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ABSTRACT
Large languagemodels (LLMs) face significant challenges stemming
from their inherent limitations in knowledge, memory, alignment,
and action. These challenges cannot be addressed by LLMs alone,
but should rely on assistance from the external world, such as
knowledge base, memory store, demonstration examples, and tools.
Retrieval augmentation stands as a vital mechanism for bridging
the gap between LLMs and the external assistance. However, con-
ventional methods encounter two pressing issues. On the one hand,
the general-purpose retrievers are not properly optimized for the re-
trieval augmentation of LLMs. On the other hand, the task-specific
retrievers lack the required versatility, hindering their performance
across the diverse retrieval augmentation scenarios.

In this work, we present a novel approach, the LLM-Embedder,
which comprehensively supports the diverse retrieval augmentation
needs of LLMs with one unified embedding model. Training such a
unified model is non-trivial, as various retrieval tasks aim to capture
distinct semantic relationships, often subject to mutual interference.
To address this challenge, we systematically optimize our training
methodology. This includes reward formulation based on LLMs’
feedback, the stabilization of knowledge distillation, multi-task
fine-tuning with explicit instructions, and homogeneous in-batch
negative sampling. These optimization strategies contribute to the
outstanding empirical performance of the LLM-Embedder. Notably,
it yields remarkable enhancements in retrieval augmentation for
LLMs, surpassing both general-purpose and task-specific retrievers
in various evaluation scenarios. Our checkpoint and source code are
publicly available at https://github.com/FlagOpen/FlagEmbedding.
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Figure 1: Confront the threefold inherent boundaries of LLMs
on top of retrieval augmentation.

1 INTRODUCTION
Large language models represent a significant milestone in the de-
velopment of general artificial intelligence [17, 19, 78]. While these
models have demonstrated unprecedented performance across var-
ious general tasks, they still face a series of challenges, including
issues such as hallucination [10, 33], instruction following [7, 58],
and handling long contexts [2, 8]. Many of these challenges can be
traced back to the inherent limitations of LLMs, with three critical
boundaries deserving attention.
• Knowledge boundary. LLMs are constrained by their knowl-

edge capacity. Due to finite model parameters, they cannot fully
internalize the vast body of world knowledge. Moreover, the inter-
nal knowledge of LLMs is static and difficult to be updated with
the dynamically evolving world. Furthermore, LLMs are predomi-
nantly trained on publicly available, high-frequency data, which
may result in inaccuracies when dealing with domain-specific or
long-tail knowledge.
•Memory boundary. LLMs also grapple with severe limitations

in memory, primarily due to restrictions on context length. While
advances have been continually made in expanding the maximum
context length, it still falls short of achieving the goal of lifelong
engagement with human users. Additionally, both the training and
deployment of LLMs with extended context can be prohibitively
computationally and storage-intensive, making it impractical to
significantly expand their memory.
• Capability boundary. LLMs’ capabilities are constrained

in terms of action and autonomy. Firstly, they are limited to the
’language space’ and cannot meaningfully interact with the physical
world. Secondly, these models heavily rely on human guidance,
requiring clear user instructions and appropriate demonstration
examples to perform specific tasks effectively.
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The above inherent boundaries cannot be effectively addressed
by by LLMs alone. To overcome these limitations, external assis-
tance is sought through the process known as retrieval-augmented
generation [15, 27, 32, 41]. Retrievers play a crucial role in con-
necting LLMs with the necessary external components, enabling
LLMs to accomplish various downstream tasks (see Figure 1). In this
context, several common types of retrievers have been designed,
each tailored to fulfill a distinct role in enhancing LLMs:
• Knowledge Retriever: providing external knowledge to sup-

port LLMs in tackling knowledge-intensive tasks [37, 41, 59].
•Memory Retriever: collecting information that extends be-

yond the immediate context, assisting in the generation of lengthy
sequences [12, 71, 85].
• Tool Retriever: selecting appropriate tools, allowing LLMs to

interact effectively with the physical world [61, 62, 74].
• Example Retriever: locating pre-cached demonstration ex-

amples, from which LLM prompts can be automatically generated
to facilitate in-context learning [47, 83].

Given the importance to connect LLMs with the external world,
it is imperative to optimize the performance across various tasks.
The effectiveness of retrieval systems heavily rely on the qual-
ity of embeddings [30, 37, 68, 92]. Consequently, the optimization
challenge centers around the learning of embedding model. His-
torically, two common approaches have been employed. The first
approach focuses on developing task-specific models, where the
embeddings are tailored for specific applications, such as question
answering [96] or in-context learning [83]. While this approach
leads to a competitive performance within each scenario, it lacks
the versatility across different contexts. In contrast, the second
approach resorts to general-purpose embedding models [59, 60],
which aim to be universally applicable [30, 82, 89]. However, these
methods are not properly optimized for the specific requirements
of retrieval augmentation for LLMs. This limitation significantly
hampers their performance in corresponding tasks.

In this work, we propose LLM-Embedder, a unified embedding
model to satisfy primary retrieval augmentation needs of LLMs. Uni-
fying the diverse retrieval capabilities holds significant advantages.
From a practical standpoint, LLM-based systems often require mul-
tiple external modules, such as knowledge bases, memory stores,
and tool-bench, to execute complex tasks. By consolidating these
functionalities into a unified model, we can streamline system man-
agement and enhance operational efficiency. From the perspective
of effect, the unified model may also benefit from the composite
data of different scenarios. This can be especially helpful for the
retrieval tasks where high-quality training data is scarce.

However, training a unified model poses substantial challenges.
Firstly, the embedding model must optimize its ultimate impact on
retrieval augmentation, instead of focusing solely on intermediate
retrieval results. Secondly, the diverse retrieval tasks seek to capture
distinct semantic relationships, which may not always be mutually
beneficial but sometimes interfere with each other. To address both
challenges, we optimize our training methodology as follows.
• Reward from LLM. To train the LLM-Embedder, we utilize

a combination of labels from various sources. In addition to the
native hard labels from the original datasets, we leverage rewards
obtained from the LLM’s output. A retrieval candidate is assigned

a higher reward if it substantially improves the LLM’s final perfor-
mance. These rewards are considered soft labels and are learned
via knowledge distillation by the embedding model.
• Stabilized distillation. Given the diversity of training data,

the LLM’s output can exhibit significant fluctuations. In some cases,
the output scores may be distributed too closely or polarized, mak-
ing it challenging to assess the fine-grained quality of candidates. To
mitigate this issue, we introduce stabilized distillation. It jointly in-
corporates soft reward-based labels and hard ranking-based labels,
where the distillation effect is significantly improved.
• Instruction based fine-tuning. We curate a diverse training

dataset comprising a wide variety of tasks closely related to the
retrieval augmentation for LLMs. To harmonize the training impact
across different data sources, we take advantage of instruction based
fine-tuning, where task-specific prompts are used to differentiate
each individual task [5, 76].
• Homogeneous in-batch negative sampling. In-batch nega-

tive sampling is a common practice to introduce a large number of
negative samples [37, 63]. However, one potential drawback in our
context is that negative samples shared across different tasks (i.e.
heterogeneous negatives) may be less effective in discriminating
semantic relationships for a specific context. To mitigate this issue,
we construct each mini-batch using training data from the same
tasks, ensuring that the in-batch negatives are homogeneous and
contribute effectively to the discriminative power of embeddings.

To summarize, our work makes significant contributions in the
following ways.
• LLM-Embedder: We introduce LLM-Embedder, a novel em-
bedding model designed to bridge LLMs with the external
world. To the best of our knowledge, LLM-Embedder is the
first of its kind, offering comprehensive support for all key
facets of LLMs’ retrieval augmentation.
• SystematicOptimization:We systematically optimize LLM-
Embedder across multiple dimensions, including reward
formulation, knowledge distillation, instruction based fine-
tuning, and negative sampling, which ensures the effective-
ness of the proposed model.
• Empirical Validation: We verify the effectiveness of LLM-
Embedder with comprehensive experiments. Our model out-
performs the existing embedding models, significantly am-
plifying the impact of retrieval augmentation on various
critical aspects of LLMs, such as knowledge enhancement,
long-context modeling, and instruction following.

2 LLM-EMBEDDER
The introduction of LLM-Embedder is partitioned into the follow-
ing three parts: 1) the curation of training data, 2) the training
methodology, 3) the retrieval augmentation of LLMs.

2.1 Training Data
LLM-Embedder is to serve as a unified model for the retrieval aug-
mentation of LLMs. To fulfill this objective, we assemble a diverse
training dataset from the following tasks. 1) Question Answering.
We utilize MSMARCO [57] and Natural Questions [39] to estab-
lish the model’s knowledge retrieval capability. 2) Conversational
Search. The QReCC dataset [3] is employed to further improve
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the model’s information seeking capability in the conversational
context. 3) Tool Learning. The ToolLLM dataset [62] is used to
learn the selection of appropriate tools in the tool-using context.
4) Instruction Tuning: To retrieve useful demonstration examples
for in-context learning, we re-purpose FLAN [86] and UPRISE [18],
which are originally designed for instruction tuning. 5) Genera-
tion. The model is trained to extract valuable historical information
(i.e. memory) based on a long conversation dataset: Multi-Session
Chat [93], as well as long-range language modeling datasets: in-
cluding Books3 [25], ArXiv [25], CodeParrot [79]. These datasets
can be grouped into two types based on the availability of labels.
• Labeled data. The datasets on the first three types of tasks are

composed of pairwise texts, where hard-coded labels are presented.
For question answering datasets (MSMARCO, NQ), each data in-
stance consists of a query and the source passage of answer, denoted
as <query, passage>. For conversational search dataset (QReCC),
each data instance is made up of a conversational query and the
source passage of answer, denoted as <conversation, passage>. For
tool learning dataset (ToolLLM), each data instance includes an
instruction and the description of the needed tool, denoted as <in-
struction, tool desc>.
• Non-labeled data. In contrast, the last two types of datasets

do not have explicit labels. For instruction tuning datasets (FLAN,
UPRISE), each instance consists of human’s instruction and the ex-
pected output: <instruction, output>. For generation datasets, each
instance is a long text sequence partitioned into chunks: [chunk_0,
..., chunk_L]. Books3, ArXiv, and CodeParrot are made up of plain
texts, which are chunked into spans of equal length (128 tokens per
chunk). Multi-Session Chat is composed of conversations, where
each chunk corresponds to a pair of consecutive utterances.

2.2 Training Methodology
2.2.1 Formulation of Training Reward. In our work, we explore
two types of supervision signals for training the LLM-Embedder.
Firstly, we can directly utilize the hard labels provided by the labeled
datasets. Secondly, we aim to optimize the LLM’s final performance
with retrieval augmentation. To achieve this goal, we leverage the
reward produced by LLM for both labeled and unlabeled datasets.
Particularly, given the expected output of the LLM, denoted as 𝑂 ,
and a retrieval candidate, denoted as𝐶 , the reward for the candidate,
represented as 𝑟𝐶 |𝑂 , is derived by the following equation:

𝑟𝐶 |𝑂 =
∏ |𝑂 |

𝑖=1
LLM(𝑜𝑖 |𝐶,𝑂:𝑖−1) . (1)

Here, 𝑜𝑖 represents the 𝑖-th token of the expected output, and
LLM(𝑥 |𝑦) stands for the LLM’s generation likelihood of producing
𝑥 given the context 𝑦. In other words, a higher reward is assigned
to a retrieval candidate if it results in a higher generation likelihood
for the expected output.

The LLM based reward is applied in the following ways for
each of the tasks in consideration. 1) For Question Answering:
the reward is computed as the generation likelihood of answers
given one single candidate passage. 2) For Instruction Tuning: The
reward is computed as the generation likelihood of the instructed
output given one candidate example. 3) For Generation: the reward
is computed as the generation likelihood of a new content given
one candidate historical chunk. Note that the LLM reward is not

applied to conversational search and tool learning datasets, as there
is no clear expectation of the LLM’s output in these cases.

Given the two sources of supervision signals of LLM-Embedder,
i.e. the native hard labels and the soft reward derived from LLM,
the training is conducted with a composite recipe. The contrastive
learning is applied to capture the semantic relationship reflected
by the hard labels; meanwhile, the knowledge distillation is used
to learn from the soft rewards derived from LLM.

2.2.2 Contrastive Learning. For each pair of hard-labeled texts: 𝑞
and 𝑝 (e.g., query and passage), the loss function of contrastive
learning is formulated in the following way:

min .
∑︁
(𝑞,𝑝 )
− log

exp(⟨𝒆𝑞, 𝒆𝑝 ⟩/𝜏)∑
𝑝′∈P exp(⟨𝒆𝑞, 𝒆𝑝′ ⟩/𝜏)

, (2)

where 𝒆∗ stands for the embedding, ⟨·⟩ indicates the inner product
operator, P are the union of positive and negative samples, 𝜏 refers
to the temperature. To improve the discriminative power of embed-
dings across diverse application scenarios, we employ a couple of
key designs in our contrastive learning framework.

The first featured design is the Instruction-based Fine-Tuning.
In this approach, each task is assignedwith a unique task instruction
denoted as 𝐼𝑡 . While generating the query-side embedding, the task
instruction and query content are concatenated and jointly encoded,
resulting in the update of query embedding: 𝒆𝑞 ← encode( [𝐼𝑡 , 𝑞]).
This task-specific instructions plays a pivotal role in initializing the
embedding model with distinct activations, thereby facilitating the
discrimination between different tasks.

The second notable feature is theHomogeneous In-Batch Neg-
ative Sampling. It calls for a considerable amount of negative sam-
ples to guarantee the embedding’s discriminativeness [30, 63, 82].
In our work, this is realized by the joint usage of in-batch negatives
and hard negatives. We also apply cross-device sharing [63, 91],
which further expands the scale of negative samples. Consequently,
our method results in 𝐵 × 𝐾 × 𝑁 − 1 negative samples in total,
where 𝐵 is the batch size, 𝐾 is the number of GPU devices, 𝑁 is the
total number of positive and hard negative samples. However, the
vanilla practice of in-batch negative sampling presents one draw-
back in our multi-task settings. Particularly, the embeddings shared
between different datasets (namely heterogenous negative samples)
are mostly irrelevant, which are less effective for discriminating the
semantic relationships within a specific task scenario. To address
this limitation, we introduce a regularization strategy for the organi-
zation of training data, where the data instances from the same task
are grouped into consecutive mini-batches. The strategy makes the
majority of in-batch negative samples to originate from the same
dataset (i.e. homogeneous negative samples), thus enhancing the
discriminative power of embeddings for each specific task.

2.2.3 Knowledge Distillation. In our training framework, knowl-
edge distillation plays a crucial role in learning from the LLM’s
reward. we employ the KL-divergence to minimize the gap between
the distributions of candidates computed using LLM’s rewards and
those predicted by the embedding model. In particular, for each
query 𝑞 and its candidate list P: [𝑝1, ..., 𝑝𝑁 ], we derive the LLM’s
rewards towards the candidates, denoted as 𝑅: [𝑟1, ..., 𝑟𝑁 ], using
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Eq 1. To make the LLM’s rewards suitable for distillation, we trans-
form each reward into a normalized weight:𝑤𝑖 ← softmax𝑅 (𝑟𝑖/𝛼),
where 𝛼 represents the temperature. On top of these elements, the
KL divergence is computed by the following equation:

min .
∑︁
P
−𝑤𝑖 ∗ log

exp(⟨𝒆𝑞, 𝒆𝑝 ⟩/𝜏)∑
𝑝′∈P exp(⟨𝒆𝑞, 𝒆𝑝′ ⟩/𝜏)

. (3)

While the above formulation has been successfully employed in
mono-task settings [29, 46, 81], applying it directly to our multi-task
scenario poses unique challenges. Notably, the magnitude of LLM’s
rewards can exhibit high fluctuations due to the diverse training
samples from various tasks. In many cases, the LLM’s rewards
closely distribute, making it challenging to distinguish the quality
of candidates. In contrast, in many other cases, the rewards become
polarized, with candidates receiving either a positive reward or
nearly zero rewards. Both of these scenarios contribute little to the
distillation process and can severely impair the training effect.
• Stabilized Distillation. To address the challenge of fluctu-

ated rewards in our multi-task scenario, we introduce a modified
formulation of the loss function. This adaptation effectively alle-
viates the negative impact resulted from the rewards’ fluctuations.
Particularly, instead of using LLM rewards solely as “soft weights”,
we also leverage them as hard ranking labels. Given LLMs’ rewards
𝑅: [𝑟1, ..., 𝑟𝑁 ], we re-rank the candidates in a top-down order. This
operation results in a new order for the candidates, denoted as
P: [𝑝1, ..., 𝑝𝑁 ], where 𝑟𝑖 ≥ 𝑟𝑖+1. The loss function for knowledge
distillation is accordingly transformed as follows:

min .
∑︁

𝑃
−𝑤𝑖 ∗ log

exp(⟨e𝑞, e𝑝𝑖 ⟩/𝜏)∑
𝑝′∈P exp(⟨e𝑞, e𝑝′ ⟩/𝜏)

.

Here, P comprises two sources: the lower-ranked candidates of 𝑝𝑖 :
[𝑝𝑖+1, ..., 𝑝𝑁 ]; and the the in-batch negative samples.

Our adapted formulation serves to stabilize fluctuated rewards
in two fundamental ways. On one hand, the model is consistently
trained to promote 𝑝𝑖 compared to its lower-ranked counterparts
[𝑝𝑖+1, ..., 𝑝𝑁 ]. This means that themodel is always able to learn from
the LLMs’ preferences, regardless of the absolute value of rewards.
This mechanism is particularly effective in handling cases where
LLMs’ rewards are too closely distributed. On the other hand, when
the top-ranked candidate receives a significantly higher reward
compared to the other candidates, the weights will become one-hot.
In this scenario, the distillation process will be reduced to the form
of contrastive learning, with the top-ranked candidate treated as
a positive sample. This mechanism help to address the situations
where polarized rewards are generated by LLMs.

2.3 Retrieval Augmentation of LLMs
The multi-tasking capacity of LLM-Embedder makes it as a versatile
solution. By connecting to the vector DBwhere any needed external
elements are stored, it may support a wide variety of retrieval
augmentation tasks. In this place, we discuss the typical scenarios
empowered by LLM-Embedder (Figure 2), with focusing on three
key issues: 1) what to store in the vector DB, 2) what is used to
query the vector DB, 3) how to leverage the retrieved data.
• Knowledge Enhancement. When handling knowledge in-

tensive tasks [37, 59], the entire docs from the knowledge corpus
can be encoded and stored in vector DB. In many cases, questions

Long Memory

LLM-Embedder

Docs Chunks Examples Tools

Vector DB

Knowledge enhanced

In-Context Learning

Tool Augmented

LLM

Figure 2: Retrieval augmentation with LLM-Embedder.

are explicitly presented, which can be used to query the vector DB.
In other cases, the working context during the generation process
can be used as query [27, 34]. The retrieved docs can be directly
applied or refined for more informative segments [44]. Finally, the
query and retrieved docs are concatenated to generate knowledge-
grounded answer, e.g., [knowledge, query]→ answer.
• Long-Context Modeling. When dealing with a long context,

the entire history can be chunked, encoded, and off-loaded to the
vector database. The working context during the generation process
can be used to query the vector DB for relevant chunks. In many
cases, both the relevant chunk, e.g., chunk_𝑖 , and its subsequent
chunk_𝑖+1 are used for memory augmentation [15], because the
subsequent chunk can be more critical to the future generation. The
retrieved chunks are used to back-fill the current context, where
new content can be generated with remote but important memory,
e.g., [retrieved chunks, current context]→ new generation.
• In-context Learning. The demonstration examples, organized

in the form of “(task instruction, expected output)”, can be encoded
and pre-stocked in vector DB. When a new task is given, the task’s
instruction is used to query the vector DB [18, 83]. The retrieved
examples are concatenated with the task’s instruction, based on
which the in-context learning can be conducted, e.g., [retrieved
examples, instruction]→ task completion.
• Tool Learning. The tool’s functionality can be verbalized as

a description, and paired with its API: “(description, API)”. In this
way, a massive toolkit can be managed by vector DB based on the
encoded description [62]. Given a user request that involves the
use of tools, the user request can be encoded and used to query
the vector DB. The retrieved tool is executed via its API, where the
execution result is returned for LLM to complete the remaining
generation: [user request, tool’s execution result]→ generation.

3 EXPERIMENT
The experimental study is to clarify three basic research questions.
RQ 1. can LLM-Embedder comprehensively support the diverse
scenarios of LLM’s retrieval augmentation. RQ 2. what is LLM-
Embedder’s impact to each specific scenario.RQ 3.what are the key
factors influencing the empirical performance of LLM-Embedder.
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3.1 Settings
The baseline, datasets, evaluation method, and implementation of
the experiment are introduced as follows. Given the limited space,
more detailed specifications are presented in the Appendix.

3.1.1 Baselines. Firstly, we measure the performance of Language
Model Models (LLMs) without retrieval augmentation, denoted
as None, to gauge the empirical benefits introduced by retrieval
augmentation. Secondly, we make comparison with a series of base-
line retrievers, which are categorized into two types. 1) General
embedding models. These models are trained to support a wide
range of text retrieval and representation tasks, such as question
answering, entity retrieval, duplication detection, and document
ranking. Our experiment includes the following widely-recognized
baselines: Contriever [30], Instructor [76], RetroMAE-BEIR [46],
and BGE [89]. These methods are empirically competitive accord-
ing to BEIR [77] and MTEB [53] benchmarks, among which BGE
maintains the leading performance upon the time of this work. 2)
Task-specific embedding models. These models are tailored to
optimize performance on specific tasks. We include the following
task-specific baselines, which excel in their respective domains:
ARR [96] for knowledge enhancement of LLMs, LLM-R [83] for
in-context learning, API-Retriever [62] for tool learning, and Conv-
ANCE [49] for conversational search. Additionally, we consider
BM25 [69], a widely used retriever based on lexical similarity.

3.1.2 Evaluation and Datasets. . We present the tasks used to assess
the retriever’s performance, including knowledge enhancement,
in-context learning, long-context modeling, tool learning, conversa-
tional information seeking. For each task, we introduce the relevant
evaluation dataset and methodology.
• Knowledge Enhancement. We adopt the established setup

used by AAR [96]. The experiment is performed on two popu-
lar benchmarks. 1) MMLU [28], which comprises multiple-choice
questions evaluated by accuracy. 2) PopQA [48]: which involves
question answering tasks evaluated by exact match (EM). Follow-
ing AAR, the knowledge is retrieved from MS MARCO [57] and
Wikipedia Corpus [59], respectively.
• In-Context Learning. We adopt the data and framework

from LLM-R [83]. There are 30 public datasets from 9 distinct cate-
gories, including Close QA (CQA), Commonsense (Comm), Coref-
erence (Coref), Paraphrase (Para), NLI, Reading Comprehension
(RC), Sentiment Analysis (Sent), Data2Text (D2T), Summariza-
tion (Summ). To better assess the generalization ability, we with-
hold four datasets (QNLI, PIQA, WSC273, Yelp) from the training
stage. We collect demonstration examples from the combination of
FLAN [86] and UPRISE [18], creating a retrieval pool of 6.3 million
examples. For each presented task, we retrieve the top-8 examples
to complete the task. Each task employs a specific evaluation metric,
whose specifications are presented in Appendix.
• Long-Context Modeling. We focus on two scenarios: long

conversation and long-range language modeling. The first scenario
leveragesMulti-Session Chat [93]. We retrieve historical dialogue
turns with the current utterance, append them ahead of the current
utterance, based on which the next reponse is generated. Following
existing literature about augmenting memory for LLMs [71, 85,
88], we leverage Books3 [25], ArXiv [25], CodeParrot [79], and

PG19 [64] for the second scenario. We hold out PG19 entirely
from training to assess the generalization ability. These datasets
divide each historical sequence into chunks of 128 tokens. Historical
chunks are retrieved based on the latest chunk, appended ahead of
the current context, based on which the future chunk is generated.
Performance in both scenarios is measured by Perplexity (PPL).
• Tool Learning. We follow the established data and frame-

work from ToolLLM [62], whose primary objective is to find the
needed tool based on the instructions and the tool’s descriptions.
The dataset already provides ground-truth information about the
needed tool, which allows us to directly measure the retriever’s
performance using its ranking performance, specifically NDCG@5.
• Conversational Search. We use the setup of QReCC [3] for

evaluation, where the required knowledge is retrieved based on the
concatenation of conversation’s context and the last query. Like
ToolLLM, this dataset also provides ground-truth, whereby letting
the retriever’s performance to be directly measured by its ranking
performance (NDCG@3 following previous works [50]).

3.1.3 Implementation. . There are two critical factors about the
implementation: the LLM foundation and the embedding model
backbone. As for LLM Foundation, we choose to work with Llama-
2-7B-Chat [78] for two reasons: 1) it is a white-box LLM, allowing
for easy extraction of reward and perplexity metrics; 2) it’s empiri-
cally competitive and relatively lightweight, making it well-suited
for our research purposes1. Given that the maximum sequence
length of Llama-2 is 4096 tokens, we retain the latest 2048 tokens
and retrieve an additional 2048 tokens from history to assess lan-
guage modeling performance. As for embedding backbone, we uti-
lize BGE base [89] to initialize our model. BGE is well pre-trained
with general text embedding tasks, which provides a strong foun-
dation to develop the needed capabilities of LLM-Embedder.

3.2 Analysis
The experiment results are analyzed from three perspectives: the
overall analysis, the analysis for each individual scenario, and the
ablation studies for influential factors.

3.2.1 Overall Analysis. The experiment results on different re-
trieval augmentation scenarios are presented with Table 1-3, re-
spectively. We can come to the following conclusions given the
observations across all the presented results.

Firstly, compared with the result from plain LLM, i.e. None, LLM-
Embedder helps to deliver more precise answers with the retrieved
knowledge (Table 1), better instruction following effect with the
retrieved examples (Table 2), and improved quality of long-sequence
generation with the retrieved memory (Table 3). Besides, the LLM’s
performance can also by improved by other baseline retrievers in
many of the situations. However, the relative improvements are
not always as significant as the ones with LLM-Embedder. Such
observations indicate that LLMs can benefit from properly retrieved
assistance; and with a stronger retriever, the augmentation’s impact
can be substantially magnified.

Secondly, LLM-Embedder brings forth a competitive retrieval
augmentation effect across the diverse scenarios. On one hand, it

1Although using rewards from Llama-2 7B Chat, LLM-Embedder is also applicable to
other LLMs. Evaluations about this are presented in Appendix.
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Table 1: Impact on knowledge enhancement. MMLU and PopQA are measured by precision and exact match (EM), respectively.
“∗” and “†” indicates the SOTA general embedding model and the task-specific method for the corresponding scenario.

MMLU PopQA

Method STEM Social Human Other All Avg. PopQA

None 0.3468 0.5328 0.5094 0.4967 0.4599 0.2061
BM25 0.3760 0.5378 0.5051 0.5088 0.4721 0.3491
Instructor [76] 0.3702 0.5406 0.5111 0.5082 0.4721 0.3533
Contriever [30] 0.3677 0.5383 0.5080 0.5013 0.4684 0.3276
RetroMAE-BEIR [46] 0.3857 0.5456 0.5221 0.5276 0.4853 0.4364
BGE∗ [89] 0.3852 0.5564 0.5194 0.5389 0.4896 0.4491
AAR† [96] 0.3802 0.5501 0.5125 0.5288 0.4826 0.4792
API-Retriever [62] 0.3535 0.5335 0.4999 0.5068 0.4625 0.2488
LLM-R [83] 0.3629 0.5277 0.5018 0.4984 0.4625 0.2506

LLM-Embedder 0.3848 0.5568 0.5255 0.5360 0.4903 0.5052

notably outperforms a series of general retrievers, including the
state-of-the-art method BGE. On the other hand, it also goes be-
yond the task-specific method, i.e. AAR for knowledge enhance-
ment, LLM-R for in-context learning, API-Retriever for tool learn-
ing, Conv-ANCE for conversational search. Such an observation
indicates that LLM-Embedder is able to provide a strong and unified
foundation to support different retrieval augmentation needs of LLMs.

Finally, we can also observe that the task-specific retrievers opti-
mized for one scenario could result in limited performances in other
scenarios, indicating that the training impacts between different
retrieval tasks are not always transferable. To better illustrate this
point, we visualize the retrieval augmentation’s impact (improve-
ments over None) fromfive representativemethods in Figure 3: BGE,
AAR, LLM-R, API-Retriever (API-R), and LLM-Embedder (ours). The
first method is the general embedding model, while the second to
fourth are task-specific methods. We can observe that although
task-specific training can deliver a competitive performance for its
corresponding scenario, e.g., AAR for knowledge enhancement and
LLM-R for in-context learning, their impacts are severely weak-
ened when applied for other usages. In contrast, LLM-Embedder
demonstrates a steady and competitive performance across dif-
ferent scenarios. Although challenging, the seemingly irrelevant or
even adverse retrieval patterns can still be reconciled by one unified
embedding model on top of the properly optimized training recipe.

3.2.2 Individualized Analysis. Further analysis is made for the re-
trieval augmentation’s impact to each individual scenario.
•Knowledge Enhancement. The experiment results on knowl-

edge enhancement are shown in Table 1, where we can make the
following observations. 1) Benefit of external knowledge. LLMs
benefit from external knowledge when answering questions in
MMLU and PopQA, as clear empirical advantages are achieved by
the retrieval augmentation methods compared with the plain LLM,
i.e. None. 2) Importance of retrieval accuracy. The impact of knowl-
edge enhancement becomes more pronounced when knowledge
retrieval is more accurate. We observe consistent improvements
as we transition from using the BM25 retriever to more advanced
embedding models. 3) Distinction between datasets. The impact
of retrieval augmentation is more noticeable in the PopQA dataset
compared to MMLU. This difference is likely due to the nature of
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API-R

LLM-R
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BGE

Figure 3: Retrieval augmentation’s impact from different
retrievers. The warmer color indicates a better performance.

the datasets. PopQA tends to be more knowledge-intensive, with a
focus on questions about long-tail entities. In contrast, many ques-
tions in MMLU rely more on common sense and logical reasoning
rather than extensive world knowledge.
• In-Context Learning. The experiment results on in-context

learning are shown in Table 2, where we can draw the following
observations. 1) Benefits of retrieved examples. When comparing
plain LLM (None) with other retrieval-augmented methods, we can
consistently observe the improved performances in most cases. This
finding underscores the enhancement of LLM’s ability to follow
instructions when retrieved examples are presented. 2) Limitation
of BM25. It’s noteworthy that BM25’s performance is comparatively
weaker than its performance in other scenarios. This discrepancy
can be attributed to the specific nature of in-context learning, where
examples need to emphasize semantic similarity rather than lexical
similarity. 3) Limited transferability. While the task-specific method,
LLM-R, exhibits a competitive performance for in-context learning,
its utility becomes severely limited when applied to other scenarios,
such as knowledge retrieval and tool using. This suggests that
example retrieval calls for a unique pattern tailored to this very
task, making it challenging to transfer to other scenarios.
• Long-Context Modeling. The experiment results on long-

context modeling are shown in Table 3. While retrieval augmenta-
tion consistently demonstrates improvements compared to having
no augmentation (None), it may not be entirely convincing due to
the utilization of more context. To address this issue, we introduce
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Table 2: Impact on in-context learning. The performances are measured by Misc. metrics (see Appendix).

In-Context Learning

Method CQA Comm Coref Para NLI RC Sent D2T Summ Avg

None 0.2923 0.7212 0.6578 0.5242 0.4478 0.4892 0.7077 0.1982 0.1447 0.4645
BM25 0.3603 0.7019 0.6029 0.5059 0.4583 0.5396 0.7284 0.3019 0.1555 0.4840
Instructor 0.5003 0.7772 0.5735 0.6312 0.5360 0.6219 0.9148 0.4595 0.4572 0.6036
Contriever 0.4912 0.7723 0.5624 0.6358 0.5466 0.6297 0.9141 0.4380 0.4444 0.6009
RetroMAE-BEIR 0.4594 0.7742 0.5840 0.5755 0.5408 0.6029 0.9286 0.4661 0.4465 0.5939
BGE∗ 0.4718 0.7773 0.5550 0.6171 0.5413 0.5988 0.9281 0.4719 0.4521 0.5974
AAR 0.4809 0.7796 0.5848 0.5890 0.5354 0.6039 0.9210 0.4445 0.4410 0.5938
API-Retriever 0.4765 0.7620 0.5465 0.6266 0.5204 0.6096 0.9245 0.4866 0.4424 0.5945
LLM-R† 0.5165 0.7802 0.5830 0.6567 0.6145 0.6223 0.9059 0.4777 0.4878 0.6262

LLM-Embedder 0.5163 0.7842 0.5927 0.6556 0.6041 0.6318 0.9224 0.4731 0.4742 0.6268

Table 3: Impact on long conversation and language modeling (PPL), tool learning (NDCG), conv search (NDCG).

Conversation Language Modeling Tool C-Search

Method MSC Books3 Arxiv CodeParrot PG19 (o.d.) ToolLLM QReCC

None 19.3501 8.8193 3.7647 2.7663 10.2510 – –
Recency 13.9569 8.7391 3.4158 2.5989 10.2216 – –
BM25 14.6512 8.6576 3.3106 2.4591 10.1960 0.5115 0.4341
Instructor 14.8799 8.6619 3.3546 2.4756 10.2011 0.3882 0.2863
Contriever 14.2129 8.6460 3.2709 2.4437 10.1616 0.4904 0.3563
RetroMAE-BEIR 14.3990 8.6376 3.2903 2.4592 10.1731 0.5205 0.4037
BGE∗ 14.2943 8.6311 3.2912 2.4578 10.1541 0.5761 0.3856
AAR 14.6999 8.6381 3.3260 2.4666 10.1808 0.4200 0.2877
API-Retriever† 14.7834 8.6722 3.3858 2.4919 10.1833 0.8017 0.1137
Conv-ANCE† – – – – – – 0.4560
LLM-R 14.4746 8.6619 3.3635 2.4724 10.2024 0.1321 0.0234

LLM-Embedder 13.4832 8.6080 3.2322 2.4303 10.1185 0.8645 0.5053

a simple yet strong baseline called Recency. Rather than using re-
trieved context, Recency directly leverages the most recent context
immediately preceding the current window. For example, in con-
versation, it considers the last pair of utterances before the current
session; and in language modeling, it introduces the content within
the range of 2049-4096 tokens preceding the latest 2048 tokens.

With the introduction of this new baseline, the impact of retrieval
augmentation becomes more nuanced. On one hand, the LLM-
Embedder continues to exhibit superior performance across various
situations. On the other hand, other retrievers no longer guarantee a
consistent enhancement: although alternative retrieval-augmented
methods yield improved generation quality for language modeling,
amajority of them fall short of Recency’s performancewhile dealing
with conversation. This observation underscores the challenges
regarding effective memory retrieval in practice.
• Tool Learning and Conversation Search. The experiment

results on tool learning and conversational search are shown in
Table 3. In line with our prior observations, the task-specific ap-
proaches, i.e. the API retriever (Tool) andConv-ANCE (Conv Search),
consistently deliver higher performances then most of the baselines.
Besides, unlike other cases, BM25 overtakes most of the embedding
models in these two scenarios. However, it’s worth noting that

LLM-Embedder continues to maintain the leading position, which
again highlights its capability in unifying diverse retrieval tasks.

3.2.3 Ablation Studies. The ablation studies are presented to ana-
lyze the influential factors about LLM-Embedder’s training process
(see Table 4): reward from LLM, instruction based fine-tuning, ho-
mogeneous in-batch negative sampling, and stabilized distillation.

For “w.o. LLM reward”, we replace the soft reward from LLM
by using highest rated candidates as positive samples (i.e. hard la-
bels). By doing so, the knowledge distillation is reduced to contrast
learning. The empirical performance in most of the scenarios are
decreased due to such a change. However, the performances in tool
learning and conversational search are little affect; this is compre-
hensible knowing that LLM-Embedder is purely trained with hard
labels in both scenarios.

For “w.o. instruction FT”, we remove the task-specific instruc-
tions while fine-tuning LLM-Embedder. Without such a component,
it will become harder for the embedding model to discriminate the
retrieval task in different scenarios. This speculation is consistent
with the observed result, as LLM-Embedder’s performance is de-
creased from such a change.

For “w.o. homo NS”, the homogeneous in-batch negative sam-
pling is disabled. Such a change could reduce the discrimination of
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Table 4: Ablation study for the three influential factors about LLM-Embedder’s training: using soft reward from LLM, stabilized
distillation, instruction based fine-tuning, in-batch negative sampling from the same scenario.

Knowledge ICL Long Tool Conv Search

Method MMLU PopQA Misc. MSC ArXiv ToolLLM QReCC

w.o. LLM Reward 0.4872 0.4794 0.6217 13.9176 3.2495 0.8927 0.4945
w.o. Instruction FT 0.4776 0.5025 0.6211 13.9125 3.2383 0.8192 0.5029
w.o. homo NS 0.4791 0.4520 0.6200 14.0441 3.2558 0.8364 0.4563
w.o. Stablized Distill 0.4815 0.5027 0.6105 13.6090 3.2441 0.7905 0.4865

AAR 0.4826 0.4792 0.5938 14.6999 3.3260 0.4200 0.2877
API-Retriever 0.4625 0.2488 0.5942 14.7834 3.3858 0.8017 0.1137
LLM-R 0.4625 0.2506 0.6262 14.4746 3.3635 0.1321 0.0234

LLM-Embedder 0.4903 0.5052 0.6268 13.4832 3.2322 0.8645 0.5053

the embeddings, because a great portion of the negative samples
will come from different tasks, which are irrelevant with each other.
As we can observe, LLM-Embedder’s performance is decreased due
to such a change, especially for PopQA and Conv Search, where a
massive candidate pool is presented (Wikipedia corpus).

For “w.o. stabilized distill”, we replace our stabilized distilla-
tion with the conventional KL-divergence based method. As intro-
duced, this operation handles the fluctuated reward from LLM such
that distillation can become more stabilized. We can observe that
LLM-Embedder’s performance is reduced once this step is removed,
especially for ICL where LLM’s reward is the major training signal.

4 RELATEDWORKS
The related works are reviewed from two perspectives: retrieval
augmented large language models, and dense retrieval.
• Retrieval Augmented LLMs. Large language models (LLMs)

are praised for their unprecedented capability on language under-
standing and generation. Compared with the conventional methods,
LLMs exhibit overwhelming generality and notable advantages on
typical NLP tasks [17, 19, 78]. Despite such superiority, LLMs still
face a series of severe challenges, such as hallucination, human
alignment, and long-term memory. Many of the existing problems
are caused by the inherent boundaries, which cannot be addressed
by LLMs alone, but to rely on support from the external world. The
retrieval-augmented LLMs are regarded as a go-to option to bridge
LLMs with the external assistance [4, 51]. For the past few years,
they have beenwidely applied to several critical scenarios. One com-
mon case is the knowledge enhancement. The internal knowledge
of LLMs can be incomplete, static, and limited by the popularity
bias. When dealing with knowledge intensive tasks, the retrieval
augmented LLMs will look for necessary information from an ex-
ternal database, where the generated content can be grounded on
proper knowledge [15, 31, 32, 41]. Besides, the retrieval augmented
LLMs are also used to retrieve historical context to establish long-
term memory [71, 85], retrieve examples to improve the instruction
following capability [18, 83], and retrieve tools to engage with the
physical world [62].

The retrieval augmented LLMs consist of two basic parts: gener-
ator and retriever. According to previous studies [32, 41, 83, 96], the
retrieval augmentation effect is highly influenced by the retrieved
content. In practice, there are two common types of retrievers. One
is to leverage the general purpose retrievers, such as sparse models

like BM25 [69], and dense models, like DPR [37], contriever [30],
E5 [81], BGE [89], OpenAI text embedding [56]. The other option
is develop task-specific retriever, e.g., AAR for knowledge enhance-
ment [96], LLM-R [85] for in-context learning. The general pur-
pose methods are praised for their generality and simplicity for
usage, but may suffer from an inferior retrieval quality. In contrast,
the task-specific ones can better fit one scenario, but fall short in
transferability. Compared with the existing works, LLM-Embedder
unifies the generality and speciality: it comprehensive supports all
major retrieval augmentation needs of LLMs, meanwhile achieving
the leading performance in every application scenario.
• Dense retrieval. Dense retrieval leverages latent representa-

tion of texts, i.e. embeddings, to search for relevant information
from a vector DB. In recent years, it has grown into a major para-
digm of information retrieval. The success of dense retrieval can
attribute to several reasons. The first and foremost driving force is
the development of pre-trained language models[22, 45, 65], where
the textual data can be represented in a highly expressive man-
ner. The general pre-trained models are further improved by the
retrieval-oriented ones [46, 81], which better establish the sentence-
level representation capability during the pre-training stage. The
second factor is the advancement of contrastive learning. On one
hand, there has been a major upgrade of negative sampling, where
massive [30, 37] and sufficiently hard samples [92] are utilized to
help with the embedding’s discriminativeness. On the other hand,
the training objective is improved as well. Instead of simply learning
from hard labels, the embedding models are made to distill knowl-
edge from a more precise ranking model [29, 63, 90]. This notably
facilitates the embedding model to encode fine-grained semantic
relationships. Thirdly, the generality becomes increasingly empha-
sized in these days, where embeddings need to handle a wide variety
of application scenarios. For this purpose, people come up with
many different strategies, e.g., data augmentation [42, 80], domain
adaptation [36, 95], instruction-based fine-tuning [5, 76], which
help the model to better handle diverse tasks. These factors are
incorporated and optimized while developing our training recipe,
which results in the empirical competitiveness of LLM-Embedder.
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5 CONCLUSION
In this study, we introduce LLM-Embedder, a novel model designed
to enhance the retrieval augmentation of LLMs in a variety of sce-
narios. Our model integrates four key retrieval capabilities: knowl-
edge, memory, example, and tool, which boost LLMs’ performance
in dealing with knowledge-intensive tasks, long-context modeling,
in-context learning, and tool learning. To optimize LLM-Embedder’s
performance in such diverse scenarios, we’ve refined our train-
ing workflow from multiple aspects, including reward from LLM,
homogeneous negative sampling, instruction based fine-tuning,
and stabilized distillation. Our experiments show LLM-Embedder’s
empirical advantages over both general and task-specific embed-
ding models, which highlights its effectiveness as a foundational
building-block to support the retrieval augmentation of LLMs.
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Table 5: Statistics of Multi-Session Chat: the average number
of turns of dialogue and the average token number per utter-
ance in training/testing.

Split #Sample # History Turn Utterance Length

Train 48925 14 33
Test 2763 27 44

A DATASET DETAILS
A.1 Knowledge Enhancement
A.1.1 MMLU. MMLU is amultitask language understanding dataset
with 14042 multi-choice questions, spanning 57 diverse subtasks,
such as linear algebra, computer science, etc. For retrieval aug-
mentation, we retrieve 3 passages from MSMARCO Passage [57]
collection, which consists of 8841823 passages from the web. We
use the official prompt template for MMLU evaluation, which is
shown in A.1, and prepend the retrieved passages to the question.
Since our experiments are based on the Chat fine-tuned model, we
omit the few-shot examples on MMLU. We select the option with
the highest likelihood (from A, B, C, D) as the answer from LLM.

Prompt A.1: MMLU (Zero-Shot)

Knowledge:
<Passage 1>
<Passage 2>
<Passage 3>

The following are multiple choice questions (with answers) about <sub-
ject>.

<Question>
A. <Option 1>
B. <Option 2>
C. <Option 3>
D. <Option 4>
Answer:

A.1.2 PopQA. PopQA is aWikipedia-entity-centric question-answering
dataset that covers 14267 questions about popular and long-tail
entities. For retrieval augmentation, we retrieve 3 passages from
Wikipedia 2019 dump preprocessed by [37], which contains 21051324
passages with 100 tokens each. We use the official prompt template
and few-shot evaluation strategy on PopQA, shown in A.2. There
are 15 few-shot demonstrations per question, each coming from
one distinct relationship. The model conducts greedy generation
until \n token. The produced answer is regarded as correct if it
contains any of the pre-defined answers in the dataset.

Prompt A.2: PopQA

Knowledge:
<Passage 1>
<Passage 2>
<Passage 3>

Q: <Question 1> A: <Answer 1>
Q: <Question 2> A: <Answer 2>
. . .

Q: <Question 15> A: <Answer 15>
Q: <Question> A:

A.1.3 Training. Both MMLU and PopQA are only used for evalua-
tion. To train the retriever towards acquiring useful knowledge for
the LLM, we use two popular retrieval datasets: MSMARCO [57]
and NQ [39]. Their statistics are shown in Table 9.

A.2 Long-Context Modeling
A.2.1 Long Conversation. We leverage the Multi-Session Chat
dataset [94] to evaluate the LLM’s performance on the long con-
versation. MSC is a dialogue dataset containing multiple sessions
between two speakers. The statistics of the Multi-Session Chat
dataset are reported in Table 5. Each dialogue turn is this format:
“Speaker 1: xxx\nSpeaker 2: xxx” and consecutive turns are split by
\n. The token-level perplexity is evaluated by the response from
Speaker 2. For None baseline, we only input LLM the last dialogue
turn. For Recent baselines, the most recent 2 dialogue turns are
input to LLM. For retrieval augmentation, one dialogue turn is re-
trieved from the entire history and is concatenated in front of the
last turn.

Table 6: Statistics of long-range language modeling datasets.

Dataset #Train Sample #Test Sample Length

Books3 10000 1000 101010
Arxiv 10000 757 26735
CodeParrot 10000 1000 217364
PG19 n.a. 1000 90447

A.2.2 Long-Range Language Modeling. We utilize four popular
long-range language modeling datasets to evaluate LLM’s perfor-
mance on long sequences: Books3 includes various literary works
from different domains, and PG19 contains books from Project
Gutenberg. Both datasets are extracted from the Pile [26]. Arxiv,
a.k.a. Proof-Pile [101], is a collection of mathematical preprints
on arxiv. CodeParrot is a vast corpus of cleaned project code from
Github. We concatenate the code of the same repository to obtain
long enough text, resulting in 437079 samples in total. For all four
datasets, we filter out text that’s shorter than 160k characters, then
randomly sample 10000 for training and 1000 for testing. The PG19
dataset is held out and only used in testing. We summarize the
statistics of four long-range language modeling datasets in Table 6.

In practice, we truncate all testing samples to 32768 tokens. The
token-level perplexity is evaluated with batch size 1 on the last 1024
tokens (dubbed as target tokens). For None and Recent baselines, the
last 2048 and 4096 tokens are fed into the model, respectively. For
retrieval augmentation, the text is split into chunks with chunk size
128, and the last 2048 tokens are always fixed during evaluation.
For each chunk in the target tokens, we retrieve 8 chunks and
their continuation chunk (chunk size 128) from the previous 30720
tokens. The retrieved chunks are directly concatenated in front of
the fixed 2048 tokens without delimiters.

A.3 In-Context Learning
The detailed information about in-context learning datasets is re-
ported in Table 7. Particularly, there are two evaluation strategies:
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Table 7: Detailed information of in-context learning datasets.

Dataset name Category #Train Sample #Test Sample Metric Evaluation Strategy
ARC Challenge [13] Close QA 1,117 1,165 Accuracy Likelihood

ARC Easy [13] Close QA 2,241 2,365 Accuracy Likelihood
NQ [39] Close QA 87,925 3,610 Exact Match Generation

COPA [70] Commonsense 400 100 Accuracy Likelihood
HellaSwag [97] Commonsense 39,905 10,042 Accuracy Likelihood

PIQA [14] Commonsense 16,113 (held out) 1,838 Accuracy Likelihood
Winogrande [73] Coreference 40,398 1,267 Accuracy Likelihood

WSC [40] Coreference 554 104 Accuracy Likelihood
WSC273 [40] Coreference 0 (held out) 273 Accuracy Likelihood

CommonGen [43] Data-to-text 67,389 4,018 ROUGE-L Generation
DART [54] Data-to-text 62,659 2,768 ROUGE-L Generation

E2E NLG [24] Data-to-text 33,525 1,847 ROUGE-L Generation
MNLI (m) [87] NLI 392,702 9,815 Accuracy Likelihood
MNLI (mm) [87] NLI 392,702 9,832 Accuracy Likelihood

RTE [11] NLI 2,490 277 Accuracy Likelihood
SNLI [16] NLI 549,367 9,824 Accuracy Likelihood
QNLI [66] NLI 104,743 (held out) 5,463 Accuracy Likelihood
MRPC [23] Paraphrase 3,668 408 Accuracy Likelihood
PAWS [100] Paraphrase 49,401 8,000 Accuracy Likelihood
QQP [21] Paraphrase 363,846 40,430 Accuracy Likelihood
BoolQ [20] Reading Comp. 9,427 3,270 Accuracy Likelihood
MultiRC [38] Reading Comp. 27,243 4,848 F1 Likelihood

OpenBook QA [52] Reading Comp. 4,957 500 Accuracy Likelihood
SQuAD v1 [67] Reading Comp. 87,599 10,570 Exact Match Generation

Sentiment140 [72] Sentiment 1,600,000 359 Accuracy Likelihood
SST2 [75] Sentiment 67,349 872 Accuracy Likelihood
Yelp [84] Sentiment 490,456 (held out) 33,285 Accuracy Likelihood

AESLC [98] Summarize 13,181 1,750 ROUGE-L Generation
AGNews [99] Summarize 120,000 7,600 Accuracy Likelihood
Gigaword [55] Summarize 2,044,465 730 ROUGE-L Generation

Total n.a. 6.3M 177k n.a. n.a.
Total (sampled) n.a. 591k 177k n.a. n.a.

Table 8: Statistics of tool learning and conversational search
datasets.

Dataset #Train Sample #Test Sample #Corpus

ToolBench 87322 100 10439
QReCC 29596 8209 54573064

Likelihood and Generation. The former means we score each candi-
date option with the likelihood of LLM when there are available
options (e.g. Yes and No on the WSC dataset), and pick the one with
the highest score; The latter means we let LLM perform greedy
generation without sampling. Following [83], we randomly sample
at most 30000 instances from each dataset for training, and hold out
4 datasets from training. However, different from their evaluation,
we keep the top-8 retrieved examples as is no matter if they belong
to the same task as the input instruction or not.

A.4 Tool Learning and Conversational Search
A.4.1 Tool Learning. Weuse the ToolBench [62] dataset to evaluate
the performance of tool retrieval, where the retriever takes in a user
request, and searches for a helpful tool according to its description.
The statistics of ToolBench are reported in Table 8.

A.4.2 Conversational Search. Weemploy the popular QReCC dataset [3]
to evaluate the performance of conversational search. Specifically,
there is a short conversation followed by a “contextualized” query
in each sample. The retriever takes in the concatenation of the whole
conversation and the query to find the relevant passage in the given
corpus. The statistics of QReCC are reported in Table 8.

A.5 Summary of Multi-Task Training Data
We summarize the dataset details for training in Table 9. Notably,
we repeat the ToolBench data in every epoch because we find the
retriever requires more epoch to converge on this single task.
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Table 9: Dataset details for training.

Task Dataset #Train Sample Repetition Stablized Distillation Reward Temperature

Question Answering MSMARCO 400870 1
✓

1
NQ 58622 1 1

In-Context Learning – 591359 1 ✓ 1

Long Conversation MSC 48925 1 ✓ 0.1

Long-Range Language Modeling
Books3 10000 1

✓

0.1
Arxiv 10000 1 0.1
CodeParrot 10000 1 0.1

Tool Learning ToolBench 87322 2 ✗ n.a.

Conversational Search QReCC 29596 1 ✗ n.a.

Total n.a. 1333911 n.a. n.a. n.a.

Table 10: Instructions for each task.

Task Input Instruction

Question Answering Query Represent this query for retrieving relevant documents:
Key Represent this document for retrieval:

In-Context Learning Query Convert this example into vector to look for useful examples:
Key Convert this example into vector for retrieval:

Long Conversation Query Embed this dialogue to find useful historical dialogues:
Key Embed this historical dialogue for retrieval:

Long-Range Language Modeling Query Embed this text chunk for finding useful historical chunks:
Key Embed this historical text chunk for retrieval:

Tool Learning Query Transform this user request for fetching helpful tool descriptions:
Key Transform this tool description for retrieval:

Conversational Search Query Encode this query and context for searching relevant passages:
Key Encode this passage for retrieval:

Table 11: Hyper parameter settings for training.

#GPU 8×A100 (40G)
#Hard Negative 7
Batch Size Per GPU 100
Optimizer AdamW
Learning Rate 5e-6
Weight Decay 0.01
Scheduler Linear with Warm Up of 0.2
Max Steps 10000
Gradient Checkpointing ✓

B IMPLEMENTATION DETAILS
B.1 Instructions
We use diversified instructions to discriminate different tasks for
the retriever. The instructions used for each task are shown in
Table 10.

B.2 Training Settings
The hyper parameter settings for training LLM-Embedder are re-
ported in Table 11. For evaluation, we use the Flat index from
Faiss [35] when retrieving from an external corpus is required. We
will release our code upon the acceptance of the paper.

C IMPACT OF LLM-EMBEDDER ON
DIFFERENT LLMS

We evaluate the impact of LLM-Embedder different LLMs to val-
idate its generalization ability. Specifically, we utilize Aquila-7B-
Chat [1], Qwen-7B-Chat [6], Baichuan2-7B-Chat [9], and Llama-
2-13B-Chat [78]. The results are shown in Table 12. Specifically,
we compare two baselines: None, where LLM is used individually
without retrieval augmentation; BGE, where LLM is augmented
with retrieved knowledge, examples, and memory (introduced in
Appendix A). We report the average accuracy for MMLU, accuracy
for PopQA, average score for in-context learning, and perplexity for
both Multi-Session Chat and Arxiv. Note that we do not replicate
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Table 12: The impact of LLM-Embedder on different LLMs.

LLM Retriever MMLU PopQA ICL MSC Arxiv

Llama-2-7B-Chat
None 0.4599 0.2061 0.4645 19.3501 3.7647
BGE 0.4896 0.4491 0.5974 14.2943 3.2912
LLM-Embedder 0.4903 0.5052 0.6268 13.4832 3.2322

Aquila-7B-Chat
None 0.4499 0.2028 0.5145 16.0108 3.1204
BGE 0.4832 0.3982 0.5732 14.1843 2.7914
LLM-Embedder 0.4847 0.4405 0.5903 14.1836 2.7351

Qwen-7B-Chat
None 0.5561 0.2393 0.5346 21.0466 2.7888
BGE 0.5787 0.4447 0.6329 16.2064 2.5165
LLM-Embedder 0.5762 0.4782 0.6457 15.4524 2.4824

Baichuan2-7B-Chat
None 0.5226 0.2356 0.4907 18.9711 2.7510
BGE 0.5534 0.4407 0.5960 16.0759 2.4440
LLM-Embedder 0.5511 0.4848 0.6179 15.5890 2.4131

Llama-2-13B-Chat
None 0.5386 0.2886 0.4607 14.7334 3.2357
BGE 0.5603 0.4595 0.6196 11.6875 2.9036
LLM-Embedder 0.5580 0.5026 0.6439 11.5384 2.8540

the evaluation of tool learning and conversational search because
their performances are directly measured by retrieval metrics.

We can observe that our conclusions in Section 3.2.2 still holds.
First of all, retrieval from external world benefits LLM’s perfor-
mance in all four scenarios, since the performance of the plain
LLM (i.e. None) underperforms retrieval-augmented one (BGE and
LLM-Embedder). Besides, our proposed LLM-Embedder is able to

generalize well and maintain its superiority over BGE on most
datasets (PopQA and ICL in particular). An exception is MMLU,
where LLM-Embedder is slightly outperformed by BGE when using
Qwen, Baichuan, and Llama-2-13B. It seems that different LLMs
utilize the same knowledge in different ways, thereby obtaining a
little different results.
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