

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPUGEN: UNIFIED DIFFUSION-BASED TABULAR IMPUTATION AND GENERATION VIA TASK-ALIGNED SAMPLING STRATEGIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Imputation of missing values and tabular data synthesis both rely on distribution modeling, but they pursue different goals. pointwise accuracy is required in imputation, whereas diversity and fidelity are crucial in generation. We present ImpuGen, a single conditional diffusion model that achieves both objectives. ImpuGen employs two efficient task-aligned sampling strategies. (i) A zero-start sampling, which yields accurate, deterministic imputations without multiple-sample averaging. (ii) A distribution-matching refinement (DMR), which randomly remasks columns with probability p and regenerates them to reduce distributional mismatch. Across nine public datasets, ImpuGen surpasses eleven imputation baselines—reducing MAE by up to 16%—and matches state of the art on five generation evaluation metrics.

1 INTRODUCTION

Accurate imputation of missing values is essential in real-world tabular data, such as electronic health records (EHR), e-commerce logs, and mobility-sensor streams. High-fidelity synthetic data tables are required in privacy regulations and data-sharing agreements, so that organizations can share information without exposing raw data (Donders et al., 2006; Lin & Tsai, 2020; Assefa et al., 2020; Hernandez et al., 2022). Recent advances show that diffusion models are effective for both imputation and tabular synthesis. Works such as TabSyn, TabDiff, and TabNAT show that a generator trained for synthesis can also reconstruct missing entries, suggesting the feasibility of a single model for both tasks (Zhang et al., 2024; Shi et al., 2025; Zhang et al., 2025b; Lugmayr et al., 2022).

Despite this promise, the objectives and evaluations differ: imputation is judged by pointwise accuracy, whereas synthesis emphasizes diversity and fidelity (Jarrett et al., 2022; Alaa et al., 2022; Zhang et al., 2024). Moreover, stochastic diffusion sampling explores many reverse-time trajectories; naive samples therefore exhibit variance that harms pointwise estimates (Liu et al., 2024; Chen et al., 2024). Existing remedies follow two lines. (i) Multiple-imputation averaging improves accuracy by averaging many samples, but incurs high latency (Zheng & Charoenphakdee, 2022; Zhang et al., 2025a). (ii) Trajectory focusing shapes rules or losses to keep the sampler on a low-noise path, yielding fast and accurate estimates at the cost of reduced distributional coverage (Liu et al., 2024; Chen et al., 2024). Even with strong backbones and mixed-type diffusion, residual mismatch between generated and empirical distributions at sampling time remains a challenge, motivating explicit sampling control.

We propose IMPUGEN, a conditional diffusion model that unifies imputation and tabular synthesis via task-aligned sampling. For a practical unified model, imputation must deliver accurate pointwise estimates with low latency, while synthesis must retain coverage of the empirical distribution. IMPUGEN addresses both requirements with two sampling strategies:

- Zero-start sampling. The reverse process starts from $x_T = 0$ and conditions on observed entries, producing deterministic imputations without sample averaging.
- Distribution-matching refinement (DMR). After drawing an initial sample, each column is randomly remasked with probability p ; the model regenerates the masked entries.

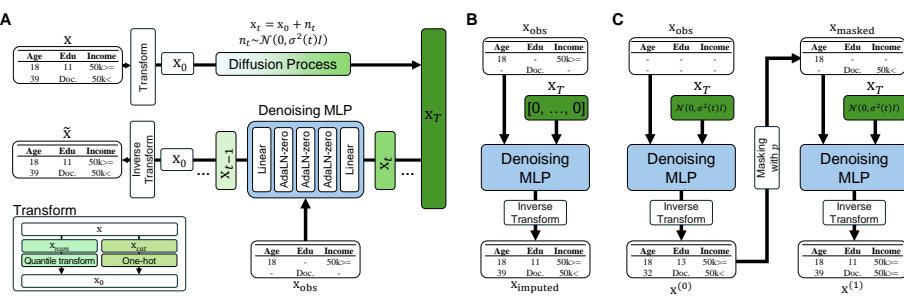


Figure 1: Overview of IMPUGEN. (A) Conditional diffusion backbone. Tabular inputs are quantile-transformed or one-hot-encoded, concatenated into x_0 , diffused in EDM σ -space to x_T , then denoised by an AdaLN-Zero MLP conditioned on x_{obs} . (B) Zero-start sampling. The reverse process starts from the zero vector $x_T = \mathbf{0}$. A single reverse pass yields deterministic imputations $x_{imputed}$. (C) Distribution-Matching Refinement. From an initial sample $x^{(0)}$, each column is randomly masked with probability p . The masked entries are regenerated once conditioned on the unmasked context, producing $x^{(1)}$ that better matches the empirical data distribution while maintaining cross-column structure.

Under standard protocols on nine public datasets, IMPUGEN outperforms eleven imputation baselines in pointwise accuracy and matches leading methods on diversity- and fidelity-oriented synthesis metrics. Ablations attribute the gains primarily to the two sampling strategies.

2 RELATED WORK

Research on diffusion for tabular data has advanced along two branches: imputation, which fills missing values, and synthesis, which produces realistic tables under privacy constraints.

Imputation. TabCSDI (Zheng & Charoenphakdee, 2022) separates observed and missing parts, trains a conditional diffusion model, and performs multiple imputations. SimpDM (Liu et al., 2024) introduces self-supervised alignment and attains high pointwise accuracy with a single reverse process. KnewImp (Chen et al., 2024) reframes diffusion as a Wasserstein gradient flow and modulates diversity with a negative-entropy regularizer. Diffputer (Zhang et al., 2025a) couples diffusion with an EM loop, averaging repainting samples during E-steps and re-estimating the joint in M-steps. MissDiff (Ouyang et al., 2023) trains directly on partially observed tables, modeling the joint without a preliminary imputation stage.

Synthesis. TabDDPM (Kotelnikov et al., 2023) and CoDi (Lee et al., 2023) decouple continuous and categorical variables and run two diffusion processes to generate mixed-type tables. TabSyn (Zhang et al., 2024) adopts a two-stage VAE-diffusion pipeline and shows that latent embeddings work well for heterogeneous data. TabDiff (Shi et al., 2025) learns a trainable diffusion schedule with a corrective sampler to mitigate decoding errors. TabNAT (Zhang et al., 2025b) integrates a bidirectional masked transformer with diffusion to obtain an autoregressive-style backbone. Although trained on fully observed data, TabSyn, TabDiff, and TabNAT can also perform imputation via repainting (Lugmayr et al., 2022).

Remaining gaps. Methods that reduce error by averaging samples (e.g., TabCSDI, Diffputer) incur latency due to repeated reverse steps and repainting, whereas trajectory-focusing methods (e.g., SimpDM, KnewImp) improve speed and variance at the risk of reduced coverage. Representation and backbone improvements (e.g., TabSyn, TabDDPM, TabDiff, TabNAT) raise overall quality, yet they do not adjust sampling to reduce mismatch to the empirical data distribution.

We address these challenges with IMPUGEN. Zero-start sampling provides deterministic imputations in a single reverse process, avoiding repeated repainting while maintaining accuracy and low latency. DMR sampling performs one round of probability- p re-masking and conditional regeneration, moving samples toward the empirical distribution while preserving cross-column dependencies across continuous and categorical variables.

108

3 METHOD

109

110 Figure 1 overviews IMPUGEN. We keep the backbone and training fixed and adjust only the reverse
 111 process so that (i) comparisons are fair under a small, fixed number of function evaluations (NFE)
 112 and (ii) latency is predictable. Concretely, every sampler uses the same deterministic reverse pass
 113 with $T = 50$ steps unless stated otherwise. We align inference to two tasks: imputation targets
 114 low-variance point accuracy, while synthesis targets distributional agreement with preserved cross-
 115 column structure.

116

117

3.1 PROBLEM SETUP

118

119 Let $\mathcal{D} = \{\mathbf{x}^{(n)}\}_{n=1}^N$ be a D -column tabular dataset that may contain missing values. Each row
 120 $\mathbf{x} \in \mathbb{R}^D$ has a binary mask $\mathbf{m} \in \{0, 1\}^D$, where $m_i = 1$ indicates an observed entry. Denote
 121 $\mathbf{x}_{\text{obs}} = \mathbf{x} \odot \mathbf{m}$ and $\mathbf{x}_{\text{miss}} = \mathbf{x} \odot (1 - \mathbf{m})$.

122

123 **Imputation.** Given $(\mathbf{x}_{\text{obs}}, \mathbf{m}) \sim P_{\text{data}}$, impute plausible \mathbf{x}_{miss} ; the primary metrics are
 124 MAE/RMSE.

125

126 **Tabular synthesis.** Sample $\tilde{\mathbf{x}}$ whose distribution matches P_{data} in fidelity, coverage, downstream
 127 utility, and privacy-oriented criteria.

128

129 **Unified conditional view.** Both tasks use the same conditional model

130

$$p_{\theta}(\mathbf{x} \mid \mathbf{x}_{\text{obs}}, \mathbf{m}),$$

131

132 where imputation draws $\mathbf{x}_{\text{miss}} \sim p_{\theta}(\mathbf{x}_{\text{miss}} \mid \mathbf{x}_{\text{obs}}, \mathbf{m})$ and unconditional generation sets $\mathbf{m} = \mathbf{0}$ to
 133 sample $\mathbf{x} \sim p_{\theta}(\mathbf{x})$.

134

135

3.2 DETERMINISTIC EDM BACKBONE

136

137 Following the deterministic variant of EDM, we work in σ -space with a monotone decreasing sched-
 138 ule $\sigma: [0, 1] \rightarrow [\sigma_{\text{max}}, \sigma_{\text{min}}]$. For a clean row \mathbf{x}_0 ,

139

$$\mathbf{x}_{\tau} = \mathbf{x}_0 + \sigma(\tau) \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I).$$

140

141 At inference, we integrate the reverse ODE

142

$$\frac{d\mathbf{x}}{d\tau} = -\sigma(\tau) s_{\theta}(\mathbf{x}, \sigma(\tau) \mid \mathbf{x}_{\text{obs}}, \mathbf{m}),$$

143

144 where the conditional score $s_{\theta} \approx \nabla_{\mathbf{x}} \log p_{\sigma}(\mathbf{x} \mid \mathbf{x}_{\text{obs}}, \mathbf{m})$ is shared by imputation and synthesis.
 145 We use Heun’s second-order solver with $T = 50$ or 25 steps.

146

147 **Network and encodings.** Columns are quantile-transformed (continuous) or one-hot-encoded
 148 (categorical) and concatenated to form \mathbf{x} . Conditioning on $(\mathbf{x}_{\text{obs}}, \mathbf{m})$ enters the AdaLN-Zero MLP
 149 via feature-wise affine modulation.

150

151 **Training objective.** We train s_{θ} with masked denoising score matching (as in MissDiff):

152

$$\mathcal{L}_{\text{DSM}} = \left\| (s_{\theta}(\mathbf{x}_{\tau}, \sigma(\tau) \mid \mathbf{x}_{\text{obs}}, \mathbf{m}) - \varepsilon) \odot \mathbf{m} \right\|_2^2, \quad \varepsilon \sim \mathcal{N}(0, I).$$

153

154 During training we use the dataset-provided mask \mathbf{m} for each row; for fully observed rows we set
 155 $\mathbf{m} = \mathbf{1}^D$. No additional mask mixing is applied.

156

157

3.3 TASK-ALIGNED INFERENCE OBJECTIVES

158

159 We phrase inference-time goals directly in terms of evaluation metrics under a fixed compute budget:

160

$$\min_{\text{sampler}} \mathbb{E}[|\hat{x} - x|] \quad (\text{imputation}), \quad \min_{\text{sampler}} \Delta(q_{\text{gen}}, P_{\text{data}}) \quad (\text{synthesis}),$$

161

162 where \hat{x} is a single-pass estimate and Δ is a distributional discrepancy (e.g., sum of per-column KS
 163 distances, energy/C2ST-style scores when available).

162 3.4 ZERO-START SAMPLING FOR IMPUTATION
163164 **Rationale.** Optimizing point-wise error without resorting to multiple-imputation averaging re-
165 quires a good initialization for the reverse ODE. We therefore initialize at the origin, $\mathbf{x}_T = \mathbf{0}$,
166 which removes stochasticity from the terminal state and yields a single, deterministic reverse pass
167 aligned with the L_1/L_2 error objective.168 **Empirical effect.** Compared with multiple-imputation averaging under the same NFE, zero-start
169 produces lower MAE and RMSE across benchmarks while preserving latency predictability (see
170 Fig. 4). In practice, this makes zero-start a favorable default when the evaluation metric is a single-
171 pass point estimate.172 **Theoretical support.** In the one-dimensional conditional setting, we prove that the zero-start re-
173 verse flow converges to the conditional median (Appendix, Thm. A). Since the median minimizes
174 L_1 risk, this explains the observed reduction in absolute error without requiring ensembling over
175 multiple terminal draws.176 **Procedure.** We run one deterministic reverse pass with $(\mathbf{x}_{\text{obs}}, \mathbf{m})$ held fixed and $\mathbf{x}_T = \mathbf{0}$, and take
177 the resulting $\hat{\mathbf{x}}$ as point estimates for \mathbf{x}_{miss} .181 **Algorithm 1** Zero-Start Imputation183 1: **Inputs:** reverse schedule $\{\sigma_t\}_{t=T}^0$, observed pair $(\mathbf{x}_{\text{obs}}, \mathbf{m})$
184 2: Initialize $\mathbf{x}_T \leftarrow \mathbf{0}$
185 3: $\hat{\mathbf{x}} \leftarrow \text{EDM}(\mathbf{x}_T; \mathbf{x}_{\text{obs}}, \mathbf{m})$
186 4: **return** $\hat{\mathbf{x}} \odot (1 - \mathbf{m})$ as imputed entries188 3.5 DISTRIBUTION-MATCHING REFINEMENT (DMR) FOR SYNTHESIS
189190 **Motivation.** Even with mixed-type diffusion backbones, samples from a single reverse pass can
191 exhibit marginal or conditional drift relative to P_{data} . DMR adds a one-shot, training-free refinement
192 that nudges the sample distribution toward the empirical one while keeping cross-column depen-
193 dencies learned by the backbone.194 **Single-step DMR.** From an initial synthetic row $\mathbf{x}^{(0)}$ generated with a standard pass (draw
195 $\mathbf{x}_T \sim \mathcal{N}(0, \sigma_{\text{max}}^2 I)$, then reverse ODE), independently mask each column with probability p to
196 form \mathbf{m}^{dmr} . Run one conditional reverse pass that regenerates only the masked entries given the
197 unmasked context:

198
$$\mathbf{x}^{\text{ref}} \leftarrow \text{EDM}\left(\mathbf{x}^{(0)}; \mathbf{x}_{\text{obs}} = \mathbf{x}^{(0)} \odot (1 - \mathbf{m}^{\text{dmr}}), \mathbf{m} = \mathbf{m}^{\text{dmr}}\right).$$

200 To match the baseline compute budget, we set $T=25$ steps for the initial pass and $T=25$ for the
201 refinement pass (total NFE equal to a single $T=50$ pass). This single refinement reduces energy
202 distance with minimal compute.205 **Algorithm 2** Distribution-Matching Refinement (DMR)207 1: **Inputs:** reverse schedule $\{\sigma_t\}_{t=T}^0$, mask probability p
208 2: $\mathbf{x}_T \sim \mathcal{N}(0, \sigma_{\text{max}}^2 I)$, $\mathbf{x}^{(0)} \leftarrow \text{EDM}(\mathbf{x}_T; \mathbf{m} = \mathbf{0})$
209 3: Sample $\mathbf{m}^{\text{dmr}} \sim \text{Bernoulli}(p)^{\otimes D}$
210 4: $\mathbf{x}^{\text{ref}} \leftarrow \text{EDM}\left(\mathbf{x}^{(0)}; \mathbf{x}_{\text{obs}} = \mathbf{x}^{(0)} \odot (1 - \mathbf{m}^{\text{dmr}}), \mathbf{m} = \mathbf{m}^{\text{dmr}}\right)$
211 5: **return** \mathbf{x}^{ref} 213 **Choice of p .** After training, we choose p on a validation split via a simple grid search:

215
$$p^* = \arg \min_{p \in \{0.1, 0.2, \dots, 0.9\}} \text{ED}(q_{\text{gen}}(p), P_{\text{data}}),$$

Dataset	# Train	# Test	# Num	# Cat	Task
Bean	12,249	1,362	16	1	Classification
Gesture	8,569	953	33	1	Classification
Housing	18,576	2,064	9	0	Regression
Letter	18,000	2,000	16	1	Classification
Magic	17,117	1,902	10	1	Classification
Adult	32,651	16,281	9	6	Classification
Default	27,000	3,000	14	10	Classification
News	35,679	3,965	46	2	Regression
Shoppers	11,097	1,233	10	8	Classification

Table 1: Descriptions of the nine benchmark datasets. # Num and # Cat denote the number of numerical and categorical columns.

where ED denotes the energy distance between generated and empirical distributions. We keep the selected p^* fixed for all subsequent evaluations. As a baseline, let ED_{base} be the energy distance from a single reverse pass with $T=50$ (no DMR). If the best grid value does not reduce the energy distance relative to ED_{base} , we omit DMR and use the single $T=50$ pass.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

This section outlines the experimental protocol used to evaluate IMPUGEN. We first describe the datasets, baselines, and evaluation metrics, then present quantitative results for imputation and synthesis, followed by ablation studies.

Datasets. Following prior work (Zhang et al., 2025a), we use nine publicly available datasets—Adult, Bean, Default, Gesture, Housing, Letter, Magic, News, and Shoppers (Asuncion et al., 2007; Pace & Barry, 1997). Detailed information for each dataset, including the number of rows and columns are summarized in Table 1.

Baseline imputation models. We compare IMPUGEN with eleven baselines, organized into five categories: Diffusion: DiffPuter (Zhang et al., 2025a), SimpDM (Liu et al., 2024), KnewImp (Chen et al., 2024); Transformer: ReMasker (Du et al., 2024), MaCoDE (An et al., 2025); Iterative: HyperImpute (Jarrett et al., 2022), MissForest (Stekhoven & Bühlmann, 2012), EM (Dempster et al., 1977), MICE (Van Buuren & Groothuis-Oudshoorn, 2011); GAN: GAIN (Yoon et al., 2018). Graph: GRAPE (You et al., 2020).

Baseline generation models. For synthetic-table generation we benchmark against seven generators drawn from four categories: Diffusion: TabDDPM (Kotelnikov et al., 2023), TabSyn (Zhang et al., 2024), TabDiff (Shi et al., 2025), TabNAT (Zhang et al., 2025b); Transformer: MaCoDE; GAN: CTGAN (Xu et al., 2019); VAE: TVAE (Xu et al., 2019).

Data splits. We used an 90:10 train and test split ratio to evaluate our model, except for Adult, which follows its official UCI split. If a validation set is required, we hold out 10% of the training set.

For dDistance-to-Closest-Record (DCR), each dataset is divided 50% for training and 50% for testing. In the case of Data-Plagiarism Index Membership-Inference Attack (DPI-MIA)(Ward et al., 2024), the data are further partitioned into 50% training, 25% hold-out, and 25% reference subsets.

Missingness generation. We reproduce the three masking mechanisms used in prior work(Zhao et al., 2023; Zhang et al., 2025a): (i) missing completely at random (MCAR): each cell is masked independently with probability r ; (ii) missing at random (MAR): a subset of fully observed features is sampled, and a logistic model is fitted to generate masks for the remaining columns; (iii) missing

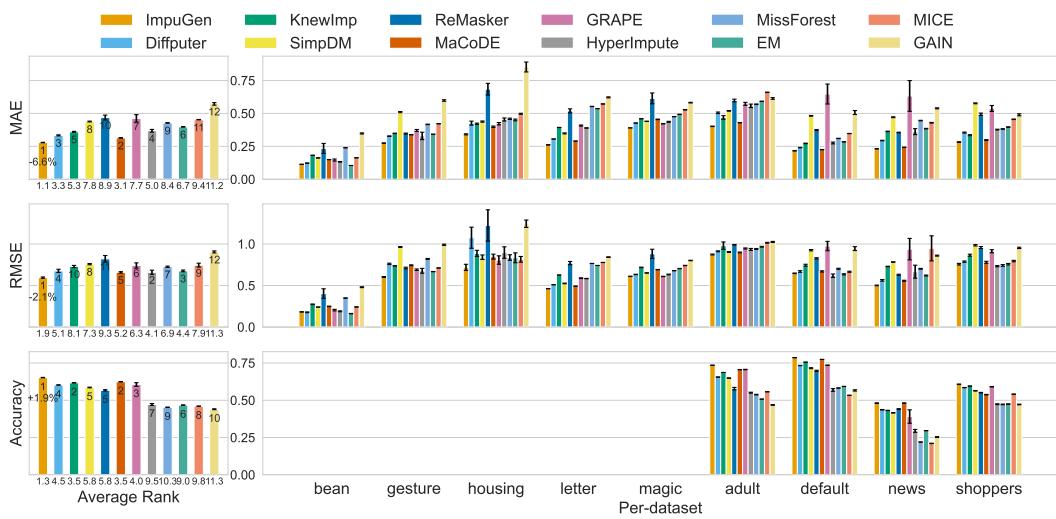


Figure 2: **MCAR 30% imputation performance on nine datasets.** We compare IMPUGEN with eleven baselines on continuous (MAE, RMSE) and categorical (Accuracy) columns. **Left mini-panel:** for each metric, the bar height is the mean score across the nine datasets; the x-tick label underneath the bar is the corresponding average rank, and the numeral printed inside the bar is that rank value itself. The percentage below first bar indicates the averaged relative change of IMPUGEN over the best competing baseline. On average, IMPUGEN reduces MAE by **6.6%** and RMSE by **2.1%**, while also achieving the top categorical-accuracy rank.

not at random (MNAR): features are split into two groups, the first group feeds a logistic model that determines the mask of the second, and MCAR is then applied to the first.

We test missing rates $r \in \{30, 50, 70\}$; the main paper reports results for MCAR at 30%.

Impputation metrics. For continuous features, we compute column-wise MAE and RMSE, then average the scores across all columns. For categorical features, we measure classification accuracy. Stochastic baselines (MICE, MaCoDE, and DiffPuter) are evaluated with multiple imputation: ten stochastic draws are generated for each missing entry, averaged, and then scored.

Generation metrics. We follow the TabSyn protocol (Zhang et al., 2024) and assess the three aspects of synthetic-data quality—Fidelity, Utility, and Privacy.

Fidelity. We report five distributional scores: (i) Shape—the Kolmogorov–Smirnov statistic between the marginal density of each column and its synthetic counterpart; (ii) Trend—the deviation in pair-wise correlations (Pearson for continuous columns, total-variation distance for categorical ones); (iii) α -precision—the fraction of synthetic samples whose nearest real neighbor lies within the α -quantile radius of the real manifold; (iv) β -recall—the coverage of the real manifold by synthetic samples; and (v) C2ST—the accuracy of a logistic discriminator trained to distinguish real from synthetic rows. All scores range from 0 to 1; higher values indicate better performance.

Utility. Following TabSyn (Zhang et al., 2024), we train one predictor on the synthetic set and another on the real training set, and evaluate both on the real test set. For evaluating classification performance, we used macro-AUROC ratio, defined as the score of the synthetic-trained model divided by that of the real-trained model. For comparing regression performance, we use the inverse RMSE ratio, the real-trained RMSE divided by the synthetic-trained RMSE. A ratio greater than one means that learning from synthetic data matches or exceeds the performance obtained with real data.

Privacy metrics. We evaluate privacy with two complementary scores.

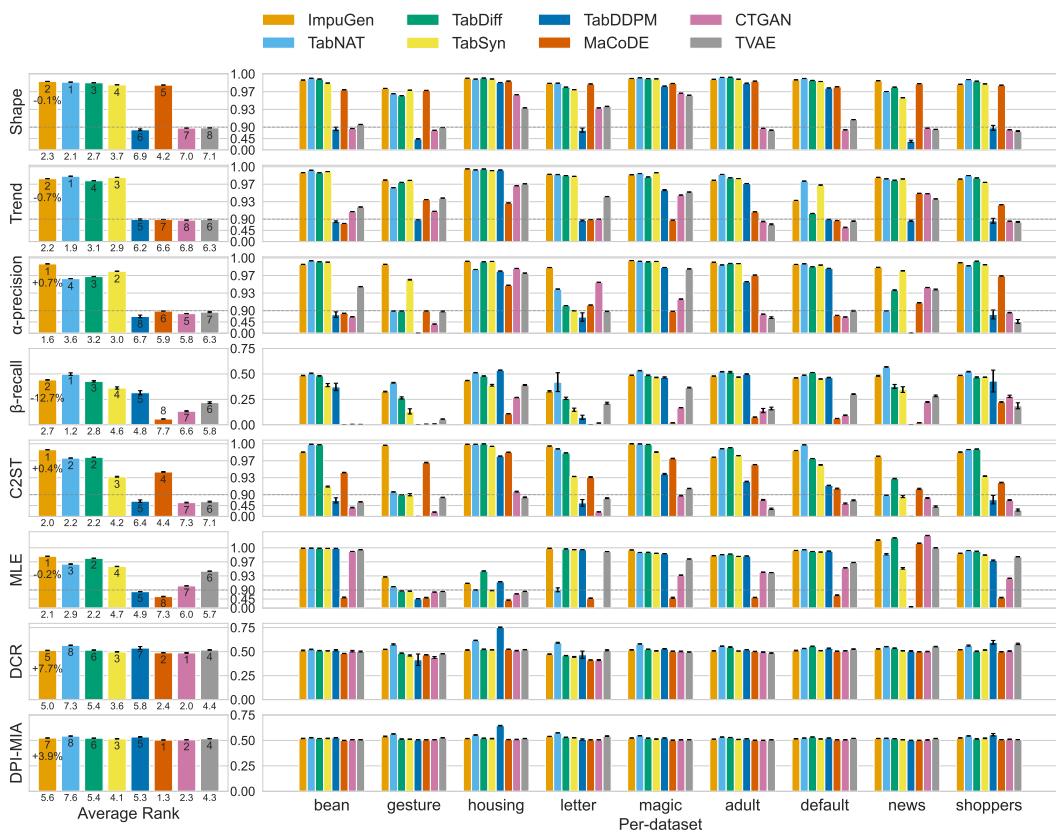


Figure 3: **Synthetic-table generation quality.** We benchmark IMPUGEN against seven baselines on fidelity (α -precision), downstream utility (MLE), and privacy (C2ST, DPI-MIA). **Left mini-panel:** bar height is the mean score across datasets; the x-tick shows the corresponding average rank, and the numeral inside each bar repeats that rank. Percentages beneath the bars report IMPUGEN’s macro-average change relative to the best baseline. **Right panel:** per-dataset bars supporting those averages. To visualise saturated metrics more clearly, the y -axis uses a broken scale: values below 0.90 are compressed, whereas 0.90–1.00 are expanded. Overall, IMPUGEN matches or exceeds the latest SOTA, improving α -precision by **0.7 %**.

DCR. For every synthetic sample, we verify whether its nearest real neighbor comes from the training split or the hold-out test split; under an even 50:50 split, an ideal generator achieves a DCR of 0.5.

DPI-MIA. Following Ward et al. (2024) (Ward et al., 2024), we split the real data into train, hold-out, and reference sets. For each real point we compute a data-plagiarism index (DPI) based on its k -nearest neighbours, where k ranges from 1 to 30. A membership attacker is then evaluated for every k ; we report the largest AUROC achieved across this sweep. Lower AUROC values correspond to stronger privacy.

See Appendix B for detailed information.

Label handling. Multiple-purpose models such as IMPUGEN and MaCoDE use the label column during training to learn the full joint distribution but mask it at test time, thereby preventing label leakage during evaluation. Pure imputation baselines never observe labels. This was examined more closely in Figure 6.

Repetition and seeds. All reported numbers are averaged over five independent runs. We fix the random seed to $\{0, 1, 2, 3, 4\}$ in turn for missing mask generation, weight initialization, and any stochastic components.

Model	Params (M)	Train (s)	Imp. (s)	Gen. (s)
ImpuGen	10.2	408	2.9	2.9
MaCoDE	1.3	320	6.2	0.7
Diffputer	10.6	2,937	307.1	—
SimpDM	4.5	408	1.0	—
KnewImp	0.09	47	7.2	—
ReMasker	0.7	4,858	0.8	—
TabSyn [†]	10.6	1,382	—	1.6
TabDiff	10.6	3,112	—	14.5
TabNAT	13.3	4,981	—	20.3
CTGAN	21.7	7,459	—	7.6
TVAE	9.6	499	—	0.5

Table 2: Parameter count and wall-clock time on the `Adult` dataset with RTX 5090 GPU. **Imp.:** imputation; **Gen.:** generation; “—”: not applicable.

[†]TabSyn = VAE (1,009s) + diffusion (373s).

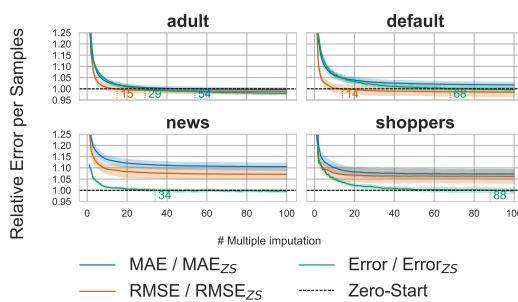


Figure 4: **Zero-start vs. multiple imputation.** For each dataset, the curve shows the ratio of MI with k samples to zero-start performance ($k = 1-100$)

4.2 MISSING-VALUE IMPUTATION

Main Results. Figure 2 shows that under MCAR 30% IMPUGEN ranks first on MAE, RMSE, and categorical accuracy, reducing MAE by 6.6% compared to the strongest baseline. Similar results are shown with MAR and MNAR with 30, 50, 70%. The consistency across nine masking regimes indicates that the zero-start sampling generalizes to severe sparsity.

Runtime and model size. Table 2 reports wall-clock runtime and parameter count on the `Adult` dataset. Although IMPUGEN has the same parameter number as DiffPuter, it trains in only 408s and completes imputation in 2.9s. The gain comes from the deterministic zero-start strategy, which removes multi-sample repainting procedure, which can be time-consuming.

4.3 TABULAR DATA SYNTHESIS

Fidelity. Figure 3 reports five fidelity metrics: Shape, Trend, α -precision, β -recall, and C2ST. On Shape and Trend, IMPUGEN achieves better ranks on continuous-dominant tables (`Gesture`, `Housing`), whereas TabNAT scores better on categorical-dominant datasets (`Adult`, `Shoppers`). However, the average ranks differ only slightly—2.3 vs. 2.1 for Shape and 2.2 vs. 1.9 for Trend. For α -precision, IMPUGEN records the best mean rank of 1.6, consistent with the gains from DMR sampling. TabNAT tops β -recall, possibly due to its larger parameter budget (13.3 M parameters, the largest among the diffusion models). On C2ST, IMPUGEN attains a mean rank of 2.0, narrowly ahead of TabNAT and TabDiff. Overall, IMPUGEN shows a clear advantage in α -precision and remains competitive on the other fidelity metrics.

Down-stream utility. On the MLE benchmark, IMPUGEN attains an average rank of 2.1, slightly ahead of TabDiff at 2.2.

Privacy. In terms of DCR, most diffusion models cluster around the ideal value of 0.5, whereas TabNAT scores noticeably higher than the rest. IMPUGEN records an average rank of 5.0, second only to TabSyn within the diffusion group. In DPI-MIA, TabSyn leads the diffusion models with a rank of 4.1, followed by TabDiff at 5.4 and IMPUGEN at 5.6, while TabNAT trails at 7.6. Privacy scores tend to move in the opposite direction of β -recall: models such as MaCoDE and CTGAN, which obtain low β -recall, show relatively strong privacy. This pattern suggests that aggressive coverage of sparse regions in the data distribution may increase privacy-leakage risk.

Runtime and Model Size. IMPUGEN generates the Adult dataset in 2.9 seconds—much faster than TabNAT’s 20.3 seconds and between TabSyn (1.6s) and TabDiff (14.5s).

4.4 ABLATION STUDIES

Zero-start vs. multiple imputation. We compared zero-start sampling with multiple imputation (MI) by generating up to 100 MI samples for each missing row. On Adult, MI needed at least 54 samples to match the MAE of zero-start. On Default, News, and Shoppers, the MAE gap was still present after 100 samples. MAE shows the largest difference, which is consistent with one-dimensional result that zero-start converges to the posterior median during the reverse process. Taken together, these results show that IMPUGEN goes beyond a simple combination of TabCSDI and MissDiff. By adopting a more efficient sampling strategy, it improves both imputation accuracy and runtime. (Zheng & Charoenphakdee, 2022; Ouyang et al., 2023)

DMR sampling. In Figure 5, on Bean, Gesture, Letter, Adult, Default, News, and Shoppers, we compare IMPUGEN with and without distribution-matching refinement (DMR) sampling. Adding DMR increases α -precision by 1.7% and yields consistent improvements across the fidelity suite (Trend +0.3%, C2ST +0.6%, MLE +0.4%). Overall, DMR sampling enhances not only α -precision but also distributional fidelity.

Label leakage impact. To assess the effect of label leakage, we retrained IMPUGEN after removing the label columns. Including labels increases MAE and RMSE by 0.4% and 2.3%, respectively, indicating that label information slightly degrades imputation accuracy instead of improving it.

5 CONCLUSION

In this paper, We introduced IMPUGEN, a unified framework for imputation and tabular data synthesis that employs two task-aligned sampling strategies. zero-start sampling removes the trade-off between speed and diversity that affects diffusion-based imputers and yields accurate pointwise accuracy in a single reverse process. DMR sampling is column-agnostic and further enhances overall fidelity.

REFERENCES

Ahmed Alaa, Boris Van Breugel, Evgeny S Saveliev, and Mihaela Van Der Schaar. How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models. In *International conference on machine learning*, pp. 290–306. PMLR, 2022.

Seunghwan An, Gyeongdong Woo, Jaesung Lim, ChangHyun Kim, Sungchul Hong, and Jong-June Jeon. Masked language modeling becomes conditional density estimation for tabular data synthesis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 15356–15364, 2025.

Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman, Prashant Reddy, and Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In *Proceedings of the First ACM International Conference on AI in Finance*, pp. 1–8, 2020.

Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

486 Zhichao Chen, Haoxuan Li, Fangyikang Wang, Odin Zhang, Hu Xu, Xiaoyu Jiang, Zhihuan Song,
 487 and Eric H Wang. Rethinking the diffusion models for numerical tabular data imputation from
 488 the perspective of wasserstein gradient flow. *CoRR*, 2024.

489

490 Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
 491 via the em algorithm. *Journal of the royal statistical society: series B (methodological)*, 39(1):
 492 1–22, 1977.

493

494 A Rogier T Donders, Geert JMG Van Der Heijden, Theo Stijnen, and Karel GM Moons. A gentle
 495 introduction to imputation of missing values. *Journal of clinical epidemiology*, 59(10):1087–
 496 1091, 2006.

497

498 Tianyu Du, Luca Melis, and Ting Wang. Remasker: Imputing tabular data with masked autoen-
 499 coding. In *The Twelfth International Conference on Learning Representations*, 2024. URL
<https://openreview.net/forum?id=K19NqjLVDT>.

500

501 William A Falcon. Pytorch lightning. *GitHub*, 3, 2019.

502

503 Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
 504 generation for tabular health records: A systematic review. *Neurocomputing*, 493:28–45, 2022.

505

506 Daniel Jarrett, Bogdan C Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hy-
 507 perimpute: Generalized iterative imputation with automatic model selection. In *International
 508 Conference on Machine Learning*, pp. 9916–9937. PMLR, 2022.

509

510 Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
 511 tabular data with diffusion models. In *International conference on machine learning*, pp. 17564–
 512 17579. PMLR, 2023.

513

514 Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: Co-evolving contrastive diffusion models
 515 for mixed-type tabular synthesis. In *International Conference on Machine Learning*, pp. 18940–
 516 18956. PMLR, 2023.

517

518 Wei-Chao Lin and Chih-Fong Tsai. Missing value imputation: a review and analysis of the literature
 519 (2006–2017). *Artificial Intelligence Review*, 53(2):1487–1509, 2020.

520

521 Yixin Liu, Thalaiyasingam Ajanthan, Hisham Husain, and Vu Nguyen. Self-supervision improves
 522 diffusion models for tabular data imputation. In *Proceedings of the 33rd ACM International
 523 Conference on Information and Knowledge Management*, pp. 1513–1522, 2024.

524

525 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 526 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the
 527 IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

528

529 Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. *Journal of the American
 530 statistical Association*, 46(253):68–78, 1951.

531

532 Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion mod-
 533 els on tabular data with missing values. In *ICML 2023 Workshop on Structured Probabilistic
 534 Inference & Generative Modeling*, 2023. URL <https://openreview.net/forum?id=S435pkeAdT>.

535

536 R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*,
 33(3):291–297, 1997.

537

538 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 539 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 540 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

541

542 Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff:
 543 a mixed-type diffusion model for tabular data generation. In *The Thirteenth International Confer-
 544 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=swvURjrt8z>.

540 Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
 541 mixed-type data. *Bioinformatics*, 28(1):112–118, 2012.

542

543 Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equa-
 544 tions in r. *Journal of statistical software*, 45:1–67, 2011.

545

546 Joshua Ward, Chi-Hua Wang, and Guang Cheng. Data plagiarism index: Characterizing the privacy
 547 risk of data-copying in tabular generative models. 2024.

548

549 Jürgen Wüst. Sdmetrics. *Online*: <http://www.sdmetrics.com>, 2011.

550

551 Lei Xu, Maria Skoulioudou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
 552 data using conditional gan. *Advances in neural information processing systems*, 32, 2019.

553

554 Zhantao Yang, Ruili Feng, Han Zhang, Yujun Shen, Kai Zhu, Lianghua Huang, Yifei Zhang, Yu Liu,
 555 Deli Zhao, Jingren Zhou, et al. Lipschitz singularities in diffusion models. In *The Twelfth Inter-
 556 national Conference on Learning Representations*, 2023.

557

558 Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
 559 adversarial nets. In *International conference on machine learning*, pp. 5689–5698. PMLR, 2018.

560

561 Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing
 562 data with graph representation learning. *Advances in Neural Information Processing Systems*, 33:
 563 19075–19087, 2020.

564

565 Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Christos
 566 Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
 567 based diffusion in latent space. In *The Twelfth International Conference on Learning Represen-
 568 tations*, 2024. URL <https://openreview.net/forum?id=4Ay23yeuz0>.

569

570 Hengrui Zhang, Liancheng Fang, Qitian Wu, and Philip S. Yu. Diffputer: An EM-driven diffusion
 571 model for missing data imputation. In *The Thirteenth International Conference on Learning
 572 Representations*, 2025a. URL <https://openreview.net/forum?id=3f11SENSYO>.

573

574 Hengrui Zhang, Liancheng Fang, Qitian Wu, and Philip S. Yu. TabNAT: A continuous-discrete joint
 575 generative framework for tabular data. In *Forty-second International Conference on Machine
 576 Learning*, 2025b. URL <https://openreview.net/forum?id=WbfbT2BH6F>.

577

578 He Zhao, Ke Sun, Amir Dezfouli, and Edwin V Bonilla. Transformed distribution matching for
 579 missing value imputation. In *International Conference on Machine Learning*, pp. 42159–42186.
 580 PMLR, 2023.

581

582 Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in
 583 tabular data. In *NeurIPS Table Representation Learning (TRL) Workshop*, 2022.

584

585

586

587

588

589

590

591

592

593

594 **Structure at a Glance** The appendix is divided into four self-contained parts: **Section A** formalizes all evaluation metrics used in the main paper; **Section B** presents visualizations from the
 595 ablation studies, focusing on distribution-matching refinement (DMR) sampling and label leakage
 596 control; **Section C** provides complete implementation details for all baselines; and **Section D** ex-
 597 pands the imputation benchmarks to both in-sample and out-of-sample settings under MCAR, MAR,
 598 and MNAR masks at 30 %, 50 %, and 70 % missingness.
 599

600 A THEORETICAL ANALYSIS

601 A.1 ZERO-START SAMPLING

602 **Assumption A1 (Finite Lipschitz constant).** Let p_{data} be the data distribution. For a score $s_{\theta}(\cdot, \sigma)$
 603 trained with Gaussian perturbation of standard deviation σ , its Jacobian Frobenius norm is bounded
 604 by
 605

$$606 \quad \|\nabla_x s_{\theta}(x, \sigma)\|_F \leq \frac{C}{\sigma}, \quad x \sim p_{\text{data}},$$

607 for some constant C depending on the smoothness of $\log p_{\sigma}$ (Yang et al., 2023). Since $\sigma(\tau) \geq$
 608 $\sigma_{\min} > 0$ for all $\tau \in [0, 1]$, the reverse field is globally $L_{\theta} = C/\sigma_{\min}$ -Lipschitz.
 609

610 **One-dimensional posterior-median convergence (sketch).** Let $\varphi_{T \rightarrow 0}(x_T)$ be the deterministic
 611 EDM flow. Because the vector field is globally Lipschitz, the flow is unique and strictly monotone
 612 in its initial state. With a symmetric terminal distribution $x_T \sim \mathcal{N}(0, \sigma_{\max}^2)$, the monotone map
 613 $\varphi_{T \rightarrow 0}$ preserves median ordering, so $\varphi_{T \rightarrow 0}(0)$ is the median of the conditional distribution of x_0
 614 given x_T .
 615

616 **Algorithm.** At inference, run the deterministic EDM sampler initialized at $\mathbf{x}_T = \mathbf{0}$ and condi-
 617 tioned on $(\mathbf{x}_{\text{obs}}, \mathbf{m})$ through s_{θ} . A single T -step reverse pass yields deterministic imputations that
 618 match or surpass multiple-imputation accuracy at a fraction of the latency.
 619

620 B EVALUATION METRICS

621 B.1 IMPUTATION METRICS

622 **Robust macro-averaged error metrics** Some datasets contain preprocessing errors that yield ex-
 623 treme values. For instance, one row in the `News` dataset was left unnormalized during min–max
 624 scaling, producing an exorbitant z -score that distorts column-wise error statistics. To mitigate such
 625 artifacts without affecting regular observations, we discard any entry whose absolute z -score ex-
 626 ceeds 100.
 627

628 For each continuous column $d \in \mathcal{C}$, define the evaluation index set
 629

$$630 \quad \mathcal{M}_d = \{n \mid m_d^{(n)} = 0, |z_d^{(n)}| < 100\},$$

631 where $m_d^{(n)} = 0$ denotes a missing value at position (n, d) . We compute the MAE and RMSE on
 632 \mathcal{M}_d for every column individually and then take their simple average over all continuous columns
 633 to obtain the *macro-averaged* error, thereby assigning equal weight to each column regardless of
 634 scale.
 635

$$636 \quad \text{MAE}_{\text{macro}} = \frac{1}{|\mathcal{C}|} \sum_{d \in \mathcal{C}} \frac{1}{|\mathcal{M}_d|} \sum_{n \in \mathcal{M}_d} |\hat{z}_d^{(n)} - z_d^{(n)}|, \quad (1)$$

$$637 \quad \text{RMSE}_{\text{macro}} = \frac{1}{|\mathcal{C}|} \sum_{d \in \mathcal{C}} \sqrt{\frac{1}{|\mathcal{M}_d|} \sum_{n \in \mathcal{M}_d} (\hat{z}_d^{(n)} - z_d^{(n)})^2}. \quad (2)$$

648 B.2 FIDELITY METRICS
649650 We assess the fidelity of a synthetic table \mathcal{D}^s relative to a real table \mathcal{D}^r using five complementary
651 metrics. All scores are normalized to the range $[0, 1]$; higher values indicate better fidelity. Assume
652 each table contains D columns and N_r and N_s rows, respectively.653
654 **Shape similarity (Wüst, 2011)** For each continuous column $d \in \mathcal{C}$, we measure the discrepancy
655 with the Kolmogorov–Smirnov (KS) statistic—the supremum of the absolute difference between the
656 empirical cumulative distribution functions of the real and synthetic tables (Massey Jr, 1951):

657
$$\varepsilon_d^{\text{KS}} = \sup_x |\hat{F}_d^r(x) - \hat{F}_d^s(x)|. \quad (1)$$

658

659 For each categorical column $d \in \mathcal{Q}$, the discrepancy is the total-variation distance (TVD) between
660 the corresponding empirical probability mass functions:

661
$$\varepsilon_d^{\text{TVD}} = \frac{1}{2} \sum_{k \in \mathcal{K}_d} |p_d^r(k) - p_d^s(k)|, \quad (2)$$

662

663 where \mathcal{K}_d denotes the set of categories in column d .664 Finally, we average the per-column discrepancies across all D columns and convert them into a
665 similarity score:

666
$$S_{\text{shape}} = 1 - \frac{1}{D} \sum_{d=1}^D \varepsilon_d. \quad (3)$$

667

668 **Trend similarity (Wüst, 2011)** For every unordered column pair (d_1, d_2) with $d_1 < d_2$ we com-
669 pute a type-specific discrepancy $\Delta_{d_1 d_2}$.670 **Continuous–continuous.** The discrepancy equals half the absolute difference between the sample
671 Pearson correlations of the real and synthetic tables:

672
$$\Delta_{d_1 d_2}^{\text{Pearson}} = \frac{1}{2} |\rho_{d_1 d_2}^r - \rho_{d_1 d_2}^s|, \quad (4)$$

673

674 where $\rho_{d_1 d_2}$ is the Pearson coefficient.675 **All other type combinations.** First build an empirical contingency table $C_{d_1 d_2}$. If either column is
676 continuous, discretize it into $K = 20$ equal-frequency bins. The discrepancy is the total-variation
677 distance (TVD) between the real and synthetic contingency tables:

678
$$\Delta_{d_1 d_2}^{\text{TVD}} = \frac{1}{2} \sum_{a \in \mathcal{K}_{d_1}} \sum_{b \in \mathcal{K}_{d_2}} |C_{d_1 d_2}^r(a, b) - C_{d_1 d_2}^s(a, b)|, \quad (5)$$

679

680 where \mathcal{K}_d denotes the category set (or bins) of column d .681 Finally, average the discrepancies over all $\binom{D}{2}$ unordered pairs and convert them to a similarity
682 score:

683
$$S_{\text{trend}} = 1 - \frac{2}{D(D-1)} \sum_{d_1 < d_2} \Delta_{d_1 d_2}. \quad (6)$$

684

685 **α -precision (Alaa et al., 2022)** We measure how tightly synthetic rows occupy the high-density
686 region of the real table.687 **Embedding and distance.** Each row \mathbf{d} is mapped to $\phi(\mathbf{d}) \in [0, 1]^H$ by min–max scaling the
688 continuous features and one-hot encoding the categorical features. The distance between two rows
689 is Euclidean:

690
$$E(\mathbf{a}, \mathbf{b}) = \|\phi(\mathbf{a}) - \phi(\mathbf{b})\|_2. \quad (7)$$

691

692 **Real-data center and radii.**

693
$$\mathbf{c} = \frac{1}{N_r} \sum_{n=1}^{N_r} \phi(\mathbf{d}_n^r), \quad (8)$$

694

695
$$R(\alpha_k) = \text{quantile}_{\alpha_k} \left\{ E(\mathbf{d}_n^r, \mathbf{c}) \right\}_{n=1}^{N_r}. \quad (9)$$

696

702 The grid $\alpha_k = (k - 1)/29$, $k = 1, \dots, 30$ matches the reference implementation.
 703

704 **Precision curve.** For each α_k , the share of synthetic rows within the corresponding radius is
 705

$$706 \quad p(\alpha_k) = \frac{1}{N_s} \sum_{n=1}^{N_s} \mathbf{1}[E(\mathbf{d}_n^s, \mathbf{c}) \leq R(\alpha_k)]. \quad (10)$$

709 **Summary statistic.** The deviation from the ideal diagonal $p(\alpha) = \alpha$ is converted to a similarity
 710 score:
 711

$$712 \quad S_{\text{precision}} = 1 - \frac{\sum_{k=1}^{30} |\alpha_k - p(\alpha_k)|}{\sum_{k=1}^{30} \alpha_k}. \quad (11)$$

717 **β -recall (Alaa et al., 2022)** This metric complements α -precision by checking whether every real
 718 row is represented by a sufficiently close synthetic neighbor.
 719

720 **(i) Real–synthetic match**

$$721 \quad s^*(\mathbf{d}_n^r) = \arg \min_{\mathbf{d}_n^s \in \mathcal{D}^s} E(\mathbf{d}_n^r, \mathbf{d}_n^s), \quad (12)$$

$$723 \quad d_{\text{rs}}(\mathbf{d}_n^r) = E(\mathbf{d}_n^r, s^*(\mathbf{d}_n^r)). \quad (13)$$

725 **(ii) Real–real reference**

$$726 \quad d_{\text{rr}}(\mathbf{d}_n^r) = \min_{\substack{m=1 \\ m \neq n}}^{N_r} E(\mathbf{d}_n^r, \mathbf{d}_m^r). \quad (14)$$

729 **(iii) Synthetic radii**

$$731 \quad \mathbf{c}_s = \frac{1}{N_s} \sum_{m=1}^{N_s} \phi(\mathbf{d}_m^s), \quad (15)$$

$$734 \quad R_s(\alpha_k) = \text{quantile}_{\alpha_k} \left\{ E(s^*(\mathbf{d}_n^r), \mathbf{c}_s) \right\}_{n=1}^{N_r}. \quad (16)$$

736 **(iv) Coverage curve**

$$738 \quad b(\alpha_k) = \frac{1}{N_r} \sum_{n=1}^{N_r} \mathbf{1}[d_{\text{rs}}(\mathbf{d}_n^r) \leq d_{\text{rr}}(\mathbf{d}_n^r) \wedge \\ 739 \quad E(s^*(\mathbf{d}_n^r), \mathbf{c}_s) \leq R_s(\alpha_k)]. \quad (17)$$

743 **(v) Summary statistic**

$$745 \quad S_{\text{coverage}} = 1 - \frac{\sum_{k=1}^{30} |\alpha_k - b(\alpha_k)|}{\sum_{k=1}^{30} \alpha_k}. \quad (18)$$

750 Both $S_{\text{precision}}$ and S_{coverage} reach 1 when their curves coincide with the diagonal and decrease as
 751 deviations grow, yielding single-number summaries of fidelity (α) and coverage (β).
 752

753 **Classifier two-sample test (C2ST) (Wüst, 2011)** A logistic regression classifier is trained to dis-
 754 tinguish the union of the real and synthetic tables, $\mathcal{D}^r \cup \mathcal{D}^s$. Following the SDMetrics implemen-
 755 tation, we employ three-fold stratified cross-validation: in each fold k ($k = 1, 2, 3$) the model is fitted
 on two folds and evaluated on the held-out fold, yielding an AUROC score AUROC_k .
 756

756 **Detection power**

757
$$d_k = \max\{0, 2 \text{AUROC}_k - 1\}, \quad (19)$$

758 which equals 0 when the classifier performs no better than chance ($\text{AUROC}_k \leq 0.5$) and rises
759 linearly to 1 under perfect separability.
760

761 **Similarity score**

762
$$S_{\text{C2ST}} = 1 - \frac{1}{3} \sum_{k=1}^3 d_k. \quad (20)$$

763 Thus $S_{\text{C2ST}} = 1$ when the discriminator cannot distinguish the two tables at all, and $S_{\text{C2ST}} = 0$ under
764 perfect separation.
765

766 **B.3 UTILITY METRIC**

767 **Machine-learning efficiency (MLE)** This metric quantifies how much predictive utility is re-
768 tained when a model is trained on the synthetic table instead of the real one.
769

770 **Protocol**

771

1. *Split.* The real table \mathcal{D}^r is divided once into an 8:1 train-validation split (the split is stratified for classification targets).
2. *Model search on real data.* A grid search selects hyperparameters that maximize the macro-AUROC (classification) or minimize the RMSE (regression) on the validation set, yielding a score s_{real} .
3. *Model search on synthetic data.* The same search is repeated on a synthetic table \mathcal{D}^s of equal size, producing s_{syn} .

772 **Score**

773
$$S_{\text{MLE}} = \begin{cases} \frac{s_{\text{syn}}}{s_{\text{real}}}, & \text{classification,} \\ \frac{s_{\text{real}}}{s_{\text{syn}}}, & \text{regression.} \end{cases} \quad (21)$$

774

775 **Notes.**

776

- TABPFN grids are skipped whenever the number of rows exceeds the model’s built-in limit
777 of 10,000 rows.
- Each grid search evaluates exactly one train/validation split; the best configuration is refit
778 on the full split before computing s_{real} or s_{syn} .

779 **Hyper-parameter grids.**

780

XGBClassifier	
Parameter	Values
n_estimators	10, 50, 100
min_child_weight	1, 10
max_depth	5, 10, 20
gamma	0.0, 1.0
objective	binary:logistic
tree_method	hist
device	cpu
enable_categorical	True

805 **B.4 PRIVACY METRICS**

806 **Distance to closest record (DCR) (Zhang et al., 2024)** For every synthetic row $s \in \mathcal{D}^s$ we com-
807 pute its Gower distance to the nearest record in the real training split $\mathcal{D}_{\text{train}}$ and in an independent
808

15

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

TabPFNClassifier

Parameter	Values
n_estimators	4, 8, 16
softmax_temperature	0.8, 0.9, 1.0
balance_probabilities	True

XGBRegressor

Parameter	Values
n_estimators	10, 50, 100
min_child_weight	1, 10
max_depth	5, 10, 20
gamma	0.0, 1.0
objective	reg:squarederror
tree_method	hist
device	cpu
enable_categorical	True

TabPFNRegressor

Parameter	Values
n_estimators	4, 8, 16
softmax_temperature	0.8, 0.9, 1.0

hold-out split $\mathcal{D}_{\text{hold}}$:

$$\begin{aligned} d_{\text{train}}(s) &= \min_{r \in \mathcal{D}_{\text{train}}} G(s, r), \\ d_{\text{hold}}(s) &= \min_{h \in \mathcal{D}_{\text{hold}}} G(s, h). \end{aligned} \tag{22}$$

The DCR score is the proportion of synthetic rows that lie closer to the training split than to the hold-out split:

$$\text{DCR} = \frac{1}{|\mathcal{D}^s|} \sum_{s \in \mathcal{D}^s} \mathbf{1}[d_{\text{train}}(s) < d_{\text{hold}}(s)]. \tag{23}$$

A value of $\text{DCR} \approx 0.5$ indicates that a synthetic record is equally likely to be nearer to the training split as to the hold-out split, which is a positive privacy signal.

Data plagiarism index membership-inference attack (DPI-MIA) (Ward et al., 2024) The *data plagiarism index* (DPI) for a query record q is the fraction of synthetic rows among its k nearest neighbors (NNs) in a reference pool that mixes real and synthetic data. We sweep $k = 1, \dots, 30$ and retain the most informative value.

Reference and query sets

$$\mathcal{D}_{\text{ref}} = \mathcal{D}_{\text{train}} \cup \mathcal{D}^s, \quad \mathcal{D}_{\text{query}} = \mathcal{D}_{\text{hold}} \cup \mathcal{D}_{\text{train}}. \tag{24}$$

Rows from \mathcal{D}^s carry label 1 and those from $\mathcal{D}_{\text{train}}$ carry label 0 inside \mathcal{D}_{ref} . In $\mathcal{D}_{\text{query}}$ the ground-truth membership is 0 (hold-out) or 1 (training).

Per-record DPI at neighborhood size k Let $g_1, \dots, g_k \in \{0, 1\}$ be the labels of the k nearest neighbors of q in \mathcal{D}_{ref} (L1 distance on the min-max + one-hot embedding). The DPI value is

$$\text{DPI}_k(q) = \frac{1}{k} \sum_{i=1}^k g_i. \tag{25}$$

864

Attack effectiveness

865

866

$$\text{AUC}(k) = \text{ROC-AUC} \left(\{\text{DPI}_k(q)\}_{q \in \mathcal{D}_{\text{query}}}, \right. \quad (26)$$

867

868

$$\left. \{\text{label}(q)\}_{q \in \mathcal{D}_{\text{query}}} \right), \quad (27)$$

869

870

$$\text{DPI-MIA} = \max_{k=1}^{30} \text{AUC}(k). \quad (28)$$

871

872

873

Interpretation A value near 0.5 indicates that synthetic rows do not enable the attacker to distinguish training records from unseen hold-out records; higher values provide stronger evidence of data copying.

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 C ABLATION STUDY

919

920 This section analyzes two factors: distribution-matching refinement (DMR) sampling for tabular
921 synthesis and the effect of label leakage on imputation.

922
923 **Distribution-matchinf refinement (DMR).** Figure S5 summarizes the impact of DMR On Bean,
924 Gesture, Letter, Adult, Default, News, and Shoppers. We therefore compare the full
925 IMPUGEN model with an otherwise identical variant in which DMR is disabled. Both settings
926 use the same checkpoint; no retraining is performed. Across five fidelity metrics, enabling DMR
927 improves α -precision by 1.7 % and yields consistent gains in the remaining scores (Trend +0.3 %,
928 C2ST +0.6 %, and MLE +0.3 %). DMR therefore boosts not only α -precision but overall fidelity.

929
930 **Label-leakage impact** To examine the effect of label leakage, we retrained IMPUGEN after re-
931 moving all label columns. Including labels increases MAE and RMSE by 0.4 % and 2.3 %, respec-
932 tively, indicating that label information slightly degrades imputation accuracy instead of improving
933 it.

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

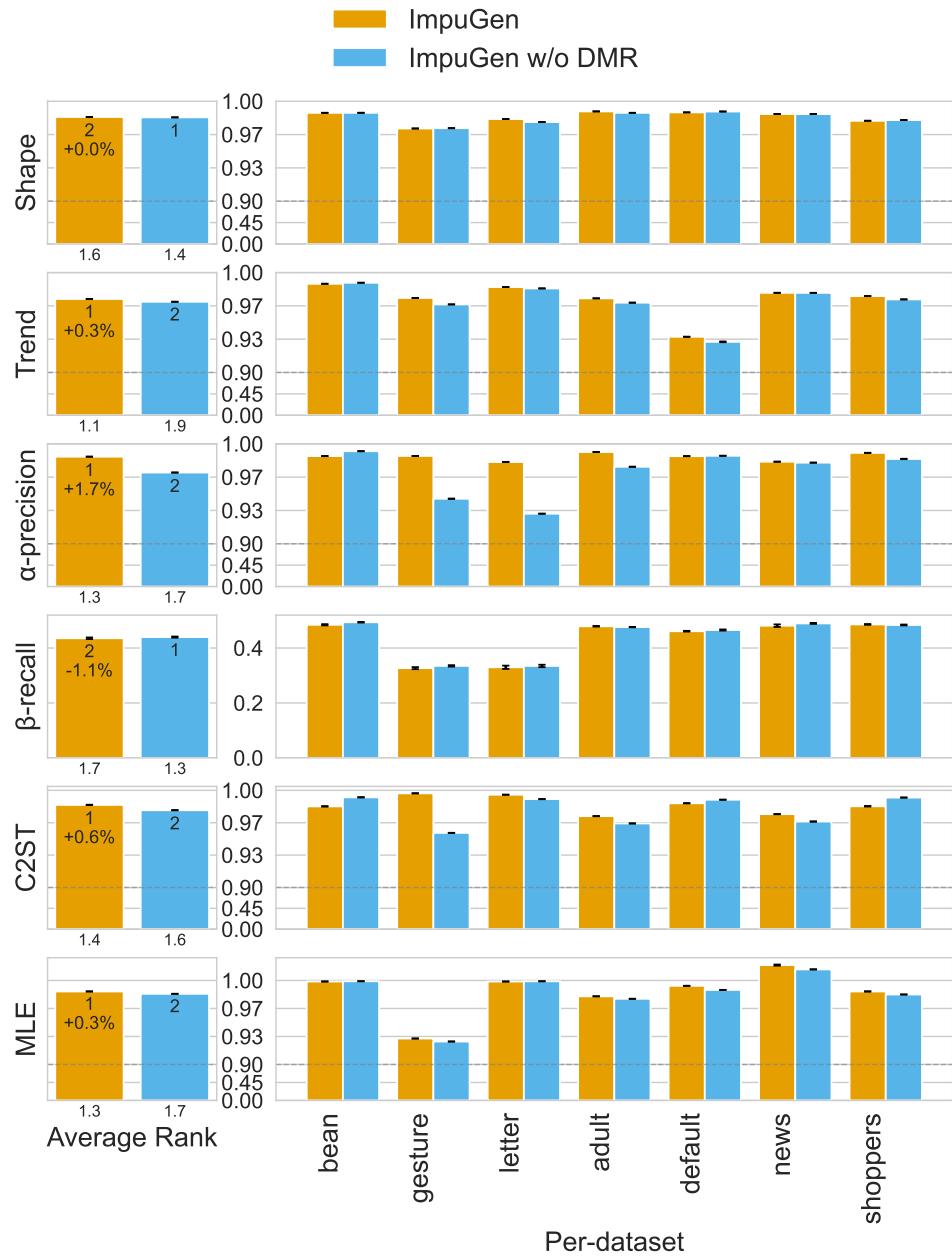


Figure 5: Effect of DMR sampling on synthetic-table fidelity. We evaluate IMPUGEN and an ablated variant without DMR on the seven data sets (Bean, Gesture, Letter, Adult, Default, News, Shoppers). **Left:** Mean score across data sets; the x-tick below each bar shows the corresponding average rank, and the value printed below indicates IMPUGEN’s macro-average improvement over the ablation. **Right:** Per-data-set bars, grouped by metric (Shape, Trend, α -precision, β -recall, C2ST, and MLE). A broken y-axis enlarges the 0.90–1.00 range to expose differences among saturated scores. On average, DMR raises α -precision by 1.6 %, Trend by 0.4 %, C2ST by 0.5 %, and MLE by 0.2 %.

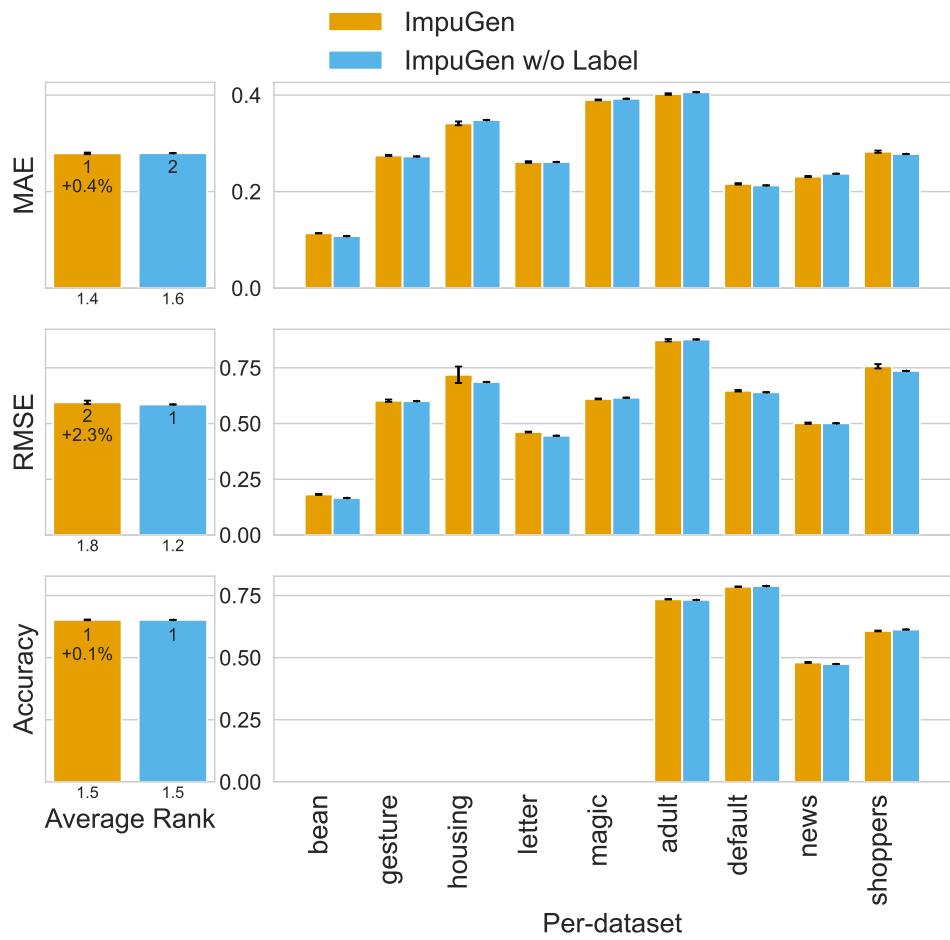


Figure 6: Effect of including labels during training. The standard (label-aware) IMPUGEN is compared with a variant trained without labels on nine data sets, addressing the concern that conditioning on labels might introduce target leakage. **Left.** Mean MAE, RMSE, and classification accuracy over all data sets; the x-tick below each bar shows the corresponding average rank. Percent values under the MAE and RMSE bars report the macro-average change relative to the label-agnostic model. **Right.** Per-data-set bars for the same metrics. The label-aware variant slightly increases MAE and RMSE and leaves accuracy essentially unchanged, suggesting that any leakage confers no benefit and can even hamper imputation.

1080 **D BASELINE IMPLEMENTATION DETAILS**
10811082 All baselines are re-implemented from their official public repositories and wrapped in a
1083 `LightningModule` to ensure reproducible benchmarking. Unless stated otherwise, we keep the
1084 hyper-parameters reported by the original authors.
10851086 **Diffputer.** Implementation follows the official code¹. Ten posterior samples are drawn per data
1087 set and averaged. We run five EM iterations and apply the official `anabit` encoding to categorical
1088 columns; one-hot encoding did not reproduce the reported results.
10891090 **KnewImp.** Implementation follows the official code². Categorical features are one-hot encoded.
1091 To avoid out-of-memory errors during kernel computation, we introduce mini-batching with a batch
1092 size of 4,096, which increases RMSE on `Adult` by 2.5 %.
10931094 **SimpDM.** Using the power configuration in the repository³, we set the learning rate to 10^{-3} ,
1095 enable `ReduceLROnPlateau`, and apply early stopping. These changes reduce RMSE on `Adult`
1096 by 1.6 %.
10971098 **GRAPE.** Implemented with default hyper-parameters from the official repository⁴
10991100 **ReMasker.** The “Letter” configuration from the official repository⁵ is used for every data set with-
1101 out modification.
11021103 **MaCoDE.** We adopt the official implementation⁶ and average ten imputations per missing entry,
1104 lowering RMSE on `Adult` by 17.5 %.
11051106 **HyperImpute, MissForest, EM, GAIN, and MICE.** All methods are taken from the hyperimpute
1107 repository⁷. For MICE, we average ten imputations, which reduces RMSE on `Adult` by 34.9 %.
11081109 **TabNAT.** Implemented with default hyper-parameters from the official repository⁸
11101111 **TabDiff.** Implemented with default hyper-parameters from the official repository⁹.
11121113 **TabSyn and TabDDPM.** TabSyn follows the official implementation¹⁰ with default settings. Al-
1114 though TabDDPM has its own repository, we use the unconditional tabddpm baseline bundled with
1115 TabSyn to ensure a consistent comparison framework.
11161117 **CTGAN and TVAE.** Both models rely on the official CTGAN implementation¹¹. Following the
1118 TabSyn (Zhang et al., 2024), we widen the generator and discriminator MLPs to match the layer
1119 widths used in their comparison experiments.
11201121
1122
1123
1124 ¹<https://github.com/hengruizhang98/DiffPuter>
1125 ²<https://github.com/JustusvLiebig/NewImp>
1126 ³<https://github.com/yixinliu233/SimpDM>
1127 ⁴<https://github.com/maxiaoba/GRAPE>
1128 ⁵<https://github.com/tydusky/remasker>
1129 ⁶<https://github.com/an-seunghwan/MaCoDE>
1130 ⁷<https://github.com/vanderschaarlab/hyperimpute>
1131 ⁸<https://github.com/fangliancheng/TabNAT>
1132 ⁹<https://github.com/MinkaiXu/TabDiff>
1133 ¹⁰<https://github.com/amazon-science/tabsyn>
1134 ¹¹<https://github.com/sdv-dev/CTGAN>

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147

Hyperparameter	Value
epochs	10000
early_stopping	500
batch_size	4096
lr	0.0001
optimizer	Adam
weight_decay	0
scheduler	ReduceLROnPlateau
em_steps	5
num_average	10
hid_dim	1024
categorical	anabit
continuous	standard

1148 Table 3: Diffputer hyper-parameters. Hyper-parameters different from the original implementation
 1149 were shown as bold.

1150

1151

1152

1153

1154

Hyperparameter	Value
epochs	200
batch_size	512
lr	0.1
score_lr	0.001
optimizer	Adam
niter	2
mlp	[256, 256]
entropy_reg	10
bandwidth	0.5
noise	0
kernel_batch_size	4096
categorical	onehot
continuous	quantile

1167 Table 4: KnewImp hyper-parameters. Hyper-parameters different from the original implementation
 1168 were shown as bold.

1169

1170

1171

1172

1173

Hyperparameter	Value
epochs	10000
early_stopping	500
batch_size	4096
lr	0.001
optimizer	Adam
weight_decay	0
scheduler	ReduceLROnPlateau
num_layers	5
hid_dim	1024
categorical	onehot
continuous	minmax

1184 Table 5: SimpDM hyper-parameters. Hyper-parameters different from the original implementation
 1185 were shown as bold.

1186

1187

1188	Hyperparameter	Value
1189	epochs	600
1190	batch_size	64
1191	lr	0.001
1192	min_lr	0.00001
1193	optimizer	Adam
1194	weight_decay	0
1195	scheduler	CosineLRWithWarmUp
1196	num_layers	5
1197	hid_dim	1024
1198	categorical	onehot
1199	continuous	minmax
1200		
1201		

1202 Table 6: ReMasker hyper-parameters. Hyper-parameters different from the original implementation
 1203 were shown as bold.

1204	Hyperparameter	Value
1205	epochs	500
1206	batch_size	1024
1207	lr	0.001
1208	optimizer	Adam
1209	weight_decay	0.001
1210	num_average	10
1211	d_transformer	128
1212	num_transformer_heads	4
1213	num_transformer_layer	2
1214	tau	1
1215	bins	50
1216	categorical	LabelEncoder
1217	continuous	—
1218		
1219		
1220		
1221		

1222 Table 7: MaCoDE hyper-parameters. Hyper-parameters different from the original implementation
 1223 were shown as bold.

1224	Hyperparameter	Value
1225	epochs	5000
1226	batch_size	1024
1227	lr	0.001
1228	optimizer	Adam
1229	weight_decay	1e-6
1230	embed_dim	32
1231	buffer_size	8
1232	depth	6
1233	categorical	LabelEncoder
1234	continuous	quantile
1235		
1236		
1237		
1238		
1239		
1240		
1241		

Table 8: TabNAT hyper-parameters.

	Hyperparameter	Value
1242	epochs	8000
1243	batch_size	4096
1244	lr	0.001
1245	optimizer	Adam
1246	weight_decay	0
1247	ema_decay	0.997
1248	num_layers	2
1249	d_token	4
1250	n_head	1
1251	factor	32
1252	dim_t	1024
1253	precond	TRUE
1254	sigma_data	1
1255	scheduler	power_mean_per_column
1256	cat_scheduler	log_linear_per_column
1257	noise_dist	uniform_t
1258	categorical	LabelEncoder
1259	continuous	quantile

Table 9: TabDiff hyper-parameters

	Hyperparameter	Value
1260	epochs	10000
1261	early_stopping	500
1262	batch_size	4096
1263	lr	0.001
1264	optimizer	Adam
1265	weight_decay	0
1266	scheduler	ReduceLROnPlateau
1267	d_model	1024
1268	categorical	LabelEncoder
1269	continuous	quantile

Table 10: TabSyn hyper-parameters

	Hyperparameter	Value
1270	epochs	4000
1271	batch_size	4096
1272	lr	0.001
1273	optimizer	Adam
1274	weight_decay	0
1275	scheduler	ReduceLROnPlateau
1276	max_beta	1e-2
1277	min_beta	1e-5
1278	beta_decay	0.7
1279	d_model	1024
1280	num_layers	2
1281	d_token	4
1282	n_head	1
1283	factor	32
1284	categorical	LabelEncoder
1285	continuous	quantile

Table 11: TabSynVAE hyper-parameters

1294

1295

1296
 1297
 1298
 1299
 1300

Hyperparameter	Value
max_steps	30000
batch_size	4096
lr	0.001809
optimizer	AdamW
scheduler	LinearLR
diff_d_model	1024
gradient_clip_val	0.5
categorical	LabelEncoder
continuous	quantile

Table 12: TabDDPM hyper-parameters

1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316

Hyperparameter	Value
epochs	5000
batch_size	500
generator_lr	0.0002
discriminator_lr	0.0002
generator_decay	0.000001
discriminator_decay	0.000001
embedding_dim	1024
generator_dim	1024,2048,2048,1024
discriminator_dim	1024,2048,2048,1024
categorical	LabelEncoder
continuous	minmax

Table 13: CTGAN hyper-parameters

1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336

Hyperparameter	Value
epochs	1000
batch_size	500
l2scale	0.00001
loss_factor	2
generator_dim	1024,2048,2048,1024
discriminator_dim	1024,2048,2048,1024
categorical	LabelEncoder
continuous	minmax

Table 14: TVAE hyper-parameters

1346
 1347
 1348
 1349

1350 Environment All experiments were run on a workstation with the following hardware and software
 1351 configuration:
 1352

- 1353 • **Operating system:** Windows 11
- 1354 • **CPU:** AMD Ryzen 5 5600X
- 1355 • **GPU:** NVIDIA GeForce RTX 3090 (24 GB VRAM) and NVIDIA GeForce RTX 5090 (32
 1356 GB VRAM)
- 1357 • **Software:** CUDA 12.8, Python 3.12, PyTorch 2.8.0 (Paszke et al., 2019), and PyTorch-
 1358 Lightning 2.5.2 (Falcon, 2019)

1360 E LLM ASSISTANCE DISCLOSURE

1361 We used a large language model-based assistant solely for language editing (grammar, wording, and
 1362 readability) and discovery of potential references.

1363 F ADDITIONAL IMPUTATION RESULTS

1364 We follow the evaluation protocol of DIFFPUTER (Zhang et al., 2025a) and report both in-sample
 1365 (train) and out-of-sample (test) imputation performance. Results are stratified by the missing-value
 1366 rate.

1367 **Baselines.** When the missingness is 30 %, every baseline is evaluated. For the in-sample setting
 1368 this yields ten methods, while the out-of-sample setting is limited to six—Diffputer, KnewImp,
 1369 SimpDM, ReMasker, MaCoDE, and MICE—because only these support out-of-sample prediction.
 1370 At 50 % missingness and above, ReMasker and GAIN perform much worse than the other methods
 1371 and are therefore excluded. Consequently, eight baselines are compared in-sample and five (out-of-
 1372 sample) at the higher missingness levels.

1373 Tables S15 and S16 report the macro-averaged percentage improvement of IMPUGEN over the
 1374 strongest competitor on nine benchmark data sets. Across all scenarios, IMPUGEN achieves the
 1375 highest accuracy.

Mechanism	Rate (%)	Δ MAE	Δ RMSE	Δ Acc	Mechanism	Rate (%)	Δ MAE	Δ RMSE	Δ Acc
MCAR	30	6.7	2.6	2.0	MCAR	30	6.7	3.7	1.8
MCAR	50	7.2	3.0	3.3	MCAR	50	7.8	5.5	3.4
MCAR	70	6.3	0.8	4.9	MCAR	70	7.4	4.6	4.9
MAR	30	9.2	3.0	2.0	MAR	30	12.0	7.2	2.3
MAR	50	8.2	3.8	3.2	MAR	50	10.3	6.5	3.5
MAR	70	9.0	4.3	4.6	MAR	70	9.8	6.1	4.7
MNAR	30	6.7	1.7	2.2	MNAR	30	11.7	8.3	2.3
MNAR	50	8.3	4.4	3.3	MNAR	50	9.5	7.2	3.6
MNAR	70	6.3	2.1	4.7	MNAR	70	7.2	4.0	4.9

1391 Table 15: Relative **in-sample** macro improvement (%).
 1392

1393 Table 16: Relative **out-of-sample** macro improvement (%).

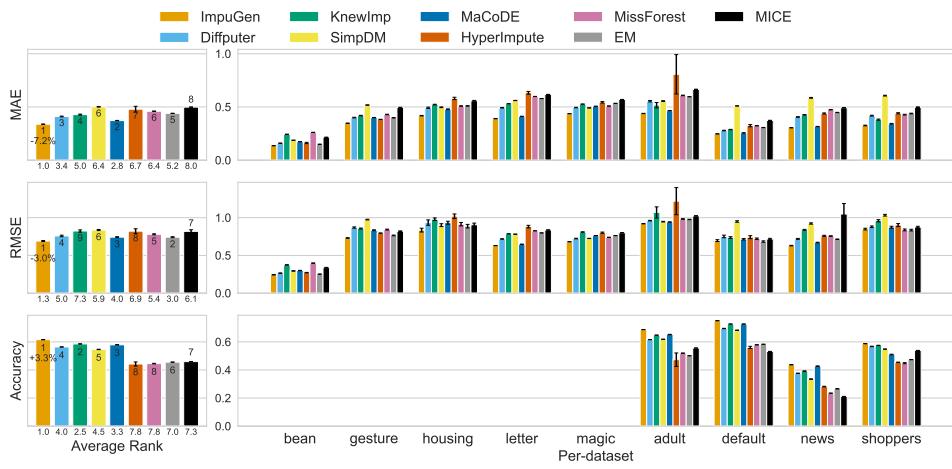


Figure 7: In-sample imputation results at 50 % MCAR missingness on nine data sets. IMPUGEN is compared with eight baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker and GAIN are omitted because their performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 7.2 % and RMSE by 3.0 % while achieving the highest accuracy rank.

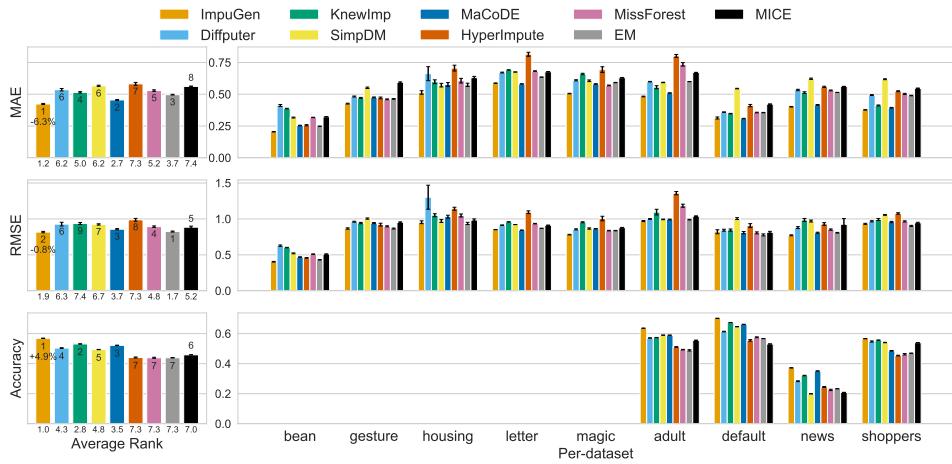


Figure 8: In-sample imputation results at 70 % MCAR missingness on nine data sets. IMPUGEN is evaluated against eight baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker and GAIN are omitted because their performance deteriorates above 50 % missingness. The left panel shows, for each metric, the mean score and average rank; the percentage beneath the first bar indicates IMPUGEN's average relative gain over the strongest competitor. The right panel displays per-data-set scores. On average, IMPUGEN lowers MAE by 6.3 % and RMSE by 0.8 % while maintaining the best accuracy rank.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

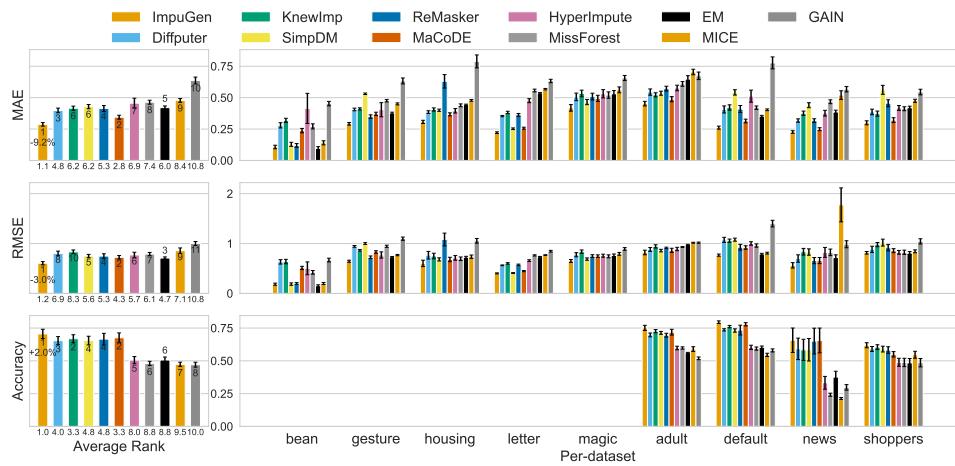


Figure 9: In-sample imputation results at 30 % MAR missingness on nine data sets. IMPUGEN is compared with ten baselines on three metrics: MAE, RMSE, and categorical accuracy. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 9.2 % and RMSE by 3.0 % while achieving the highest accuracy rank.

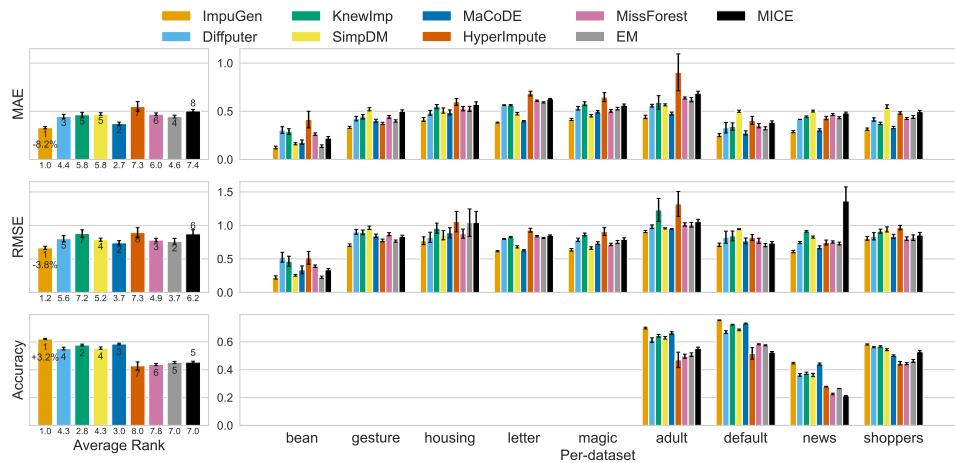


Figure 10: In-sample imputation results at 50 % MAR missingness on nine data sets. IMPUGEN is compared with eight baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker and GAIN are omitted because their performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-dataset scores. On average, IMPUGEN reduces MAE by 8.2 % and RMSE by 3.8 % while achieving the highest accuracy rank.

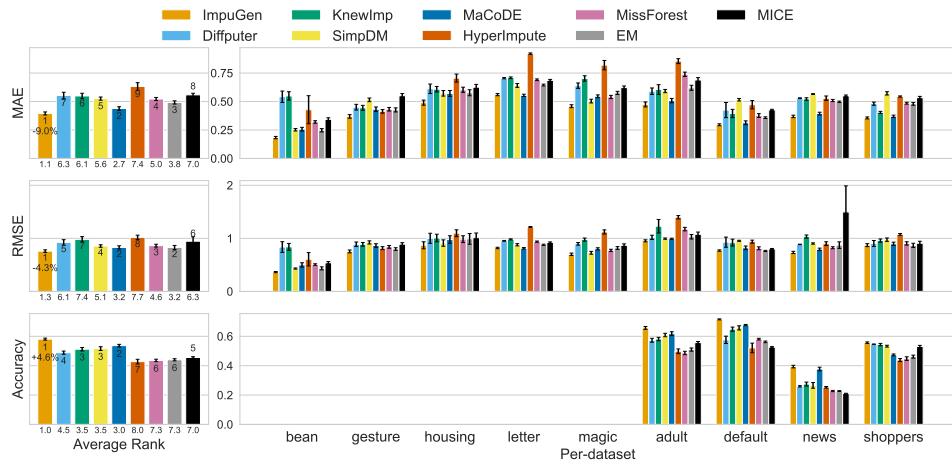


Figure 11: In-sample imputation results at 70 % MAR missingness on nine data sets. IMPUGEN is compared with eight baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker and GAIN are omitted because their performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 9.0 % and RMSE by 4.3 % while achieving the highest accuracy rank.

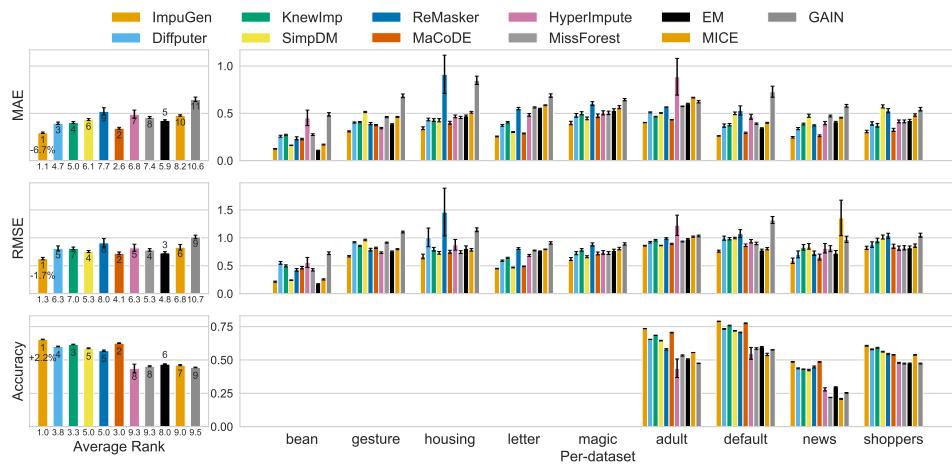


Figure 12: In-sample imputation results at 30 % MNAR missingness on nine data sets. IMPUGEN is compared with ten baselines on three metrics: MAE, RMSE, and categorical accuracy. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 6.7 % and RMSE by 1.7 % while achieving the highest accuracy rank.

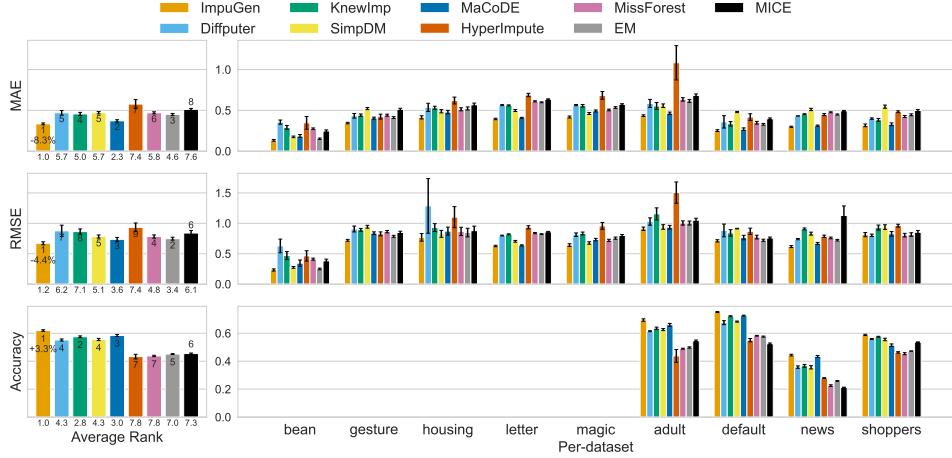


Figure 13: In-sample imputation results at 50 % MNAR missingness on nine data sets. IMPUGEN is compared with eight baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker and GAIN are omitted because their performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 8.3 % and RMSE by 4.4 % while achieving the highest accuracy rank.

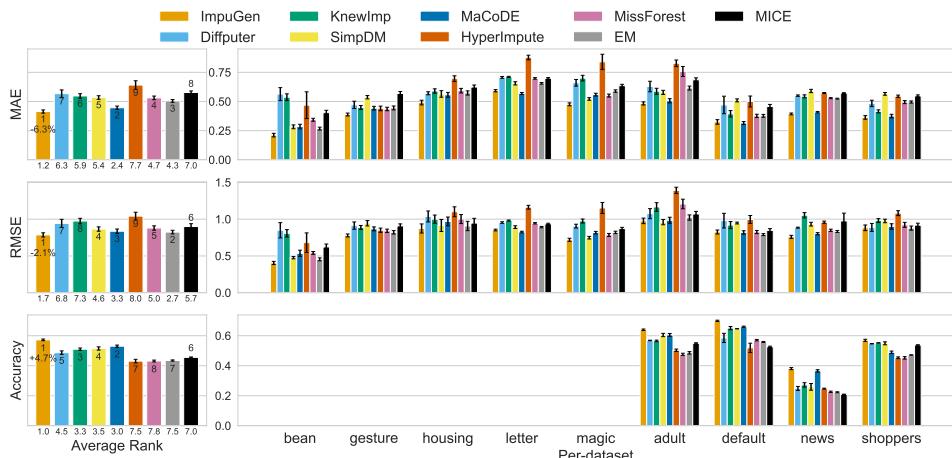


Figure 14: In-sample imputation results at 70 % MNAR missingness on nine data sets. IMPUGEN is compared with eight baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker and GAIN are omitted because their performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 6.3 % and RMSE by 2.1 % while achieving the highest accuracy rank.

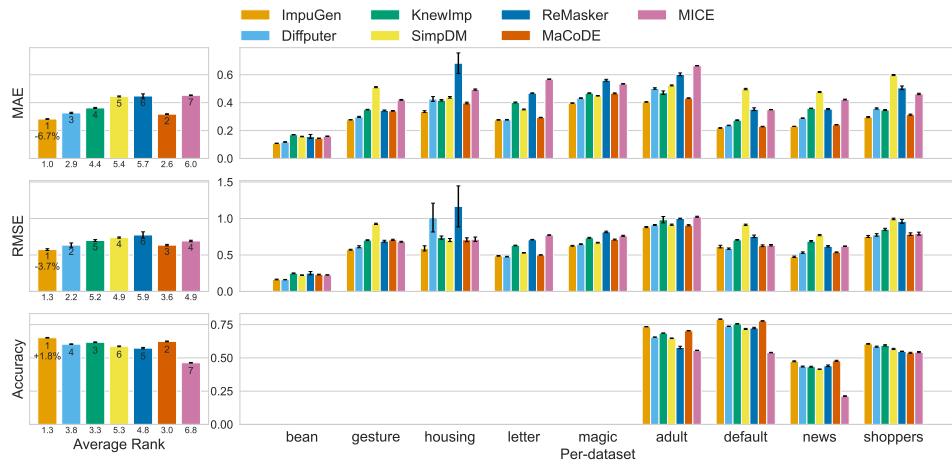


Figure 15: Out-of-sample imputation results at 30 % MCAR missingness on nine data sets. IMPUGEN is compared with six baselines on three metrics: MAE, RMSE, and categorical accuracy. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 6.7 % and RMSE by 3.7 % while achieving the highest accuracy rank.

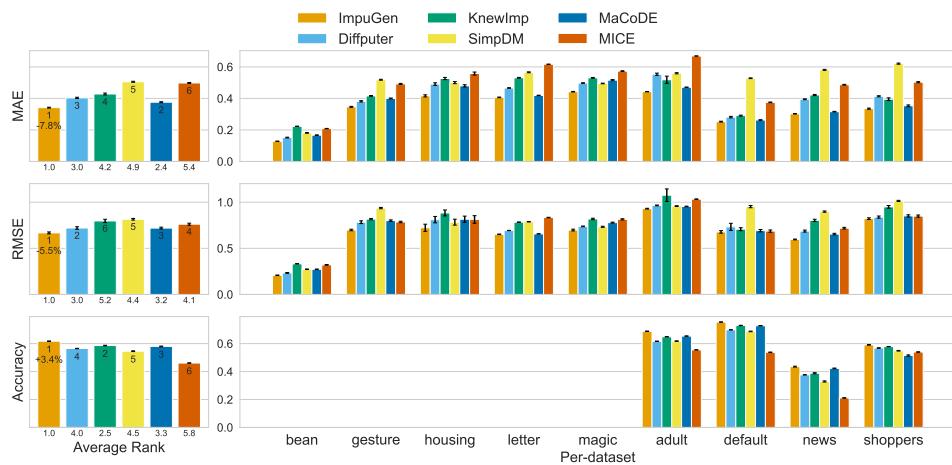
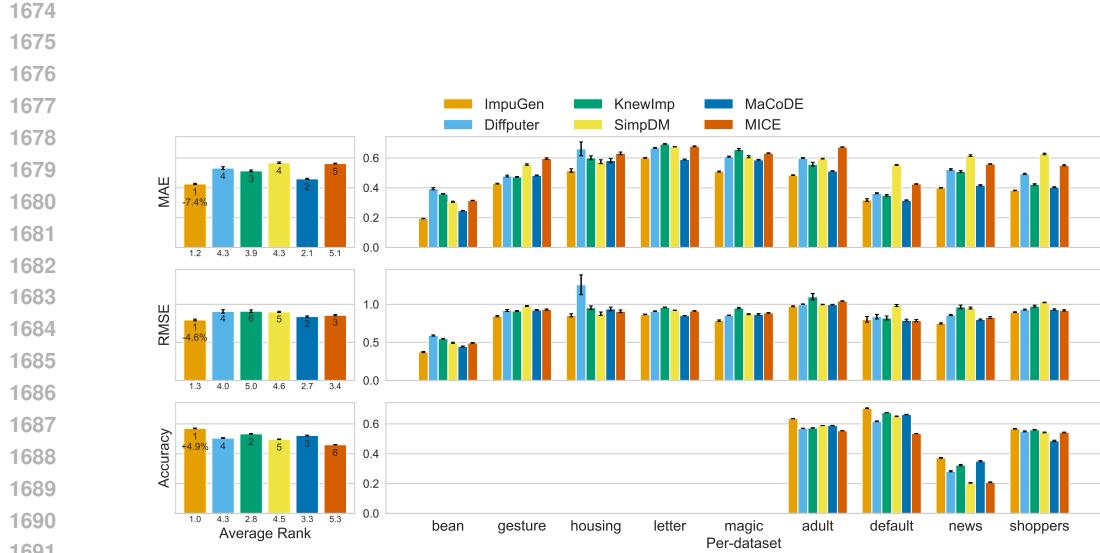
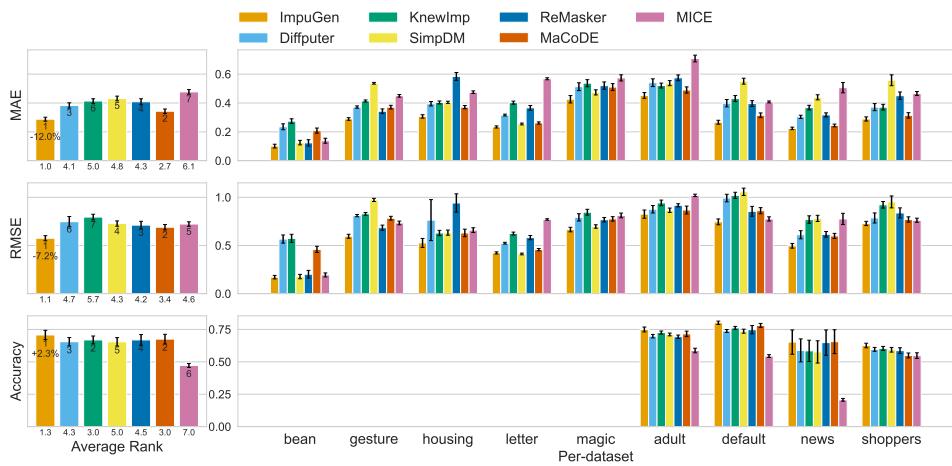


Figure 16: Out-of-sample imputation results at 50 % MCAR missingness on nine data sets. IMPUGEN is compared with five baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker is omitted because its performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 7.8 % and RMSE by 5.5 % while achieving the highest accuracy rank.



1692
1693
1694
1695
1696
1697
1698

Figure 17: Out-of-sample imputation results at 70 % MCAR missingness on nine data sets. IMPUGEN is compared with five baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker is omitted because its performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 7.4 % and RMSE by 4.6 % while achieving the highest accuracy rank.



1720
1721
1722
1723
1724
1725
1726
1727

Figure 18: Out-of-sample imputation results at 30 % MAR missingness on nine data sets. IMPUGEN is compared with six baselines on three metrics: MAE, RMSE, and categorical accuracy. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 12.0 % and RMSE by 7.2 % while achieving the highest accuracy rank.

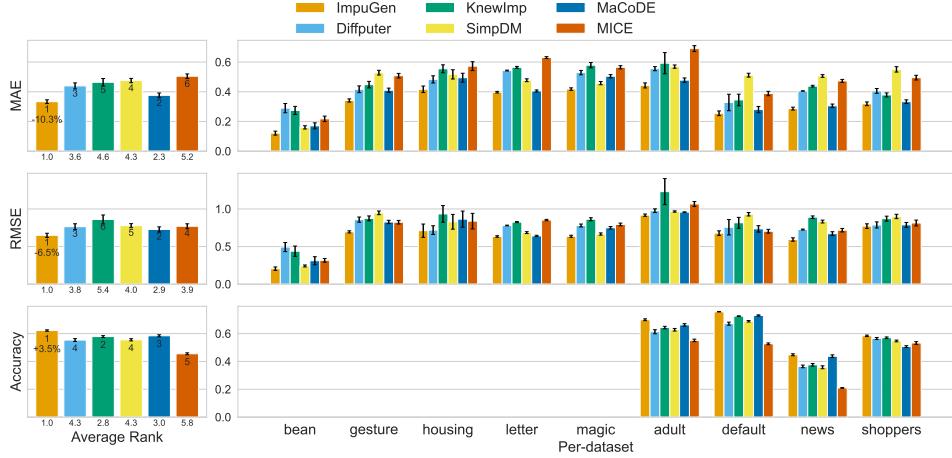


Figure 19: Out-of-sample imputation results at 50 % MAR missingness on nine data sets. IMPUGEN is compared with five baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker is omitted because its performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 10.3 % and RMSE by 6.5 % while achieving the highest accuracy rank.

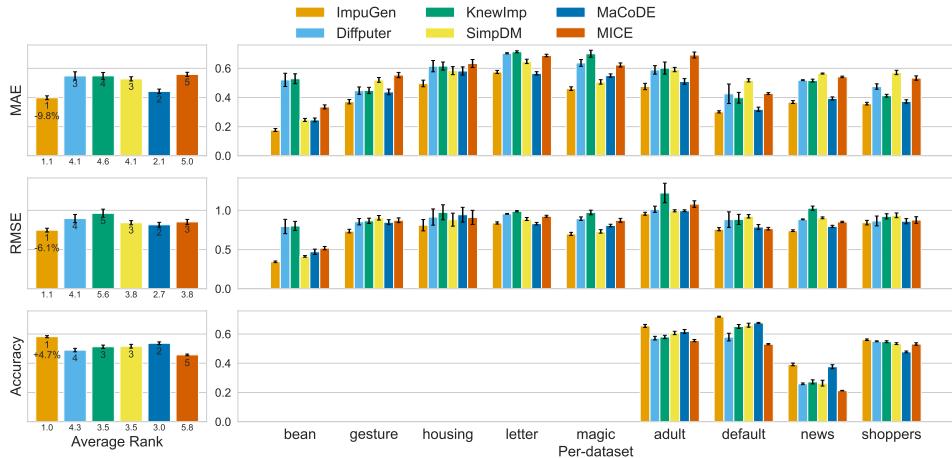


Figure 20: Out-of-sample imputation results at 70 % MAR missingness on nine data sets. IMPUGEN is compared with five baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker is omitted because its performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 9.8 % and RMSE by 6.1 % while achieving the highest accuracy rank.

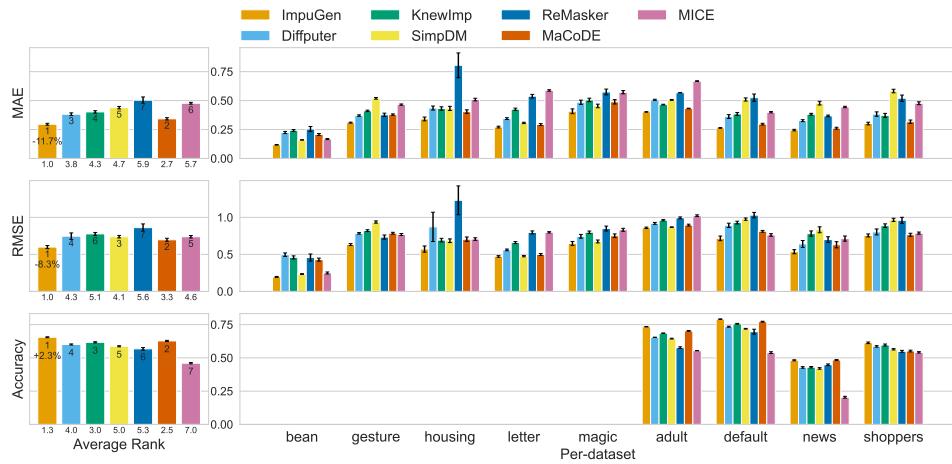


Figure 21: Out-of-sample imputation results at 30 % MNAR missingness on nine data sets. IMPUGEN is compared with six baselines on three metrics: MAE, RMSE, and categorical accuracy. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 11.7 % and RMSE by 8.3 % while achieving the highest accuracy rank.

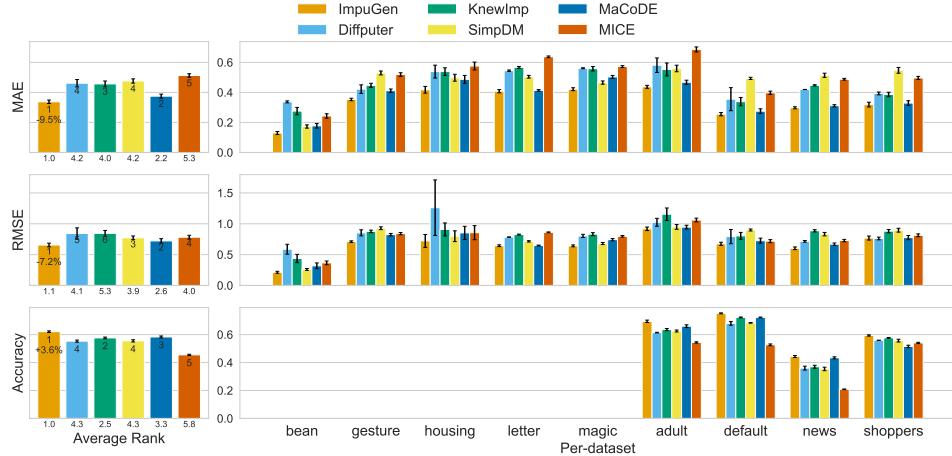


Figure 22: Out-of-sample imputation results at 50 % MNAR missingness on nine data sets. IMPUGEN is compared with five baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker is omitted because its performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-data-set scores. On average, IMPUGEN reduces MAE by 9.5 % and RMSE by 7.2 % while achieving the highest accuracy rank.

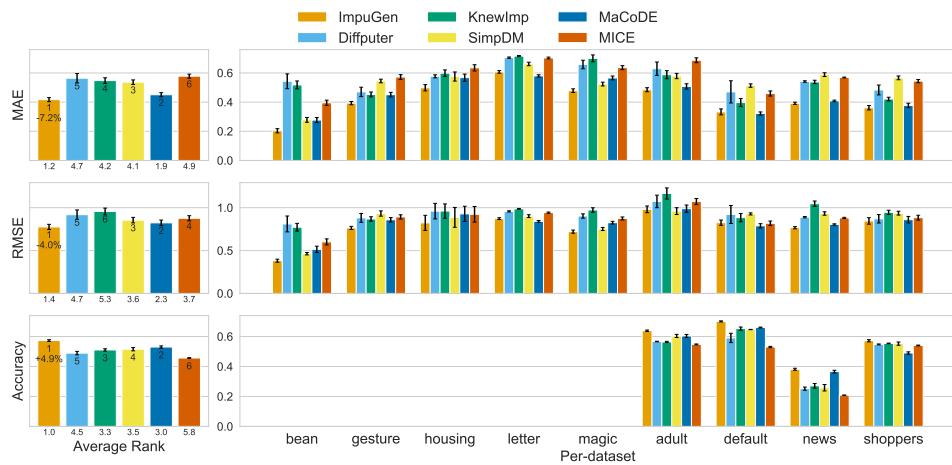


Figure 23: Out-of-sample imputation results at 70 % MNAR missingness on nine data sets. IMPUGEN is compared with five baselines on three metrics: MAE, RMSE, and categorical accuracy. ReMasker is omitted because its performance drops sharply above 50 % missingness. The left panel shows the mean score and average rank for each metric; the percentage under the first bar indicates the average relative gain of IMPUGEN over the strongest baseline. The right panel reports per-dataset scores. On average, IMPUGEN reduces MAE by 7.2 % and RMSE by 4.0 % while achieving the highest accuracy rank.