
Robots Thinking Fast and Slow: On Dual Process
Theory and Metacognition in Embodied AI

Ingmar Posner
Applied AI Lab, Oxford Robotics Institute

Oxford University, UK
Email: ingmar@robots.ox.ac.uk

Abstract—Recent progress in AI technology has been breath-
taking. However, many of the advances have played to the
strengths of virtual environments: infinite training data is avail-
able, risk-free exploration is possible, acting is essentially free. In
contrast, we require our robots to robustly operate in real-time, to
learn from a limited amount of data, take mission- and sometimes
safety-critical decisions and increasingly even display a knack for
creative problem solving. To bridge this gap, here we offer an
alternative view of recent advances in AI. In particular, we posit
that, for the first time, roboticists can draw meaningful functional
parallels between AI technology and components identified in
the cognitive sciences as pivotal to robust operation in the real
world: Dual Process Theory and metacognition. Revisiting recent
work in robot learning, we establish the building blocks of a Dual
Process Theory for robots and highlight potentially fruitful future
research directions towards delivering robust, versatile and safe
embodied AI.

I. INTRODUCTION

Recent advances in AI technology have built significant
excitement as to what machines may be able to do for us
in the future. Progress is truly inspirational. But where, you
may ask, are the robots? Why can I buy a voice assistant but
not a robust and versatile household robot? The answer lies
in the fact that embodiment - the notion of a physical agent
acting and interacting in the real world - poses a particular set
of challenges. And opportunities.

Machines are now able to play Atari, Go and StarCraft.
However, success here relies on the ability to learn cheaply,
often within the confines of a virtual environment, by trial and
error over as many episodes as required. This presents a signif-
icant challenge for embodied agents acting and interacting in
the real world. Not only is there a cost (either monetary or in
terms of execution time) associated with a particular trial, thus
limiting the amount of training data obtainable, but there also
exist safety constraints which make an exploration of the state
space simply unrealistic: teaching a real robot to cross a real
road by trial and error seems a far-fetched goal. What’s more,
embodied intelligence requires tight integration of perception,
planning and control. The critical inter-dependence of these
systems, coupled with limited hardware, traditionally leads to
fragile performance and slow execution times.

Cognitive science suggests that, while humans are faced
with similar complexity, there are a number of mechanisms
which allow us to safely and efficiently act in the real world.
One prominent example is Dual Process Theory popularised
by Daniel Kahneman’s book Thinking Fast and Slow [15].
Dual Process Theory postulates that human thought arises

as a result of two interacting processes: an unconscious,
involuntary – intuitive – response and a much more laboured,
deliberate reasoning. Our ability to assess the quality of our
own thinking – our capacity for metacognition – also plays a
central role.

If we accept that Dual Process Theory plays a pivotal part
in our own interactions with the world, the notion of exploring
a similar approach for our robots is a tantalising prospect
towards realising robust, versatile and safe embodied AI. If
we can establish a meaningful technology equivalent - a Dual
Process Theory for robots - mechanisms already discovered
in the cognitive sciences may cast existing work in new
light. They may provide useful pointers towards architecture
components we are still missing in order to build more robust,
versatile, interpretable and safe embodied agents. Similarly,
the discovery of AI architectures which successfully deliver
such dual process functionality may provide fruitful research
directions in the cognitive sciences.

II. A DUAL PROCESS THEORY FOR ROBOTS

While artificial intelligence research has drawn inspiration
from the cognitive sciences from the very beginning, we
posit that recent advances in machine learning have, for the
first time, enabled meaningful parallels to be drawn between
AI technology and components identified by Dual Process
Theory. This requires mechanisms for machines to intuit, to
reason and to introspect – potentially drawing on a variety of
metacognitive processes.

A. Machine Learning, Intuition and Reasoning

Machine learning is essentially an associative process in
which a mapping is learned from a given input to a desired
output (or intermediate representation) based on information
supplied by an oracle. We use the term oracle here in its
broadest possible sense to refer to both inductive biases
and supervisory signals in general. In a brazen break with
standard deep learning terminology, we also refer to an oracle’s
knowledge being distilled into a machine learning model.
And we take as a defining characteristic of an oracle that
it is in some sense resource intensive (e.g. computationally,
financially, or in terms of effort or energy invested).

The learning of mappings of inputs to outputs has, of course,
been a theme in ML for decades. However, in the context of
Dual Process Theory, the advent of deep learning has afforded



our agents principally two things: (i) an ability to learn arbi-
trarily complex mappings; and (ii) an ability to execute these
mappings in constant time. Together with an ability to learn
structured, task-relevant embeddings even in an unsupervised
manner, this affords researchers a different view on the com-
putational architectures they employ: by learning ever more
complex mappings from increasingly involved oracles we now
routinely endow our agents with an ability to perform complex
tasks at useful execution speeds. Direct human supervision,
reinforcement learning, task demonstrations, complex learned
models as well as the increasingly popular concept of system-
level self-supervision – machines teaching machines – all fit
into this narrative. Consequently, it is straight forward to cast
recent results in AI and robotics into this paradigm. In game
play, for example, DeepMind’s AlphaGo Zero [29] as well
as the closely related Expert Iteration algorithm [2] distil
knowledge from Monte Carlo Tree Search (the oracle) and
self-play into a model which predicts value and probability
of next move given a particular board position. In robotics,
OpenAI’s Learning Dexterity project [1] distils knowledge
from reinforcement learning using domain randomisation (the
combined oracle) into a model which can control a Shadow
Hand to achieve a certain target position in a dexterous
manipulation task. In the context of autonomous driving, the
authors of [3] distil, via the automatic generation of training
data, hundreds of person-hours of systems engineering into a
neural network model which predicts where a human might
drive given a particular situation. Intuitive physics models
predict the outcome of a particular scenario by a learner
trained on data arrived at through physical simulation (see,
for example, [30, 18, 31, 20, 11, 14]).

The key observation here is that, faced with an every-
day challenge like game-play, driving or stacking objects,
we do not tend to write down the governing laws of the
process, nor do we use them explicitly to analyse the particular
setup. Instead, we have a gut-feeling, an intuitive response.
Importantly, owing to their ability to mimic the expertise of
an oracle in a time (or generally resource) efficient manner,
one might view the execution of a neural network model as
analogous to an intuitive response. As already aptly noted by
Kahneman [15]: intuition is recognition. And of course we
also have access to a (very) broad class of oracles, which we
might (generously perhaps, but with artistic license) refer to
as reasoning systems. These then constitute direct analogues
to System 1 and System 2. A Dual Process Theory for robots
has thus firmly moved within reach.

III. METACOGNITION IN A WORLD OF TWO SYSTEMS

The narrative of distilling knowledge into rapidly executable
neural network models allows us to achieve significant, often
game-changing, computational gains. However, as roboticists
we are still faced with a substantive and foundational challenge
when it comes to applying machine learning systems in the
real world: the routine violation of the assumption that our
systems face independent and identically distributed training
and test data. In practice, together with the approximate nature
of our algorithms, this leads to inference which is often over-
confident and which can only loosely be bounded (if at all)

using traditional methods (e.g. [10, 27, 25]). It results in our
robots lacking the ability to reliably know when they do not
know and to take appropriate remedial action. Despite many
attempts over the years at remedying this shortcoming (e.g.
[28, 13, 19, 23, 7]) we are still no closer to a practicable
solution. Yet a Dual Process Theory perspective may well
provide a way forward.

Astonishingly, humans can be said to suffer from many of
the same issues as machines. In particular, we are notoriously
bad at knowing when we do not know – and, to the best of
our knowledge, as yet no theoretical bounds are available. We
operate in significantly non-stationary (in the statistical sense)
environments. Yet – we do operate. Much of this success is
commonly attributed to our metacognitive abilities [5, 9]: the
process of making a decision, the ability to know whether we
have enough information to make a decision and the ability to
analyse the outcome of a decision once made.

One of the interesting aspects of a Dual Process Theory for
robots is the fact that - given the analogy holds - metacognition
finds a natural place in this construct: it bridges the two sys-
tems by regulating the intuitive, almost involuntary response
of System 1 with a supervisory, more deliberate one of System
2. Do not trust your intuition, think about it. But only where
appropriate, which is really the crux of the matter. Failure
(or deliberate deception) of this mechanism is, of course,
what gives rise to the cognitive biases now so well described
in the literature [15]. Examining research on metacognition,
therefore, might shed new light on how to tackle the knowing-
when-you-dont-know challenge. And as an added bonus we
now get machines with their own cognitive biases.

A direct implication of using machine learning models to
provide intuitive, System 1 responses is that these models
must assume operation within the data distribution encoun-
tered during training, whereas System 2 algorithms need to
generalise beyond it. Robust, real-world performance thus
seems to require computationally efficient policies empirically
tuned to a particular task and environment as well as more
computationally intensive approaches capable of systematic
generalisation in that they are robust to variations in the task
and environment. In humans, these two forms of processing
interact in that System 2 can suppress, inform and even train
System 1 responses [15]. While we can hypothesise that
uncertainty plays a role in this information exchange there
may be other mechanisms at work which could be exploited
in robotics.

A. Performance Prediction and a Feeling of Knowing

Ample evidence exists that humans represent and use es-
timates of uncertainty for neural computation in perception,
learning and cognition [9]. However, how metacognitive un-
certainties are derived and utilised is only gradually being
discovered. Special, metacognitive circuitry in the human
brain suggests knowledge integration above and beyond raw
perceptual signals. Moreover, recent work on multi-sensory
perception suggests that metacognition is also instrumental
in discovering causal structures in order to form a coherent
percept from multi-modal inputs [9].



In Thinking Fast and Slow [15] Kahneman exemplifies the
responsibilities of System 1 and System 2 with a number of
simple questions. For example, what is 2 + 2? Or what is
2342114 ÷ 872? The former elicits a System 1 response (a
recall operation). The latter triggers the need for pen and paper
- deliberate reasoning (System 2). One of the mechanisms
regulating this routing – or algorithm selection – has been
identified by metacognition researchers as the Feeling of
Knowing Process [26]. It is executed near instantaneously and
is able to make an (in the majority of cases) appropriate choice
even based on only parts of the question. In the example above,
by the time you have read “2+” your brain will have decided
that you likely already know the answer to the question and
only need to retrieve it. The Feeling of Knowing process
therefore enables humans to effectively choose a cognitive
strategy likely to succeed in a given circumstance: for example
recall vs. reasoning – fast vs. slow.

Consider this in the context of robotics. And let us conjec-
ture that the Feeling of Knowing Process is itself an intuitive
(System 1) response. This immediately points at a set of
now viable technical approaches in which, for example, the
outcome of a downstream system (either in terms of suc-
cess/failure or in terms of confidence in outcome) given a par-
ticular input is distilled into a machine learning model1. Such
predictive models of performance are now relatively common-
place in the robotics literature. They have a long-standing track
record in predicting task success in manipulation and complex
planning tasks (e.g.[22, 16, 17, 24, 21]) and are increasingly
used, for example, to predict the performance of perception
and vision-based navigation systems (e.g. [12, 6, 8]).

Of course, distilling performance prediction into a machine
learning model is but one way of giving a machine a Feeling
of Knowing. We do not propose that it is the only - or even the
best - way. Instead we highlight it as a functional equivalent
to a recognised cognitive process, which is already being put
to good use in robotics.

IV. CONCLUSION AND THE WAY AHEAD

Our exposition so far makes the case that there is significant
merit – perhaps now more than ever – in exploring constructs
from Dual Process Theory and metacognition specifically for
robot learning. In highlighting functional equivalents already
established in robotics we aim to sketch an initial technical
blueprint for components on either side of the systemic divide.
As such, it is of course intended to stimulate discussion. The
extent to which Dual Process Theory and metacognition can
benefit robot learning and the mechanisms to best integrate
them into our AI architectures are, as yet, unknown. However,
one exciting aspect of a Dual Process Theory for robots is
that there now exists a tantalising avenue within which to
contextualise and along which to direct research.

When considering Dual Process Theory in robot learning,
architecture designs that effectively get the best of both worlds
remain an open challenge. Do both systems run in parallel?
On demand? Is there an explicit handover between deliberate
planning and low-level intuitive policies? Are there indeed two

1Statistical outlier detection also falls into this category.

separate systems or is it in fact a continuum of processes capa-
ble of fulfilling either part? Likewise, how should information
be transferred between the systems and at what rate?

Perhaps unsurprisingly, the connection between reinforce-
ment learning (RL) in particular and Dual Process Theory
has not gone unnoticed. The authors of [4] highlight the
role of slow learning particularly in the context of creating
representations and inductive biases which later enable fast
learning such as encountered in, for example, episodic RL and
meta-RL. It is conceivable, therefore, that the fast and slow
paradigm can be effected via a variety of inductive biases -
both architectural (as advocated here in explicitly considering
two separate systems) and learned. The view offered in [4] is
therefore complementary to ours.

Finally, we note that opportunities exist in this context not
only when it comes to improving robot learning. Cognitive
science requires often complex experimental setups which, by
design, need to disrupt the agent’s learning process. Robotics,
on the other hand, allows design and close inspection of the
mechanisms involved. Therefore, as also noted in [4], the
discovery of AI architectures which successfully deliver dual
process functionality may also provide fruitful research direc-
tions towards advancing the state of the art in the cognitive
sciences.
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