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Abstract

This paper presents a multi-granularity method for source code summarization,
which generates a concise functional description for the given code snippet. We
notice that skilled programmers write and read source codes hierarchically and
pay close attention to conceptual entities like statements, tokens, sub-tokens,
and the mapping relations between them. The entities have specific empha-
sis according to their granularities, e.g., statements in coarse-granularity reveal
the global logical semantics of code, and the sub-tokens in fine-granularity are
more related to the textual semantics. Driven by this observation, we demon-
strate that a multi-granularity formulation incorporating these conceptual enti-
ties benefit the code summarization task. Concretely, the source code is trans-
formed into a pyramidal representation, and then a pyramid attention mecha-
nism is applied for efficient feature aggregation among different hierarchies in
it. We instantiate our multi-granularity method using the proposed pyramid at-
tention and name it PA-former (Pyramid Attention transformer). We evaluated
it on two source code summarization benchmarks where it surpasses the prior
works and achieves new state-of-the-art results. Our code and data are available
athttps://github.com/leichainju/pa-former.

1 Introduction

Automatic source code summarization is drawing increasing attention to its promising application
prospects in software development and maintenance. This task is challenging due to the complex
syntax structure in programs and the arbitrariness of variable naming. Summarization methods
need to take advantage of textual and grammatical information in programs to learn a meaningful
representation for concise description generation. Following the early stage works [12, 30] that
treated the code as a sequence of text and directly adopted the well-developed seq2seq [28] models
for this task, recent leading methods [27, 25] further exploit the explicit structure (i.e., abstract
syntax tree or pair-wise relations extracted from it) in programs to boost the model performance.

Current structure-based code summarization methods are either in a hybrid way [27, 1, 13,3] orin a
structure-guided way [25, 35, 9, 19]. Works in hybrid fashion encode the AST-based structure using
structure-aware models like GGNN [16] or TreeLSTM [29], and then combine the structural repre-
sentation with the textual representation learned by sequential models for the decoding process. The
structure-guided approaches use the pair-wise relations between tokens (or sub-tokens) extracted
from code structure as inductive biases to guide the learning process. While these methods achieve
excellent results, they only model the source code from a single-granularity perspective, which can
be further improved in a multi-granularity manner.

To understand a given code snippet, a skilled programmer hierarchically breaks it down into fine-
grained entities (i.e., sub-tokens) and builds up conceptual semantics gradually from fine-grained
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Figure 1: Example of human-like code comprehension. Skilled programmers hierarchically break
the source code down to fine-grained entities (i.e., sub-tokens) and gradually build up conceptual
semantics understanding for the code from fine-grained entities to coarse-grained ones.

entities to coarse-grained ones. We now use the example shown in Figure 1 to illustrate the multi-
granularity process for code understanding. Concretely, we first segment the whole code into several
coarse-grained spans according to punctuations and grammar, where a span corresponds to a state-
ment conceptually (Figure 1(a)). Given the coarse-grained sequence, we can roughly summarize
the code as return something if something is done. After that, we dive into each statement and do
intra-statement segmentation for it (Figure 1(b)). Now we can detail the first something as return
something produced by a method invocation. To further clarify which method is invoked and what
is produced, we go deep into each token and further segment the token into sub-tokens. Here, we
can figure out that an int parsing method is invoked and an int is produced (Figure 1(c)). We fi-
nally roll back the details from fine-grained entities to coarse-grained ones and obtain the overall
understanding of the given code.

Driven by the above analysis, we propose our multi-granularity formulation for source code sum-
marization by mimicking human behavior. We first construct a pyramidal input, which is divided
into fine-grained layer, semi-grained layer and coarse-grained layer from bottom to top (Figure 1(d)).
And a novel pyramid attention mechanism is proposed for efficient feature aggregation among these
layers and produces a pyramidal representation with rich semantics. Because both coarse-grained
logical patterns and fine-grained textual features are considered simultaneously, our model can pre-
dict a more comprehensive summary. Taking the code illustrated in Figure 1(e) as an example,
compared with current leading methods, our model notices the try ... catch ... structure in this code
snippet and uses the additional if the string can be parsed as an int. to tell the captured exception
handling pattern.

Without bells and whistles, vanilla Transformer [31] equipped with the proposed Pyramid Attention
(PA-former) achieves about 5% performance improvement (evaluated by BLEU [24]) on a Java
dataset. PA-former is evaluated on two source code summarization benchmarks where it surpasses
the prior works and reaches new state-of-the-art results. And ablation studies are conducted to show
the efficiency of the proposed method.

2 Related Work

Source code representation. Learning-based source code comprehension is drawing increasing
attention as its promising application prospects in the field of software development and software
maintenance. A meaningful representation can be used for various downstream tasks, such as code
clone detection [34, 33], code classification [23, 37, 3], code summarization [10, 30, 3], code search



[7], etc. Early learning-based works treated source code as a sequence of text ignoring the structure
features. Mainstream base models like CNN [2], Attention-based LSTM [12] and Transformer [30]
were all used directly to capture the textual patterns in programs.

Many follow-ups leveraged both textual and structural information to learn a more meaningful code
representation. Tree-based models like TBCNN [23], Code-GRU [17], ASTNN [37] were proposed
to represent the source code by considering the tree structure. Some works [1] extended ASTs
into graphs by introducing control flows and data flows, then a GGNN was applied to represent
the code graphs. The set of paths [3, 4] extracted from AST was also used as a representation of
the corresponding code. Some works [11, 8, 10] flatten the ASTs into a sequence, and then the
off-the-shelf sequential models are applied to learn the textual and syntax features. Currently, most
attention is focused on guiding the attention computation in Transformer by using the structural bias
in programs [25, 9, 38].

Source code summarization. To generate a functional description for the given code snippet,
code summarization models should capture both textual and structural information in programs.
Some early works [12, 30, 32] just treated the source code as a sequence or flatten the AST using
a structure-based traversal (SBT) method [10] and then performed a conventional seq2seq learning.
The hybrid works represented both textual and structural features separately, then a hybrid mecha-
nism is used to combine the learned representations for the summary generation. HDeepcom [11]
applied the SBT method for structural representation and CAST [27] learning the structure via hi-
erarchical splitting and reconstruction of abstract syntax trees. Many Transformer-based methods
[27, 1, 13, 3] used structure information to guide the attention computation. TPTrans [25] encoded
the pairwise path between code tokens and incorporated the path embeddings like relative position
encoding. Unlike the above-mentioned methods which view the source code as single-granularity
data, we propose a multi-granularity source code summarization method.

Multi-scale feature learning. The multi-scale feature processing is widely used in the computer
vision community. FPN [21] leverages the pyramid-shaped features of ConvNet and creates a feature
pyramid that has rich semantics at all scales. Recently, the multi-scale feature hierarchies were
also introduced into Vision Transformer (ViT) by a variety of works like MViT [6], Swin [22] and
HRFormer [36], which show strong evidence that Transformer could work well with the multi-scale
features.

3 Approach

As shown in Figure 2, given a source code, we first construct sequences with three granularities
and form them into a pyramid-shaped structure based on the mapping constraints between different
granularities. After that, the proposed pyramid attention mechanism (in Figure 3) is applied layer
by layer in the encoding stage to produce a feature pyramid which is used by a vanilla Transformer
decoder to generate the summary. The details of the proposed pyramidal input constructor and
pyramid attention mechanism are introduced in this section.

3.1 Pyramidal Input Constructor

The pyramidal input is constructed following the human code comprehension process described in
Section 1. Entities in different granularities have their own emphases, telling specific attributes of
source code from different viewpoints. For instance, the coarse-grained statement sequence reveals
the global logical semantics of code, the semi-grained token sequence shows the code grammar
details, while the fine-grained sub-token split from each token is attached with textual information.
We introduce the details of the proposed pyramid input constructor in the following.

Fine-grained sequence. Each leaf node in the AST corresponds to a token (like boolean, value)
in the source code. Since method names and variable names in programs are usually composed of
multiple natural language words with CamelCase or snake_case, we can further split these combined
tokens into sub-tokens, which reveal the textual information of source code. To construct the fine-
grained layer (i.e., sub-token sequence), we first obtain the leaf nodes sequence of AST by depth-first
pre-order traversal and then split each token into sub-tokens. Such a sub-token technique is widely
used by source code summarization methods [30, 25, 27] and proved to be effective. Formally, let
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Figure 2: The proposed multi-granularity source code summarization pipeline. We first construct a
pyramidal input with three granularities, and then a novel pyramid attention based encoder is applied
to produce a feature pyramid which is used for decoding.

T = [t1,t2,...,tn] (T for text) denote the ordered sub-token sequence, that is, the fine-grained
input representation situated in the bottom of the pyramidal input. For the example in Figure 1, 7T is
[public, static, int, parse, String, As, Int, (, ...].

Semi-grained sequence. The attribute of the parent node of each token (i.e. leaf) in parsed
AST represents its grammatical property. We construct the semi-grained sequence by replac-
ing the element in ordered token sequence with its grammatical property directly. Formally, let
G = 191,92, --,9m] (G for grammar) denote the ordered token grammatical sequence, that is, the
semi-grained input representation situated in the middle of the pyramidal input. For the example
in Figure 1, G is [modifier, modifier, type, identifier, (, ...].Inaddition, a one-to-
many mapping relationship M¢_, 7 between token and sub-token is introduced. Mg_,7(g;,¢;) =1
if the sub-token ¢; is split from g;, which will be used to guide the information aggregation process
from fine-grained hierarchy to semi-grained hierarchy.

Coarse-grained sequence. We use the nodes corresponding to statements to form our coarse-
grained sequence, which reveals the logical information of the source code. As the statement
type is limited, we directly identify the AST node as a statement-level node if the tag belongs
to the pre-defined statement type set (see Appendix C for more details). Formally, let £ =
[11,12,...,lk] (L for logic) denote the sequence of the ordered statements, that is, the coarse-
grained input representation situated in the top of the pyramidal input. For the code in Figure 1, £ is
[declaration, parameters, try, return_statement, ...]. Similar to the semi-grained
sequence, we also construct a one-to-many mapping function M _, g between statement and token,
which bridges the coarse-grained hierarchy with the semi-grained hierarchy. M @, 4,) = 1 if
the statement /; is the most recent ancestor of token g; among £ in AST.

In summary, we construct a sequence set {7, G, L} in three granularities which helps the model to
capture patterns from different scales and extract mapping relationships { M s_,g, M¢_,7} between
adjacent granularities which introduce inductive bias to aid the model to learn accurate semantics.
Thus, the sequences and the mapping relationships all together form the pyramidal input representa-
tion of the given code.

3.2 Pyramid Attention

The pyramidal layers {7,G, L} complement each other following the mapping relationships
{Mrg, Mg_,7}. We propose a novel pyramid attention mechanism for efficient feature ag-
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Figure 3: Pyramid attention mechanism. The pyramid attention takes a pyramid-shaped data de-
scribed in Section 3.1 as input, and outputs a multi-scale representation without changing the orig-
inal pyramid shape. The whole process consists of a bottom-to-top aggregation pathway and a
cross-granularity information interaction process.

gregation among these layers. As illustrated in Figure 3, the pyramid attention module includes
a bottom-to-top aggregation pathway and a cross-granularity information interaction process. We
describe the details in the following.

Bottom-to-top aggregation. The bottom-to-top pathway does a fine-to-coarse information ag-
gregation, which ensures to enrich the higher-level representation using the lower-level semantics.
Given the pyramid input data: {7,G, £} and the mapping function {M;_,g, Mg_,1}, we aggre-
gate the representation of 7 into G w.r.t. Mg_,7. The formulation of the aggregation process is

given as:
S Mgo7(g;, )t b
BN Mg (g t5) e

g, = LayerNorm (gi +W (1

Where W, € RDPXD, bage € RP are learnable parameters, g;,t; € R are the i-th representation
vectors in G and T respectively, D represents the dimension of the representation, and g; is the
aggregated representation of g,. The aggregation process from G into £ w.r.t. M _,¢ is the same
as above. We further conduct a aggregation directly from 7 into £ w.r.t. M _,7, which is obtained
by:

Mo (list) = Vieq,...my Meog(lis i) A Mgo1(gkst5)) 2

In summary, we update {G, L} into {G, L} using 7 and {7, G} respectively. The mapping-based
aggregation is reasonable and necessary as the semantics of the element at high levels come from the
combination of its descendants’ semantics. The semi-grained sequence and coarse-grained sequence
are initialized as the grammatical type of the tokens and statements. Figuratively speaking, they are
like torsos with empty skeletons, and we need to fill them with textual information to make them
complete. There is an ablation experiment demonstrating its effectiveness in Section 4.3.

Cross-granularity interaction. The aggregated semantics of the elements in semi/coarse-grained
sequences tend to be local. To alleviate this dilemma, we further make the elements in a specific
granularity to query all elements at three granularities, which guarantees that the model can capture
both fine-grained and coarse-grained features.

Formally, we now have {7, G, L} after aggregation. Taking sequence G € RM*D of length M in

certain granularity as an example, G will query all of {7, G , E} in the cross-granularity interaction
process. We first concatenate the pyramid representation as

C = Concat([T, G, L]) € RUK+M+N)xD 3)

here N, M, K are the sequence lengths of T, G , L respectively. A relative position encoded multi-
head attention [26] is applied here and we use the relative position map RY € ZM*ICl to make the



model granular-aware. The multi-head cross-attention (MHCA) process is calculated as:

g = §+ {MultlHead(Q\,C)} Wo & RMXD (4)
MultiHead(G, C) = Concat([Head, (G,C), . ..,Heady(G,C)]) € RM*P 5)
Head),(G,C) = [21, 22, ..., z:] € RM* 7 ©
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where Wf;, WZ, W ¢ R X %, h € [1,..., H] are projection matrices of Query, Key and Value
for h-th head. W, € RP*P is projection matrix for attention output. H represents the number of
heads and X represents the output of multi-head self-attention process. Wilik, Wiz,k € R# X7
are projection matrices of Key and Value of relative position embeddings, the G means that they are
specific to G.
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Figure 4: a toy example of granular-aware relative position map for G cross-granularity interaction.

For the construction of relative position map R, we calculate the clipped relative distance with max
distance as 32 for the pair within granularity and assign the relative distance as a default value (e.g.
max distance + 1 and max distance + 2) for all the pair across the specific granularity. Figure 4
shows a toy example of granular-aware relative position map with max distance as 3 for G cross-
granularity interaction. The cross-granularity interaction for 7 and £ is similar to G. We share
attention parameters (i.e. Wg, WZ, W" and W, ) across three granularities, but assign specific rel-
ative path parameters for each granularity. In summary, in this cross-granularity interaction process,
the semantics of the feature pyramid are updated as:

L£,G, T = MHCA(L,C), MHCA(G,C), MHCA(T,C) (10)

3.3 Pyramid Attention Transformer

As illustrated in Figure 2, the overall model is similar to the vanilla Transformer. The self-attention
module in the encoder is replaced with the proposed pyramid attention module for an efficient pro-
cess of the multi-scale input. Notably, we only use the fine-grained sequence in the pyramidal
representation for decoding, which already contains enough semantics for summary generation and
reduces the complexity of the model design. Following prior works [30], we also apply a copy
mechanism in our model which reduces the risk caused by out-of-vocabulary and speeds up training
convergence.

Although there is overlap between the vocabularies of different granularities, the meanings of these
common words are quite different when differentiated at different granularities. For instance, else
may be just a natural word in the textual sequence, but a keyword for control in a grammatical
sequence. Thus, we assign individual embedding layers for each granularity to avoid such confusion.

For efficient parameter usage, a parameter sharing strategy is also applied in the cross-granularity
interaction process as stated in Section 3.2, We find the self-attention mechanism is strong enough



to handle this multi-role mission. Thus, our model doesn’t add too many parameters compared to
Transformer. What’s more, such a parameter-sharing strategy also brings efficient model implemen-
tation. We only need to concatenate these three sequences and the relative position maps separately,
then directly adopt a relative position encoded multi-head self-attention layer to implement the cross-
granularity interaction module.

4 Experiments

4.1 Experiments Setup

Dataset and Metrics. To demonstrate the effectiveness of the proposed method, we conduct ex-
periments on two widely-used and well-developed java datasets: EMSE-DeepCom? [11] which is
collected from GitHubs Java repositories and FunCom? [14] which has ~2 million java method-
comment pairs. We filter out the examples that cannot be parsed properly or are of too large size for
both datasets. And deduplication is done on EMSE-DeepCom to avoid data leakage. Table 1 shows
the statistics of the datasets.

Table 1: Dataset statistics. #train and #test mean the number of examples for training and testing, #sub-token
means the max sequence length when the code is tokenized as sub-token, and the rest are similar to this.

Name | #train | #test | #sub-token #token #statement #summary
EMSE-Deepcom | 295,967 | 12,226 196 160 16 24
FunCom 1,017,964 | 53,936 256 196 32 32

We use 6 metrics to evaluate the model performance on the datasets. BLEU [24], Rouge-L [20]
and Meteor [5] are widely used to evaluate the quality of text similarity in the domain of natural
language generation. Another 3 metrics are used to qualify the token-wise prediction performance.
We use beam search with a beam size of 3 for all models in the inference phase.

Data preprocessing. All data preprocessing of code is based on the parsed syntax tree. We obtain
the AST using the open-sourced tool Tree-sitter*. Please refer to 3.1 for details of the proposed pyra-
mid data construction. We re-implement the data preprocessing pipeline for all compared baselines
based on the AST parsed by Tree-sitter, please refer to Appendix C for more details.

Baselines. Early works viewed source code as a sequence of text and used the sequential model
like LSTM or Transformer, we mainly compare with CODE-NN [12] and NeuralCodeSum [30] for
this type of methods. A few works only learned the structure features for this generation task, we
compare with TreeLSTM [29] here. Most works exploited the textual and structural information
for this task. One group of works learned to represent these two types of information separately,
then a hybrid mechanism is used to combine them in the decoding phase. We do comparisons with
HDeepCom [11], ASTAttnGRU [13] and CAST [27] for the hybrid fashion. Another line of methods
used structure relations as an inductive bias to guide the information interactions in the model. Here,
we compare with SiT [35], GREAT [9] and TPTrans [25]. For clarity, the backbone and taxonomy
of each method are listed in Table 2.

And a copy mechanism is added for all transformer-based models. We directly adopt the model
implementation script if the code is publicly available, and re-implement the method according to
the description in the corresponding paper if the code is not provided or not available. What’s more,
all baselines are integrated under a unified PyTorch-based code summarization framework developed
by ourselves for fair comparisons. We provide implement details for baselines in Appendix A.3.

Hyperparameters and training setup. For fair comparisons, all the Transformer-based models
use the default Transformer configurations with embedding dimension as 512, feedforward dimen-
sion as 2048, head number as 8, and layer number for encoder/decoder as 6 and all RNN-based

*https://github.com/xing-hu/EMSE-DeepCom
*http://leclair.tech/data/funcom/
*https://tree-sitter.github.io/tree-sitter/
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Table 2: Comparisons with other code summarization methods on a middle-size dataset and a large-size
dataset.

Methods | Backbone | Hybrid | Structure | Epochs | BLEU Rouge-L Meteor Precision  Recall F1
RMSE-Deepcom (middle-size)

CODE-NN [12] LSTM 24 28.448 43506  17.886  47.266  45.165 44.774
TreeLSTM [29] LSTM v 24 28.992 43985 18.179  48.486  45.115 45.287
HDeepCom [11] GRU v v 24 32179  49.029 21528 54.273  50.584 50.754
ASTAtnGRU [13] GRU v v 24 33.041 49.761 22205 54.539 51.754 51.467
SiT [35] Transformer v 30 35689 53.750 24.196  60.784  54.243 55.717
GREAT [9] Transformer v 30 36.382  53.606 24.181  60.008  54.230 55.460
NeuralCodeSum [30] | Transformer 30 37.133 54800 25.051 61.356 55413 56.682
CAST [27] Transformer v v 30 37.195 54868 25.069  61.601 55368 56.747
TPTrans [25] Transformer v 30 37.248 54996  25.022 62.022 55354 56.884

PA-former (ours) ‘ Transformer

| 30 | 38848 56.095 25895 62.498 56.642 57.903

Funcom (large-size)

CODE-NN [12] LSTM 24 31.862  48.896  19.108  54.018  49.241 49.924

TreeLSTM [29] LSTM v 24 31.462  48.293 18.869  53.237 48902 49.332
HDeepCom [11] GRU v v 24 35063 53.350 22.645 59.460 53.693 54.808
ASTAttnGRU [13] GRU v v 24 37.001 55.034 23753 61.244 55315 56.523
SiT [35] Transformer v 36 42.121 59330  26.819  65.562  59.427 60.839
GREAT [9] Transformer v 36 43286 60.364 27439  66.186  60.580 61.831
NeuralCodeSum [30] | Transformer 36 43.355  60.405  27.540 66.488  60.459 61.860
TPTrans [25] Transformer v 36 43450  60.566  27.607  66.765  60.568 62.030
CAST [27] Transformer v v 36 43580 60.524  27.665  66.458  60.657 61.976

PA-former (ours) ‘ Transformer

| 36 |44.649 61.450 28274 67.210 61593 62.863

models use the hidden dimension with 512. For embeddings, we use the embedding dimension with
512 for all approaches. The size of vocabularies is limited by 50000 over code sequences and 30000
over summary sequences in EMSE-DeepCom, and the corresponding configurations are 35000 and
30000 in FunCom. All models are trained using NVIDIA Tesla A100 GPUs with a batch size of
64. We train all baselines including our models using AdamW optimizer with a multi_step learning
rate scheduler, and set the initial learning rate to 0.0002 and 0.003 for Transformer-based and RNN-
based models, respectively. And warmup strategy is used for stable training in the Transformer-
based model. The training epochs for each method are listed in Table 2.

4.2 Main Results

Comparisons with baselines. The comparisons with baselines are listed in Table 2. Without bells
and whistles, we find that our proposed PA-former substantially surpasses all baselines and achieves
new state-of-the-art on both middle-size and large-size datasets. Compared with NeuralCodeSum
which is a relative positional encoded Transformer, our method has a 5% improvement in BLEU on
the middle-size dataset. For the current leading methods CAST and TPTrans, which both take all the
nodes in ASTs and the sub-token sequence as input, our model only takes a subset of AST nodes and
sub-tokens surpass both of them over 1.0+ BLEU scores on two datasets. And thanks to the efficient
implementation and parameter sharing strategy, our model requires far less training time to converge,
while TPTrans needs a very long time to converge as the large size pair-wise paths and the sparse
scatter algorithm. The leading results demonstrate that our multi-scale formulation for the task of
source code summarization is reasonable. To further evaluate the effectiveness of our method, we
provide a case study in Appendix D. Moreover, we provide the results on RMSE-Deepcom dataset
with error bars to show that the improvement achieved by our method is statistically significant in
Table 11 at Appendix B.

Human evaluation. As a complement, human evaluation is conducted over the transformer-based
methods following the previous works [12, 27, 15]. We invite 5 volunteers with over 5 years of
programming experience and ask them to score (0 - 10, 10 is the best) the generated summaries over
100 examples sampled randomly from the testing sets (20 from RMSE-Deepcom and 80 from Fun-
com). Here we focus on two key points: naturalness (grammaticality and fluency of the generated
summary) and usefulness (what extent the generated summary is useful to understand the code).
We divide the 100 examples into 5 groups (each one has 20 examples) and assign each group into 3



Table 3: Human evaluation results over 100 examples sampled randomly from the testing sets (20 from RMSE-
Deepcom and 80 from Funcom).

Methods | Naturalness | Usefulness
NeuralCodeSum 5.12 4.98

TPTrans 5.51 5.23

CAST 5.55 5.19
PA-former (ours) 6.09 5.86

different volunteers, and the final score of each example is the average of its 3 "review" scores. As
shown in Table 3, our PA-former outperforms others in both naturalness and usefulness.

4.3 Ablation Study

In this part, we analyze the importance of designs in our proposed PA-former using a series of
ablation studies on EMSE-DeepCom dataset. Unless otherwise specified, the training setup is the
same as above.

Multi-scale v.s. single-scale. To demonstrate the effectiveness of multi-granularity formulation,
we degenerate the pyramid input into a single large sequence by concatenating the three granularity
sequences and directly feed the same sequence into a relative positional encoded Transformer with
a copy mechanism. As shown in Tabel 4, more data in the input sequence obtains performance im-
provement compared to NeuralCodeSum which only takes a sub-token sequence as input. However,
processing the same data using our proposed multi-scale way achieves higher performance.

Table 4: Evaluation results of multi-scale v.s. single-scale.

Methods | BLEU Rouge-L Meteor Precision Recall — Fl

multi-scale | 38.848 56.095 25.895 62.498 56.642 57.903
single-scale | 37.329 55.032 25.114 61.586 55.750 56.946

Effectiveness of pyramid attention. The core components of pyramid attention are the bottom-
to-top aggregation and cross-granularity interaction. We show the necessity for both of these two
components here. To demonstrate the effectiveness of bottom-to-top aggregation, we evaluate a vari-
ant of PA-former whose bottom-to-top pathway is disabled. As shown in Table 5, the model perfor-
mance drops by about 1.1 BLEU scores without such a component. To demonstrate the effectiveness
of cross-granularity interaction, we evaluate a variant of PA-former whose cross-granularity inter-
action is disabled which directly degenerates into NeuralCodeSum as we only use the fine-grained
encoder output for decoding. As shown in Table 5, the model performance drops by about 1.7 BLEU
scores without such a component. Such results reveal the importance of cross-granularities interac-
tion. We further disable the granular-aware relative embedding to investigate its importance, and we
observe a big drop in performance shown in Table 5, which shows its effectiveness.

Table 5: Evaluation results of pyramid attention ablation.

Methods | BLEU Rouge-L Meteor Precision Recall — Fl1

PA-former 38.848 56.095 25.895 62.498 56.642 57.903

w/o bottom-to-top 37.532 55.153 25.131 61.815 55.590 56.977
w/o cross-granularity | 37.133  54.800 25.051 61.356 55.413 56.682
w/o granular-aware rel. | 36.905 54.690 24.806 61.443 55.224 56.560

Decoding strategy. The output of our PA-former encoder is a pyramid representation, thus there
are various ways for decoding. Our PA-former directly uses the fine-grained sequence just for sim-
plicity. Here, we study other implementations that utilize all three granularity of representation. The
most intuitive method is concating the three granularity representations, and another way is using



them in a serial strategy [18]. As Table 6 shows, using the fine-grained representation is good enough
in this task to benefit from the design of information interaction across granularities. The results are
a bit counterintuitive, we think a reasonable explanation is that the fine-grained representation al-
ready contains enough information benefited from the proposed pyramid attention. When all three
granularities are used, there is severe information redundancy between different granularities, which
complicates the task.

Table 6: Evaluation results of decoding strategy.

Decoding strategy | BLEU Rouge-L Meteor Precision Recall Fl1

fine-grained 38.848 56.095 25.895 62.498 56.642 57.903
serial 38.729 55.894 25.803 62223 56.425 57.669
concat 38.556 55.819 25797 62.174 56.456 57.638

Grammar input. When constructing the pyramid input, we intentionally enforce the bias between
different granularities by assigning different types of content. For example, we bias the semi-grained
sequence into grammar features by assigning token grammar types to it. To evaluate the rationality
of assigning different types of content, we compare the proposed pyramid input without grammar
information, which set the initial content of semi-grained and coarse-grained sequences to empty.
The results in Table 7 prove the rationality of pyramid input design.

Table 7: Evaluation results of grammar input.

pyramid input content | BLEU Rouge-L Meteor Precision Recall F1

PA-former 38.848 56.095 25.895 62.498 56.642 57.903
w/o grammar 38.394 55.744 257706 62.198 56.458 57.637

5 Conclusion

In this paper, we present a multi-scale formulation for source code summarization. Given a code
snippet, we construct a pyramidal input with three granularities. And a novel pyramid attention
mechanism is proposed for efficient information interaction across granularities. Without bells and
whistles, the proposed method obtains 5% improvement over the strong baseline and achieves new
state-of-the-art results. Additional ablation studies show the effectiveness of the proposed modules.
Furthermore, our multi-scale formulation for the source code can be easily extended to other code-
understanding tasks. In future work, we would try to scale our model up and pre-train it on larger
source code corpora to further improve its capability and generalizability on source code compre-
hension tasks.
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