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Abstract

Unit test generation has become a promis-001
ing and important LLM use case. However,002
existing evaluation benchmarks for assessing003
LLM unit test generation capabilities focus on004
function- or class-level code (single-file) rather005
than more practical and challenging multi-file-006
level codebases. To address such a limitation,007
we propose MultiFileTest, a multi-file-level008
benchmark for unit test generation covering009
Python, Java, and JavaScript. MultiFileTest010
features 20 moderate-sized and high-quality011
projects per language. We evaluate nine fron-012
tier LLMs on MultiFileTest, and the results013
show that all frontier LLMs tested exhibit mod-014
erate performance on MultiFileTest on Python015
and Java, highlighting the difficulty of Mul-016
tiFileTest. We also conduct a thorough error017
analysis, which shows that even frontier LLMs,018
such as Claude-3.5-Sonnet, have significant ba-019
sic yet critical errors, including compilation and020
cascade errors. Motivated by this observation,021
we further evaluate all frontier LLMs under022
manual error-fixing and self-error-fixing sce-023
narios to assess their potential when equipped024
with error-fixing mechanisms.025

1 Introduction026

Unit testing plays an important role in software027

development, helping identify bugs and ensur-028

ing codes are solid and maintainable. Writing029

unit tests is time-consuming, usually accounting030

for approximately 15.8% of software develop-031

ment time for developers (Daka and Fraser, 2014).032

Therefore, automated test case generation, like033

search-based (Fraser and Arcuri, 2011; Harman034

and McMinn, 2009), constraint-based (Xiao et al.,035

2013), and random-based (Pacheco et al., 2007)036

methods, has been proposed to create unit tests.037

However, the generated unit tests are usually less038

readable than manually-written tests and limited039

to certain types of functions (Grano et al., 2018).040

Lately, large language models (LLMs) have be-041

come game-changers, significantly accelerating 042

unit test generation and improving readability and 043

generalizability with little to no human effort (Sid- 044

diq et al., 2024; Xie et al., 2023). 045

Given the rapid adoption of LLMs on unit test- 046

ing, the evaluation of LLM unit test generation 047

capabilities appears to be lagging behind. Previous 048

unit test generation evaluation benchmarks primar- 049

ily focus on function-level, class-level, or single- 050

file-level (Chen et al., 2021; Du et al., 2023; Wang 051

et al., 2024; Jain et al., 2024a) codes. However, 052

multi-file-level codes are more representative of 053

real-world scenarios and practical needs. The com- 054

plex dependency relationships between different 055

files in multi-file codebases make unit test gener- 056

ation more challenging. The only existing bench- 057

mark that has briefly explored multi-file-level unit 058

test generation is DevBench (Li et al., 2024). How- 059

ever, due to its broad focus, the number of projects 060

included for unit test generation is low for each lan- 061

guage (e.g., 5 for Java and 5 combined for C and 062

C++), with varying quality. Half of its projects for 063

unit test generation evaluation are difficult to track, 064

and most of the identifiable projects have fewer 065

than 250 Stars and fewer than 50 Forks. DevBench 066

also does not provide a thorough analysis of er- 067

ror types, potentials, or self-fixing capabilities of 068

frontier LLMs’ multi-file-level unit test generation. 069

Therefore, we propose a new multi-file-level 070

unit test generation evaluation benchmark, Mul- 071

tiFileTest, to offer a larger, higher-quality project 072

set for multi-file-level unit test generation along 073

with a more thorough error analysis of frontier 074

LLMs on unit test generation. MultiFileTest covers 075

three programming languages: Python, Java, and 076

JavaScript. For each programming language, we 077

construct 20 self-contained multi-file projects fil- 078

tered from GitHub1. MultiFileTest applies clear 079

filtering criteria to select projects. It includes 080

1https://github.com/
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moderate-sized projects with multiple files and de-081

pendencies between them. Each project has less082

than 1,600 lines of code, which fits within the max-083

imum input length of most code language models.084

Quality is ensured by the number of stars and forks.085

We evaluate nine frontier LLMs, such as086

Claude-3.5-Sonnet (Anthropic, 2024), Gemini-2.0-087

Flash (Team et al., 2024b), and GPT-o1, on Mul-088

tiFileTest and conduct comprehensive error analy-089

ses. We find that all tested frontier LLMs perform090

moderately on MultiFileTest on Python and Java,091

highlighting the difficulty of MultiFileTest. We092

also observe that different LLMs have different093

language-level expertise. Claude-3.5-Sonnet ranks094

first in Java, while GPT-o1 ranks first in JavaScript.095

Among three programming languages, Java is the096

most difficult language, primarily due to its stricter097

syntax. Among all the tested models, GPT-o1 per-098

forms the best in general, especially in JavaScript.099

Error analyses from above also show that even100

frontier LLMs, like Claude-3.5-Sonnet, have sig-101

nificant compilation and cascade errors. Although102

these errors appear to be preliminary and may be103

relatively easy to fix, they prevent us from observ-104

ing more advanced aspects of LLM performance105

on unit test generation, such as correctness and cov-106

erage. To address this, we first manually fix LLM’s107

compilation and cascade errors and then re-evaluate108

the fixed unit tests. This allows us to measure not109

only the models’ raw performance but also their110

potential for improvement when combined with111

error-fixing mechanisms. By incorporating error-112

fixing, we uncover critical insights into the effort113

required to refine generated tests and better under-114

stand the various types of errors that occur in unit115

tests generated by different LLMs. We observe that116

the model rankings change significantly after the117

manual fix, showing the significant differences in118

different LLMs’ error distribution and their poten-119

tial after error-fixing. Inspired by such findings120

from manual fixes, we also explore using LLMs for121

self-fixing their errors in generating multi-file-level122

unit tests. The results show that while LLMs can123

correct some errors in their generated unit tests,124

their self-fixing abilities still lag behind the quality125

and reliability of human fixes.126

We summarize our contributions as follows: (1)127

we introduce the first multi-file-level benchmark128

for unit test generation and conduct an extensive129

evaluation of nine frontier LLMs, (2) we perform130

thorough error analyses through manual fixing of131

compilation and cascade errors to provide critical132

insights, and (3) we are the first to assess LLMs’ 133

self-fixing capability on unit test generation. 134

2 Related Work 135

2.1 Traditional Unit Test Generation 136

Traditional unit test generation methods employ 137

search-based (Harman and McMinn, 2009; Fraser 138

and Arcuri, 2011; Lukasczyk and Fraser, 2022), 139

constraint-based (Xiao et al., 2013), or random- 140

based (Pacheco et al., 2007) strategies to construct 141

test suites that maximize code coverage. Although 142

these traditional approaches can generate unit tests 143

with reasonable coverage, the resulting tests of- 144

ten have lower readability and less meaningfulness 145

compared to developer-written tests. As a result, 146

automatically generated tests are frequently not 147

directly adopted by practitioners in real-world sce- 148

narios (Almasi et al., 2017; Grano et al., 2019). 149

2.2 LLM-enhanced Unit Test Generation 150

Large Language Models (LLMs) have demon- 151

strated strong code generation capabilities, inspir- 152

ing their use in automated unit test generation. Re- 153

cent approaches in LLM-enhanced unit test gen- 154

eration leverage zero-shot strategies (Siddiq et al., 155

2024), iterative querying (Schäfer et al., 2023), fine- 156

tuning on specialized datasets (Alagarsamy et al., 157

2024), adaptive context selection (Xie et al., 2023), 158

and focusing on subtle code differences (Dakhel 159

et al., 2024; Li et al., 2023). These methods are 160

evaluated with various metrics, including compila- 161

tion success, test correctness, coverage, and bug de- 162

tection, and demonstrate that LLMs can effectively 163

surpass traditional test generation techniques. 164

2.3 Unit Test Generation Benchmark 165

Current benchmarks for LLM-based unit test gen- 166

eration mainly focus on function-level (Wang et al., 167

2024), class-level (Du et al., 2023), or single-file- 168

level code (Jain et al., 2024a). Multi-file-level 169

software testing benchmarks, on the other hand, 170

often target tasks other than unit test generation. 171

For instance, R2E-Eval1 (Jain et al., 2024b) is 172

designed for equivalent test harnesses generation, 173

SWT-Bench (Mündler et al., 2024) focuses on fix- 174

ing specific bugs rather than entire projects, and 175

DevBench (Li et al., 2024) centers on software 176

development tasks. While DevBench touches on 177

multi-file-level unit testing, its dataset is limited in 178

quantity and varies in quality, especially for C/C# 179

and Java, with only five projects each. Moreover, 180
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Figure 1: Overview of the unit test generation process.

its broad focus prevents comprehensive evaluation181

and error analysis of LLM-based multi-file-level182

unit test generation. We include a detailed compar-183

ison with other benchmarks in Appendix G.184

3 Methodology185

We introduce MultiFileTest dataset collection and186

preprocessing (§3.1), evaluation metrics (§3.2), and187

the unit test generation pipeline (§3.3) for evaluat-188

ing LLMs on MultiFileTest across three unit test189

generation scenarios.190

3.1 Benchmark Dataset191

Dataset Collection. Our dataset consists of care-192

fully selected multi-file-level GitHub repositories193

in Python, Java, and JavaScript. We establish our194

selection criteria based on three key factors: 1) a195

reasonable size (2-15 files, <1600 lines of code),196

2) inter-file dependencies, and 3) a reliable source.197

The size threshold ensures code fits within stan-198

dard LLM input windows without truncation, en-199

abling fair comparison across models with differ-200

ent context lengths. This approach isolates our201

core evaluation target—the model’s ability to gen-202

erate unit tests—rather than testing long-context203

management or external tooling. We limit our se-204

lection to repositories with publicly available li-205

censes, ensuring the legality and openness of the206

code. To maintain the quality and reliability of the207

dataset, we choose projects with a high number of208

stars and forks, which signals community approval209

and widespread usage. We also extract smaller,210

self-contained projects from oversized codebases,211

carefully adjusting and ensuring they function in-212

dependently without relying on the original larger213

projects. After applying these criteria, we con-214

struct 20 representative projects per programming215

language. Dataset statistics are summarized in Ta-216

ble 1, with detailed information on dataset sources217

and project-specific information in Appendix A.218

Language Avg. #Files Avg. LOC Avg. #Stars Avg. #Forks
Python 6.10 654.60 5810.30 996.90
Java 4.65 282.60 3306.05 1347.65
JavaScript 4.00 558.05 17242.30 5476.45

Table 1: MultiFileTest Data Statistics. LOC Represents
Lines of Code.

Pre-processing. Dataset pre-processing involves 219

several key steps to ensure the projects are well- 220

structured and suitable for testing. First, we ver- 221

ify all selected projects for syntax errors despite 222

their reliable sources. Second, for projects ex- 223

tracted from larger codebases, we modify them 224

to be self-contained by reorganizing files, adjust- 225

ing domain naming conventions, and/or modifying 226

import paths to remove dependencies on external 227

modules. Next, to enhance the accuracy of line 228

coverage measurements, we consolidate statements 229

that span multiple lines into a single line, ensuring 230

that the metrics are more valid. Additionally, we 231

maintain original coding styles as much as possible 232

to preserve diversity across projects, allowing us to 233

assess how LLMs perform when faced with various 234

programming styles. 235

3.2 Evaluation Metrics 236

We focus on three key aspects when evaluating the 237

generated unit tests: compilation rate, correctness 238

rate, and coverage rate. Compilation rate (ComR) 239

measures the percentage of projects in which the 240

generated test suites compile successfully, indicat- 241

ing how often LLMs produce unit test suites that 242

can be executed without compilation errors. The 243

compilation rate for all projects in X is defined 244

as ComR = |Xcom|
|X| , where X is the project set 245

and Xcom ⊂ X denotes the subset of projects 246

whose test suites compile successfully. Correct- 247

ness rate (CR) calculates the percentage of unit 248

tests that are correct out of all generated unit tests 249

for each project, providing insight into the accu- 250

racy of the test generation process. On average, 251

more than 95% of vanilla-generated unit tests com- 252

pare expected and actual values, reinforcing the 253

validity of CR as an evaluation metric. Detailed 254

statistics see Appendix C. The correctness rate for 255

the project x is defined as CRx = |T cor
x |
|Tx| , where Tx 256

is the generated test suite and T cor
x ⊂ Tx denotes 257

the correct unit test set for the project x. Cover- 258

age rate analyzes both line and branch coverage 259

to understand how well the generated unit tests ex- 260

plore the code’s functionality. The coverage rate 261

for the project x is defined as CRx = covered(x)
total(x) , 262

where covered(x) denotes the number of covered 263
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Figure 2: An example of MultiFileTest.

lines/branches in project x and total(x) the total264

number of lines/branches in project x ∈ X .265

These three evaluation metrics are not indepen-266

dent. If a project has a generated test suite contain-267

ing compilation errors, none of its unit tests can268

be executed successfully, leading to both the cor-269

rectness rate and the coverage rate for the project270

being zero. Additionally, some errors resulting271

in failed tests, like missing Python dependencies,272

can also lead to a change in coverage rate. There-273

fore, considering the interdependencies between274

the three evaluation metrics, we extend our anal-275

ysis beyond the evaluation of vanilla unit tests to276

include manually fixing these errors. This enables277

a more comprehensive assessment of LLMs’ poten-278

tial to generate high-quality unit tests once these279

errors are addressed. This assessment is conducted280

while maintaining the same quantity and diversity281

of unit tests originally generated by the LLMs. Fur-282

thermore, we extend our analysis to examine the283

self-fixing capabilities of LLMs.284

3.3 Unit Test Generation285

Figure 1 shows an overview of the LLM unit test286

generation process. Our unit test generation and287

evaluation aim to ensure fair and thorough assess-288

ments of unit tests generated by LLMs under dif-289

ferent scenarios:290

• Scenario 1: Vanilla unit tests extracted from291

LLMs’ outputs.292

• Scenario 2: Compilable unit tests after manually293

fixing all compilation and cascade errors.294

• Scenario 3: Unit tests refined by LLMs self-295

fixing, provided with error messages and human-296

LLM conversation history.297

Scenario 1: Vanilla Unit Test Generation. We298

input the entire project and the carefully crafted299

prompt into the LLM, ensuring the context and300

requirements are clearly communicated. The com-301

plete project codes are used to ensure LLMs have302

all the necessary context to generate unit tests for303

the entire project, as shown in Figure 2. To rigor-304

Figure 3: An example of compilation error.

ously evaluate LLM capabilities, we craft language- 305

specific prompts addressing different programming 306

language challenges. A comprehensive assessment 307

is ensured by requiring LLMs to generate unit tests 308

for all project files and providing targeted instruc- 309

tions on compilation rate, correctness rate, and cov- 310

erage metrics. This methodical prompt engineering 311

significantly enhances the quality and relevance of 312

the LLM-generated outputs. Appendix B.1 lists all 313

experiment prompts, while Appendix D.1 contains 314

the prompt ablation analysis. The vanilla unit tests 315

are extracted from the LLM response based on the 316

input project and prompt. 317

Scenario 2: Manual Fixing compilation and cas- 318

cade errors. Manually fixing compilation and cas- 319

cade errors is motivated by empirical observations 320

from scenario 1, where even unit tests generated by 321

state-of-the-art LLMs like Claude-3.5-Sonnet con- 322

tain significant compilation errors, making them 323

non-compilable. These tests also exhibit cascade 324

errors that, while easily fixable, can impact mul- 325

tiple unit tests or the entire test suite (details in 326

Section 5.5). Although these errors are prelimi- 327

nary and straightforward to resolve, they obstruct 328

deeper analysis of other critical aspects of LLM 329

performance in unit test generation, particularly 330

correctness and coverage. 331

Therefore, we apply minimal necessary changes 332

to vanilla unit tests, resolving compilation and cas- 333

cade errors while preserving the original test in- 334

tent. Compilation errors2 are defined as errors that 335

prevent testing frameworks from executing. As 336

shown in Figure 3, ModuleNotFoundError causes 337

pytest to fail before collecting any unit tests, mak- 338

ing the entire test suite uncompilable. This results 339

not only in compilation failure but also in unreach- 340

able correctness and coverage rates.3 Cascade er- 341

2While Python is an interpreted language, we classify er-
rors that cause pytest to fail before collecting and running any
tests as compilation errors.

3We consider unreachable correctness and coverage rate
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Figure 4: An example of cascade error.

rors are defined as errors that cause cascading fail-342

ures across multiple unit tests or even the entire343

test suite. Figure 4 demonstrates how a simple344

NameError (missing NumPy import) can invali-345

date multiple fundamentally correct tests. Most of346

these errors are straightforward and mechanical to347

correct. Given that these fixes necessitate limited348

reasoning capabilities and typically involve small,349

localized modifications, it minimizes the influence350

of annotator skill variation and ensures fair model351

comparison post-fix.352

By resolving these errors, manual fixing ensures353

that all unit tests are compilable and no cascade354

errors invalidate tests that are fundamentally cor-355

rect. This manual fixing is essential for evaluating356

the quality and reliability of generated unit tests,357

providing deeper insights into the effectiveness of358

LLM-generated unit tests, and identifying areas359

for improvement. This process also helps assess360

LLMs’ potential for continuous improvement once361

such basic errors are resolved. Additionally, we362

evaluate unit tests with only compilation errors363

fixed in Appendix D.2.364

Scenario 3: LLM Self-fixing. Inspired by our ob-365

servation from manual fixing that different LLMs366

exhibit significantly different potentials after man-367

ual fixing, we seek to investigate how LLMs per-368

form in self-fixing on our benchmark. We explore369

LLMs’ self-fixing abilities by incorporating human-370

LLM conversation history and error messages as371

shown in Figure 5. We provide LLMs with the con-372

versation history (including the system prompt, the373

user prompt for unit test generation requests, and374

LLM vanilla response), error messages obtained375

from the testing framework, and the user prompt for376

error fixing requests. When the open-source LLM’s377

as zero.

System Prompt: You are a coding assistant...
User Prompt: {Original Codes} Please generate enough unit test cases...
LLM Response: {Generated Vanilla Unit Tests}
User Prompt: Here are the error messages from the tests: {Error
Messages}. Errors exist in the generated unit tests. Please fix the unit
tests to address these errors and provide the entire unit tests.

Self-fixing Prompt for Python

Figure 5: The prompt used for the LLM self-fixing
scenario for Python projects.

input length is limited, we prioritize the informa- 378

tion hierarchically: system prompt, LLM’s initial 379

response, error messages, error-fixing requests, and 380

unit test generation requests. We truncate less crit- 381

ical information as necessary while reserving at 382

least 2,000 tokens for the LLM’s self-fixing out- 383

puts. LLM self-fixing scenario helps us understand 384

LLMs’ error-fixing ability and their potential to 385

generate better unit tests when incorporating the 386

self-fixing process. Note that during self-fixing, 387

we do not constrain the target error types to just 388

compilation or cascade errors. 389

4 Experimental Settings 390

4.1 Models 391

We evaluate five close-sourced models: GPT-o1, 392

Gemini-2.0-Flash-Exp (Gemini-2.0-Flash) (Team 393

et al., 2024b), Claude-3.5-Sonnet-20241022 394

(Claude-3.5-Sonnet) (Anthropic, 2024), GPT-4- 395

Turbo (Achiam et al., 2023) and GPT-3.5-Turbo, 396

and four open-sourced models: CodeQwen1.5-7B- 397

Chat (CodeQwen1.5) (Bai et al., 2023), DeepSeek- 398

Coder-6.7b-Instruct (DeepSeek-Coder) (Guo et al., 399

2024; Zhu et al., 2024), CodeLlama-7b-Instruct- 400

hf (CodeLlama) (Roziere et al., 2023), and 401

CodeGemma-7b-it (CodeGemma) (Team et al., 402

2024a). Detailed information is in Appendix B.2. 403

4.2 Implementation Details 404

We use zero-shot prompting with temperature 0 405

for unit test generation, running experiments on 8 406

NVIDIA A100 GPUs with input length maximized 407

to each LLM’s token limit. We use Pytest4 for 408

Python, JUnit5 for Java, and Jest6 for JavaScript 409

regarding testing frameworks. For Java code cov- 410

erage, we use JaCoCo7. The manual fixes are per- 411

formed by PhD candidates in Computer Science 412

with extensive experience in software engineering 413

and program analysis. 414

4https://docs.pytest.org/en/stable/
5https://junit.org/
6https://jestjs.io/
7https://www.eclemma.org/jacoco/
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Model CR ComR LC BC #Tests #Correct
Python

GPT-4-Turbo 47 65 40 36 12.60 6.15
GPT-3.5-Turbo 37 60 38 34 16.90 6.65
GPT-o1 60 65 56 54 36.35 21.7
Gemini-2.0-Flash 46 65 42 39 34.95 16.95
Claude-3.5-Sonnet 64 70 51 47 18.05 10.40
CodeQwen1.5 24 65 43 40 25.40 6.80
DeepSeek-Coder 37 70 39 35 7.20 2.95
CodeLlama 16 60 41 37 19.30 3.95
CodeGemma 13 50 31 28 15.00 2.30

Java
GPT-4-Turbo 21 35 15 12 7.05 2.20
GPT-3.5-Turbo 13 25 8 7 7.50 0.80
GPT-o1 41 60 44 35 15.70 6.85
Gemini-2.0-Flash 19 30 14 12 23.30 3.90
Claude-3.5-Sonnet 53 75 47 33 12.35 7.30
CodeQwen1.5 0 0 0 0 12.95 0.00
DeepSeek-Coder 8 20 5 5 7.00 0.60
CodeLlama 0 0 0 0 7.85 0.00
CodeGemma 0 0 0 0 10.50 0.00

JavaScript
GPT-4-Turbo 67 75 56 46 16.30 11.10
GPT-3.5-Turbo 51 65 37 28 13.25 8.05
GPT-o1 87 95 87 75 39.40 33.30
Gemini-2.0-Flash 59 70 64 61 45.85 22.55
Claude-3.5-Sonnet 65 80 59 53 20.25 13.35
CodeQwen1.5 23 35 25 20 8.45 4.80
DeepSeek-Coder 62 85 50 35 11.85 7.90
CodeLlama 26 85 20 14 48.75 18.00
CodeGemma 29 55 28 21 9.00 3.00

Table 2: Main Results. CR: Correctness Rate (%),
ComR: Compilation Rate (%), LC: Line Coverage (%),
BC: Branch Coverage (%).

5 Experiments415

We evaluate the generated unit tests from three416

scenarios, vanilla (§ 5.1), after manual fixing of417

compilation and cascade errors (§ 5.2), and LLM418

self-fixing (§ 5.3). For each scenario, we evalu-419

ate the Correctness Rate (CR), Compilation Rate420

(ComR), Line Coverage (LC), and Branch Cov-421

erage (BC). We also conduct unique contribution422

analyses (§5.4) and detailed error analyses (§ 5.5).423

5.1 Main Results424

The main results of the LLMs’ unit test genera-425

tion performance focus on the vanilla unit tests426

extracted directly from the LLMs’ outputs without427

any changes. This scenario assesses the LLMs’ raw428

capability to generate multi-file-level unit tests.429

Table 2 shows the evaluation results for vanilla430

unit tests. First, LLMs demonstrate varying431

language-level expertise. For example, Claude-3.5-432

Sonnet performs the best in Java but falls behind433

GPT-o1 in JavaScript. Second, LLMs have differ-434

ent metric-level expertise as well, validating the435

effectiveness of different evaluation metrics. For436

example, in Python, Claude-3.5-Sonnet performs 437

the best in CR and ComR while falling behind 438

GPT-o1 in LC and BC. 439

Among three programming languages, Java 440

poses the greatest challenge due to its stricter syn- 441

tax requirements. Many models fail to generate 442

valid Java code, leading to low compilation rates 443

and execution coverage. Among all the evaluated 444

models, GPT-o1 performs the best in general, espe- 445

cially in JavaScript. CodeLlama and CodeGemma 446

have the worst general performance. We also ob- 447

serve that some models tend to generate more unit 448

tests. However, generating more unit tests does not 449

necessarily lead to better coverage rates. For exam- 450

ple, Gemini-2.0-Flash tends to generate the most 451

unit tests but does not obtain the best coverage rate. 452

Additionally, sometimes the open-source model 453

can even outperform some closed-source models. 454

For example, DeepSeek-Coder surpasses GPT-3.5- 455

Turbo on Python and JavaScript. Finally, we con- 456

firmed from such results that dependencies exist 457

in metrics. On Java, models like CodeQwen1.5, 458

CodeLlama, and CodeGemma fail to generate com- 459

pilable unit tests, resulting in the lowest correctness 460

rates and coverage rates. We verify the robustness 461

of these experimental results through multiple runs 462

in Appendix C. 463

5.2 Manual Fixing Results 464

Table 3 presents evaluation results after manual 465

fixing, highlighting substantial improvements com- 466

pared to vanilla outputs across all programming lan- 467

guages and LLMs. These significant gains demon- 468

strate that LLM-generated unit tests are highly sen- 469

sitive to compilation and cascade errors. 470

Among programming languages, Java benefits 471

most from manual fixing. In the vanilla scenario, 472

Java exhibits the lowest compilation rates, making 473

it particularly challenging. However, after manual 474

fixing, Java shows the most substantial improve- 475

ment, highlighting the potential of LLMs for Java 476

after fixing compilation and cascade errors. Among 477

all models, GPT-o1 maintains its superior perfor- 478

mance after manual fixing, while CodeLlama and 479

CodeGemma continue to demonstrate the weakest 480

overall results. Gemini-2.0-Flash shows the best 481

coverage improvement overall, indicating excep- 482

tional potential for better unit test generation once 483

compilation and cascade errors are fixed. Our anal- 484

ysis reveals that manual fixing can reorder model 485

performance rankings. For example, in Java, Code- 486

Qwen1.5 outperforms DeepSeek-Coder and is now 487
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Model CR ComR LC BC #Tests #Correct
Python

GPT-4-Turbo 74(+27) 100 65(+25) 59(+23) 12.60 9.30
GPT-3.5-Turbo 64(+27) 100 63(+25) 57(+23) 16.90 10.50
GPT-o1 89(+29) 100 88(+32) 86(+32) 36.35 32.25
Gemini-2.0-Flash 61(+15) 100 71(+29) 68(+29) 34.95 22.10
Claude-3.5-Sonnet 92(+28) 100 74(+23) 70(+23) 18.05 16.40
CodeQwen1.5 46(+22) 100 70(+27) 65(+25) 25.40 10.90
DeepSeek-Coder 53(+16) 100 60(+21) 54(+19) 7.20 4.10
CodeLlama 31(+15) 100 61(+20) 56(+19) 19.30 7.20
CodeGemma 36(+23) 100 54(+23) 49(+21) 15.00 7.85

Java
GPT-4-Turbo 59(+38) 100 40(+25) 32(+20) 7.05 5.05
GPT-3.5-Turbo 54(+41) 100 36(+28) 27(+20) 7.50 4.55
GPT-o1 64(+23) 100 65(+21) 56(+21) 15.7 10.75
Gemini-2.0-Flash 56(+37) 100 54(+40) 53(+41) 23.30 15.25
Claude-3.5-Sonnet 74(+21) 100 60(+13) 53(+20) 12.35 9.65
CodeQwen1.5 60(+60) 100 42(+42) 31(+31) 12.95 8.40
DeepSeek-Coder 52(+44) 100 33(+28) 19(+14) 7.00 3.80
CodeLlama 36(+36) 100 25(+25) 20(+20) 7.85 4.95
CodeGemma 57(+57) 100 37(+37) 22(+22) 10.50 6.50

JavaScript
GPT-4-Turbo 89(+22) 100 75(+19) 59(+13) 16.30 14.20
GPT-3.5-Turbo 74(+23) 100 58(+21) 45(+17) 13.25 11.20
GPT-o1 91(+4) 100 92(+5) 79(+4) 39.40 35.15
Gemini-2.0-Flash 76(+17) 100 88(+24) 80(+19) 45.85 33.45
Claude-3.5-Sonnet 87(+22) 100 77(+18) 68(+15) 20.25 17.55
CodeQwen1.5 32(+9) 100 35(+10) 27(+7) 8.45 6.15
DeepSeek-Coder 67(+5) 100 58(+8) 43(+8) 11.85 8.10
CodeLlama 62(+36) 100 44(+24) 28(+14) 48.75 31.50
CodeGemma 58(+29) 100 50(+22) 38(+17) 9.00 6.40

Table 3: Manual Fixing Results with Improvements
Shown in Parentheses.

on par with GPT-4-Turbo after fixing. In Python,488

Gemini-2.0-Flash surpasses CodeQwen1.5, show-489

ing better potential post-fix. In JavaScript, GPT-490

3.5-Turbo reaches parity with DeepSeek-Coder.491

5.3 LLMs Self-fixing Results492

LLM self-fixing utilizes human-LLM conversation493

history and error messages to assist LLMs in fixing494

errors. This scenario assesses LLMs’ self-fixing495

capabilities and their potential to generate better496

unit tests by incorporating self-fixing.497

Table 4 shows the LLM self-fixing evaluation498

results compared with manual fixing results. First,499

we observe that most closed-source models have500

effective self-fixing abilities, generating better unit501

tests than vanilla results. In contrast, the evaluated502

open-source models lack reliable self-fixing abil-503

ities. This limitation likely stems from restricted504

input length, which leads to incomplete context,505

alongside weaker comprehension and instruction-506

following abilities. For instance, CodeGemma and507

CodeLlama tend to generate textual instructions508

for fixing errors rather than directly producing the509

corrected unit tests specified in the prompt.510

Second, LLM self-fixing follows similar but not511

identical trends to manual fixing, suggesting that512

Model CR ComR LC BC #Tests #Correct
Python

GPT-4-Turbo 52(-22) 70(-30) 39(-26) 35(-24) 8.85 4.55
GPT-3.5-Turbo 52(-12) 75(-25) 45(-18) 39(-18) 14.15 8.20
GPT-o1 67(-22) 70(-30) 60(-28) 58(-28) 35.50 24.35
Gemini-2.0-Flash 47(-14) 60(-40) 45(-26) 42(-26) 34.95 17.40
Claude-3.5-Sonnet 86(-6) 90(-10) 67(-7) 63(-7) 18.00 15.55
CodeQwen1.5 22(-24) 60(-40) 41(-29) 37(-28) 25.15 6.25
DeepSeek-Coder 18(-35) 35(-65) 20(-40) 18(-36) 4.30 1.45
CodeLlama 0(-31) 5(-95) 5(-56) 5(-51) 3.90 0.00
CodeGemma 8(-28) 25(-75) 14(-40) 13(-36) 9.15 0.70

Java
GPT-4-Turbo 43(-16) 55(-45) 26(-14) 18(-14) 6.40 2.80
GPT-3.5-Turbo 17(-37) 25(-75) 11(-25) 12(-15) 6.90 1.05
GPT-o1 68(+4) 85(-15) 58(-7) 54(-2) 15.60 10.10
Gemini-2.0-Flash 31(-25) 40(-60) 29(-25) 24(-29) 22.65 7.15
Claude-3.5-Sonnet 55(-19) 70(-30) 39(-21) 31(-22) 10.95 6.70
CodeQwen1.5 5(-55) 5(-95) 0(-42) 0(-31) 12.60 0.05
DeepSeek-Coder 13(-39) 20(-80) 5(-28) 2(-17) 1.35 0.25
CodeLlama 0(-36) 0(-100) 0(-25) 0(-20) 1.30 0.00
CodeGemma 2(-55) 5(-95) 3(-34) 0(-22) 1.75 0.05

JavaScript
GPT-4-Turbo 70(-19) 85(-15) 48(-27) 35(-24) 8.35 6.35
GPT-3.5-Turbo 64(-10) 75(-25) 40(-18) 30(-15) 9.70 5.00
GPT-o1 54(-37) 65(-35) 47(-45) 38(-41) 20.30 12.25
Gemini-2.0-Flash 75(-1) 85(-15) 71(-17) 65(-15) 40.95 28.65
Claude-3.5-Sonnet 74(-13) 80(-20) 60(-17) 53(-15) 18.05 13.35
CodeQwen1.5 55(+23) 95(-5) 66(+31) 52(+25) 26.10 15.50
DeepSeek-Coder 14(-53) 35(-65) 15(-43) 10(-33) 2.90 1.00
CodeLlama 9(-53) 35(-65) 7(-37) 5(-23) 7.15 0.55
CodeGemma 31(-27) 60(-40) 29(-21) 21(-17) 10.85 3.05

Table 4: Evaluation Results after Self-fixing. The Com-
parisons with Manual Fixing are Shown in Parentheses.

although LLMs’ improvement potential generally 513

aligns with self-fixing capabilities, some LLMs 514

deviate from this pattern. In JavaScript, GPT-o1’s 515

self-fixing yields substantially lower coverage rates 516

compared to manual fixing due to generating fewer 517

unit tests and achieving lower compilation rates. 518

Despite currently underperforming compared to 519

manual fixing, LLM self-fixing demonstrates sig- 520

nificant potential. Self-fixing has proven effective 521

when LLMs have the necessary capabilities, and 522

it even has the potential to surpass manual fixing 523

due to its flexibility. For example, in JavaScript, 524

CodeQwen1.5 shows greater improvement through 525

self-fixing than manual fixing. This occurs because 526

CodeQwen1.5 occasionally misinterprets prompts 527

in vanilla outputs, generating no unit tests. While 528

manual fixing cannot remedy this fundamental un- 529

derstanding issue, self-fixing enables the model 530

to correctly interpret test generation requirements 531

when error messages indicate missing tests. 532

5.4 Unique Contribution of Unit Tests 533

Beyond standard coverage metrics, we introduce a 534

novel evaluation measure–unique contribution–to 535

assess the efficiency and non-redundancy of gen- 536

erated unit tests on Python. The unique contribu- 537
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Model #Tests LC BC Unique
GPT-4-Turbo 12.60 40 36 6.35
GPT-3.5-Turbo 16.90 38 34 5.90
GPT-o1 36.35 56 54 6.75
Gemini-2.0-Flash 34.95 42 39 6.05
Claude-3.5-Sonnet 18.05 51 47 11.40
CodeQwen1.5 25.40 43 40 3.75
DeepSeek-Coder 7.20 39 35 8.90
CodeLlama 19.30 41 37 5.55
CodeGemma 15.00 31 28 2.70

Table 5: Unique Contribution on Vanilla Unit Tests.

tion is defined as the total portion of coverage con-538

tributed by each generated unit test that does not539

overlap with the coverage of other unit tests. This540

measure addresses two critical limitations of con-541

ventional metrics. First, it accounts for variations542

in test quantity across different LLMs, as relying543

solely on coverage rate becomes insufficient when544

models produce widely differing numbers of tests.545

Second, it recognizes the importance of achiev-546

ing high coverage with minimal tests, as executing547

numerous tests can be resource-intensive and time-548

consuming. Further details in Appendix H.549

Table 5 reveals that all tested LLMs exhibit low550

unique contribution rates, indicating a tendency to-551

ward redundant and repetitive unit tests. Although552

GPT-o1 has better coverage rates than Claude-3.5-553

Sonnet, it produces significantly more unit tests,554

and its unique contribution is lower than Claude-555

3.5-Sonnet’s, indicating it prioritizes quantity over556

quality to attain higher coverage. This approach557

potentially compromises the overall efficiency of558

the testing process.559

5.5 Error Analyses560

We conduct complex analyses of compilation, cas-561

cade, and post-fix errors per programming lan-562

guage, identifying common errors and their un-563

derlying causes. Full analyses in Appendix F.564

Compilation Error Analyses. In Python, com-565

mon compilation errors arise from incorrect import566

paths for project functions/classes, hallucinated567

import names/paths, and mismatched parentheses.568

Java, being more syntax-heavy, faces various com-569

pilation errors, like hallucinated methods/construc-570

tors/classes, missing essential elements like pack-571

age declarations, illegal access to private/protected572

elements, invalid code generation, and improper573

use of mocking frameworks, along with argument574

type mismatches, ambiguous references, and in-575

compatible types. JavaScript errors typically in-576

clude hallucinated imports with incorrect paths, 577

empty test suites, and syntax errors from incom- 578

plete code generation or mismatched parentheses. 579

Cascade Error Analyses. For Python, cascade er- 580

rors include missing imports (e.g., numpy, unittest, 581

project functions/classes) and FileNotFoundError 582

due to unmocked external files. For Java, the 583

most common cascade error is improper or missing 584

mocking of user interactions, leading to unusable 585

coverage reports when tests terminate abruptly. For 586

JavaScript, the cascade errors include missing im- 587

ports (e.g., chai, three, project functions/classes), 588

confusion between named and default imports, and 589

Jest framework compliance issues. 590

Post-Fix Error Analyses. For all programming 591

languages, the mismatch between expected and ac- 592

tual values is the most common error. In Python, 593

AttributeError often occurs due to LLMs halluci- 594

nating non-existent attributes. In Java, frequent 595

errors include NullPointerException, zero interac- 596

tions with mocks, and failures to release mocks 597

due to improper usage. Another frequent error in 598

JavaScript is TypeError, typically caused by LLMs 599

hallucinating non-existent functions and construc- 600

tors or LLMs invalidly mocking some variables. 601

Overall. Several error patterns persist across 602

programming languages, notably hallucinations of 603

functions or classes and missing required functions 604

or classes. Missing required functions or classes 605

often occurs because LLMs prioritize logical struc- 606

ture over boilerplate code and fail to understand 607

the codebase structure and the dependencies be- 608

tween functions, classes, or modules. Failure to un- 609

derstand the codebase structure and dependencies 610

can also cause other mistakes, such as confusing 611

non-package and package-based projects (Python) 612

or incorrectly using functions, classes, or packages 613

(Java). The most common post-fix error is the mis- 614

match between expected and received values, often 615

caused by incorrect expected values due to the weak 616

reasoning abilities of LLMs. 617

6 Conclusion 618

In conclusion, we build a reliable and high-quality 619

multi-file-level unit test generation benchmark – 620

MultiFileTest – with three programming languages. 621

We comprehensively evaluate nine LLMs’ unit test 622

generation abilities with/without manual fixing and 623

LLM self-fixing mechanism on MultiFileTest. Be- 624

sides, we conduct comprehensive error analyses 625

per programming language. 626
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Limitations627

Our study has several limitations. First, our628

focus is primarily on three programming lan-629

guages—Python, Java, and JavaScript—excluding630

other relevant languages such as C and C#.631

Second, the scale of projects in our benchmark632

is limited to approximately 1600 lines of code,633

which is smaller than many production-scale code-634

bases. This constraint stems from the inherent in-635

put length restrictions and context window limita-636

tions of current LLMs, which make processing very637

large codebases impractical for tasks like unit test638

generation without introducing confounding vari-639

ables. Despite this size constraint, these projects640

are designed to retain key structural characteris-641

tics of larger codebases, including multiple files642

with meaningful inter-file dependencies, cross-file643

function calls, class inheritance, and shared util-644

ity components. This ensures the benchmark still645

evaluates reasoning across files, which is central646

to multi-file-level unit test generation. Our experi-647

mental results demonstrate that even at this reduced648

scale, multi-file-level unit test generation remains649

challenging for state-of-the-art models like Claude-650

3.5-Sonnet. Expanding to significantly larger code-651

bases would likely shift the evaluation focus toward652

context handling techniques (e.g., truncation, re-653

trieval, or hierarchical methods) rather than core654

LLM test generation ability. While our benchmark655

does not represent the full complexity of produc-656

tion systems, it serves as a meaningful and chal-657

lenging step toward that goal, providing valuable658

evaluation grounded in the practical capabilities of659

current LLMs.660
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A Dataset818

We provide the detailed information of our datasets819

in Table 6, Table 7, and Table 8. We provide pro-820

gramming language, project name, license, link,821

number of stars, and number of forks for each indi-822

vidual project.823

The license of "Author Permission" in Table 7824

means that we obtain the usage permission from825

the author of the corresponding repository8.

Project Name License Link #Stars #Forks
blackjack MIT license blackjack 2937 641
bridge MIT license bridge 2937 641
doudizhu MIT license doudizhu 2937 641
fuzzywuzzy MIT license fuzzywuzzy 9200 876
gin_rummy GPL-2.0 license gin_rummy 2937 641
keras_preprocessing MIT license keras_preprocessing 1024 443
leducholde MIT license leducholde 2937 641
limitholdem MIT license limitholdem 2937 641
mahjong MIT license mahjong 2937 641
nolimitholdem MIT license nolimitholdem 2937 641
slugify MIT license slugify 1500 109
stock CC-BY-SA-4.0 license stock 10700 1800
stock2 CC-BY-SA-4.0 license stock2 10700 1800
stock3 CC-BY-SA-4.0 license stock3 10700 1800
stock4 CC-BY-SA-4.0 license stock4 10700 1800
structly CC-BY-SA-4.0 license structly 10700 1800
svm MIT license svm 10800 1800
the fuzz CC-BY-SA-4.0 license the fuzz 2949 141
tree CC-BY-SA-4.0 license tree 10800 1800
uno MIT license uno 2937 641

Table 6: Dataset Details (Python).
826

Project Name License Link #Stars #Forks
Actor_relationship_game Apache-2.0 license Actor_relationship_game 85 5
banking application MIT license banking application 341 366
CalculatorOOPS MIT license CalculatorOOPS 525 513
emailgenerator MIT license emailgenerator 525 513
heap MIT license heap 60500 19600
idcenter Apache-2.0 license idcenter 146 136
libraryApp MIT license libraryApp 341 366
libraryManagement MIT license libraryManagement 341 366
logrequestresponseundertow Author Permission logrequestresponseundertow 152 131
Password_Generator MIT license Password_Generator 341 366
Pong Game MIT license Pong Game 341 366
redis Apache-2.0 license redis 413 218
servlet MIT license servlet 341 366
simpleChat MIT license simpleChat 543 1500
springdatamongowithcluster Author Permission springdatamongowithcluster 152 131
springmicrometerundertow Author Permission springmicrometerundertow 152 131
springreactivenonreactive Author Permission springreactivenonreactive 152 131
springuploads3 Author Permission springuploads3 152 131
Train MIT license Train 545 1600

Table 7: Dataset Details (Java).

B More Implementation Details827

B.1 Prompts828

The prompts are displayed in Figure 6, 7, 8, and829

9.830

B.2 Models831

The detailed information of models, including li-832

cense and link, is provided in Table 9.833

C More Statistics834

Table 10 presents the percentages of the vanilla-835

generated unit tests containing comparisons be-836

tween expected and actual values per language and837

per model.838

8https://github.com/frandorado/spring-
projects/tree/master

Project Name License Link #Stars #Forks
aggregate MIT license aggregate 1500 18
animation MIT license animation 103000 35400
check MIT license check 1500 18
circle MIT license circle 2700 330
ckmeans ISC license ckmeans 3400 226
controls MIT license controls 103000 35400
convex MIT license convex 2700 330
easing MIT license easing 418 9
magnetic MIT license magnetic 418 9
overlapkeeper MIT license overlapkeeper 2700 330
particle MIT license particle 2700 330
pixelrender MIT license pixelrender 2400 274
plane MIT license plane 2700 330
solver MIT license solver 2700 330
span MIT license span 2400 274
spherical MIT license spherical 103000 35400
synergy MIT license synergy 310 3
t_test ISC license t_test 3400 226
validate MIT license validate 1500 18
zone MIT license zone 2400 274

Table 8: Dataset Details (JavaScript).

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} Please generate enough unit test cases
for each Python file in the project. Ensure that the import path is correct,
depending on whether the project is structured as a package. Make sure
the tests can successfully compile. Make sure the tests have correct
results. Try to achieve the highest coverage rate.

Vanilla Prompt for Python

Figure 6: The prompt used to generate unit tests for
Python projects. Purple indicates language-specific in-
struction. Blue, orange, and red indicates instructions
related to compilation rate, correctness rate, and cover-
age rate, respectively.

To address concerns about statistical robustness, 839

we conduct three independent runs of unit test gen- 840

eration using GPT-3.5-Turbo as shown in Table 11. 841

The variance across these runs is minimal, indi- 842

cating that model performance on MultiFileTest 843

is stable and reproducible, further supporting the 844

benchmark’s reliability. 845

D Ablation Study 846

D.1 Ablation Study on Prompts 847

We perform a detailed ablation study to analyze 848

the impact of prompts on the performance of unit 849

test generation by LLMs. As mentioned in § 3.3, 850

the prompt is composed of programming language- 851

specific requirements (PL), as well as requirements 852

related to the correctness rate (CR), the compila- 853

tion rate (ComR), and the coverage rate metrics 854

(Coverage). We ablate each component and an- 855

alyze the performance of unit test generation of 856

GPT-4-Turbo using different prompts as shown in 857

Table 12. Requirements related to CR and ComR 858

can help improve performance in vanilla unit tests. 859

Coverage-related requirements are not always ben- 860

eficial, possibly because a high coverage rate is 861
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https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/8_1
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/8_2
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/9_2
https://github.com/rushter/MLAlgorithms/tree/master/mla/svm
https://github.com/seatgeek/thefuzz/tree/master/thefuzz
https://github.com/rushter/MLAlgorithms/blob/master/mla/ensemble/tree.py
https://github.com/datamllab/rlcard/tree/master/rlcard/games/uno
https://github.com/open-compass/DevEval/tree/main/benchmark_data/java/Actor_relationship_game/src/main/java/Actor_relationship_game
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/banking%20application
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Calculator-OOPS
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Email_Generator/src/emailgenerator
https://github.com/TheAlgorithms/Java/tree/5ab6356090c17cddd953c801eac4abb6ef48c9f1/src/main/java/com/thealgorithms/datastructures/heaps
https://github.com/adyliu/idcenter
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/LibraryApp/libraryApp
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/LibraryMangement/src
https://github.com/frandorado/spring-projects/tree/master/log-request-response-undertow
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Password_Generator/Password%20Generator/src
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Pong%20Game
https://github.com/mybatis/redis-cache
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Online%20Voting%20System/Online_Voting_System/src/main/java/vote/com/servlet
https://github.com/abhpd/hacktoberfest2021/tree/main/Java/Projects/SimpleChat
https://github.com/frandorado/spring-projects/tree/master/spring-data-mongo-with-cluster
https://github.com/frandorado/spring-projects/tree/master/spring-micrometer-undertow
https://github.com/frandorado/spring-projects/tree/master/spring-reactive-nonreactive
https://github.com/frandorado/spring-projects/tree/master/spring-upload-s3-localstack
https://github.com/abhpd/hacktoberfest2021/tree/main/Java/Projects/Train
https://github.com/ehmicky/modern-errors/blob/main/src/merge/aggregate.js
https://github.com/mrdoob/three.js/blob/dev/src/animation/AnimationAction.js
https://github.com/ehmicky/modern-errors/blob/main/src/subclass/check.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Circle.js
https://github.com/simple-statistics/simple-statistics/blob/main/src/ckmeans.js
https://github.com/mrdoob/three.js/blob/dev/src/extras/Controls.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Convex.js
https://github.com/alienkitty/space.js/blob/main/src/tween/Easing.js
https://github.com/alienkitty/space.js/blob/main/src/extras/Magnetic.js
https://github.com/schteppe/p2.js/blob/master/src/utils/OverlapKeeper.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Particle.js
https://github.com/drawcall/Proton/blob/master/src/render/PixelRenderer.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Plane.js
https://github.com/schteppe/p2.js/blob/master/src/solver/Solver.js
https://github.com/drawcall/Proton/blob/master/src/math/Span.js
https://github.com/mrdoob/three.js/blob/dev/src/math/Spherical.js
https://github.com/defx/synergy/tree/master/src
https://github.com/simple-statistics/simple-statistics/blob/main/src/t_test.js
https://github.com/ehmicky/modern-errors/blob/main/src/subclass/validate.js
https://github.com/drawcall/Proton/blob/master/src/zone/Zone.js


Model Type Model Name License Link
Close-sourced GPT-4-Turbo - https://platform.openai.com/docs/models/gpt-4#gpt-4-turbo-and-gpt-4
Close-sourced GPT-3.5-Turbo - https://platform.openai.com/docs/models/gpt-4#gpt-3-5-turbo
Close-sourced GPT-o1 - https://platform.openai.com/docs/models#o1
Close-sourced Gemini-2.0-Flash - https://ai.google.dev/gemini-api/docs/models/gemini#gemini-2.0-Flash
Close-sourced Claude-3.5-Sonnet - https://www.anthropic.com/claude/sonnet
Open-sourced CodeQwen1.5-7B-Chat Tongyi Qianwen LICENSE AGREEMENT https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
Open-sourced DeepSeek-Coder-6.7b-Instruct DEEPSEEK LICENSE AGREEMENT https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
Open-sourced CodeLlama-7b-Instruct-hf LLAMA 2 COMMUNITY LICENSE AGREEMENT https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
Open-sourced CodeGemma-7b-it Gemma Terms of Use https://huggingface.co/google/codegemma-7b-it

Table 9: Model Details.

Model GPT-4-Turbo GPT-3.5-Turbo GPT-o1 Gemini Claude CodeQwen DeepSeek-Coder CodeLlama CodeGemma
Python 98% 99% 98% 89% 99% 97% 96% 99% 88%
Java 97% 90% 98% 98% 97% 89% 94% 85% 93%
JavaScript 100% 89% 96% 100% 100% 100% 96% 86% 100%

Table 10: Percentages of the Vanilla Unit Tests Containing Expected and Actual Value Comparisons.

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} Please generate enough unit test cases
for each java file in the {method_signature} project. Ensure to use mock
properly for unit tests. Make sure the tests can successfully compile.
Make sure the tests have correct results. Try to achieve the highest
coverage rate.

Vanilla Prompt for Java

Figure 7: The prompt used to generate unit tests for Java
projects.

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} Please generate enough unit test cases
for every javascript file in {method_signature} project. Make sure the
tests can successfully compile. Make sure the tests have correct results.
Try to achieve the highest coverage rate.

Vanilla Prompt for JavaScript

Figure 8: The prompt used to generate unit tests for
JavaScript projects.

too abstract for LLMs to interpret effectively. Pro-862

gramming language-specific requirements improve863

performance in CR but have the opposite effect on864

ComR, LC, and BC.865

Besides, we follow the prompt template from866

previous work like Siddiq et al. (2024) to move867

the prompts into comments (e.g., /*...*/). We com-868

pare the performance with and without comment869

signs in Table 12. Experimental results show that870

our prompt demonstrates a significant advantage in871

CR, while the prompt with comment signs exhibits872

marginal advantages in ComR, LC, and BC.873

D.2 Effect of Compilation Errors and874

Cascade Errors875

We manually fix only compilation errors and evalu-876

ate the corrected unit tests in Table 13.877

By fixing compilation errors, Table 13 shows sig-878

nificant improvements across all programming lan-879

guages and LLMs compared to Table 2, indicating880

that all the programming languages and LLMs are881

highly sensitive to compilation errors. Comparing882

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} # classname_test.py\n # Test class of
{classname}.\n # Please generate enough unit test cases for each python
file in the {method_signature} project. Ensure that the import path is
correct, depending on whether the project is structured as a package.
Make sure the tests can successfully compile. Make sure the tests have
correct results. Try to achieve the highest coverage rate. \n # class
{classname_test}\n

Prompt for Python with Comment Sign

Figure 9: The prompt used to generate unit tests for
Python projects.

Metric Run 1 Run 2 Run 3 Mean Variance Std Dev
CR 0.37 0.34 0.37 0.36 0.0003 0.0141
ComR 0.60 0.65 0.65 0.633 0.0003 0.0236
LC 38% 40% 39% 39% 0.0001 0.01
BC 34% 37% 35% 35.3% 0.00015 0.0122

Table 11: Performance Metrics across Multiple Runs
Using GPT-3.5-Turbo on Python.

Table 13 with Table 3, we can observe that Code- 883

Qwen1.5, CodeGemma, and CodeLlama are more 884

sensitive to cascade errors. For Java, the changes 885

in Table 3 compared to Table 13 are primarily due 886

to missing or invalid mocks of user interactions9 887

which occur more frequently in unit tests generated 888

by CodeQwen1.5 and CodeGemma. 889

E Changed LOC of Manual Fixing 890

We calculated the average number of lines of code 891

(LOC) changed during manual fixing for Python 892

projects across all models in Table 14. We observe 893

that the amount of manual edits is modest and con- 894

sistent across models. These findings suggest that 895

while models frequently produce errors, many are 896

shallow and fixable with minimal human effort, 897

which reinforces the value of human-in-the-loop 898

and LLM-self-fix workflows. 899

9We consider coverage rates as not applicable when requir-
ing user interactions.

12



Phase Settings CR ComR LC BC #Tests #Correct

Vanilla

Full Prompt 47 65 40 36 12.60 6.15
w/o CR 33 ↓ 65 42 38 12.75 4.75
w/o ComR 35 63 ↓ 41 38 11.20 3.95
w/o Coverage 43 75 46 ↑ 42 ↑ 9.80 4.20
w/o PL 47 75 53 49 9.95 4.35
w/ Comments 41 65 45 41 10.65 4.15

Manual Fixing

Full Prompt 74 100 65 59 12.60 9.30
w/o CR 76 ↑ 100 69 64 12.75 9.90
w/o ComR 75 100 70 65 11.20 8.35
w/o Coverage 68 100 66 ↑ 61 ↑ 9.80 6.75
w/o PL 70 100 70 66 9.95 6.90
w/ Comments 66 100 68 62 10.65 7.00

Table 12: Ablation Study. The Performance of Unit Test
Generation by GPT-4-Turbo Using Different Prompts.

Model CR ComR LC BC #Tests #Correct
Python

GPT-4-Turbo 73 100 65 59 12.60 9.10
GPT-3.5-Turbo 63 100 62 56 16.90 10.40
GPT-o1 89 100 88 85 36.35 32.25
Gemini-2.0-Flash 61 100 71 68 34.95 22.10
Claude-3.5-Sonnet 92 100 74 70 18.05 16.40
CodeQwen1.5 40 100 65 59 25.40 9.60
DeepSeek-Coder 53 100 60 54 7.20 4.10
CodeLlama 26 100 56 50 19.30 6.15
CodeGemma 30 100 52 47 15.00 6.15

Java
GPT-4-Turbo 59 100 42 34 7.05 5.05
GPT-3.5-Turbo 48 100 37 29 7.50 4.20
GPT-o1 62 100 67 56 15.70 10.50
Gemini-2.0-Flash 55 100 54 53 23.30 15.00
Claude-3.5-Sonnet 73 100 63 57 12.35 9.60
CodeQwen1.5 49 100 49 39 12.95 7.50
DeepSeek-Coder 40 100 36 19 7.00 2.85
CodeLlama 30 100 26 21 7.85 4.25
CodeGemma 46 100 44 26 10.50 5.55

JavaScript
GPT-4-Turbo 89 100 75 59 16.30 14.15
GPT-3.5-Turbo 71 100 56 44 13.25 10.65
GPT-o1 91 100 92 79 39.40 35.15
Gemini-2.0-Flash 76 100 88 80 45.85 33.30
Claude-3.5-Sonnet 83 100 75 66 20.25 16.75
CodeQwen1.5 28 100 29 22 8.45 5.65
DeepSeek-Coder 66 100 58 43 11.85 8.05
CodeLlama 28 100 20 15 48.75 21.40
CodeGemma 45 100 43 30 9.00 5.75

Table 13: Evaluation Results When Only Manually Fix-
ing Compilation Errors.

F Detailed Error Analyses900

We conduct complex analyses of compilation, cas-901

cade, and post-fix errors, highlighting the common902

errors and potential reasons behind the errors.903

Compilation Error Analyses Figure 10 high-904

lights the detailed compilation errors that occurred.905

One of the most common compilation errors in906

Python arises from the LLM’s inability to deter-907

mine whether the project being tested is a package.908

Specifically, LLMs struggle to recognize the pres-909

ence or absence of __init__.py files, which define910

a package, leading to confusion between package-911

based and non-package projects. This inability912

leads LLM to fail to correctly import functions or913

classes from the tested project. Other compilation 914

errors include hallucinating the paths or names of 915

imported functions/classes and mismatched paren- 916

theses. Java, a syntax-heavy programming lan- 917

guage compared to Python and JavaScript, encoun- 918

ters various compilation errors, resulting in a signif- 919

icantly lower compilation rate than other languages. 920

Java compilation errors often arise from issues like 921

hallucinated methods, constructors, or classes, such 922

as incorrect or non-existent imports and references. 923

Missing essential information, such as required 924

functions, classes, or packages, and package dec- 925

larations, is also a common problem. Errors fre- 926

quently occur due to illegal access to private or 927

protected elements, invalid code generation (e.g., 928

generating text instead of code), and improper use 929

of mocking frameworks like Mockito, including 930

incorrect objects, missing or misused MockMvc 931

injections, and argument mismatches. Other errors 932

include incorrect usage of other functions, classes, 933

or packages—such as argument type errors, am- 934

biguous references, or incompatible types. One of 935

the most common compilation errors in JavaScript 936

is the hallucination of imported functions or classes, 937

where the issue often lies in incorrect paths for the 938

imported functions or classes. CodeQwen1.5 has a 939

particularly common compilation error involving 940

invalid generation. This typically occurs due to 941

difficulty understanding the prompt, the need for 942

more specific or detailed code requirements, or the 943

assumption that the code is part of a larger project, 944

leading it to decline generating unit tests. Other 945

compilation errors include test suites containing 946

empty unit tests and syntax errors caused by incom- 947

plete code generation or mismatched parentheses. 948

Cascade Error Analyses Figure 11 highlights 949

the detailed cascade errors that occurred. For 950

Python, the cascade errors include missing imports 951

of commonly used packages such as numpy and 952

unittest, missing imports of functions or classes 953

from the tested project, and FileNotFoundError. 954

For Java, the most common cascade error is miss- 955

ing or invalid mocking of user interactions. A 956

proper unit test should simulate user interactions 957

through mocking rather than relying on real user 958

inputs. This issue also results in unusable coverage 959

reports for some tested projects, as the error forces 960

an abrupt termination, preventing the generation 961

of coverage data. For JavaScript, the cascade er- 962

rors include missing imports of commonly used 963

packages such as chai and three, and missing im- 964
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Model GPT-4 GPT-3.5 GPT-o1 Gemini-2.0 Claude-3.5 CodeQwen1.5 DeepSeek CodeLlama CodeGemma
LOC Changed 2.45 3.35 3.15 3.15 4.05 3.4 2.35 3.0 3.4

Table 14: Lines of code changed during manual fixing for Python projects.

ports of functions or classes from the tested project.965

Two other common errors specific to JavaScript966

are that LLMs may confuse named imports with967

default imports and fail to comply with the Jest968

framework.969

Post-Fix Error Analyses Figure 12 highlights970

the incorrectness reasons after all manual fixes.971

For all programming languages, the mismatch be-972

tween expected and actual values (AssertionError)973

is the most common error. Another frequent error974

in Python is AttributeError, typically caused by975

LLMs hallucinating non-existent attributes. Other976

frequent problems in Java include NullPointer Er-977

rors, zero interactions with mocks, and failures to978

release mocks, often due to improper mock usage.979

For projects tested with the Spring framework, er-980

rors specific to Spring are also common. Another981

frequent error in JavaScript is TypeError, mostly982

caused by LLMs hallucinating non-existent func-983

tions and constructors or LLMs invalidly mocking984

some variables.985

G Comparison with Other Benchmarks986

Table 15 presents a comprehensive comparison987

of major code evaluation datasets across multiple988

dimensions. Among these, MultiFileTest stands989

out as the first benchmark specifically designed990

for multi-language, multi-file unit test generation991

with robust error analysis capabilities. We particu-992

larly highlight the distinction between DevBench993

and MultiFileTest: while DevBench addresses994

broader software engineering tasks across the en-995

tire development lifecycle, MultiFileTest is specif-996

ically designed for unit test generation, providing997

60 projects (20 per language) compared to De-998

vBench’s smaller subset for unit testing. Further-999

more, MultiFileTest uniquely offers fine-grained1000

error analysis and both manual fixing and LLM1001

self-fixing mechanisms, which are not present in1002

DevBench. This makes MultiFileTest particularly1003

valuable for evaluating and improving LLMs’ ca-1004

pabilities in generating functional test suites for1005

multi-file software projects.1006

C
om

pi
la

tio
n

E
rr

or
A

na
ly

si
s

Python

Confuse between non-package and package-based projects

Hallucinate the imported functions/classes:
1. Paths of the imported functions/classes are wrong
2. Names of the imported functions/classes are wrong

Syntax Error: Mismatched parentheses

Java

Hallucinate methods/constructors/functions/classes:
1. Paths of the imported functions/classes are wrong
2. Names of the imported functions/classes are wrong
3. Non-existed methods/constructors

Missing information:
1. Required functions/classes/packages are missing
2. Required package information is missing
3. Unreported exception

Illegal access to private/protected functions/classes

Invalid generation:
1. Generate textual instructions instead of codes 2. Block by model

Incorrect use of mocking:
1. Wrong objects provided to Mockito
2. Missing MockMvc injection 3. Inappropriate mockmvc
4. Argument mismatch

Incorrect use of other functions/classes/packages:
1. Arguments type error 2. Ambiguous reference
3. Incompatible types

JavaScript

Hallucinate the imported functions/classes:
1. Paths of the imported functions/classes are wrong

Invalid generation:
1. Cannot understand the prompt 2. Require more/specific codes
3. Assume the codes are part of a larger project and
decline to generate unit tests

Test suits have empty unit tests

Syntax Error:
1. Incomplete generation 2. Mismatched parentheses

Figure 10: Frequent Compilation Errors in Main Re-
sults.
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Dataset Language Code Level Multi-file TestGen Size Avg. #Files Self-contained Error Analyses Error Fixing
HumanEval (Chen et al., 2021) Python Function % % 164 1 ! % %

ClassEval (Du et al., 2023) Python Class % % 100 1 ! % %

SWE-bench (Jimenez et al., 2023) Python Multi-file ! % 12 - ! % %

TestEval (Wang et al., 2024) Python Function % ! 210 1 ! % %

TestGenEval (Jain et al., 2024a) Python Single-file % ! 1,210 1 % ! %

DevBench (Li et al., 2024) Python, Java, C/C# Multi-file ! !

–

20 4.20 ! % %

MultiFileTest (ours) Python, Java, JavaScript Multi-file ! ! 60 4.92 ! ! !

Table 15: Benchmarks comparison. “TestGen” refers to whether the benchmark is designed for unit test generation.
“Self-contained” refers to whether the data sample is independent rather than being part of a larger project. !

–

indicates partial satisfaction of the condition. “Error Analyses” refers to specific error analyses for unit test
generation by LLMs.

C
as

ca
de

E
rr

or
A

na
ly

si
s Python

Required functions/classes/libraries are missing:
1. Import numpy or unittest.mock
2. Import functions/classes of the tested project

FileNotFoundError

Java Missing/Invalid mock of user interactions

JavaScript

Required functions/classes/libraries are missing:
1. Import chai or three
2. Import functions/classes of the tested project

Confuse between name import and default import

Do not follow the Jest framework

Figure 11: Frequent Cascade Errors.

Po
st
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x
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rr

or
A

na
ly

si
s Python

1. AttributeError 2. AssertionError 3. TypeError 4. ValueError
5. IndexError 6. _csv.Error 7. NameError 8. KeyError 9. Others

Java

1. Mismatch between expected and received 2. NullPointer Error
3. Zero interactions with mock 4. Failed to release mocks
5. MissingMethodInvocation 6. Misplaced or misused argument matcher
7. Spring framework error 8. NoSuchElement 9. Others

JavaScript
1. Mismatch between expected and received 2. TypeError 3. RangeError
4. RuntimeError 5. ReferenceError 6. SyntaxError 7. Others

Figure 12: Frequent Post-Fix Errors.

H Comparison between Unique1007

Contribution and Other Metrics1008

While alternative metrics such as test execution1009

time or lines of code provide valuable insights1010

in single-project contexts, they present significant1011

challenges in multi-project benchmarks. The het-1012

erogeneous nature of our benchmark—spanning1013

diverse programming languages, project scales,1014

and architectural paradigms—makes these conven-1015

tional metrics difficult to normalize meaningfully1016

across projects. Test execution times fluctuate1017

based on external dependencies and environmental1018

factors, while code size metrics vary substantially1019

due to languages and coding styles. In contrast, our1020

unique contribution metric offers a project-agnostic1021

measurement framework that maintains consistent1022

interpretability across the entire benchmark suite.1023

It provides a standardized proxy for test utility that1024

transcends project boundaries. This normalized1025

approach enables meaningful cross-project com-1026

parisons that would be impractical with traditional1027

metrics, addressing the specific evaluation require- 1028

ments of diverse multi-project benchmarks. 1029
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