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Abstract

It is often challenging to teach specialized, un-001
seen tasks to dialogue systems due to the high002
cost of expert knowledge, training data, and003
high technical difficulty. To support domain-004
specific applications—such as law, medicine,005
or finance—it is essential to build frameworks006
that enable non-technical experts to define, test,007
and refine system behaviour with minimal ef-008
fort. Achieving this requires cross-disciplinary009
collaboration between developers and domain010
specialists. In this work, we introduce a novel011
framework, CoDial (Code for Dialogue), that012
converts expert knowledge, represented as a013
novel structured heterogeneous graph, into ex-014
ecutable conversation logic. CoDial can be015
easily implemented in existing guardrailing lan-016
guages, such as Colang, to enable interpretable,017
modifiable, and true zero-shot specification of018
task-oriented dialogue systems. Empirically,019
CoDial achieves state-of-the-art performance020
on the STAR dataset for inference-based mod-021
els and is competitive with similar baselines on022
the well-known MultiWOZ dataset. We also023
demonstrate CoDial’s iterative improvement024
via manual and LLM-aided feedback, making025
it a practical tool for expert-guided alignment026
of LLMs in high-stakes domains.1027

1 Introduction028

The recent emergence of Large Language Models029

(LLMs) has transformed the field of Natural Lan-030

guage Processing (NLP), achieving remarkable per-031

formance across a wide range of benchmarks. As032

language models become more widely adopted, ex-033

perts in high-stakes domains such as law, medicine,034

and accounting are seeking ways to apply them035

responsibly to specialized tasks. Many domain ex-036

perts lack coding skills, so it is important to provide037

tools that let them define, validate, and refine AI038

behaviour without writing code (Tian et al., 2024;039

1Our code and data will be made publicly available at
[GitHub Placeholder].
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Figure 1: Overview of the proposed CoDial framework.
An expert-curated dialogue flow (left) is transformed
into executable programmatic logic using an LLM (top).
The generated code is iteratively refined before produc-
ing the final program, which powers a conversational
application (right), enabling the chatbot to follow the
designer’s requirements.

Dahan et al., 2023). Cross-disciplinary collabo- 040

ration often requires frameworks to possess inter- 041

pretability and be generalizable to a wide variety 042

of tasks, as domain experts may have limited exper- 043

tise in programming and often need to understand 044

step-by-step execution of the system. However, 045

creating generalizable conversational systems is 046

challenging due to the complexity of human con- 047

versation. Task-Oriented Dialogue (TOD) is an 048

area of research dedicated to accomplishing real- 049

world tasks (Qin et al., 2023; Jacqmin et al., 2022). 050

Through these general frameworks, it becomes eas- 051

ier to build intelligent dialogue systems for specific, 052

well-defined tasks across various domains. 053

Many existing works utilize a schema-oriented 054

framework to enforce complex task structures in 055
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TODs (Zhang et al., 2023; Zhao et al., 2023; Mehri056

and Eskenazi, 2021). These systems convert tasks057

into a parsable task schema or dialogue flow, al-058

lowing experts to specify and integrate new tasks059

with minimal effort. However, these systems do not060

satisfy two critical properties: (1) interpretabil-061

ity, the ability to identify how the schema is being062

used by a language model to arrive at its outputs;063

and (2) the ability for a domain expert to easily064

modify the components, which is crucial for many065

real-world applications. For example, while pro-066

grammatic representations like those in AnyTOD067

are technically interpretable, they remain difficult068

for non-experts to modify, as they lack an interme-069

diary interface that would make the task schema070

accessible and modifiable. To advance real-world071

applications and support collaboration with domain072

experts, we explore a novel approach to create a073

framework that is easy for an expert to specify, val-074

idate, and modify. The contributions of our work075

are summarized as follows:076

• We propose a novel approach for dialogue flow077

alignment that aims to minimize human effort078

requirement through high-level abstraction with079

strong interpretability. This allows domain ex-080

perts without programming knowledge to effec-081

tively align dialogue systems at inference time.082

• The proposed framework, CoDial, consists of083

three novel components. The heterogeneous di-084

alogue flow representation allows domain ex-085

perts to define rich task schemas. The guardrail-086

grounded code generation pipeline transforms087

dialogue flows into executable LLM guardrail-088

ing program, allowing for flexible control of089

LLMs in the inference stage. The CoDial human-090

feedback mechanism incorporates human and091

LLM feedback to refine and optimize the gener-092

ated guardrailed conversational models.093

• We demonstrate the effectiveness of our frame-094

work on publicly available benchmarks, STAR095

and MultiWOZ. We experiment with different096

code refinement strategies, by incorporating user097

feedback through manual and LLM-aided modi-098

fication.099

2 Related Work100

Task-Oriented Dialogue Building generalizable101

conversational systems is challenging due to the102

complexity of human conversations, particularly103

when domain expertise is involved (Chen et al.,104

2017), leading to a focus on task-oriented systems105

for specific domains (Jacqmin et al., 2022). While 106

LLMs have demonstrated impressive capability in a 107

wide variety of domains, they struggled with TOD 108

and fell behind if not used properly (Hudeček and 109

Dusek, 2023). Some research (Zhang et al., 2023; 110

Zhao et al., 2023; Mehri and Eskenazi, 2021) has 111

used a schema-guided approach to generalize TOD 112

systems to unseen tasks. Zhao et al. (2023) viewed 113

the task schema as a program and adopted a neuro- 114

symbolic approach to execute the policy program 115

and control the dialogue flow. 116

Guardrails Guardrailing aims to enforce human- 117

imposed constraints to control LLMs in the infer- 118

ence time (Dong et al., 2024; Rebedea et al., 2023; 119

Guardrails AI). While it originated from AI safety, 120

they can generally be used to define desired be- 121

haviour to constrain. Although traditional dialogue 122

management systems, like Google Dialogflow2, al- 123

low rigid modelling of dialogue states, they of- 124

ten lack flexibility to define complex task logic, 125

and it is difficult for a user to further enhance 126

the system. NVIDIA NeMo-Guardrails (Rebedea 127

et al., 2023) is a toolkit that adds programmable 128

guardrails to LLM-based conversational applica- 129

tions without fine-tuning. NeMo-Guardrails em- 130

ploys Colang (NVIDIA, 2024), a programming lan- 131

guage, to establish highly flexible conversational 132

flows and guide LLMs within them. Dong et al. 133

(2024) suggested using neuro-symbolic approaches 134

to guardrail LLMs, where a neural agent (e.g., an 135

LLM) can deal with frequently seen cases, and a 136

symbolic agent can embed human-like cognition 137

through structured knowledge for the rare cases. 138

Code Generation and Prompt Optimization 139

We use code generation strategies to convert struc- 140

tured graphs into programmatic guardrails. Code 141

generation has made remarkable progress with the 142

introduction of LLMs (Le et al., 2022). Although 143

there are still challenges such as logical consistency 144

and hallucinations (Liu et al., 2024). LLMs are pro- 145

ficient when in-context examples, documentations, 146

or plans are provided (Jiang et al., 2024). There are 147

many emerging methods to further optimize LLM 148

generations (e.g., self-reflection, where LLMs are 149

requested to update their own response), which 150

have been shown to reduce hallucinations and im- 151

prove problem solving (Ji et al., 2023). There has 152

been research to improve output by rewriting the 153

input prompt, referred to as prompt optimization 154

(Yang et al., 2023; Yuksekgonul et al., 2024). 155

2https://dialogflow.cloud.google.com
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3 Methodology156

We introduce CoDial, a novel framework for con-157

structing interpretable dialogue systems without re-158

quiring training data or programming expertise, as159

illustrated in Figure 1. We leverage programmatic160

LLM guardrailing, which allows flexible control161

of the behaviour of an LLM in the inference stage,162

and accordingly, ground TOD to graph-based di-163

alogue flows that define the behaviour. CoDial164

is composed of three key components: (1) Co-165

Dial Heterogeneous Dialogue Flows (CHIEF) that166

allows domain experts to define the task schema167

(Section 3.1), (2) Guardrail-Grounded Code Gener-168

ation (GCG) that automatically generates an ex-169

ecutable guardrailing program based on the in-170

put dialogue flow (Section 3.2); In this paper,171

we use Colang (NVIDIA, 2024) guardrailing lan-172

guage, while any other programmatic guardrailing173

paradigm can be applied, and (3) CoDial Human174

Feedback (CHF) that incorporates human/LLM175

feedback to optimize the generated Colang con-176

versational system (Section 3.3).177

3.1 CoDial Dialogue Flow Representation178

We design a structured framework that defines task179

schema as heterogeneous directed graphs, called180

CoDial Heterogeneous dIaloguE Flows (CHIEF)181

representation. Unlike prior work (Mehri and Es-182

kenazi, 2021; Zhang et al., 2023) that define task183

schema as a homogeneous graph—where the only184

node type represents user intent, an API return185

value, or a dialogue state—CHIEF allows for differ-186

ent node or edge types in a heterogeneous manner,187

supporting more structured task definition. Specifi-188

cally, CHIEF defines different node types that can189

define rich metadata and natural language logic to190

cover a wide range of tasks and domains, inspired191

by Mosig et al. (2020). To the best of our knowl-192

edge, we are the first to frame TOD task schema as193

a heterogeneous directed graph. We will show that194

CHIEF representation is compatible with, and can195

be converted to code for open-source guardrailing196

libraries. Below, we discuss the main node types197

and actions in CHIEF.198

Request The request nodes define the variables,199

called slots, that CoDial tracks throughout the con-200

versation (e.g. the departure location in a taxi201

booking task). When a conversation reaches this202

node, the system will request information specified203

by the slots. Each slot is assigned a data type (e.g.204

categorical) and accompanied by a few example205

=== DST in Colang Example 
[Simple Dialogue Flow] 
Equivalent DST Code 
$pin = dst [...] $pin "extract 

user pin from conversation history ..." 
$dob = dst [...] $dob "extract user date of birth 
from conversation history ..." 

=== Colang Action Calling Definition 
<ActionName>[(param=<value>[, param=<value>]…)] 

=== NAP in Colang Example 
[Simple Dialogue Flow] 
Equivalent NAP Code 
if $full_name == "<MISSING>" or ... 
  # user missing information 
  if $date_of_birth == "<MISSING>" 
    # user missing information 
    bot inform "I cannot authenticate you." 

  elif ... 
else 
  # user provides information 
  bot inform "Your information has been submitted" 
=== Dialogue Flow 
[ : Input CHIEF-Formatted Dialogue Flow as JSON] 

=== Task Description 
Define a variable for each request slot ... 
 

Convert graph into nested if/else statements ... 
For request nodes, ... 
For external_action nodes, ... 
For inform nodes, ... 
For inform_and_confirm nodes, ... 

 
Figure 2: An overview of promptGCG(x), where a dia-
logue flow x is wrapped with system prompt template.

values. Additionally, CHIEF includes a free-form 206

rule property to define the conditions under which 207

a slot should be requested (e.g. in a taxi booking 208

scenario, providing either a departure or arrival 209

time is sufficient for booking). Since we leverage 210

LLMs to build the TOD system, textual extensions 211

can be easily incorporated. 212

External Action This node specifies a call to an 213

external function within a dialogue flow. External 214

actions enable the designer to execute complex log- 215

ics through programming functions, interact with 216

APIs, or invoke an LLM. 217

Inform (and Confirm) This node defines a 218

template for providing information to the user 219

(e.g. Your taxi is booked with reference number 220

[ref_no]). The confirmation variant additionally al- 221

lows the agent to ask a follow-up question (e.g. Do 222

you confirm the booking?) and follow the appro- 223
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Algorithm 1 An outline of CoDial’s GCG output.

1: for each v in V (H) do
2: v ← NULL or FALSE ▷ Initialize helpers
3: end for
4: while True do
5: h2i−1← (h2i−2;Ui) ▷ User input

6: intent← DETECTINTENT(h2i−1) ▷ Global action
7: if intent ̸= NULL then
8: Bi← INTENTRESPONSE(intent)
9: continue

10: end if

11: for each v
(s)
j in V (S) do ▷ DST

12: vold← v
(s)
j

13: v
(s)
j = DST

(
h2i−1,LLMA, p

(s)
j

)
14: if v(s)j ̸= vold then
15: for each hv in v

(s)
j ’s dependents do

16: hv← NULL or FALSE
17: end for
18: end if
19: end for

20: state← (V (S), V (H)) ▷ NAP
21: Bi, V (H)← NAP(state, LLMA)
22: if Bi = NULL then ▷ Fallback action
23: Bi← LLMA(V (H))
24: end if
25: end while

priate predefined dialogue path based on the user’s224

response.225

Global and Fallback Actions In addition to226

nodes, CHIEF supports representing global and227

fallback actions that are not tied to particular dia-228

logue steps. Global actions can be triggered at any229

point in the dialogue flow. We also define fallback230

actions, general responses used when no other ac-231

tion is selected (e.g. Sorry, I can’t help with that).232

The defined nodes logically connect with edges.233

We add a textual condition property to edges to234

allow conditional branching in dialogue flows. We235

encode the graphs defined by CHIEF as text in236

JSON format. The JSON representation consists of237

a list of nodes and a list of edges (Figure 8). The238

JSON-encoded CHIEF represented dialogue flow is239

translated into guardrails code with our automatic240

code generation pipeline.241

3.2 Guardrail-Grounded Code Generation242

Guardrailing is a general paradigm to enable243

inference-stage control over LLMs’ behaviour244

(Dong et al., 2024; Rebedea et al., 2023). Our245

work is the first to formulate TOD schema as246

programmatic guardrailing, which allows highly247

flexible model behaviour adjustment. Prior work248

(Zhang et al., 2023) use prompting, which requires249

prompt engineering and could be inefficient with 250

long prompt contexts. In contrast, guardrailing acts 251

as a proxy between the user and LLM, allowing for 252

black-box LLM alignment and removing the need 253

for model fine-tuning or data collection (Rebedea 254

et al., 2023; Dong et al., 2024). 255

We propose CoDial Guardrail-Grounded Code 256

Generation (GCG) that translates CHIEF- 257

represented dialogue flows into Colang 258

guardrailing code3. GCG is performed 259

through prompting powerful LLMs (e.g., 260

GPT-4o)4. Formally, the GCG process is de- 261

noted as g = LLMGCG (promptGCG (x)), where 262

promptGCG (x) is a JSON-encoded CHIEF graph 263

x wrapped with the prompt template instructions, 264

and g is the output. Figure 2 shows an overview of 265

promptGCG. The generated guardrailing code g is 266

the executable TOD system. 267

Our promptGCG outlines the output g, contain- 268

ing x’s programmatic logic, as presented in Al- 269

gorithm 1, with the definitions of the notations 270

provided later in this section. g is a complete and 271

executable guardrailing program powered by an 272

LLM agent LLMA. The conversation runs within 273

an indefinite while loop, where the agent waits for 274

user input, detects the user’s intent for global ac- 275

tions, predicts the slot variables defined in request 276

nodes (DST component), and selects an action and 277

generates a response (NAP component). In this 278

work, we leverage Colang’s built-in intent detec- 279

tion feature for global actions. Note that DST and 280

NAP are combined and generated by LLMGCG as 281

a single program (i.e., g). Finally, if the NAP com- 282

ponent does not generate a response based on the 283

defined logic (e.g. when user says Goodbye!), the 284

LLMA is prompted to choose an action, given the 285

fallback actions and all actions defined in the dia- 286

logue flow. Figure 4 illustrates the execution life 287

cycle of the agent. 288

We denote a conversation between user U and 289

chatbot B as a history of messages, Equation 1, 290

where Ui and Bi show user’s and chatbot’s i-th 291

utterance, respectively. Therefore, the total number 292

of utterances in h2i is 2i. 293

h2i = (U1, B1, . . . , Ui, Bi) (1) 294

3https://docs.nvidia.com/nemo/guardrails/
colang_2/overview.html

4We also experimented with (1) retrieval-augmented gen-
eration using the Colang Language Reference documenta-
tion and (2) fine-tuning GPT-4o-mini on generation pairs of
(programming task,Colang code), but found that prompting
with examples works best.

4
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Moreover, we define a set of slot variables V (S)295

that track values for all of the slots defined in all296

request nodes, and helper variables V (H) that track297

the state for other (non-request) types of nodes.298

V (S) and V (H) together form the state of conver-299

sation s =
(
V (S);V (H)

)
at each turn, which is300

used to determine the next action. Please refer to301

Appendix A.1 for more details on code generation.302

Dialogue State Tracking (DST) As suggested303

by Feng et al. (2023), LLM prompting shows304

promising performance in DST. Therefore, we use305

a simple prompting approach for DST. We lever-306

age Colang’s Natural Language Description (NLD)307

feature to extract the value of each slot from the308

conversation history. For each slot, promptGCG309

instructs LLMGCG to write instructions about ex-310

tracting the value for that slot, given the history.311

The NLD instructions then prompt LLMA when312

executed by Colang.313

Formally, a slot variable v(s)j ∈ V (S) is predicted314

at bot’s turn i as Equation 2, where p
(s)
j ∈ P (s) is315

the prompt generated by LLMGCG to extract the316

value for v(s)j .317

v
(s)
j = DST

(
h2i−1,LLMA, p

(s)
j

)
(2)318

Since updating a slot may affect the state (e.g. in319

a search task, modifying the search criteria requires320

re-executing the search), LLMGCG needs to iden-321

tify the helper variables that need to be invalidated322

when each slot is updated. We instruct LLMGCG323

to list the helper variables of nodes that are reach-324

able from the updated slot in the graph (i.e., nodes325

that are direct or indirect children of the slot’s re-326

quest node). These variables are then reset to null327

or false, depending on their type, when the slot is328

updated during execution.329

Next Action Prediction (NAP) We instruct330

LLMGCG to convert the dialogue flow tree into a331

conditional logic, consisting of nested if/else state-332

ments, to generate a response given the current333

state. For each node nj in the dialogue flow, an if334

statement is generated to check whether the conver-335

sation is in that node, using v
(s)
j or v(h)j , depending336

on the type of the node. If the condition holds, the337

corresponding action for that node is executed; oth-338

erwise, the logic proceeds to check its child nodes.339

For each outgoing edge from a node, the dialogue340

logic checks whether there is a condition associ-341

ated with the edge and evaluates whether or not342

the condition is met. If there is no condition, the343

edge is followed automatically. Formally, next bot 344

utterance is defined in Equation 3. 345(
Bi, V

(H)
i+1

)
= NAP(si,LLMA) (3) 346

3.3 CoDial Human Feedback Integration 347

CoDial’s Human Feedback (CHF) mechanism in- 348

corporates feedback to refine or improve the gen- 349

erated dialogue logic. The code enhancement 350

through human feedback comprises two broad ap- 351

proaches: i) manual modifications and ii) LLM- 352

aided modifications. 353

CHF assist human feedback incorporation in the 354

form of refinement instructions (RIs), shown at 355

the top in Figure 1. RIs allow the domain expert or 356

developer of CoDial to refine the generated logic 357

through text-to-code instructions. As the first step, 358

we provide three instructions for refining certain 359

aspects of the output code: correct logic (i.e., if 360

statement) for each node, DST initialization, and 361

request node checks. These RIs, presented in Ta- 362

ble 6, are always applied to fix the problems in the 363

output, if any. Moreover, we attempt to refine the 364

generated DST prompts (P (s)) through automatic 365

prompt optimization. Please refer to Appendix A.3 366

for details on automatic DST prompt optimization. 367

In addition, CHF allows for manual modifications 368

on the dialogue flow (Appendix A.2) and manual 369

DST prompt optimization (Appendix A.3). 370

4 Experimental Settings 371

Models We use GPT-4o5, Claude 3.5 Sonnet6, 372

Gemini 2.0 Flash7, and DeepSeek V3 (DSV3) 373

(DeepSeek-AI et al., 2024) as LLMGCG, and GPT- 374

4o-mini and DSV3 as LLMA
8 . Larger models are 375

used for code generation—given the complexity of 376

the task, we found that smaller models often fail 377

to fully adhere to instructions. For further details, 378

please refer to Appendix A.4. 379

4.1 Datasets 380

STAR The STAR dataset (Mosig et al., 2020), 381

collected in a Wizard-of-Oz setup (human-human 382

conversations), provides explicit task schemas 383

(i.e., dialogue flows) to ensure consistent and de- 384

terministic system actions. We also use silver state 385

5https://openai.com/index/hello-gpt-4o/
6https://www.anthropic.com/news/

claude-3-5-sonnet
7https://developers.googleblog.com/en/

gemini-2-family-expands/
8All models were accessed from January to May 2025.
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annotations created in STARv2 (Zhao et al., 2023)386

for ablation studies. Refer to Appendix A.2 for387

more implementation details on STAR.388

MultiWOZ MultiWOZ (Budzianowski et al.,389

2018) is a large-scale, multi-domain TOD dataset390

consisting of human-human conversations, with391

most domains involving booking subtasks such as392

hotel reservations and taxi services. Given the im-393

practicality of crafting dialogue flows for every394

possible domain combination (Zhang et al., 2023),395

we report results in a naive oracle domain setting.396

Please refer to Appendix A.3 for more details.397

4.2 Metrics398

For the STAR dataset, we compute BLEU-4 score399

(Papineni et al., 2002). We also follow Mosig et al.400

(2020) to compute F1 and accuracy. For the Mul-401

tiWOZ dataset, we compute BLEU, Inform and402

Success rates, and Joint Goal Accuracy (JGA) us-403

ing the official evaluation script (Nekvinda and404

Dušek, 2021). We report the mean result of three405

runs. Please refer to Appendix A.4 for more imple-406

mentation details.407

4.3 Baselines408

For a complete list of compared methods, please409

refer to Appendix A.5. Our most comparable base-410

lines are as follows:411

• AnyTOD (Zhao et al., 2023) pretrains and fine-412

tunes T5-XXL for DST and response generation.413

It views task schema as a Python program to414

enforce the conversation logic.415

• IG-TOD (Hudeček and Dusek, 2023), a few-shot416

prompting-based approach.417

• SGP-TOD (Zhang et al., 2023) is a zero-shot418

prompting approach that employs graph-based419

dialogue flows and out-of-domain formatting ex-420

amples. Refer to Appendix A.5 for details on fair421

comparison.422

5 Experimental Results423

5.1 Results and Analysis on STAR424

SOTA Performance Without Training. Table 1425

summarizes our results on the STAR dataset.426

CoDial achieves strong performance, surpassing427

all training-based approaches except AnyTOD428

PROG+SGD XXL, and sets the new SOTA among429

inference-based methods. Our framework im-430

proves F1 by +5 and accuracy by +6.9 points over431

the previous SOTA. While AnyTOD PROG+SGD432

XXL achieves higher scores, it requires manually433

written dialogue logic programs, making it less 434

accessible to non-programmers, and extensive pre- 435

training with task-specific data. In contrast, CoDial 436

operates in a strict zero-shot setting, eliminating 437

the need for manual programming and training. 438

Without modifications (Appendix A.2), the orig- 439

inal STAR dialogue flows result in lower perfor- 440

mance (F1: 51.9). After manually modifying the 441

dialogue flow and applying LLM-aided modifica- 442

tions to the generated code, we significantly en- 443

hance performance. We further explore the impact 444

of LLM-aided corrections in Section 5.3. 445

Impact of Model Selection We experience with 446

different model choices for the (LLMGCG, LLMA) 447

pairing. Better instruction following and more ro- 448

bust code generation often translate to higher over- 449

all performance. Because most LLMs are unfa- 450

miliar with guardrailing languages such as Colang, 451

they must accurately interpret the promptGCG to 452

produce syntactically correct code. When the cho- 453

sen LLM struggles with instruction following, code 454

generation can fail, leading to incorrect or incom- 455

plete programs. Among the tested configurations, 456

CoDial (4O, 4O-MINI) achieves the highest per- 457

formance in all metrics. We also report results in 458

an oracle voting setting (Table 4) between GPT-4o- 459

mini and DSV3 as LLMA, where for each task, we 460

take the best-performing LLMA by F1. This results 461

in an increase of +1.7 F1 and +1.5 accuracy. 462

State and Action Prediction and API Calls We 463

find that NeMo Guardrails’ intent detection per- 464

forms strongly, achieving an F1 score of 96.3 on 465

global actions (Table 3). Additionally, we observe 466

that STAR’s API calling precision—measured as 467

the ratio of correct API calls to the total number of 468

API calls—stands at 74.9. Table 3 also summarizes 469

the performance of the actions that are generated 470

by LLMA (i.e., when NAP component does not 471

generate an output). LLM-generated actions ac- 472

count for 25% of all predicted actions, with 70% of 473

them belonging to three fallback actions: goodbye, 474

out_of_scope, and anything_else. Excluding 475

fallbacks, LLM-generated actions only account for 476

9.2% of predictions, indicating that our NAP logic 477

is generally effective at generating outputs based 478

on the predicted state. Since fallback actions are 479

a simple 3-way classification, we would expect 480

high performance. However, LLMA achieves an 481

F1 score of only 51.4. We attribute this to the lack 482

of an explicit schema for fallback actions in the 483

STAR dataset, leading to inconsistencies in wizard 484
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Model Approach LLMGCG LLMA RI F1 Acc. BLEU
Training-based Approaches Domain Transfer
BERT + Schema Fine-tuning - - - 29.7 32.4 -
SAM Fine-tuning - - - 51.2 49.8 -
AnyTOD NOREC BASE Fine-tuning - - - 55.8 56.1 32.4
AnyTOD PROG+SGD XXL Pretraining - - - 70.7 70.8 44.2

Inference-based Approaches Strict Zero-shot
SGP-TOD-GPT3.5-E2E Zero-shot - - - 53.5 53.2 -

CoDial (Ours)
CoDial ORIGINAL DFS Zero-shot 4o 4o-mini ✓ 51.9 51.1 38.9
CoDial − RI Zero-shot 4o 4o-mini ✗ 56.1 57.3 38.4
CoDial − RI Zero-shot Sonnet 4o-mini ✗ 57.0 58.4 39.2

CoDial Zero-shot DSV3 4o-mini ✓ 46.1 48.0 28.0
CoDial* Zero-shot Gem. 2 Fl. 4o-mini ✓ 50.5 52.1 32.9
CoDial Zero-shot Sonnet 4o-mini ✓ 57.7 58.5 39.3
CoDial Zero-shot 4o DSV3 ✓ 55.6 56.8 44.2
CoDial Zero-shot 4o 4o-mini ✓ 58.5 60.1 45.2

Table 1: Comparison of models on the STAR dataset. Our CoDial model achieves the SOTA in a “Strict Zero-Shot”
setting, where we do not require any training samples or sample conversations. SAM results are cited from Zhao
et al. (2023). The generated code for the model with an asterisk (*) has been manually fixed and is not directly
comparable. DF stands for “dialogue flow.”

Model JGA Inform Success BLEU Combined
Training-based Approaches
SOLOIST 35.9 81.7 67.1 13.6 88.0
MARS 35.5 88.9 78.0 19.6 103.0
AnyTOD XXL 30.8 76.9 47.6 3.4 65.6

Inference-based Approaches
IG-TOD (fs) 27 - 44 6.8 -
SGP-TOD - 82.0 72.5 9.2 86.5

CoDial 28.4 76.6 54.6 3.5 69.1

Table 2: Comparison of models on the MultiWOZ
dataset. SOLOIST and MARS results are cited from
Zhao et al. (2023). (fs) indicates few-shot.

annotations. Additionally, we observe a significant485

performance drop from fallback to non-fallback ac-486

tions in both F1 (51.4→ 38.7) and accuracy. This487

suggests that despite having an explicit schema,488

LLMs struggle to capture the more complex logic489

needed to predict non-fallback actions. Our find-490

ings align with Dong et al. (2024), reinforcing the491

need for a neuro-symbolic approach.492

Figure 3 shows the error rate of the predicted493

conversation state across different node types for494

each model. To approximate the error, we com-495

pare the model’s predicted state with the estimated496

ground-truth state (i.e., the wizard’s state), as de-497

scribed in Appendix A.2. We find that the error498

rate generally inversely correlates with the overall499

performance in Table 1; higher-performing models500

tend to exhibit lower state prediction error.501

5.2 Results on MultiWOZ502

Our results on the MultiWOZ dataset are sum-503

marized in Table 2. Unlike STAR, where wiz-504

ards were provided structured guidance for sys-505

tem responses, MultiWOZ lacks a predefined di-506

alogue flow, making interactions less consistent.507

This variability in MultiWOZ poses additional chal-508
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CG: 4o, A: 4o-mini

Figure 3: Error rate comparison of agents’ predicted
state on the STAR dataset across different node types,
coloured by (LLMGCG, LLMA) pairs.

lenges for heuristics-grounded and programmatic 509

approaches like CoDial and our most comparable 510

system, AnyTOD. AnyTOD trains LLMs to use a 511

strict programmatic schema and generates output 512

text with templates. However, we achieve compara- 513

ble performance to AnyTOD without pre-training. 514

Most of the MultiWOZ test set consists of multi- 515

domain conversations, where a user may, for exam- 516

ple, book both a taxi and a restaurant in the same di- 517

alogue. Since CoDial is designed for single-domain 518

interactions, we report its performance on single- 519

domain dialogues in Table 5, where it performs 520

well. However, with our naive oracle domain set- 521

ting, CoDial performance drops significantly. This 522

is likely due to compounded errors from DST to 523

NAP, which we analyze further in Section 5.3. 524

5.3 Detailed Analysis 525

Oracle DST Performance To assess the impact 526

of compounded DST error, we evaluate CoDial un- 527

der an Oracle setting. Since STAR does not provide 528

gold DST labels, we simulate an oracle setting by 529
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Actions F1 Acc.

Intent Detection (Global Actions)
All 96.3 92.8

LLM Generated Actions
Fallbacks 51.4 57.8
Excluding Fallbacks 38.7 39.0
All 49.1 52.1

Table 3: Individual action prediction
performance of intent detection and
LLMA in CoDial. Fallback actions
include goodbye, out_of_scope,
and anything_else. All entries are
micro-averaged.

Model F1 Acc. BLEU

CoDial 58.5 60.1 45.2

Refinement Instructions (RI)
− RI 3 56.1 58.0 41.6
− RI 3 & 2 55.9 57.6 41.7
− RI 3 & 2 & 1 56.1 57.3 38.4

Generative Approach
− NAP 47.4 47.0 25.8
− NAP & DST 42.7 43.0 23.8

Oracle Vote
DST: 4o-mini + DSV3 60.2 61.6 46.8

Silver Label DST
+ STARv2 States 60.7 62.9 44.3

Table 4: Ablations on the STAR
dataset.

Model JGA Inform Success BLEU Combined

Predicted Belief State
IG-TOD (fs) 27 - 44 6.8 -
CoDial SINGLE* 46.2 91.5 77.6 3.2 87.7
CoDial 28.4 76.6 54.6 3.5 69.1

Oracle Belief State
IG-TOD (fs) - - 68 6.8 -
CoDial SINGLE* - 94.6 90.6 3.5 96.1
CoDial - 93.1 75.3 4.0 88.2

DST Prompt Optimization
CoDial AUTO 31.1 72.3 57.2 3.6 68.3
CoDial MANUAL 28.5 80.4 57.9 3.6 72.7

Table 5: Ablations on MultiWOZ. Set-
tings with an asterisk (*) are not directly
comparable due to a simpler task setup.
(fs) indicates few-shot.

replacing CoDial’s DST component with the silver-530

annotations from STARv2 (Table 4). This results531

in a performance gain of +2.2 F1 and +2.8 accu-532

racy. We do the same for MultiWOZ, where we re-533

place our predictions with the gold belief state. As534

shown in Table 5, this leads to a substantial perfor-535

mance improvement, making CoDial competitive536

with other baselines. These findings suggest that537

exploring more advanced DST approaches could538

be a promising direction to improve performance,539

regardless of the dataset. We experiment briefly540

with prompt optimization, described below, but we541

urge further exploration in this direction.542

Code Optimization We use LLMs to perform543

iterative code refinement and automatic prompt op-544

timization for the DST prompts. Refining the code545

with RIs consistently enhances CoDial’s perfor-546

mance, demonstrating the benefits of integrating547

user feedback into the generation process. After548

prompting the LLM to iteratively refine its outputs,549

CoDial achieves better accuracy and fluency (com-550

pared to CoDial − RI in Table 1). We also conduct551

an ablation study to examine the effect of the in-552

dividual RIs, summarized in Table 4. Although553

all RIs are beneficial, most of the performance im-554

provements can be attributed to the third RI, which555

refines the conditional logic of request nodes.556

After observing the results of the oracle DST set-557

ting, we also apply prompt optimization to improve558

DST accuracy. As shown in Table 5, automatic559

prompt optimization yields only marginal gains560

across metrics, with the exception of Inform, sug-561

gesting that improving DST remains a non-trivial562

challenge—potentially due to the limitations of our563

naive multi-domain evaluation setup. This is a sur-564

prising result, but it suggests that not all DST slots565

are equally valuable for the final performance. To566

explore the impact of human feedback, we also567

experiment with manual prompt optimization (Ap-568

pendix A.3), making minor edits to the prompts 569

for the “attraction” domain. This results in consis- 570

tent improvements across all metrics, reinforcing 571

that human-crafted prompts can still outperform 572

automatic optimization. 573

Generative Approach To better understand the 574

effectiveness of the proposed CoDial architecture, 575

we experiment with a setting in which the NAP 576

component is removed and all actions are predicted 577

in a fully generative manner by the LLMA, similar 578

to Zhang et al. (2023). We prompt the LLMA with 579

simplified dialogue flows following their work and 580

include predicted DST slots in the prompt. As 581

shown in Table 4, this results in a substantial drop 582

in performance, highlighting the importance of our 583

structured NAP logical flow approach. We further 584

ablate the model by removing the DST component, 585

causing a larger drop as expected. 586

6 Conclusion 587

In this work, we introduced CoDial, a novel frame- 588

work for building interpretable TOD systems by 589

grounding structured dialogue flows to program- 590

matic guardrails. CoDial introduces CHIEF, a het- 591

erogeneous graph representation of dialogue flows, 592

and employs LLM-based code generation to auto- 593

matically convert dialogue flows into executable 594

guardrail specifications (e.g., in NVIDIA’s Colang), 595

enabling zero-shot creation of interpretable TOD 596

systems with minimal expert effort. Moreover, 597

through iterative manual and LLM-aided refine- 598

ments, CoDial supports rapid incorporation of 599

domain-expert feedback, further enhancing the gen- 600

erated code. Our empirical findings support Co- 601

Dial’s effectiveness, achieving SOTA performance 602

among inference-based methods on STAR and com- 603

petitive results on MultiWOZ. 604
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Limitations605

While CoDial offers an interpretable and modi-606

fiable approach to TOD systems, it has certain607

limitations. First, scalability remains a challenge.608

For large and complex dialogue flows, CoDial re-609

queries all slots every turn, which may increase610

latency and computational cost. In general, the611

DST is the biggest challenge of the system and we612

leave improvements to future work. Second, Co-613

Dial is less effective for multi-domain dialogues,614

as it operates on a single dialogue flow at a time.615

Handling seamless transitions between multiple616

domains would require additional mechanisms be-617

yond the current framework, and structured logic618

on how different domains flow into each other,619

which we leave to future work. In general, dia-620

logue flows assume there is a logical progression621

to conversations, which isn’t the case for all dia-622

logue structures. Finally, reproducibility could be623

a concern when relied on API-based LLMs. Since624

these models are periodically updated, responses625

may vary across different API versions, making626

consistent evaluation challenging.627

Ethics Statement628

This work adheres to ethical research practices by629

ensuring that all models, codebases, and datasets630

used comply with their respective licenses and631

terms of use. The STAR and MultiWOZ datasets632

employed in our experiments do not contain person-633

ally identifiable information or offensive content.634

As with any system leveraging LLMs, CoDial635

inherits potential risks related to bias and factu-636

ally incorrect outputs. However, our framework637

mitigates these risks by enforcing structured dia-638

logue flows, guardrailing based on user intent, and639

template-based responses, reducing the likelihood640

of hallucinated or biased content. Future work may641

integrate NeMo Guardrails’ input and output rails642

to filter inappropriate inputs and outputs, enhancing643

system safety. Since our focus is on structured dia-644

logue flows, we leave this for future exploration.645
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A Appendix 809

A.1 Details on Code Generation 810

We represent the graphs defined by CHIEF (Sec- 811

tion 3.1) as text in JSON format. The JSON rep- 812

resentation consists of a list of nodes and a list 813

of edges. The node list defines the dialogue flow 814

nodes, specifying their types and assigning each 815

a unique identifier (node ID). The edge list speci- 816

fies the connections between nodes using their IDs 817

(Figure 8). The JSON nodes, global and fallback 818

actions, and functional specifications for function 819
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ID Description Instruction

RI 1 Revise if statements Revise the ‘if‘s to exactly reflect the nodes. Comment each ‘if‘ to
specify the corresponding node ID. Make sure the generated ‘if‘
statement and its body reflect the instructions for that node type.

RI 2 Fix dst dependent vars Fix dst’s first input parameter. It should reflect which variables
should be invalidated when the corresponding slot is updated.

RI 3 Fix request node checks Fix ‘if‘ checks for request nodes. Comment their rule, if available.
The ‘if‘ should reflect the rule for each node.

Table 6: Instructions for Code Refinement

Bot Utterance     UserUser Utterance     

Conversation
History         

DST

NAP

Slots

State

Helpers

LLMA

Figure 4: Execution life cycle of the generated agent.

calls are translated into Colang code with our auto-820

matic code generation pipeline. The external action821

node functions, referred to as Actions in Colang,822

are implemented in Python.823

Post-processing Following code generation by824

the LLM, we apply rule-based post-processing to825

ensure proper execution. This includes adding826

helper flows (Colang’s equivalent of functions) to827

support algorithm execution, enabling the loading828

of the STAR API function, and injecting additional829

code for evaluation purposes.830

Helper Variables The algorithm designed in831

Colang (Algorithm 1) determines whether a request832

node should be executed (i.e., prompt the user for833

information) by checking the values of its associ-834

ated slots. To track the state of other node types,835

we instruct LLMGCG to define helper variables fol-836

lowing a structured naming pattern, where <id>837

represents the corresponding node’s ID:838

• action_<id>: Stores the return value of external839

actions.840

• inform_<id>: Indicates whether the node has841

been executed and the user has been informed.842

• answered_<id>: For inform and confirm nodes,843

stores the user’s response.844

Example Dialogue Flow and Generated Code 845

Figures 7 and 8 present an example of the STAR 846

task schema pictures, our JSON representation of 847

the corresponding dialogue flow, and the generated 848

Colang code. 849

A.2 STAR Implementation Details 850

The STAR dataset (Mosig et al., 2020), collected 851

in a Wizard-of-Oz setup (human-human conver- 852

sations), provides explicit task schemas (i.e., di- 853

alogue flows) to ensure consistent and determin- 854

istic system actions. It serves as a benchmark 855

for TOD systems, enabling evaluation across 24 856

tasks and 13 domains. STAR’s structured collec- 857

tion aligns well with our objectives and CoDial’s 858

design choices. We also use silver state annotations 859

created in STARv2 (Zhao et al., 2023) for ablation 860

studies. 861

API Calling While not the primary focus of 862

this paper, we use prompting to generate Colang’s 863

Python action code for calling STAR’s API and 864

processing its outputs automatically, rather than 865

directly feeding ground-truth API responses as in- 866

put as done in other works. Every piece of code 867

in our pipeline is automatically generated. Since 868

STAR’s API returns randomized outputs, we return 869

the ground-truth API response object when it is 870

available for the exact same turn, instead of the 871

random sampling response. 872

Dialogue Flows We convert the STAR task 873

schemas, originally provided as images, into 874

CHIEF representation described in Section 3.1. We 875

use one-shot prompting with GPT-4o to convert 876

pictures into JSON. We convert yellow nodes in 877

pictures into conditions for edges. However, we ob- 878

served that GPT-4o occasionally misassigns edge 879

connections, requiring manual corrections. Addi- 880

tionally, we enrich the JSON representations by 881

adding more context, such as example values for 882

each slot. We also define hello action as the only 883

global action and goodbye, out_of_scope, and 884
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Algorithm 2 Wizard state approximation

Require: Variable v, Graph G, Ground-truth ac-
tion agt, Mapping ϕ

Ensure: Approximated value or NULL

1: ntgt ← ϕ(agt)
2: nv ← v.node
3: P ← DFSPATH(G,G.start, ntgt)
4: if nv /∈ P then
5: return NULL

6: end if
7: for each e ∈ P do
8: if e.target = nv then
9: ev ← e

10: break
11: end if
12: end for
13: return APPROXVALUE(ev.condition, v)

anything_else as fallback actions for all tasks.885

To better align the dialogue flows with the actual886

collected dialogues, we introduce minor modifica-887

tions, such as adding the inform_nothing_found888

action for search tasks. We also identified small889

inconsistencies between the provided API schema890

and its implementation. To address this, we refine891

the API definitions and modify the sampling logic892

to prevent errors when no results match the given893

constraints. We will release these improvements,894

aiming to support future research.895

Wizard State Approximation For evaluation,896

since we are working with offline conversations897

(i.e., the user is not interacting with the actual TOD898

system), we approximate the wizard’s state at the899

end of each turn and adjust the program’s state900

accordingly. This helps prevent the program’s state901

from deviating from the ground-truth conversation.902

To achieve this, we first find the node in dialogue903

flow that the ground-truth conversation was in by904

mapping the ground-truth action label, if available,905

to a node in the dialogue flow. We manually create906

this mapping from action labels to the dialogue907

flow nodes. Next, we use depth-first search to trace908

the path from the start of the dialogue flow to the909

current conversation node. Finally, we adjust each910

state variable based on whether the corresponding911

node is part of the current conversation pathway, as912

described in Algorithm 2.913

Prompt Context During evaluation, we incorpo-914

rate the textual guidelines provided to wizards into915

LLMA’s context. This additional context helps the916

LLM infer some details, such as the time or loca- 917

tion of the conversation. For example, a guideline 918

might look like: Some facts you should be aware 919

of: Right now, it is Tuesday, 12 PM. 920

A.3 MultiWOZ Implementation Details 921

MultiWOZ (Budzianowski et al., 2018) is a large- 922

scale, multi-domain TOD dataset consisting of 923

human-human conversations, with most domains 924

involving booking subtasks such as hotel reserva- 925

tions and taxi services. Given the impracticality 926

of crafting dialogue flows for every possible do- 927

main combination, as mentioned in previous work 928

(Zhang et al., 2023), we report results in a naive 929

oracle domain setting. We preprocess MultiWOZ 930

2.2 using the code from Li et al. (2024) to anno- 931

tate each conversation turn with its active domains. 932

For each turn i, we use the dialogue flow(s) of the 933

corresponding domain(s) to predict the output and 934

merge all turns at the end. 935

Manually Crafted Dialogue Flows Unlike 936

STAR, MultiWOZ does not provide explicit di- 937

alogue flows for each domain, nor do its conversa- 938

tions adhere to a specific flow. To address this, we 939

manually construct simple dialogue flows by ana- 940

lyzing a few example dialogues from each domain. 941

We will release these crafted MultiWOZ dialogue 942

flows. Additionally, for evaluation, we modify the 943

prompts and instruct the LLM to generate delexi- 944

calized texts.9 945

Naive Multi-domain Rather than adding a sep- 946

arate domain detection step, we use the gold la- 947

bels for the active domains at each conversation 948

turn and directly apply the corresponding dialogue 949

flows. We preprocess MultiWOZ 2.2 using the 950

code from Li et al. (2024) to annotate each turn 951

with its active domains. Since evaluation is offline, 952

we separate turns in a conversation by domain, sim- 953

ulate the conversation with prior history, and use 954

the corresponding Colang program(s). Finally, we 955

merge all turns and treat slots from all domains as 956

a single set, accumulating DST predictions during 957

evaluation. 958

DST Prompt Optimization The NAP compo- 959

nent’s performance is largely dependent on DST, 960

as the next action is determined by the values 961

known to the dialogue system (Equation 3). How- 962

ever, we found in preliminary experiments that the 963

DST performance can be poor with original P (s) 964

9Refer to Nekvinda and Dušek (2021) for more details.
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Algorithm 3 Our prompt optimization algorithm.
We randomly sample a training and validation set
of size 20 and 50 for every DST slot, respectively.

Require: Training set Dtrain, Validation set Dval,
Instruction I , Agent LLMA, Optimizer LLM
M , Batch size B

1: Ŷval ← DST(Dval.H,LLMA, I)
2: Initialize S ← COMPUTESCORE(Ŷval,Dval.Y )
3: Ibest ← I
4: Divide Dtrain into batches B1, . . . ,Bn of size

B
5: for each batch B in Dtrain do
6: (H,Y )← B
7: Ŷ ← DST(H, LLMA, Ibest)
8: I ←M .REWRITE(H, Ŷ , Y, I)
9: Ŷval ← DST(Dval.H,LLMA, I)

10: S ← COMPUTESCORE(Ŷval,Dval.Y )
11: if S > Sbest then
12: Sbest ← S
13: Ibest ← I
14: end if
15: end for
16: return Ibest, Sbest

prompts, generated by general guidelines outlined965

in promptGCG. To this end, we further refine P (s)966

with automatic prompt optimization.967

Our optimization algorithm is summarized in968

Algorithm 3. For each DST variable v
(s)
j , we ran-969

domly sample two mutually exclusive sets of con-970

versation turns to serve as training and validation971

sets. The training examples are divided into batches972

of 5, and each batch is used to guide the optimizer973

GPT-4o model to rewrite the instruction p
(s)
j , result-974

ing in a candidate prompt. If the revised instruction975

improves performance on the validation set, it is re-976

tained; otherwise, the original is kept, ensuring that977

modifications are only accepted when they lead to978

measurable improvements.979

In addition, we manually refine the prompts for980

the worst-performing domain, “attraction.” The981

edits include defining what an “attraction” is by982

listing all possible types, and propagating the pre-983

dicted type value to other slot instructions to main-984

tain consistency. We leave further investigation of985

this technique—passing key slot predictions across986

instructions within a domain—as future work.987

A.4 Experimental Details988

For the STAR dataset, we compute BLEU-4 score989

(Papineni et al., 2002). using SacreBLEU (Post,990

2018). We also follow Mosig et al. (2020) to com- 991

pute F1 and accuracy. Since we applied STAR’s 992

response templates for response generation, we use 993

regex patterns to match generated responses with 994

actual values to a template. For the MultiWOZ 995

dataset, we compute BLEU, Inform and Success 996

rates, and Joint Goal Accuracy (JGA) using the offi- 997

cial evaluation script (Nekvinda and Dušek, 2021). 998

We report the mean result of three runs. 999

If a generated program contains syntax or run- 1000

time errors, we regenerate the code to obtain a 1001

functional version. The only exception is Gemini 1002

2.0 Flash, which struggles with calling our defined 1003

Colang helper flows. Since this issue is minor, we 1004

manually correct the syntax to assess the model’s 1005

ability to generate programmatic logic for dialogue 1006

flows. We access OpenAI models through OpenAI 1007

and other models through OpenRouter10 API. 1008

NeMo-Guardrails To implement the Colang 1009

guardrails, we use a fork from NeMo-Guardrails 1010

version 0.11, modified to inject our evaluator 1011

class11. We use this class to evaluate on the ground 1012

truth user-wizard history, instead of the history 1013

of user-bot conversation, similar to Nekvinda and 1014

Dušek (2021). 1015

We modify NeMo’s default 1016

value_from_instruction prompt structure 1017

to begin with a system message, followed by 1018

the entire conversation history and instructions 1019

combined into a single user message (Figure 5). 1020

During our initial experiments, we suspected that 1021

NeMo’s original prompt structure—where each 1022

message in the conversation history was passed as 1023

a separate user or assistant message—hindered 1024

LLMA’s ability to follow instructions effectively. 1025

Additionally, we refine the post-processing of 1026

this action. We found that LLMA was inconsistent 1027

in formatting return values, sometimes enclosing 1028

strings in quotation marks while omitting them for 1029

non-string types. To address this, we first check 1030

if both leading and trailing quotation marks are 1031

present and remove them if so. We then attempt to 1032

evaluate the return value as a Python literal. If this 1033

evaluation fails, we then enclose the value in quo- 1034

tation marks to ensure proper parsing as a string. 1035

Moreover, we fixed an issue related to if-else 1036

statements in the Colang parser, which was later 1037

10https://openrouter.ai/
11The modified NeMo-Guardrails version that we used for

the experiments is available at [GitHub Placeholder].
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System Prompt 

Below is a conversation between a helpful AI assistant and a 
user. The bot is designed to generate human-like text based on 
the input that it receives. The bot is talkative and provides lots 
of specific details. If the bot does not know the answer to a 
question, it truthfully says it does not know. 
 
Your task is to generate value for the specified variable. The 
generated value should be a valid Python literal that is parsable 
by ast.literal_eval. Always put strings in quotes. 
 
Do not provide any explanations, just output value. 

User Prompt 

This is some information that is given to the bot to answer to 
user: 
Authenticate the user and tell them their bank balance 
 
This is the current conversation between the user and the bot: 
== User: 
user action: Hi I would like to check my balance. 
== Bot: 
bot action: Could I get your full name, please? 
== User: 
user action: Katarina Miller 
== Bot: 
bot action: Can you tell me your account number, please? 
== User: 
user action: I can't remember it right now. 
 
Follow the following instruction to generate a value that is 
assigned to: $val 
Instruction: `this variable stores user's account number. 
examples of the variable value are "12345678", "87654321". 
the current variable value is None. given the last user and bot 
interaction in the current conversation, if the last user message 
has provided a new value for this variable, output it. if the last 
interaction is not about this variable, output the current value.` 

 
Figure 5: Example of the modified NeMo
value_from_instruction action prompt, which
is used for DST. h2i−1 and p

(s)
j are provided in each

prompt to generate a value for that slot.

merged into the official NeMo repository12.1038

A.5 Detailed Baselines1039

• AnyTOD (Zhao et al., 2023) pretrains and fine-1040

tunes T5-XXL for dialogue state tracking and1041

response generation. It uses a Python program1042

to enforce the complicated logic defined by a1043

dialogue flow to guide the LM decisions.1044

• IG-TOD (Hudeček and Dusek, 2023) is a1045

prompting-based approach using ChatGPT to1046

track dialogue states via slot descriptions, re-1047

trieve database entries, and generate responses1048

without fine-tuning.1049

• SGP-TOD (Zhang et al., 2023) is a purely gener-1050

ative approach that uses two-stage prompting to1051

12GitHub pull request at [PLACEHOLDER].

Model F1 Acc.

SGP-TOD GPT3.5-E2E 53.5 53.2
SGP-TOD GPT4O-MINI-E2E 41.3 44.3
SGP-TOD GPT4O-MINI-E2E Adapted 40.3 43.8

Table 7: Comparison of SGP-TOD baselines.

track dialogue state and generate response. It em- 1052

ploys graph-based dialogue flows to steer LLM 1053

actions, ensuring adherence to predefined task 1054

policies without requiring fine-tuning or train- 1055

ing data. To ensure a fair comparison, we repli- 1056

cated their setup using the same newer LLMA 1057

model as ours (Table 7). We ran their released 1058

code without modification, except for switching 1059

the API model to GPT-4o-mini. Surprisingly, 1060

performance dropped significantly. After con- 1061

tacting the authors, they advised adapting the 1062

prompt structure to the aligned LLMs—placing 1063

instructions in the system message and including 1064

examples and dialogue history in the user mes- 1065

sage. However, even with this adaptation, the 1066

performance did not match the results originally 1067

reported with GPT-3.5, suggesting that a genera- 1068

tive approach could not be a trivial solution and 1069

requires careful prompt engineering. Figure 6 1070

further illustrates differences between CoDial 1071

and SGP-TOD through two cherry-picked exam- 1072

ples. 1073

• BERT + Schema and Schema Attention Model 1074

(SAM) (Mosig et al., 2020; Mehri and Eskenazi, 1075

2021) incorporate task schemas by condition- 1076

ing on the predefined schema graphs, enabling 1077

structured decision-making in TODs. SAM ex- 1078

tends BERT + Schema approach with an im- 1079

proved schema representation and stronger at- 1080

tention mechanism, aligning dialogue history to 1081

the schema for more effective next-action predic- 1082

tion. Both models rely on fine-tuning to learn 1083

schema-based task policies and improve general- 1084

ization across tasks. 1085

• SOLOIST (Peng et al., 2021) is a Transformer- 1086

based model that unifies different dialogue mod- 1087

ules into a single neural framework, leveraging 1088

transfer learning and machine teaching for TOD 1089

systems. It grounds response generation in user 1090

goals and database/knowledge, enabling effec- 1091

tive adaptation to new tasks through fine-tuning 1092

with minimal task-specific data. 1093

• MARS (Sun et al., 2023) is an end-to-end TOD 1094

system that models the relationship between dia- 1095

14



Dialogue History 

USER: Help there have been 
suspicious transfers over the 
past week. my account 
number is 351531510 and my 
PIN is 1596. 

Wizard Action ask_name 

SGP-TOD Action bank_ask_fraud_report 

CoDial Action ask_name 
 

Dialogue History 

USER: Hi, I am Ben. I would 
like to plan a party. 
WIZARD: On what day 
would you like your party 
organised? 
USER: Saturday at 10pm.  
WIZARD: At what venue 
would you like to have your 
party organised? 
USER: The North Heights 
Venue if it's available. 

Wizard Action party_ask_number_of_guests 

SGP-TOD Action party_venue_not_available 

CoDial Action party_ask_number_of_guests 
 

(a) Bank Fraud Report example dialogue. SGP-TOD fails to
collect all necessary authentication details before requesting
fraud report information, as its schema defines the next action
after user_bank_inform_pin as bank_ask_fraud_details.
In contrast, CoDial verifies that all required information is
provided at each request node before proceeding, correctly
identifying that the user’s name is missing.

Dialogue History 

USER: Help there have been 
suspicious transfers over the 
past week. my account 
number is 351531510 and my 
PIN is 1596. 

Wizard Action ask_name 

SGP-TOD Action bank_ask_fraud_report 

CoDial Action ask_name 
 

Dialogue History 

USER: Hi, I am Ben. I would 
like to plan a party. 
WIZARD: On what day 
would you like your party 
organised? 
USER: Saturday at 10pm.  
WIZARD: At what venue 
would you like to have your 
party organised? 
USER: The North Heights 
Venue if it's available. 

Wizard Action party_ask_number_of_guests 

SGP-TOD Action party_venue_not_available 

CoDial Action party_ask_number_of_guests 
 (b) Party Plan example dialogue. SGP-TOD produces an
incorrect and uninterpretable prediction. In contrast, CoDial
follows a programmatic logic aligned with the dialogue flow,
ensuring interpretability.
Figure 6: Cherry-picked comparison of CoDial and
SGP-TOD performance. We use GPT-4o-mini to repro-
duce SGP-TOD results.

logue context and belief/action state representa-1096

tions using contrastive learning. By employing1097

pair-aware and group-aware contrastive strate-1098

gies, Mars strengthens the modelling of rela-1099

tionships between dialogue context and semantic1100

state representations during end-to-end dialogue1101

training, improving dialogue state tracking and1102

response generation.1103
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import core 
import llm 
 
flow main 
  activate automating intent detection 
  activate generating user intent for unhandled user utterance 
  $action_2 = None 
  $inform_3 = False 
  $inform_4 = False 
   
  global $generated_output 
  while True 
    $generated_output = None 
    when user said hello 
      bot say "Hello, how can I help?" 
      continue 
    or when unhandled user intent as $state 
      $transcript = $state.event.final_transcript 
 
    $customer_name = dst ["action_2", "inform_3", "inform_4"] $customer_name "this variable 
stores the name of the customer requesting the ride change. examples of the variable value are 
\"John\", \"Jane\". the current variable value is {$customer_name}. given the last user and bot 
interaction in the current conversation, if the last user message has provided a new value for 
this variable, output it. if the last interaction is not about this variable, output the current 
value." 
    $ride_id = dst ["action_2", "inform_3", "inform_4"] $ride_id "this variable stores the unique 
identifier for the ride (ride id). examples of the variable value are \"102\", \"500\". the 
current variable value is {$ride_id}. given the last user and bot interaction in the current 
conversation, if the last user message has provided a new value for this variable, output it. if 
the last interaction is not about this variable, output the current value." 
    $change_description = dst ["action_2", "inform_3", "inform_4"] $change_description "this 
variable stores the description of the requested change to the ride. examples of the variable 
value are \"Change pickup time\", \"Change destination\", \"Update contact details\". the current 
variable value is {$change_description}. given the last user and bot interaction in the current 
conversation, if the last user message has provided a new value for this variable, output it. if 
the last interaction is not about this variable, output the current value." 
 
    if $customer_name == None or $ride_id == None or $change_description == None 
      bot ask info {"$customer_name": $customer_name, "$ride_id": $ride_id, 
"$change_description": $change_description} 
    else 
      if $action_2 == None 
        $action_2 = await RideChangeAction(customer_name=$customer_name, ride_id=$ride_id, 
change_description=$change_description) 
       
      if $action_2["status"] == "Success" 
        if not $inform_3 
          bot inform "Alright, thats all changes done for you!" 
          $inform_3 = True 
      elif $action_2["status"] == "Failure" 
        if not $inform_4 
          bot inform "Unfortunately I wasn't able to update your booking, sorry." 
          $inform_4 = True 
 
    if $generated_output == None  
      $generated_output = await LLMGenerateOutputAction() 
      $generated_output = str($generated_output) 
      await UtteranceBotAction(script=$generated_output) 

 
 

Figure 7: Example of a generated code for STAR Ride Change task

16



{ 
  "nodes": [ 
    { 
      "id": 1, 
      "type": "request", 
      "slots": { 
        "customer_name": { 
          "description": "Name of the customer 
requesting the ride change", 
          "type": "categorical", 
          "examples": [ "John", "Jane" ] 
        }, 
        "ride_id": { 
          "description": "Unique identifier 
(ride ID) for the ride", 
          "type": "integer", 
          "examples": [ "102", "500" ] 
        }, 
        "change_description": { 
          "description": "Description of the 
requested change to the ride", 
          "type": "string", 
          "examples": [ 
            "Change pickup time", 
            "Change destination", 
            "Update contact details" 
          ] 
        } 
      } 
    }, 
    { 
      "id": 2, 
      "type": "external_action", 
      "action": "query", 
      "query": "RideChange" 
    }, 
    { 
      "id": 3, 
      "type": "inform", 
      "message": "Alright, thats all changes 
done for you!" 
    }, 
    { 
      "id": 4, 
      "type": "inform", 
      "message": "Unfortunately I wasn't able 
to update your booking, sorry." 
    } 
  ], 
  "edges": [ 
    { "source": 1, "target": 2 }, 
    { "source": 2, "target": 3, "condition": 
"Success" }, 
    { "source": 2, "target": 4, "condition": 
"Failure" } 
  ] 
} 

 
 (a) Converted JSON representation for STAR Ride Change
task

(b) STAR Ride Change task schema

Figure 8: Example of STAR task schema and converted JSON object
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