [44]. When using such spherical-type basis, the full orbital basis set
{ϕb}Bb=1 can be partitioned into K groups, with the k-th group {ϕnkℓkm}

ℓk
m=−ℓk

sharing the same
principal quantum number nk and angular momentum quantum number ℓk. Each group spans a
(2ℓk + 1) functions indexed by m, forming a rank-ℓk irrep vector. We assume the columns of the
coefficient matrix C are ordered according to these groupings. Under a rotation R ∈ SO(3), the
matrix C transforms as follows:

C
R−→ R ·C = D(R)C, D(R) = D(ℓ1)(R)⊕ · · · ⊕D(ℓK)(R), (3)

where each D(ℓk) ∈ R(2ℓk+1)×(2ℓk+1) is the rank-ℓk Wigner D-matrix and ⊕ denotes the direct sum
over irreps. The Hamiltonian matrix H, being a function of C, also satisfies the SO(3)-equivariance:

H [C]
R−→ R ·H [C] = H

[
D(R)C

]
= D(R)H [C]D(R)−1. (4)

We provide further details about the SO(3)-equivariance structure of Hamiltonian submatrix and the
direct sum of Wigner D-matrices in Appendix A.4.

4 Quantum Hamiltonian flow matching (QHFLOW)

4.1 Flow matching for Hamiltonian matrix

Problem formulation. Our goal is to train a model that predicts the Hamiltonian matrix H from
a molecular configurationM = (x,h). Here, for a moleculeM with M atoms, x ∈ RM×3 and
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h ∈ RM×D denotes the atom-wise coordinates and D-dimensional atom-wise features, respectively.
We train the model using a atomic dataset A with a sample (M,H) corresponding to a molecular
configurationM and its Hamiltonian matrix H obtained from conventional RH-DFT solvers.

Conditional flow matching (CFM). We first propose the flow matching for Hamiltonian matrix, by
parameterizing our model as a continuous normalizing flow (CNF) model. Our CNF aims to learn a
time-dependent vector field vt(·|M) that outputs the Hamiltonian matrix H from solving the ODE
d
dtHt = vt(Ht|M) for time t ∈ (0, 1]. The ODE starts from H0 sampled from the prior distribution
p0 defined over the space RB×B of Hamiltonian matrices and outputs a Dirac distribution centered at
the Hamiltonian matrix H. To this end, we learn the vector field vθt ≈ vt to match the distribution
induced from the empirical distribution (M,H1) ∼ A associated with conditional probability paths
pt(Ht|H). Importantly, the conditional path pt(Ht|H) is expressed using a closed-form conditional
vector field ut(·|H1): d

dtHt = ut(Ht|H1,M) for H0 ∼ p0.

Following previous works [45, 35], we parameterize the conditional probability path using linear
interpolation between H0 and H1, resulting in the conditional vector field ut(Ht|H1,M) = H1−Ht

1−t .
To train the CNF, we use the conditional flow matching objective defined as follows:

LCFM = E(H,M)∼A,t∼U(0,1),Ht∼pt(·|H)

[∥∥∥vθt (Ht)− ut(Ht|H1,M)
∥∥∥2
2

]
, (5)

where U denotes an uniform distribution and ∥ · ∥22 denotes the Frobeneous norm of a matrix. In

practice, we parameterize the vector field by vθt =
Hθ

1(Ht,M)−Ht

1−t using a neural network Hθ
1(·). This

results in the final loss function:

LCFM = E(H,M)∼A,t∼U(0,1),Ht∼pt(·|H)

[
1

(1− t)2
∥∥∥Hθ

1(Ht,M)−H1,M

∥∥∥2
2

]
, (6)

which one could interpret as training Hθ
1 to approximate the true Hamiltonian matrix H from its noisy

versions Ht. We provide a full description of the training and sampling algorithms in Appendix B.1.

Fine-tuning for energy alignment. In practice, many important quantum properties derived from
DFT rely directly on orbital energies. To improve the accuracy of such downstream quantities
including orbital energies, highest occupied molecular orbital (HOMO) energy, loweset unoccupied
molecular orbital (LUMO) energy, and the HOMO–LUMO gap, we introduce a fine-tuning strategy
that explicitly aligns the predicted orbital energies with their ground-truth DFT references. This
approach is motivated by the weighted alignment loss (WALoss) introduced in WANet [25], which
improves prediction quality by aligning the energy of predicted and reference matrix. Rather than
incorporating this loss during full training, we adopt it as a post hoc fine-tuning objective.

Specifically, we define a fine-tuning objective that aligns the approximate orbital energies ϵ̃ derived
from our predicted Hamiltonian matrix Hθ

1 from CNF with the ground-truth orbital energies ϵ
computed from RH-DFT as defined in Equation (2):

LFT = E(H,M)∼A,t∼U(0,1),Ht∼pt(·|H)

[∥∥∥ϵ̃(Hθ
1(Ht,M)

)
− ϵ
∥∥∥2
2

]
(7)

Here, the ground-truth orbital energies ϵ are computed via the identity ϵ = C⊤HC, which follows
from the orthonormality condition C⊤SC = I, where C is the ground-truth coefficient matrix
and S is the overlap matrix. Following WALoss, we estimate ϵ̃ using the predicted Hamiltonian:
ϵ̃ = C⊤Hθ

1C ≈ (Cθ)⊤Hθ
1C

θ, where Cθ is the coefficient matrix obtained by solving the RH-DFT
for the predicted Hamiltonian Hθ

1. We provide the implementation details in Appendix B.2.

4.2 SE(3)-equivariant flow matching with equivariant priors.

Here, we introduce our approach to design our QHFLOW to satisfy SE(3)-equivariance. We follow
the framework of Song et al. [27] to learn an equivariant vector field under an invariant prior. To
handle translational symmetry, our networks operate in a mean-free system by centering the molecular
coordinates X at the origin, i.e., set X 7→ X− 1

N 11⊤X given a vector 1 ∈ RN×1 of ones. To make
QHFLOW satisfy equivariance, we (1) parameterize the vector field vθt using a SO(3)-equivariant
neural network [23] and (2) propose Gaussian orthogonal ensemble (GOE) and tensor expansion-
based (TE) priors for the Hamiltonian. The main challenge is to design new priors that are invariant
to the rotation of the Hamiltonian matrix as described in Equation (4).
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Gaussian orthogonal ensemble (GOE) prior. We here introduce a simple rotational invariant
prior, the GOE prior. A GOE is defined over matrices H ∈ Rn×n, with each element drawn from
a Gaussian distribution: Hij ∼ N (0, σ2). The log-density is proportional to the Frobenius norm
of the matrix, which is invariant under any transformations associated with SO(3) irreps, i.e., the
3D-rotation matrix (ℓ = 1) and even the high-rank Wigner D-matrices (ℓ ≥ 2). Therefore, the prior
satisfies the desired invariance, i.e., p(H) = p(D(R)HD(R)−1) for all R ∈ SO(3). We provide the
full proof for the SO(3)-invariance in Appendix C.1.

Tensor expansion-based (TE) prior. We also introduce TE prior, an SO(3)-invariant distribution
constructed by first sampling an irrep vector w(ℓ), then applying tensor expansion to produce a matrix
H(ℓ1,ℓ2) ∈ R(2ℓ1+1)×(2ℓ2+1) that transforms covariantly under rotation R ∈ SO(3):

H(ℓ1,ℓ2) R−→ D(ℓ1)(R)
(
H(ℓ1,ℓ2)

)
D(ℓ2)(R)−1. (8)

To this end, we first design an SO(3)-invariant distribution of irrep vector p(w(ℓ3)) by decomposing
the vector into a radial and rotational parts: w(ℓ) = rD(ℓ)(R)w(ℓ0) where r is a scalar norm and w(ℓ0)

is a fixed unit-norm irrep vector. i.e., Y ℓ(r̂0) for fixed direction r̂0. By sampling r independently of
R, and choosing R uniformly on SO(3), the resulting prior p(wℓ) is SO(3)-invariant. In practice, we
take r ∼ Normal(µ, σ2) to ensure positivity, and R ∼ Uniform(SO(3)).

Next, we apply tensor expansion, which maps a rank-ℓ irrep vector w(ℓ) ∈ R(2ℓ+1) into a matrix of
shape (2ℓ1+1)×(2ℓ2+1), indexed by the (m1,m2) satisfying−ℓ1 ≤ m1 ≤ ℓ1 and−ℓ2 ≤ m2 ≤ ℓ2,
respectively. Each entry of the resulting matrix is defined as follows:(

⊗̄w(ℓ)
)(ℓ1,ℓ2)
(m1,m2)

=

ℓ∑
m=−ℓ

C
(ℓ,m)
(ℓ1,m1),(ℓ2,m2)

w(ℓ)
m , (9)

where C denotes Clebsch-Gordan coefficients, ⊗̄ denotes the tensor expansion operation. Note that
the superscript (ℓ1, ℓ2) indicates the output irrep structure and can be omitted when clear from context.
The rotation of this expanded matrix is represented by the Wigner D-matrix as follows:(

⊗̄w(ℓ)
) R−→ D(ℓ1)(R)

(
⊗̄w(ℓ)

)
D(ℓ2)(R)−1. (10)

See Appendix C.2 for proof. This property allows us to construct SO(3)-invariant distributions over
Hamiltonians. We formalize this in the following theorem:

Theorem 1. Let H =
(
⊗̄w(ℓ)

)(ℓ1,ℓ2), where an irrep vector w(ℓ) ∼ p(w(ℓ)) is drawn from a SO(3)-
invariant distribution. Then the induced distribution over H is invariant under SO(3) transformation:

p(H) = p(D(ℓ1)(R)HD(ℓ2)(R)−1), ∀R ∈ SO(3). (11)

We provide proof in Appendix C.3. Using the expansion, we can model the invariant distributions
for each sub-matrix of Hamiltonian H. We further extend this construction to build global invariant
distributions over full Hamiltonian matrices H by composing multiple high-order irrep vector via
tensor expansion. We provide a detailed construction of this multi-block formulation in Appendix C.4.

4.3 Model implementation

We construct QHFLOW by extending QHNet [23], an SE(3)-equivariant GNN for Hamiltonian predic-
tion. Our architecture introduces time conditioning and two additional inputs: the current Hamiltonian
Ht and the overlap matrix S. The model takes (M,Ht,S, t) and predicts the target Hamiltonian Hθ

1
as described in Equation (6). We provided the implementation details in Appendix D.1.

Feature intialization. We first construct the atom-wise features hi, si based on (1) extracting atom-
wise submatrices Hi,Si from Ht,S and (2) mapping the submatrices into SO(3) irrep vectors based
on Wigner-Eckart projections [46], i.e., set hi = ProjBlock (Hi) , si = ProjBlock (Si) where
ProjBlock flattens and applies change of basis transformations to the input matrix. We further
encode time t through tensor field network (TFN) [47] layer and sinusoidal encoding et = ftime(t),
i.e., set mi = TFN (xi,hi, et).

Message-passing layers. To propagate information between neighbors, our model updates the irrep
vectors hi and si using SO(3)-equivariant attention-based layers adapted from Equiformer [48]:

hi ← EquiBlock
(
hi,
{
(hj , dij)

}
j∈Ni

, et

)
, si ← EquiBlock

(
si,
{
(sj , dij)

}
j∈Ni

, et

)
,
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where Ni denotes the neighbors of atom i and dij is distance between atom i and j. We then apply
a channel mixing module, Mix, which linearly combines the set of irrep vectors by flattening and
reordering them according to their corresponding irrep indices while preserving SE(3)-equivariance.
This module update the mi in the residual manner:

mi ← TFN
(
mi + Mix(hi, si,mi),

{
(mj , dij)

}
j∈Ni

, et

)
. (12)

This update process is repeated for a fixed number of iterations, allowing the model to integrate
geometric and physical information across the molecular graph.

Hamiltonian reconstruction. The atom-wise irrep vectors mi are passed into two TFN modules to
predict Hamiltonian components. The first TFNs computes atom-wise irreps wii using messages from
neighboring atoms, while the next TFNp predicts pairwise irreps wij between atom i and j:

wii = TFNs
(
mi, {(mk, dik)}k∈Ni

)
, wij = TFNp

(
mi,mj , dij

)
. (13)

Each output consists of a set of irrep vectors, wii = {w(ℓ)
ii }ℓ∈Li

and wij = {w(ℓ)
ij }ℓ∈Li

, where Li is
the set of angular momentum ℓ corresponding to the atom i. Then Hamiltonian blocks are constructed
via tensor expansion ⊗̄ and learnable weights F :

H
(ℓ1,ℓ2)
ij =

∑
ℓ∈Li

F
(ℓ1,ℓ2,ℓ)
ij

(
⊗̄w(ℓ)

ij

)(ℓ1,ℓ2)
, (14)

where ℓ1 ∈ Li and ℓ2 ∈ Lj , and the case i = j corresponds to diagonal block. These blocks are
then assembled into the full Hamiltonian matrix Ĥ, which is structured into K ×K sub-matrices
corresponding to all pairwise combinations of the K groups of basis functions. All operations in
this reconstruction preserve SE(3)-equivariance, ensuring that both Ĥ and the learned vector field vθt
remain equivariant under any SE(3) transformation of the molecular geometry.

5 Experiments

In this section, we present experimental results that demonstrate the effectiveness of QHFLOW. We
evaluate the performance on a public benchmark and compare it with competitive baselines [19, 20,
23, 26] when metrics are available. We provide training settings and hyperparameters in Appendix E.

Datasets. We evaluate our model on two datasets: MD17 [49, 19] and QH9 [50, 51, 24]. MD17
contains DFT Hamiltonians along molecular dynamics trajectories for four small molecules, water
(4,900 structures), ethanol (30,000), malondialdehyde (26,978), and uracil (30,000). The PBE
exchange–correlation [52, 53] functional with a GTO basis set is used for DFT.

QH9 consists of two subsets: stable and dynamic-300k, each supporting in-distribution (id) and out-
of-distribution (ood) splits. The stable includes 130,831 molecules with up to 29 atoms. The id split
randomly samples molecules, while the ood split groups them by size. The dynamic-300k contains
2,998 molecules, each with 100 perturbed geometries. The geo split assigns geometries randomly
across splits for each molecule; the mol split partitions at the molecule level to test on unseen
molecular identities. All QH9 Hamiltonians are computed using B3LYP [54] with the def2-SVP
basis set. We provide the details about the dataset in Appendix E.1.

Evaluation metrics. Our evaluation metrics include the mean absolute error (MAE) of the Hamilto-
nian H, the MAE of occupied orbital energies (ϵocc), and the similarity score of the orbital coefficient
matrix (Sc). To assess physical fidelity on QH9, we also report the energy of LUMO (ϵLUMO), HOMO
(ϵHOMO), and HOMO–LUMO gap (ϵ∆). We provide details of the metrics in Appendix E.2.

5.1 Performance on MD17 dataset

We extensively evaluate QHFLOW on the widely used MD17 benchmark dataset to assess its accuracy
in predicting Hamiltonian matrices in diverse molecular geometries. As shown in Table 1, we compare
QHFlow with baseline models in four representative molecules, and it consistently outperformed all
existing methods. With up to a 73% reduction in Hamiltonian prediction error, QHFlow demonstrates
strong predictive performance. This improvement highlights its ability to capture fine-grained
variations in quantum Hamiltonians resulting from subtle geometric changes, an essential capability
for accurately modeling physical and chemical behavior.
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Table 1: MD17 benchmark. Results shown in bold denote the best result in each column, whereas
those that are underlined indicate the second best.

Water (3 atoms) Ethanol (9 atoms) Malondialdehyde (9 atoms) Uracil (12 atoms)

H ↓ ϵocc↓ Sc↑ H ↓ ϵocc↓ Sc↑ H ↓ ϵocc↓ Sc↑ H ↓ ϵocc↓ Sc↑Model [µEh] [µEh] [%] [µEh] [µEh] [%] [µEh] [µEh] [%] [µEh] [µEh] [%]

SchNOrb 165.4 279.3 100.00 187.4 334.4 100.00 191.1 400.6 99.00 227.8 1760. 90.00
PhiSNet 15.67 85.53 100.00 20.09 102.04 99.81 21.31 100.6 99.89 18.65 143.36 99.86
QHNet* 11.70 26.06 100.00 27.99 99.33 99.99 29.60 100.16 99.92 26.80 127.93 99.87
SPHNet 23.18 182.29 100.00 21.02 82.30 100.00 20.67 95.77 99.99 19.36 118.21 99.99
Ours 4.93 19.29 100.00 5.33 29.03 100.00 3.80 22.68 99.99 3.68 30.54 99.99

Table 2: QH9 benchmark. WA-FT implies finetuned model with WAloss. Results shown in bold
denote the best result in each column, whereas those that are underlined indicate the second best.

Dataset Model H ↓ [µEh] ϵocc ↓ [µEh] Sc ↑ [%] ϵLUMO ↓ [µEh] ϵHOMO ↓ [µEh] ϵ∆ ↓ [µEh]

QHNet∗ 77.72 963.45 94.80 18257.34 1546.27 17822.62
WANet 80.00 833.62 96.86 - - -
SPHNet 45.48 334.28 97.75 - - -

Ours 22.95 119.67 99.51 437.96 179.48 553.87

QH9-stable
(id)

Ours (WA-FT) 23.85 101.92 99.56 187.48 92.22 206.15
QHNet∗ 69.69 884.97 93.01 25848.83 1045.99 25370.10
SPHNet 43.33 186.40 98.16 - - -

Ours 20.01 84.54 99.04 321.20 130.74 395.83
QH9-stable

(ood)
Ours (WA-FT) 20.55 72.64 99.16 171.24 77.96 179.57
QHNet∗ 88.36 1170.50 93.65 23269.41 2040.06 22407.96
WANet 74.74 416.57 99.68 - - -
SPHNet 52.18 100.88 99.12 - - -

Ours 25.94 103.11 99.59 425.18 175.18 547.33

QH9-dynamic
(300k-geo)

Ours (WA-FT) 27.12 89.03 99.65 136.63 84.17 154.68
QHNet∗ 121.39 5554.36 86.02 53505.09 4352.76 50424.86
SPHNet 108.19 1724.10 91.49 - - -

Ours 45.91 442.56 98.65 1344.68 479.71 1605.03
QH9-dynamic

(300k-mol)
Ours (WA-FT) 46.60 424.75 98.74 912.10 403.51 1047.88

5.2 Performance on QH9 dataset

We evaluate QHFLOW on the QH9 dataset, a more challenging benchmark that includes various
molecular sizes and compositions. This setting requires the model to generalize effectively across
chemical and geometric variations. We trained on four different data splits. As shown in Table 2,
QHFLOW consistently outperforms all prior methods in all metrics. In particular, it shows significant
improvements in properties sensitive to eigenvalues such as ϵLUMO, ϵHOMO, and ϵ∆, showing the
benefits of the flow-based model in capturing a physically meaningful structure in Hamiltonians.
These results demonstrate QHFLOW’s strong potential as a surrogate model for DFT.

We also apply our energy fine-tuning stage to a pretrained QHFLOW using the weighted alignment
loss (WAloss) [25] for an additional 60,000 steps, which we denote as WA-FT. As shown in Table 2,
this improves predictions of orbital energies and their downstream task, confirming that energy
alignment fine-tuning serves as an effective inductive bias. We compare training from scratch with
the WALoss and flow matching objectives in Appendix F.1.

5.3 DFT acceleration performance

Here, we show that our QHFLOW can accelerate DFT through initializing the SCF iterations [13–15]
using the predicted Hamiltonian matrix, replacing the conventional SCF initialization methods.

Preliminaries on SCF method. Starting from an initial Hamiltonian H(0), each SCF iteration solves
the generalized eigenvalue problem H(k)C(k) = SC(k)ϵ(k) to obtain the coefficients C(k). The coef-
ficients are then used to construct the density ρ(k) and subsequently update the Hamiltonian to H(k+1)

through the mapping C(k) Q−→ ρ(k)
H−→ H(k+1), where Q−→ and H−→ denote the density construction

and Hamiltonian update operators, respectively. The iteration continues until convergence.

*We use our re-trained version of QHNet, based on the publicly available implementation.
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Figure 3: DFT acceleration performance on 300 samples from the QH9 dataset. All metrics are
reported as percentages relative to conventional DFT (initialized with minao), which serves as the
100% baseline. The SCF Iter Ratio measures the ratio of SCF iterations required, while Inf T Ratio,
SCF T Ratio, and Total T Ratio measure time. Lower SCF Iter Ratio and Total T Ratio values indicate
faster convergence. For example, a Total T Ratio of 46% means QHFLOW converges in 46% of the
conventional DFT time, including the negligible model inference time.

DFT acceleration via SCF initialization. We use QHFLOW’s prediction Ĥ to replace the con-
ventional Hamiltonian guess by beginning the SCF loop closer to convergence. Performance is
summarized with four relative metrics normalized by the conventional DFT baseline metric: SCF
Iter Ratio: ratio of SCF iteration count, SCF T Ratio: ratio of SCF wall time, Inf T Ratio: ratio
of inference time as a fraction of baseline SCF wall time, Total T Ratio: Ratio of net runtime after
adding inference overhead. We provide the definition of metric in Appendix E.2.

We evaluate QHFLOW on 300 test molecules from the QH9 dataset, selected via a fixed index slice
using a 3-step ODE-based sampling. As shown in Figure 3, QHFLOW significantly accelerates the
convergence of SCF. For instance, on the QH9 id benchmark, QHFLOW achieves convergence in
46% of the runtime required by conventional DFT, corresponding to 54% relative speedup. Compared
to previous ML-based initializations methods like QHNet which requires 53% of the conventional
runtime, QHFLOW provides an additional reduction of 7% points. These results demonstrate the
practical utility of QHFlow for accelerating real-world DFT simulations.

5.4 Ablation studies

Here, we ablate our design choices, with more results (e.g., orbital energy metrics) in Appendix F.3.

Table 3: Effect of prior distribution.

Data Prior H ↓ [µEh] ϵocc↓ [µEh] Sc↑ [%]

id GOE 25.93 154.65 99.39
TE 22.95 119.61 99.51

ood GOE 20.41 87.32 98.95
TE 20.01 84.54 99.04

geo GOE 29.39 122.14 99.49
TE 25.94 103.11 99.59

mol GOE 46.78 419.68 98.65
TE 45.91 442.56 98.65

GOE, TE-based priors. We explore the effects of the flow
matching prior for Hamiltonian prediction by comparing the
two priors introduced in Section 4: GOE and TE prior. The
GOE prior treats each symmetric matrix as structure-free
noise, whereas the TE prior injects group-theoretic bias that
matches the blockwise symmetry of Hamiltonians.

Table 3 compares GOE and TE priors, where the TE prior
results are identical to those of QHFlow reported in Table 2.
We found that the TE prior consistently yields lower errors
than the GOE prior across all splits. This highlights the
importance of designing task-aligned and symmetry-aware priors for accurate Hamiltonian prediction.

Table 4: Predictive variance of QHFLOW.

Data Model H ↓ [µEh] ϵocc↓ [µEh] Sc↑ [%]

Ours 22.95± 0.001 119.67± 0.211 99.51± 0.001id WA-FT 23.85± 0.001 101.92± 0.279 99.56± 0.002

Ours 20.01± 0.001 84.54± 0.007 99.04± 0.003ood WA-FT 20.55± 0.002 72.64± 0.018 99.16± 0.006

Ours 25.94± 0.001 103.26± 0.031 99.59± 0.001geo WA-FT 27.12± 0.002 89.03± 0.213 99.65± 0.001

Ours 45.91± 0.001 443.56± 0.171 98.65± 0.001mol WA-FT 46.60± 0.001 424.75± 0.324 98.74± 0.001

Predictive variance. To evaluate the robustness of
QHFLOW to stochastic initialization, we repeat infer-
ence 5 times per molecule using the TE prior, chang-
ing only the seed that generates the initial noise sam-
ple. Results are shown in Table 4, with all metrics
reported as mean±std over five runs. The predicted
Hamiltonians exhibit a mean absolute deviation of just
0.03% and a standard deviation of predicted energy
below 0.3µEh, much smaller than the prevalent chem-
ical accuracy thresholds. These results confirm that
QHFLOW produces stable and consistent predictions
despite stochastic initialization.
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6 Conclusion

In this work, we introduce QHFLOW, a high-order equivariant flow-based generative model designed
to predict Hamiltonian matrices with high accuracy and physical consistency. By designing SE(3)-
invariant priors GOE and TE, QHFLOW improves the accuracy and generalization across diverse
geometries. Extensive experiments on the MD17 and QH9 datasets demonstrate that QHFLOW not
only achieves state-of-the-art performance across multiple evaluation metrics but also significantly
improves efficiency in downstream SCF calculations. Our results highlight the power of flow-based
learning for scientific tasks and establish QHFLOW as a scalable and physically grounded framework
for accelerating quantum chemistry simulations.

Limitation

We did not fully verify the generalizability of our approach, e.g., extension to new architectures
(WANet [25], SPHNet [26]) or datasets (PubChemQH [25]), due to the lack of resources, public
codes, and public datasets. Our flow-based formulation introduces computational overhead for
solving ODEs. In the future, one could consider removing the overhead with the one-step generative
models [55]. Our experiments are limited to gas-phase molecules with up to 29 atoms and two
commonly used XC functionals (PBE and B3LYP). The algorithms are left to be verified for more
general settings, such as periodic solids or higher-accuracy functionals (e.g., hybrid or double-hybrid).
We also acknowledge that our datasets consist of relatively small molecules. One could further test
the scalability of our approach once new datasets on larger systems are available. We also note that
our work does not give a theoretical explanation of how Hamiltonian prediction error translates to
SCF acceleration. Developing a theoretically grounded algorithm specifically for SCF acceleration
would be an interesting future research.

Broader Impact

This work focuses on advancing machine learning methods for quantum chemistry applications and
does not involve human subjects, personal data, or sensitive information. As such, we believe that
there are no direct ethical concerns associated with this research. Nevertheless, we acknowledge
that improved computational tools for molecular modeling could have downstream applications in
sensitive areas such as pharmaceuticals or materials development. We encourage responsible and
ethical use of our methods in accordance with applicable laws and scientific guidelines.
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paper’s contributions and scope?
Answer: [Yes]
Justification: Discussions on the methods and empirical results can be found in Sections 4
and 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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• The paper should point out any strong assumptions and how robust the results are to
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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Answer: [Yes]

Justification: We provide the main objective function of our work with the description of the
implementation and hyperparamters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We used the publicly available data. Code will be on GitHub after publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Improvement percentages (> 50%) are discussed in Section 5. Also, we provide
the variance of our model prediciton which is related with the nature of the generative model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Discussions are in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The work has positive impact on the drug discovery and material science, and
this is discussed in Section 1 and 2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not present issues of high-risk misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data sources and baseline models are open-sourced. They have been
properly credited and mentioned, as outlined in Section 4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments were conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our methodology is not involved with the LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Preliminary

A.1 Kohn-Sham density functional theory

Density functional theory (DFT) is a cornerstone of quantum chemistry and materials science,
offering a computationally tractable framework for approximating the electronic structure of many-
body systems. As directly solving the many-electron Schrödinger equation [37] is prohibitively
expensive for systems with many particles, DFT reformulates the problem by expressing ground-state
properties as a functional of the electron density ρ(r). Since ρ(r) depends only on three spatial
coordinates, this significantly reduces the computational cost regardless of the number of electrons.

In practical applications, DFT is most commonly implemented via the Kohn–Sham formulation [1,
12], which introduces a fictitious system of non-interacting electrons designed to reproduce the
true ground-state density of the real interacting system. The wavefunction of this non-interacting
system, often referred to as the Kohn–Sham wavefunction ΨKS , is defined as follows. Since electrons
are fermions, ΨKS must obey the Pauli exclusion principle. This requires the wavefunction to
be antisymmetric with respect to the exchange of any two electrons, a property that is achieved
by constructing ΨKS as a Slater determinant built from the N single-particle Kohn-Sham orbitals
{ψi}Ni=1:

ΨKS(r1, . . . , rN ) =
1√
N !

det[ψi(rj)]
N
i,j=1 =

1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) · · · ψN (r1)
ψ1(r2) ψ2(r2) · · · ψN (r2)

...
...

. . .
...

ψ1(rN) ψ2(rN) · · · ψN (rN)

∣∣∣∣∣∣∣∣∣ (15)

Originally, the electron density is calculated from the wavefunction Ψ:

ρ(r) = N

∫
· · ·
∫
|Ψ(r, r2, . . . , rN )|dr2 · · · drN . (16)

However, assuming orthonormal orbitals, the density expression simplifies to:

ρ(r) =

N∑
i=1

|ψi(r)|2. (17)

Instead of explicitly constructing the full KS wavefunction, which scales exponentially with system
size due to the determinant, we can directly obtain the electron density from the single-particle
orbitals ψi. The single-particle orbitals {ψi(r)} and their corresponding energies {ϵi} are found by
solving the Kohn-Sham (KS) equations:

H[ρ]ψi(r) =

[
−1

2
∇2 + Vext(r) + VH[ρ](r) + Vxc[ρ](r)

]
ψi(r) = ϵiψi(r), (18)

Here, the entire term in brackets is the effective KS Hamiltonian H[ρ], which is a functional of
the electron density ρ. It consists of the Laplacian operator (∇2) for the kinetic energy of the non-
interacting electrons, the external potential (Vext) from the atomic nuclei, the Hartree potential (VH)
representing classical electrostatic repulsion, and the crucial exchange-correlation potential (Vxc),
which encapsulates all complex many-body quantum effects.

The ground-state electron density ρ(r) is then constructed from the N occupied KS orbitals obtained
from solving these equations:

ρ(r) =

N∑
i=1

|ψi(r)|2. (19)

It is important to note that the KS orbital ψi is not, by itself, a physical wavefunction. It is a
mathematical construct introduced solely to yield the same ground-state electron density as the real,
interacting system. Additionally, the Hamiltonian H[ρ] depends on the density ρ, and ρ itself is
constructed from the orbitals ψi that solve the KS equations, therefore forming a self-consistent
problem.
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A.2 Group theory

We briefly introduce key concepts from group theory, providing the necessary background to under-
stand the motivation behind equivariant designs in Hamiltonian prediction.

Groups. A group G is a non-empty set equipped with a binary operation ◦ : G×G→ G, satisfying
the following axioms:

• Associativity: For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c).
• Identity: There exists an identity element e ∈ G such that for all a ∈ G, e ◦ a = a ◦ e = a.
• Inverse: For each a ∈ G, there exists an inverse a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e.
• Closure: For all a, b ∈ G, the result a ◦ b is also in G.

We typically simplify notation by omitting ◦, writing ab instead of a ◦ b. Groups can be finite or
infinite, discrete or continuous, compact or non-compact. Group theory [43] provides a rigorous
mathematical foundation for describing symmetries in physical systems [56], an essential perspective
for designing physically informed machine learning models.

Group actions. To make group theory applicable to structures in mathematics and physics, we define
how groups act on sets. A groupG is said to act on a set X if there exists a function ·X : G×X → X 1

such that for all g, h ∈ G and x ∈ X , the following conditions hold: (1) e ·X x = x, where e is the
identity element of G, and (2) (gh) ·X x = g ·X (h ·X x). These conditions ensure that the group
operation is compatible with its action on the set. In practice, such group actions often correspond
to geometric transformations, such as translations, rotations, or reflections, on points or functions
defined over Euclidean space.

Equivariance. When working with structured data such as molecular geometries or fields, it is often
desirable that the operations we apply preserve the symmetries of the underlying space. A function
f : X → Y is said to be equivariant with respect to group actions ·X on the input space X and ·Y on
the output space Y , if it satisfies

f(g ·X x) = g ·Y f(x), ∀g ∈ G, x ∈ X . (20)

This means that applying a group transformation before or after the function yields consistent results.
In physical systems, such as those governed by rotational symmetry (e.g., SO(3) in molecules),
equivariance ensures that rotated inputs yield correspondingly rotated outputs. This property is
critical in designing models that generalize well across symmetrically equivalent configurations.

Group representations. Group actions on vector spaces are formalized through the notion of
representations. A representation of a group G on a vector space V is a homomorphism ρ : G →
GL(V ), where GL(V ) denotes the group of invertible linear transformations on V . This mapping
associates each group element with a linear operator that describes how the group acts on the
space. The vector space V is referred to as the representation space, and its dimension defines the
representation’s size.

In finite-dimensional real spaces V = Rd, these representations are often expressed as invertible
matrices D(g) ∈ Rd×d. For instance, the group SO(3) of 3D rotations is represented by orthogonal
matrices g ∈ SO(3) and its 3D rotation matrix R ∈ R3×3 acting on vectors x ∈ R3 via matrix
multiplication D(g)x = Rx.

Two representations D(g) and D′(g) are said to be equivalent if they are related by a change of basis:

D′(g) = Q−1D(g)Q, (21)

for some invertible matrix Q. Such equivalence indicates that the two representations describe the
same group action under different coordinate systems.

A.3 Irreducible representations

Irreducible representations (Irreps). A representation ρ : G→ GL(V ) of a group G on a vector
space V is called irreducible if it does not contain any nontrivial invariant subspace. More formally,

1The subscript of group action operator for indicating the input and output space is often omitted when clear
from context, i.e., g ·X h = g · h.
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a subspace W ⊆ V is said to be invariant under the representation ρ if for all group elements g ∈ G
and all vectors w ∈W , the action satisfies:

ρ(g)w ∈W. (22)

Then, the representation ρ is irreducible if the only invariant subspaces it admits are the trivial
subspace {0} and the entire representation space V .

Irreducible representations play a fundamental role because any finite-dimensional unitary representa-
tion of a compact group can be uniquely decomposed into a direct sum of irreducible representations,
up to isomorphism [57]. This decomposition is foundational in analyzing the symmetry properties
and constructing equivariant neural network architectures.

For the rotation group SO(3), the irreps are completely characterized by non-negative integers ℓ ∈ N0.
Each irreducible representationD(ℓ) : SO(3)→ C(2ℓ+1)×(2ℓ+1) has dimension 2l+1 and is explicitly
realized by the action on spherical harmonics Y l

m(θ, ϕ). For a function f : S2 → C can be expanded
in the basis of spherical harmonics as:

f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

flmY
l
m(θ, ϕ), (23)

where flm ∈ C is the complex coefficients of the spherical harmonics. The action of a rotation
R ∈ SO(3) on f is defined as:

(R · f)(θ, ϕ) = f(R−1 · (θ, ϕ)) =
∞∑
l=0

ℓ∑
m=−ℓ

ℓ∑
m′=−ℓ

D
(ℓ)
mm′(R) fℓm′Y ℓ

m(θ, ϕ), (24)

where D(ℓ)(R) is the Wigner D-matrix corresponding to the irreducible representation labeled by
ℓ, acting linearly on the vector of expansion coefficients f (ℓ) = (f−ℓ, f−ℓ+1, . . . , fℓ) ∈ C(2ℓ+1).
Explicitly, under rotation:

f (ℓ)
R−→ D(ℓ)(R)f (ℓ). (25)

Thus, irreps serve as the fundamental building blocks in constructing functions and features that
transform equivariantly under the action of SO(3).

Clebsch–Gordan tensor product. Given two irreps D(ℓ1), D(ℓ2) of SO(3), their tensor product
D(ℓ1)⊗D(ℓ2) acts on the tensor product space and is generally reducible. It decomposes into a direct
sum of irreps:

D(ℓ1) ⊗CG D
(ℓ2) ∼=

ℓ1+ℓ2⊕
ℓ=|ℓ1−ℓ2|

D(ℓ), (26)

where the decomposition is governed by Clebsch–Gordan (CG) coefficients. CG coefficients enable
a basis transformation from the product space to irreps, playing crucial roles in quantum angular
momentum coupling and equivariant neural networks.

Explicitly, for vectors u(ℓ1) ∈ C(2l1+1) and v(ℓ2) ∈ C(2ℓ2+1), their CG tensor product produces an
irreducible feature w(ℓ) ∈ C(2ℓ+1):

w(ℓ)
m =

∑
m1,m2

C
(ℓ,m)
(ℓ1,m1),(ℓ2,m2)

u(ℓ1)m1
v(ℓ2)m2

. (27)

This construction ensures that w(ℓ) transforms correctly under R ∈ SO(3):(
D(ℓ1)(R)u(ℓ1)

)
⊗CG

(
D(ℓ2)(R)v(ℓ2)

)
= D(ℓ)(R)w(ℓ). (28)

Thus, CG tensor products ensure equivariant transformations, fundamental to maintaining consistency
and symmetry in equivariant neural architectures.

Tensor field networks (TFN). The TFN [47] is a widely used architecture that achieves SE(3)-
equivariance by explicitly encoding features as irreps of SO(3) and using spherical harmonics to
process directional information. Each feature vector at a node is decomposed into spherical tensor
components V (ℓ) ∈ C(2ℓ+1), where ℓ denotes the order of the irreducible representation. The key
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component of the TFN layer is equivariant convolution and self-interaction. For the equivariant
convolution, the filter function is generated by the spherical harmonic functions Y ℓ

m(r̂ij) are applied
to the direction between atoms i and j, i.e., r̂ij = (ri − rj)/∥ri − rj∥, and are modulated by a
learnable radial function R(∥rij∥), implemented as an MLP to produce the filter:

F (ℓin,ℓf )(rij) = R(ℓin,ℓf )(∥rij∥)Y
ℓf
m (r̂ij). (29)

The equivariant convolution aggregates information from neighboring nodes set N using the tensor
product between the filters and neighboring features:

Ṽ
(ℓout)
i =

∑
j∈N

(
F

(ℓin,ℓf )
c (rij)⊗ V (ℓin)

j

)(ℓout)

, (30)

where ℓout ∈ {|ℓin − ℓf |, . . . , (ℓin + ℓf )}. This convolution ensures that the result transforms
equivariantly under rotation.

The self-interaction step applies a linear transformation over the channel dimension to each irreps
independently:

Ṽ
(ℓ)
icm =

∑
c′

wcc′V
(ℓ)
ic′m, (31)

preserving equivariance due to the linearity and diagonal structure in the irrep indices. By construc-
tion, all operations in TFNs are equivariant to SE(3), allowing them to model tensorial and directional
quantities while respecting physical symmetries. This makes them especially well-suited for applica-
tions in molecular modeling, quantum chemistry, and materials science, where equivariance is crucial
for generalization and physical accuracy.

A.4 Symmetry and equivariance of RH-DFT

Spherical harmonics and atomic orbital basis. To numerically solve the Kohn–Sham equations,
electronic wavefunctions are typically expanded in a basis of atomic orbitals. These orbitals are
constructed using spherical harmonics Y ℓ

m(θ, ϕ), which form a complete orthonormal basis on the
sphere S2 and transform under the irreducible representations D(ℓ) of the rotation group SO(3). An
atomic orbital basis function takes the form [58]:

ϕnℓm(r) = Rnℓ(∥r∥)Y ℓ
m(θ, ϕ), (32)

where Rnℓ(∥r∥) is a radial function (e.g., Gaussian [41] or Slater-type [40, 15]), and Y ℓ
m captures the

angular component. Here, n is the principal quantum number, ℓ is the orbital angular momentum
quantum number, and m ∈ {−ℓ, . . . , ℓ} is the magnetic quantum number [44].

These basis functions are central to Kohn–Sham DFT calculations, as molecular orbitals are expressed
as linear combinations of atomic orbitals:

ψi(r) =
∑

α=(nℓm)

Cαi ϕnℓm(r− rα), (33)

where C ∈ RB×O is the orbital coefficient matrix, B is the number of basis functions, and O is the
number of occupied orbitals.

Block Hamiltonian matrix. The Hamiltonian matrix in RH-DFT can be decomposed according to
the angular momentum quantum numbers ℓ grouping associated with the atomic orbitals. Specifically,
let H(ℓ,ℓ′) ∈ C(2ℓ+1)×(2ℓ′+1) denote the submatrix representing the coupling between two angular
momentum numbers ℓ and ℓ′. Under a rotation R ∈ SO(3), each such sub-matrix H(ℓ,ℓ′) transforms
equivariantly according to the SO(3) irreps as follows:

H(ℓ,ℓ′)[D(R)C] = D(ℓ)(R)
(
H(ℓ,ℓ′)[C]

)
D(ℓ′)(R)−1, (34)

where atomic orbitals are grouped by their ℓ and ℓ′, D(R) is block diagonal Wigner-D matrix, and
Dℓ and Dℓ′ are Wigner D-matrices for ℓ and ℓ′, respectively. These submatrices H(ℓ,ℓ′), called
orbital-wise Hamiltonian blocks, are the minimal building blocks of the full Hamiltonian that respect
SO(3)-equivariance and have (2ℓ+1)× (2ℓ′ +1) elements which corresponds to the combination of
the magnetic quantum number m and m′.
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Full Hamiltonian matrix. In practice, basis functions are grouped not only by their angular
momentum, but also by the atom they are centered on. For atom i, we denote its angular momentum
support as Li = {ℓ1, ℓ2, . . .}, where each ℓk corresponds to its atomic shell (e.g., s, p, d) represented
in the basis set.

From this atomic partitioning, the Hamiltonian can be reorganized into block form where each
submatrix H

(ℓ,ℓ′)
ij corresponds to the interaction between angular momentum ℓ ∈ Li of atom i and

ℓ′ ∈ Lj of atom j. The full Hamiltonian H is thus a structured matrix composed of K ×K blocks,
where K =

∑
i |Li| is the total number of irreps (angular momentum groups) across all atoms, where

|Li| denotes the cardinality of the set.

To construct the full Hamiltonian matrix, we first form the atom-pair matrix Hij for every atom-pair
(i, j). This atom-pair matrix gathers all interactions between the angular momentum orbital groupings
on the two atoms:

Hij =


H

(ℓ0,ℓ
′
0)

ij H
(ℓ0,ℓ

′
1)

ij · · ·
H

(ℓ1,ℓ
′
0)

ij H
(ℓ1,ℓ

′
1)

ij · · ·
...

...
. . .

 , ℓk ∈ Li, ℓ′k ∈ Lj , (35)

where H(ℓ,ℓ′)
ij ∈ C(2ℓ+1)×(2ℓ′+1) denotes the interaction between angular momentum ℓ ∈ Li of atom

i and ℓ′ ∈ Lj of atom j.

Next, we place these atom-pair blocks into a global block matrix to obtain the full RH Hamilto-
nian matrix: The full Hamiltonian matrix H ∈ Cn×n, where n =

∑
ℓ(2ℓ + 1), is assembled by

concatenating the atom-pair blocks:

H =

Hii Hji · · ·
Hij Hjj · · ·

...
...

. . .

 , n =
∑
i∈M

∑
ℓ∈Li

(2ℓ+ 1), (36)

for every atom-pair (i, j) in the moleculeM.

For better intuition, we illustrate a schematic structure of the Hamiltonian matrix in Figure 4a. Here,
blocks corresponding to s, p, and d orbitals are arranged according to their angular momentum,
highlighting the blockwise symmetry pattern induced by the underlying spherical harmonics basis.

Rotational equivariance of full Hamiltonian. The global action of a rotation R on the basis is
encoded by the block-diagonal matrix as follows Equation (3):

D(R) = D(ℓ1)(R)⊕ · · · ⊕D(ℓK)(R) =


D(ℓ1)(R) 0 · · ·

0 D(ℓ2)(R) · · ·
...

...
. . .

 , (37)

where each block Dℓ(R) corresponds to the Wigner D-matrix for angular momentum l. The
Hamiltonian matrix as a whole then transforms under rotation as:

H[C]
R−→ H[R ·C] = R ·H[C] = D(R)H[C]D(R)−1. (38)

This global equivariance condition guarantees that the Hamiltonian transforms consistently with
molecular rotations, preserving the physical structure of the system. Leveraging this symmetry is
critical for constructing SE(3)-equivariant machine learning models, which not only respect physical
laws but also improve model generalization and interpretability in quantum chemistry tasks. For
better intuition, we illustrate a schematic structure of the Wigner D-matrix in Figure 4b.
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Figure 4: (a) Schematic illustration of the full Hamiltonian matrix H for a water molecule (H2O).
Color intensity indicates the magnitude of matrix elements, with red representing larger values
and blue representing smaller values. (b) Schematic illustration of the full Wigner D-matrix D
corresponding to H, where green denotes larger values and purple denotes smaller values. Gray
solid and dashed lines separate molecular blocks and orbital blocks, respectively, corresponding to
submatrices defined by atomic orbital pairs.
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B Training and sampling algorithms, and fine-tuning objective

B.1 Training and sampling algorithms

We investigate two types of prior distributions for the initial Hamiltonian H0: Gaussian orthogonal
ensemble (GOE) and tensor expansion-based (TE) priors. For the GOE prior, we sample each matrix
entry independently as Mij ∼ N (0, σ2), where we set σ2 = 1.0 for MD17 and σ2 = 0.1 for QH9.

For TE prior, we sample each irreducible component wl by drawing its radial norm from
LogNormal(1, σ2 = 0.1) and applying a uniform SO(3) rotation to construct the full equivari-
ant basis, which is then mapped to the Hamiltonian space via tensor expansion.

These choices provide flexibility in modeling different types of initial distributions, depending on
the target dataset and symmetry constraints. Formal definitions and proofs of equivariance for both
priors are provided in Appendix C.1 and Appendix C.4.

The training and sampling procedures based on the above rotationally invariant priors are summarized
in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 QHFlow training procedure

Require: Dataset of molecular configurations {Mi}, target Hamiltonians H1,M, overlap matrix
SM, model fθ

1: for each training step do
2: Sample minibatch B = {Mi}Bi=1
3: for eachMi in B do
4: Sample initial Hamiltonian H0 ∼ p0 and time t ∼ U(0, 1)
5: Compute interpolated Hamiltonian: Ht,M = (1− t)H0 + tH1,M

6: Predict H(θ)
1,M = fθ(Ht,M,SM,M, t)

7: Compute flow matching loss: Li = ∥H(θ)
1,M −H1,M∥2

8: end for
9: Compute L = 1

B

∑B
i=1 Li, update θ ← θ − η∇θL

10: end for

Algorithm 2 QHFlow sampling procedure

Require: Molecular configurationM, initial Hamiltonian H0 ∼ p0, model fθ, time discretization
{t0, t1, . . . , tK} where t0 = 0 and tK = 1

1: Initialize Ht0 = H0

2: for k = 0 to K − 1 do
3: Predict target Hamiltonian: H(θ)

1,M ← fθ(Htk ,S,M, tk)

4: Compute conditional vector field: vtk,θ ← (H
(θ)
1,M −Htk)/(1− tk)

5: Update Hamiltonian: Htk+1
← Htk + (tk+1 − tk) · vtk,θ

6: end for
7: Output Ĥ1 = HtK

These algorithms ensure that training aligns the predicted vector field with the true conditional flow,
while inference produces a final Hamiltonian via integration through the learned ODE trajectory. This
design ensures SE(3)-equivariance and physical consistency throughout the training and prediction
processes.

B.2 Fine-tuning objective

After pre-training with the flow matching objective, we further fine-tune QHFlow to enhance its
spectral accuracy by introducing energy alignment objectives. To implement the energy alignment
objective, we adopt the weighted alignment loss (WALoss) from WANet [25].
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Property of the RH-equation. The relationship between the Hamiltonian matrix H, the coefficient
matrix C, and the orbital energy matrix ϵ is governed by the Roothaan–Hall equation:

HC = SCϵ, (39)

where S is overlap matrix. Using orthonormality condition C⊤SC = I, this relation simplifies to:

C⊤HC = ϵ. (40)

This identity forms the foundation for designing spectral alignment objectives.

Weighted alignment loss (WALoss). WALoss encourages the predicted Hamiltonian Ĥ to match the
spectral structure of the converged SCF Hamiltonian H⋆. Let C⋆ and ϵ⋆ denote the eigenvectors and
eigenvalues of H⋆, respectively. We define WALoss as:

LWALoss =

∥∥∥∥diag ((C⋆)⊤ĤC⋆
)
− ϵ⋆

∥∥∥∥
2

, (41)

where diag(·) extracts the diagonal elements and ∥ · ∥2 denotes the L2 norm.

To emphasize physically important states, we place larger weights on eigenvalues up to the Lowest
unoccupied molecular orbital (LUMO) i.e., the k + 1 lowest-energy orbitals. By projecting Ĥ onto
the fixed eigenbasis C⋆, WALoss promotes alignment with the ground-truth spectrum. However, it is
important to note that (C⋆)⊤ĤC⋆ does not exactly diagonalize Ĥ unless Ĥ = H⋆. Nevertheless,
minimizing this discrepancy helps guide Ĥ toward the correct eigenspectrum, improving orbital
energy prediction and SCF behavior.

Overall fine-tuning objective. Our final finetuning objective combines the flow matching loss with
WALoss:

Ltotal = LCFM + λWALWA, (42)
where λWA is the weighting coefficients controlling the contributions of the energy alignment terms,
and we chose λWA = 2.0 for the finetuning.
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C Proofs and additional details

C.1 Proof of SE(3)-equivariance of GOE

Let M ∈ Rn×n be a symmetric matrix drawn from the Gaussian orthogonal ensemble (GOE),
characterized by:

E[Mij ] = 0, Var(Mij) = σ2, with Mij =Mji, and independent entries for i ≤ j. (43)

Let D = D(R) denote an orthogonal matrix representing a Wigner D-transformation corresponding
to a rotation R ∈ SO(3), satisfying orthogonality i.e. DD⊤ = I. We define the rotated matrix as:

M′ = DMD⊤, with M ′
ij =

∑
k,l

DikMklDjl. (44)

We aim to show that the distribution of M′ is the same as that of M, i.e., that GOE is invariant under
conjugation by orthogonal transformations:

ρ(M) = ρ(DMD⊤). (45)

To establish this, it suffices to verify that the first and second moments of the entries in M′ match
those of GOE.

Mean. Since E[Mkl] = 0 for all k, l, we have:

E[M ′
ij ] =

∑
k,l

DikDjlE[Mkl] = 0. (46)

Covariance. We now compute the covariance of the entries M ′
ab and M ′

cd:

E[M ′
abM

′
cd] = E


∑

i,j

DaiDbjMij

∑
k,l

DckDdlMkl


 (47)

=
∑
i,j,k,l

DaiDbjDckDdl E[MijMkl]. (48)

Using the independence and zero mean of GOE entries, we know:

E[MijMkl] = σ2δikδjl. (49)

Thus,

E[M ′
abM

′
cd] = σ2

∑
i,j

DaiDbjDciDdj (50)

= σ2

∑
i

DaiDci

∑
j

DbjDdj


= σ2(DD⊤)ac(DD⊤)bd

= σ2δacδbd. (51)

This matches the covariance structure of the original GOE matrix. Since both M and M′ are jointly
Gaussian with zero mean and identical covariances, we conclude:

DMD⊤ ∼M, i.e., GOE is invariant under orthogonal conjugation. (52)

This proves that the GOE prior is SO(3)-invariant, even for the high-rank Wigner D-matrices ℓ ≥ 2.
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C.2 Proof of the SE(3)-equivariance of tensor expansion operation

Since the w(ℓ) is the irrep vector, the m-th entry wℓ
m transforms under rotation R ∈ SO(3) as:

w(ℓ)
m

R−→
(
R ·w(ℓ)

)
m

=

∑
m′

D
(ℓ)
mm′(R)w

(ℓ)
m′

 , (53)

where D(ℓ)(R) ∈ C(2ℓ1+1)×(2ℓ2+1) is the Wigner D-matrix.

By substituting above Equation (53) in Equation (9), the entry of rotated tensor expansion is

(
⊗̄w(ℓ)

)(ℓ1,ℓ2)
(m1,m2)

R−→
(
⊗̄
[
R ·w(ℓ)

])
=
∑
m

C
(ℓ,m)
(ℓ1,m1),(ℓ2,m2)

∑
m′

D
(ℓ)
mm′(R)w

(ℓ)
m′

 , (54)

and we can exchange the order of summation:(
⊗̄w(ℓ)

)(ℓ1,ℓ2)
(m1,m2)

R−→
∑
m′

(∑
m

C
(ℓ,m)
(ℓ1,m1),(ℓ2,m2)

D
(ℓ)
mm′(R)

)
w

(ℓ)
m′ . (55)

Now we can use a crucial identity from representation theory:

Theorem 2. The Clebsch–Gordan coefficients provide a basis change between the product represen-
tation D(ℓ1)(R)⊗D(ℓ2)(R) and the irreducible representation D(ℓ)(R):∑

m

C
(ℓ,m)
(ℓ1,m1),(ℓ2,m2)

D
(ℓ)
mm′(R) =

∑
m′

1,m
′
2

D
(ℓ1)
m1m′

1
(R)D

(ℓ2)
m2m′

2
(R)C

(ℓ,m′)
(ℓ1,m′

1),(ℓ2,m
′
2)
. (56)

We can substitute the identity, then we have:

(
⊗̄w(ℓ)

)(ℓ1,l2)
(m1,m2)

R−→
∑

m′
1,m

′
2

D
(ℓ1)
m1m′

1
(R)D

(ℓ2)
m2m′

2
(R)

∑
m′

C
(ℓ,m′)
(ℓ1,m′

1),(ℓ2,m
′
2)
w

(ℓ)
m′

 , (57)

and the last sum implies the∑
m′

C
(ℓ,m′)
(ℓ1,m′

1),(ℓ2,m
′
2)
w

(ℓ)
m′ =

(
⊗̄w(ℓ)

)(ℓ1,ℓ2)
(m′

1,m
′
2)

(58)

Therefore, (
⊗̄w(ℓ)

)(ℓ1,ℓ2)
(m1,m2)

R−→
∑

m′
1,m

′
2

D
(ℓ1)
m1m′

1
(R)D

(ℓ2)
m2m′

2
(R)

(
⊗̄w(ℓ3)

)(ℓ1,ℓ2)
(m′

1,m
′
2)
, (59)

in the matrix form, (
⊗̄w(ℓ)

)
R−→ D(ℓ1)(R)

(
⊗̄w(ℓ)

)
D(ℓ2)(R)−1. (60)

C.3 Proof of the invariance of the tensor expansion based (TE) prior

To construct an SO(3)-invariant distribution over matrices via tensor expansion, we begin with a
rotationally invariant distribution over irreducible features w(ℓ) ∈ C(2ℓ+1). We define this distribution
by factorizing it into two independent components:

• A magnitude r = ∥w(ℓ)∥ drawn from a radial distribution, e.g., r ∼ Normal(1, σ2).

• A direction sampled uniformly on the sphere S2, induced by a Haar-uniform rotation
R ∈ SO(3), applied to a canonical unit-norm feature vector w

(ℓ)
0 , such that w(ℓ) =

rD(ℓ)(R)w
(ℓ)
0 .
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This construction ensures that w(ℓ) is distributed isotropically, i.e., p(w(ℓ)) = p(D(ℓ)(R)w(ℓ)) for
any R ∈ SO(3). Now, from the tensor expansion defined as:

H(ℓ1,ℓ2) =
(
⊗̄w(ℓ)

)(ℓ1,ℓ2)
, (61)

we know from the previous subsection that this construction transforms under SO(3) as:

H(ℓ1,ℓ2) R−→ D(ℓ1)(R)H(ℓ1,ℓ2)D(ℓ2)(R)−1. (62)

To prove invariance, consider the pushforward distribution:

p(H(ℓ1,ℓ2)) = p(w(ℓ)) = p(D(ℓ)(R)w(ℓ)) ∀R ∈ SO(3). (63)

Because H(ℓ1,ℓ2) is a deterministic, equivariant function of w(ℓ), and p(w(ℓ)) is rotation-invariant, the
induced distribution p(H(ℓ1,ℓ2)) must also be invariant under conjugation byD(ℓ1)(R) andD(ℓ2)(R).
Thus:

p(H(ℓ1,ℓ2)) = p(D(ℓ1)(R)H(ℓ1,ℓ2)D(ℓ2)(R)−1). (64)
This proves that the prior distribution constructed via tensor expansion from rotationally invariant
w(ℓ) yields an SO(3)-equivariant (conjugation-invariant) distribution over matrix-valued outputs.

C.4 Proof of the invariance of the multiple tensor expansion prior

We now generalize the single-irrep vector expansion to construct a full Hamiltonian matrix H ∈ Rn×n

composed of multiple irrep vectors components. Let the atomic orbital basis consist of a set of irrep
vectors indexed by L = {ℓ1, ℓ2, . . . , ℓB}, where each angular momentum ℓi corresponds to a
subspace of dimension (2ℓi + 1).

For each irrep vector rank ℓi, we define a random irrep vector w(ℓi) ∈ C(2ℓi+1), sampled indepen-
dently from a rotationally invariant distribution:

w(ℓi) = riD
(ℓi)(Ri)w

(ℓi)
0 , ri ∼ LogNormal(1, σ2), Ri ∼ Uniform(SO(3)). (65)

We then define a factorized prior:

p(w(ℓ1), . . . ,w(ℓB)) =

B∏
i=1

pi(w
(ℓi)), (66)

with each pi(w(ℓi)) being SO(3)-invariant.

Using the tensor expansion, each pair (ℓi, ℓj) generates a block of the Hamiltonian matrix via:

H(ℓi,ℓj) = ⊗̄ℓi,ℓjw
(ℓk), for some ℓk ∈ {|ℓi − ℓj |, . . . , ℓi + ℓj}. (67)

The full Hamiltonian is then assembled as:

H =
⊕
i,j

H(ℓi,ℓj). (68)

From the single-component proof, we know that each block transforms as:

H(ℓi,ℓj) R−→ D(ℓi)(R)H(ℓi,ℓj)D(ℓj)(R)−1. (69)

Therefore, under a global rotation R ∈ SO(3), the full matrix H transforms as:

H
R−→ D(R)HD(R)−1, (70)

where D(R) is the block-diagonal rotation operator acting on the full basis.

Since each w(ℓi) is sampled independently from an SO(3)-invariant distribution, the joint distribution
of all irreducible components p(H) remains invariant under this global conjugation:

p(H) = p
(
D(R)HD(R)−1

)
, ∀R ∈ SO(3). (71)

This completes the proof that the full Hamiltonian matrix constructed via multiple tensor expansions,
using independently sampled spherical features from invariant priors, defines an SO(3)-invariant
distribution over matrices.
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D Implementation details

D.1 Model implementation

We build our model upon the official QHNet [23] and DEQHNet [59] codebases, which implement
SE(3)-equivariant GNN for Hamiltonian matrix prediction. QHNet is selected as our backbone for its
balance of architectural simplicity and strong predictive performance. Although more recent models
such as WANet [25] and SPHNet [26] have demonstrated improvements, their codebases are not
publicly available and thus are not considered here. Notably, our method is model-agnostic and could
be paired with more expressive backbones if desired.

We extend QHNet by incorporating additional physically meaningful inputs: the current Hamiltonian
matrix Ht, the overlap matrix S, the molecular configurationM, and the time t. Unlike the original
QHNet, which processes onlyM, our model is designed to handle Ht, and S as well, following
symmetry-preserving strategies inspired by DEQHNet and OrbNet-Equi [60].

Project Block. To map the equivariant matrix features H and S into the SO(3) irrep vectors,
we used diagonal reduction in OrbNet [60] based on the Wigner-Eckart theorem [46]. For atom
i, we first extract the atom-wise matrices, Hi := Hii (see Equation (35)). Each element of Hi

carries two orbital index, (ℓ,m) and (ℓ′,m′). We project these matrices onto rank-ℓo irrep vectors
h
(ℓo)
i = [h

(ℓo,−ℓo)
i , . . . h

(ℓo,ℓo)
i ] ∈ C(2ℓo+1) by

h
(ℓo,mo)
i =

∑
(ℓ,ℓ′)

∑
(m,m′)

H
(ℓ,m;ℓ′,m′)
i Q

(ℓ,m;ℓ′,m′)
i,(ℓo,mo)

, (72)

where H
(ℓ,m;ℓ′,m′)
i is an element of submatrix H

(ℓ,ℓ′)
i that corresponds to the m and m′ index, and

a set of atom-wise projection weights Q(ℓ,m;ℓ′,m′)
i,(ℓo,mo)

which plays the role of Clebsch-Gordan-like
projection weights. Because the map in Equation (72) is an SO(3) tensor contraction, the resulting
feature vectors remain equivariant. The same procedure is applied to overlap matrix S, giving two
parallel streams of SE(3)-equivariant atomic features that are subsequently fused in the network.

Construction of projection weights. To construct the coefficients atom-wise projection coefficients,
we compute three-center integrals involving orbital basis function Φ

(ℓ,m)
i and auxiliary spherical-type

basis functions Φ̃(l,m)
i :

Q
(ℓ,m;ℓ′,m′)
i,(ℓo,mo)

=

∫ (
Φ

(ℓ,m)
i (r)

)∗
Φ

(ℓ′,m′)
i (r)Φ̃

(ℓo,mo)
i (r) dr. (73)

In practice, the angular parts of these integrals are related with the Clebsch-Gordan coefficients due
to their relation to spherical harmonics:

Q
(ℓ,m;ℓ′,m′)
i,(ℓo,mo)

∝
∫
S2
Y ℓ
m(r̂)Y ℓ′

m (r̂)
(
Y ℓo
mo

(r̂)
)∗
dr. (74)

D.2 Training objective

Our training objective adopts a residual learning strategy, following prior works such as WANet and
SHNet. Rather than directly predicting the converged Hamiltonian, the model learns to approximate
the residual between the initial and converged Hamiltonians using a time-dependent vector field
within the conditional flow matching framework. We define the residual target as done in prior works:

H1,M := H⋆
M −H

(0)
M , (75)

where H
(0)
M is the initial guess of Hamiltonian matrix2, and H⋆

M is the SCF solution. The final
prediction of Hamiltonian is obtained by summing the predicted residual and the initial Hamiltonian
guess.

The conditional flow matching loss is defined as:

L = E(H,M)∼A,t∼U(0,1),Ht∼pt

[∥∥vt,θ(Ht,M)− ut(Ht,M | H1,M)
∥∥2
2

]
(76)

= E(H,M)∼A,t∼U(0,1),Ht∼pt

[
1

(1− t)2
∥∥∥H(θ)

1,M −H1,M

∥∥∥2
2

]
, (77)

2We use the minao initialization from the PySCF package, and this guess does not contains SCF steps.
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where the second line follows from the analytical form of the conditional velocity field ut, showing
that the model is penalized based on the squared residual error at each time step. This formulation
encourages smooth convergence from the initial guess to the target solution. To simplify the objective,
we omit the 1/(1− t)2 time-scaling for our implementation.
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E Experimental study settings

E.1 Dataset preparation

To demonstrate the effectiveness of flow-matching-based training, we conduct experiments on two
molecular datasets: MD17 and QH9. The MD17 represents a relatively simple task compared to the
QH9, focusing solely on small systems and their conformational space. The PubChemQH9 is not
considered since their dataset and codebase are not publicly released.

MD17. The MD17 [49, 19] dataset consists of quantum chemical simulations for four small or-
ganic molecules: water (H2O), ethanol (C2H5OH), malondialdehyde (CH2(CHO)2), and uracil
(C4H4N2O2). It provides a comprehensive set of molecular properties, including geometries, total
energies, forces, Kohn–Sham Hamiltonian matrices, and overlap matrices. All reference com-
putations were implemented via the ORCA electronic structure package [61] using the PBE ex-
change–correlation functional [52, 53] and the def2-SVP Gaussian-type orbital (GTO) basis set. We
follow the standard data split protocol used in prior work [19, 20, 23] to divide each molecule’s con-
formational data into training, validation, and test sets. The detailed dataset statistics are summarized
in Table 5 and MOs in the table imply molecular orbitals (i.e.. s,p,d,f)

Table 5: The statistics of MD17 dataset [19].
Dataset # of structures Train Val Test # of atoms # of orbitals # of occupied MOs

Water 4,900 500 500 3,900 3 24 5
Ethanol 30,000 25,000 500 4,500 9 72 10
Malondialdehyde 26,978 25,000 500 1,478 9 90 19
Uracil 30,000 25,000 500 4,500 12 132 26

QH9. The QH9 dataset [24] is a large-scale quantum chemistry benchmark designed to support
the training and evaluation of machine learning models for Hamiltonian matrix prediction across
diverse chemical structures. It is based on the QM9 [50, 51] molecular dataset and includes 130,831
Hamiltonian matrices from stable molecular geometries, as well as 2,698 molecular dynamics
trajectories. The dataset covers small organic molecules composed of up to nine heavy atoms (C,
N, O, and F). All Hamiltonians were computed using the PySCF [62] quantum chemistry package
with the B3LYP [54] exchange–correlation functional and the def2-SVP Gaussian-type orbital (GTO)
basis set. We provide the detailed dataset statistics in Table 6.

QH9 is organized into two main subsets, QH9-stable and QH9-dynamic-300k, and provides four
standard evaluation splits: stable-id, stable-ood, dynamic-300k-geo, and dynamic-300k-mol. The
id split randomly partitions the QH9-stable subset into training, validation, and test sets, while
the ood split is constructed based on molecular size. Specifically, it groups molecules with 3–20
atoms in the training set, molecules with 21–22 atoms in the validation set, and molecules with 23–29
atoms in the test set. This ood setup allows for a rigorous evaluation of out-of-distribution (OOD)
generalization in terms of molecular complexity.

The geo and mol splits are based on molecular dynamics (MD) trajectories, where each molecule is
associated with 100 geometry snapshots. In the geo split, geometries are randomly assigned within
each molecule: 80 for training, 10 for validation, and 10 for testing. Thus, while all molecules are
present across the splits, the specific conformations are disjoint, enabling an assessment of geometric
generalization. In contrast, the mol split divides the 2,698 molecules themselves into disjoint sets
with an 80/10/10 train/validation/test ratio. All 100 geometries of a molecule are assigned to the same
subset. This split presents a more challenging task than the geo split, as it requires generalization to
entirely unseen molecular identities rather than just new conformations.

E.2 Evaluation Metrics

To comprehensively evaluate the performance of Hamiltonian prediction models, we adopt several
metrics that measure accuracy, physical fidelity, and downstream impact on quantum chemical
properties. Below are detailed descriptions of each metric used in our experiments.
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Table 6: The statistics of QH9 dataset [24].
Dataset # of structures # of Molecules Train Val Test

Stable-id 130,831 130,831 104,664 13,083 13,084
Stable-ood 130,831 130,831 104,001 17,495 9,335
Dynamic-300k-geo 299,800 2,998 239,840 29,980 29,980
Dynamic-300k-mol 299,800 2,998 239,800 29,900 30,100

Hamiltonian MAE. This metric measures the mean absolute error (MAE) between the predicted
Hamiltonian matrix Ĥ and the ground-truth matrix H⋆:

MAE(H) =
1

n2

n∑
i,j=1

∥∥∥Ĥij −H⋆
ij

∥∥∥2
2
, (78)

where n is the length of the Hamiltonian matrix (H ∈ Rn×n), and ∥ · ∥22 is the Frobenius norm. This
metric directly reflects the quality of the predicted Hamiltonian in element-wise terms.

Occupied orbital energy MAE (ϵocc). This metric measures the MAE between the predicted and
true orbital energies for only the occupied orbitals. Let ϵ̂ and ϵ⋆ be predicted and the ground-truth
generalized eigenvalues of the Hamiltonian, respectively, and let Iocc be the set of indices of the
occupied orbitals:

MAE(ϵocc) =
1

card(Iocc)

∑
i∈Iocc

∥ϵ̂i − ϵ⋆i ∥
2
2 . (79)

This is particularly important for capturing the energy spectrum relevant to ground-state electronic
properties. We identify the occupied orbitals by selecting the ⌊N/2⌋ lowest eigenvalues, where N is
the number of electrons in the system.

Orbital coefficient similarity score (Sc). To compare the predicted and ground-truth molecular
orbital coefficient matrices Ĉ and C⋆, we use a cosine similarity-based score averaged over all
columns:

SC(Ĉ,C⋆) =
〈
Ĉ,C⋆

〉
=

∑
i CiC

⋆
i

∥Ĉ∥∥C⋆∥
, (80)

where Ci is the i-th column vector of the coefficient matrix and ⟨·, ·⟩ denotes the inner product. This
metric evaluates how well the predicted orbitals align with the ground truth.

HOMO, LUMO, and energy gap MAE (ϵHOMO, ϵLUMO, ϵ∆). These metrics quantify the predictive
accuracy of specific frontier orbital energies, which are critical for determining electronic properties
such as reactivity and charge transport. The highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) energies, along with their difference (the HOMO–LUMO
gap), are particularly sensitive to model generalization, especially in challenging settings like QH9,
where predictions are evaluated on unseen molecular structures or conformations. These metrics are
computed as follows:

ϵHOMO =
∣∣ϵ̂HOMO − ϵ⋆HOMO

∣∣ , (81)

ϵLUMO =
∣∣ϵ̂LUMO − ϵ⋆LUMO

∣∣ , (82)

ϵ∆ =
∣∣(ϵ̂LUMO − ϵ̂HOMO)− (ϵ⋆LUMO − ϵ⋆HOMO)

∣∣ . (83)

Here, ϵHOMO corresponds to the ⌊N/2⌋-th lowest eigenvalue, and ϵLUMO to the (⌊N/2⌋+1)-th, where
N is the number of electrons in the system.

SCF Iter Ratio. This metric measures the reduction in the number of SCF iterations required when
using a predicted Hamiltonian as the initial guess, relative to a standard reference initialization (e.g.,
from a minimal basis or atomic superposition guess). It is defined as

SCF Iter Ratio =
Iterpred

Iterref
, (84)

where Iterpred is the number of SCF iterations with the predicted initialization, and Iterref is the
number of iterations under the reference setup. In our setting, we used the reference value, which is
measured from the conventional DFT metric to compare the acceleration of our method.
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SCF T Ratio. This represents the reduction in total wall-clock time spent during SCF convergence
using the predicted Hamiltonian. It reflects actual runtime savings in quantum chemical simulations:

SCF T Ratio =
TSCF-pred

TSCF-ref
, (85)

where TSCF-pred and TSCF-ref denote the SCF runtimes under predicted and reference initializations,
respectively.

Inf T Ratio. This metric captures the inference overhead of the predictive model itself. It is the
fraction of time required to generate the predicted Hamiltonian relative to the baseline SCF time:

Inf T Ratio =
Tinference

TSCF-ref
, (86)

where Tinference is the runtime of the Hamiltonian prediction model.

Total T Ratio. This quantifies the net cost of using the predictive model, combining both inference
and SCF convergence times. It provides a holistic view of overall computational efficiency:

Total T Ratio =
Tinference + TSCF-pred

TSCF-ref
. (87)

Note. All energy values are reported in units of Hartree (1Eh = 27.211eV ), and similarity scores
are unitless with values in [0, 1], where higher is better. While the SCF Iter Ratio is a deterministic
metric reflecting algorithmic convergence behavior, the wall-clock timing ratios (SCF T, Inf T,
and Total T) are subject to variability due to system-level factors. In our experiments, all timing
evaluations were conducted on A100-80GB GPUs. However, due to resource allocation via SLURM
and shared CPU environments, precise time measurements were not always reproducible. As such,
reported time ratios should be interpreted as indicative trends rather than absolute benchmarks.

E.3 Experimental setup

Environment. Experiments were conducted using a single GPU per model. For the MD17 dataset, we
used NVIDIA RTX 3090 and A5000 GPUs, while for the QH9 dataset, experiments were performed
on NVIDIA A100 80GB GPUs. Our implementation is based on PyTorch 2.1.2 and PyG 2.3.0, both
compiled with CUDA 12.1. Detailed package versions [62–64] and environment specifications will
be released upon publication for full reproducibility.

Training was performed on a SLURM-managed cluster, where slight variability in runtime was
observed due to system-wide GPU and CPU resource contention. Random seeds were fixed where
possible to ensure training stability; however, minor non-determinism remains due to the inherent
variability of distributed computing environments.

Training QHFlow took approximately 2–4 days on MD17 and 7–10 days on QH9, which is slightly
longer than QHNet due to the added complexity of incorporating the current Hamiltonian and orbital
information as inputs. Finetuning on QH9 required an additional 3–4 days. While the total training
time could be further reduced with optimized infrastructure, our experiments were conducted under a
SLURM-managed environment with periodic reinitialization every 72 hours. Importantly, QHFlow is
a model-agnostic framework; with more scalable architectures, training efficiency can be significantly
improved.

Hyperparameters. For fair comparison, we adopted the same hyperparameters used by the baseline
model QHNet [23] whenever possible. Our QHFlow shares the majority of its architecture and training
settings with QHNet to ensure that performance improvements are attributable to the proposed flow
matching design rather than hyperparameter tuning. A summary of the key hyperparameters used
across different datasets is provided in Table 7.

For evaluating DFT acceleration performance, we used the PySCF [62] framework with the B3LYP
exchange–correlation functional. The numerical integration grid level was set to 3, and the maximum
number of SCF cycles was 50. All other parameters followed the default settings of the PySCF RKS
implementation.
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Table 7: Training hyperparameters of QHFlow used across datasets.
Hyperparameter Description QH9 MD17 (Water) MD17 (Others)

Learning Rate Initial learning rate 5e-4 5e-4 1e-3
Minimum Learning Rate Minimum learning rate 1e-7 1e-9 1e-9
Batch Size Number of molecules per batch 32 10 5
Scheduler Learning rate scheduler Polynomial Polynomial Polynomial
LR Warmup Steps Warmup steps to linearly increase learning rate 1,000 1,000 1,000
Max Steps Maximum number of training steps 260,000 200,000 200,000
Fine-tuning LR Initial learning rate of fine-tuning stage 1e-5 - -
Fine-tuning Minimum LR Minimum learning rate of fine-tuning stage 1e-7 - -
Finetuning Steps Maximum number of Finetuning steps 60,000 - -
Prior Distribution Prior distribution for flow matching GOE / TE GOE GOE
Using Ht Block Use time-dependent Hamiltonian Ht as input True True True
Using S Block Use overlap matrix S as input True False False
Model Order Maximum degree of spherical harmonics 4 4 4
Embedding Dimension Node feature embedding dimension 128 128 128
Bottle Hidden Size Hidden size of bottleneck layer 32 32 32
Number of GNN Layers Number of graph neural network layers 5 5 5
Max Radius Cutoff radius for neighbor search 15 15 15
Sphere Channels Number of channels in spherical basis 128 128 128
Edge Channels Number of channels for edge features 32 32 32
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F Additional experimental results and limitations

F.1 Ablation study of the finetuning objective

We conduct additional experiments to evaluate various fine-tuning strategies to improve the Hamilto-
nian prediction performance of QHFlow after standard flow matching pretraining. In this section, we
describe each strategy in detail and provide empirical observations.

For the WALoss implementation, we follow the coefficient settings proposed in WANet [25] (λWA =
2.0). During fine-tuning, we train for an additional 60,000 steps starting from the pretrained model
with TE prior, using an initial learning rate of 1× 10−5 and a polynomial learning rate scheduler.

Full Flow Matching with WA Loss training from scratch (WA-Full). In this strategy, we train
the model from scratch by jointly optimizing the flow matching objective and WALoss for 260,000
steps, matching the default training steps as done in WANet. However, this approach significantly
degraded the Hamiltonian error. We hypothesize that imposing strong spectral constraints too early
disrupts the learning of the global Hamiltonian structure, leading to unstable convergence and poor
generalization.

WA Loss finetuning (WA-FT). After completing standard flow matching pre-training, we fine-tune
the model solely using WALoss, which encourages alignment between the predicted Hamiltonian’s
eigenstructure and the ground-truth SCF solutions. This approach improves orbital energy prediction
and SCF convergence compared to pure flow matching training, confirming the value of adding
spectral supervision during fine-tuning.

Summary. Table 8 summarizes the quantitative results of all fine-tuning strategies. Here, w/o-FT
refers to QHFlow trained solely with the flow matching objective using the TE prior. Among the
approaches, WA-FT achieves the best balance between Hamiltonian prediction accuracy and practical
DFT acceleration, demonstrating the effectiveness of spectral alignment in the fine-tuning stage.

F.2 Full results of DFT acceleration via SCF initialization

For completeness, we include in Figure 5 the figure with the inset from Figure 3. As shown in
Figure 5, the inference time of QHFLOW is longer than that of QHNet because QHFLOW performs
multi-step inference for ODE integration. However, this additional cost is negligible compared to the
overall DFT computation pipeline, as reflected in the SCF T ratio.

F.3 Full results of ablation study

For completeness, we provide the full ablation study results in Table 9, and Table 10, including
additional metrics beyond those presented in the main text. While the main manuscript focused
primarily on Hamiltonian prediction error (H), occupied orbital energy error (ϵocc), and electronic
density accuracy (Sc) for clarity, here we also report the LUMO (ϵLUMO), HOMO (ϵHOMO), and
HOMO-LUMO gap (ϵ∆) energy errors.

Overall, the trends observed in the full table are consistent with those discussed in the main text. In
particular, the improvements in Hamiltonian accuracy and density prediction are accompanied by
consistent reductions in orbital energy errors (ϵLUMO, ϵHOMO) and gap errors (ϵ∆), further demonstrat-
ing the broad effectiveness of our proposed methods. These results reinforce the conclusion that flow
matching enhance both Hamiltonian structure prediction and downstream electronic properties.

Also, to better visualize the role of the prior distributions, we provide interpolation trajectories from
the GOE and TE prior toward target Hamiltonians. Figure 6 shows example interpolations for both
settings, highlighting how the initial distribution affects the learned flow dynamics. As seen, the TE
prior results in smoother and more structured trajectories compared to the GOE prior, which starts
from unstructured noise.

F.4 Ablation studies on model design

In this section, we present additional ablation studies on the architectural design choices of QH-
FLOW, as summarized in Table 11, to clarify their individual roles and contributions to the overall
performance.
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Figure 5: DFT acceleration performance on 300 samples from the QH9 dataset. All metrics are
reported as percentages relative to conventional DFT (initialized with minao), which serves as the
100% baseline. The SCF Iter Ratio measures the ratio of SCF iterations required, while Inf T Ratio,
SCF T Ratio, and Total T Ratio measure time.

Regression. QHFLOW (Regression) is a baseline that directly predicts the Hamiltonian correction
matrix (∆H = H⋆ − H(0)) using the same objective described above, without incorporating
any physical priors or structural constraints. This variant isolates the effect of the flow-matching
mechanism itself and evaluates how well the model performs under a purely regression-based setting.
Although this approach achieves improved Hamiltonian prediction compared to QHNet, its overall
performance remains inferior to the flow-matching version.

Overlap matrix S. We further examine the impact of incorporating the overlap matrix embedding,
which encodes pairwise correlations among atomic orbitals. Comparing models with and without
S embedding shows that leveraging overlap information significantly enhances model stability and
accuracy across both Hamiltonian prediction and SCF convergence.

F.5 Analysis of error distribution of the predictions

To better understand the properties of QHFLOW, we move beyond single–number summaries and
visualise the entire error distribution for six key quantities Hamiltonian MAE (H), occupied–orbital
MAE (ϵocc), ϵHOMO, ϵLUMO, ϵ∆, and Sc on all four QH9 splits (id, ood, geo, mol). Figure 7 shows
log-scale violin plots for QHNet* (grey), QHFLOW (orange), and its WA-finetuned variant (cyan).
(only the similarity score is kept on a linear axis.) Each violin displays the full empirical distribution;
the thick dashed line marks the median, and the two thinner lines divide the inter-quartile ranges.

Across every split and metric, the QHFLOW violins are both lower and narrower. Median Hamiltonian
error is reduced by roughly one order of magnitude on id and geo, and by a factor of 3–5 on the
tougher ood and mol sets. In addition, the long error tails of QHNet* largely vanish, demonstrating
that our flow objective mitigates the occasional catastrophic failure modes that plague point-wise
regression models.

Figure 8 plots logH against log ϵocc for every test geometry. QHFLOW occupies the bottom-left
corner of each panel, while QHNet* points fan out towards larger joint errors, especially in ood and
mol, where chemical diversity is highest. These results show the QHFLOW superior performance on
both the geometric and unseen molecules.

Finally, Figure 9 compares Hamiltonian error versus atom count. QHFLOW remains flat up to the
largest molecules in QH9 (29atoms). This suggests that modeling a distribution over Hamiltonians
confers a form of size transferability.
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Table 8: Ablation experimental results on QH9 dataset Finetuning. Results shown in bold denote
the best result in each column, whereas those that are underlined indicate the second best.

Dataset Type H [µEh] ↓ ϵocc [µEh] ↓ Sc [%] ↑ ϵLUMO [µEh] ↓ ϵHOMO [µEh] ↓ ϵ∆ [µEh] ↓

WA-Full 62.69 153.82 98.96 240.07 117.26 251.81
w/o-FT 22.95± 0.001 119.67± 0.211 99.51± 0.001 437.96± 7.452 179.48± 0.098 553.87± 7.454

QH9-stable
(id) WA-FT 23.85± 0.003 101.92± 0.279 99.56± 0.002 187.48± 6.434 92.22± 0.234 206.15± 6.197

WA-Full 57.11 110.34 98.12 416.08 113.55 387.83
w/o-FT 20.01± 0.001 84.54± 0.007 99.04± 0.003 321.20± 1.497 130.74± 0.043 395.83± 1.510

QH9-stable
(ood) WA-FT 20.55± 0.002 72.64± 0.018 99.16± 0.006 171.24± 0.273 77.96± 0.095 179.57± 0.271

WA-Full 75.38 108.96 98.77 231.63 114.14 219.20
w/o-FT 25.94± 0.001 103.11± 0.031 99.59± 0.001 425.18± 1.119 175.18± 0.255 547.33± 1.168

QH9-dynamic
(300k-geo) WA-FT 27.12± 0.002 89.03± 0.213 99.65± 0.001 136.63± 4.661 84.17± 0.211 154.68± 4.449

WA-Full 103.47 692.17 97.02 1046.21 760.85 1408.36
w/o-FT 45.91± 0.001 442.56± 0.171 98.65± 0.001 1344.68± 2.338 479.71± 0.150 1605.03± 2.286

QH9-dynamic
(300k-mol) WA-FT 46.60± 0.003 424.75± 0.324 98.74± 0.001 912.10± 2.941 403.51± 1.861 1047.88± 2.683

Table 9: Full experimental results on QH9 dataset along the initial distribution. Results shown
in bold denote the best result in each column.

H ↓ ϵocc ↓ Sc ↑ ϵLUMO ↓ ϵHOMO ↓ ϵ∆ ↓
Dataset Prior [10−6Eh] [10−6Eh] [10−2] [10−6Eh] [10−6Eh] [10−6Eh]

GOE 25.93± 0.001 154.65± 1.097 99.39± 0.001 638.03± 7.744 220.49± 0.192 764.46± 7.635QH9-stable
(id) TE 22.95± 0.001 119.61± 0.211 99.51± 0.001 437.96± 7.452 179.48± 0.098 553.87± 7.454

GOE 21.93± 0.001 87.32± 0.012 98.95± 0.002 382.09± 13.87 120.16± 0.070 432.93± 13.84QH9-stable
(ood) TE 20.01± 0.001 84.54± 0.007 99.04± 0.003 321.20± 1.497 130.74± 0.043 395.83± 1.510

GOE 29.39± 0.001 122.14± 0.050 99.49± 0.001 618.75± 3.089 215.41± 0.569 756.45± 3.371QH9-dynamic
(300k-geo) TE 25.94± 0.001 103.11± 0.031 99.59± 0.001 425.18± 1.119 175.18± 0.255 547.33± 1.168

GOE 46.78± 0.001 419.68± 0.001 98.65± 0.001 1409.07± 3.759 478.12± 0.214 1718.80± 3.907QH9-dynamic
(300k-mol) TE 45.91± 0.001 442.56± 0.171 98.65± 0.001 1344.68± 2.338 479.71± 0.150 1605.03± 2.286

Table 10: Full predictive variance results on QH9 dataset. WA-FT implies the finetune the model
with WA loss. Metrics for Ours and Ours (WA-FT) are means±std over five random seeds. Results
shown in bold denote the best result in each column, whereas those that are underlined indicate the
second best.

Dataset Model H [µEh] ↓ ϵocc [µEh] ↓ Sc [%] ↑ ϵLUMO [µEh] ↓ ϵHOMO [µEh] ↓ ϵ∆ [µEh] ↓

QHNet∗ 77.72 963.45 94.80 18257.34 1546.27 17822.62
WANet 80.00 833.62 96.86 - - -
SPHNet 45.48 334.28 97.75 - - -
Ours 22.95± 0.001 119.67± 0.211 99.51± 0.001 437.96± 7.452 179.48± 0.098 553.87± 7.454

QH9-stable
(id)

Ours (WA-FT) 23.85± 0.003 101.92± 0.279 99.56± 0.002 187.48± 6.434 92.22± 0.234 206.15± 6.197

QHNet∗ 69.69 884.97 93.01 25848.83 1045.99 25370.10
SPHNet 43.33 186.40 98.16 - - -
Ours 20.01± 0.001 84.54± 0.007 99.04± 0.003 321.20± 1.497 130.74± 0.043 395.83± 1.510

QH9-stable
(ood)

Ours (WA-FT) 20.55± 0.002 72.64± 0.018 99.16± 0.006 171.24± 0.273 77.96± 0.095 179.57± 0.271

QHNet∗ 88.36 1170.50 93.65 23269.41 2040.06 22407.96
WANet 74.74 416.57 99.68 - - -
SPHNet 52.18 100.88 99.12 - - -
Ours 25.94± 0.001 103.11± 0.031 99.59± 0.001 425.18± 1.119 175.18± 0.255 547.33± 1.168

QH9-dynamic
(300k-geo)

Ours (WA-FT) 27.12± 0.002 89.03± 0.213 99.65± 0.001 136.63± 4.661 84.17± 0.211 154.68± 4.449

QHNet∗ 121.39 5554.36 86.02 53505.09 4352.76 50424.86
SPHNet 108.19 1724.10 91.49 - - -
Ours 45.91± 0.001 442.56± 0.171 98.65± 0.001 1344.68± 2.338 479.71± 0.150 1605.03± 2.286

QH9-dynamic
(300k-mol)

Ours (WA-FT) 46.60± 0.003 424.75± 0.324 98.74± 0.001 912.10± 2.941 403.51± 1.861 1047.88± 2.683

Table 11: Ablation study on the model design of QHFLOW. The models are trained on the
QH9-Stable (id) split. Bold indicate the best.

Model H ↓ [µEh] ϵocc ↓ [µEh] Sc ↑ [%] ϵLUMO ↓ [µEh] ϵHOMO ↓ [µEh] ϵ∆ ↓ [µEh]

QHNet* 77.72 963.45 94.80 18257.34 1546.27 17822.62
QHFLOW (Regression) 35.85 213.45 98.89 1548.64 330.77 1783.99
QHFLOW (W/o S embed) 25.24 159.41 99.38 734.40 239.18 851.33
QHFLOW (W/ S embed) 22.95 119.67 99.51 437.96 179.48 553.87
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Figure 6: Visualization of Hamiltonian interpolation trajectories from different prior distributions
of H2O: (a) tensor expansion-based (TE) prior and (b) Gaussian orthogonal ensemble (GOE) prior.
Color intensity indicates the magnitude of Hamiltonian elements across flow time t.
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Figure 7: Violin plots compare QHNet* (gray), QHFLOW(orange), and its weighted-alignment
fine-tune (WA-FT, cyan) on six metrics: Hamiltonian MAE (H), occupied-orbital MAE (ϵocc), ϵHOMO,
ϵLUMO, ϵ∆(∆), and coefficient similarity (Sc). Results are shown for the four evaluation splits — id,
ood, geo, mol. All axes are logarithmic except Sc. Thick dashed lines mark the median; thin dashed
lines indicate the quartiles. Across every split the QHFLOWviolins are both lower and narrower
than those of QHNet*, and WA-FT delivers an additional (though smaller) improvement on the
energy-related metrics.
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Figure 8: Scatter plots of logH versus log ϵocc for each QH9 split. Points for QHNet* (gray) extend
to the upper right, revealing frequent large joint errors. QHFLOW (orange) and WA-FT (cyan) cluster
tightly in the lower-left region, indicating that the flow-matching model achieves simultaneously low
Hamiltonian and occupied-orbital errors, even on the challenging ood and mol splits.
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Figure 9: Mean log Hamiltonian error (markers) and one-standard-deviation bands (vertical bars)
versus atom count for the four QH9 splits. QHNet* (gray) errors rise with molecular size in ood,
whereas QHFLOW (orange) and WA-FT (cyan) remain nearly flat up to 29 atoms. This suggests that
modelling the full Hamiltonian distribution with symmetry-aware priors confers robust transferability
to larger, more complex molecules.
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