
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HETEROGENEOUS QUANTUM FEDERATED LEARNING
VIA ADAPTIVE CIRCUIT SEARCH AND MODEL AG-
GREGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantum federated learning (QFL) is an emerging framework for privacy-
preserving, collaborative training of quantum neural networks across a network of
quantum nodes operating under qubit resource constraints. Although promising,
existing QFL approaches enforce a uniform quantum circuit architecture across
nodes, failing to account for data heterogeneity and leading to suboptimal global
model performance. To tackle these challenges, we propose a BO-QFL frame-
work, which is based on Bayesian optimization to discover node-specific quantum
circuit architectures and a novel aggregation rule to unify heterogeneous models
at the quantum server. The novel contributions of this paper are twofold: (i) an
adaptive circuit architecture search mechanism for heterogeneous quantum nodes,
utilizing Bayesian optimization to automatically discover optimal quantum circuit
configuration, and (ii) an effective and innovative aggregation strategy that inte-
grates these locally optimized heterogeneous circuits into a unified global model
through element-wise logical union. Through rigorous simulations on spatial and
temporal datasets, the proposed framework demonstrates a significant improve-
ment in the global model performance over fixed-architecture baselines. Addi-
tionally, evaluations in both noisy and ideal quantum environments further sub-
stantiate its robustness in realistic quantum settings.

1 INTRODUCTION

Quantum federated learning (QFL) is an advancing framework that enables distributed quantum
devices (e.g., quantum processors) to collaboratively train a shared quantum model via local QNNs
without sharing raw data Heidari et al. (2022) Huang et al. (2022). By decentralizing training, QFL
addresses qubit-count limitations of current hardware, allowing each node (client) to train compact,
device-compatible models that aggregate into a more expressive global model Araujo et al. (2024).
Leveraging fundamental quantum properties and high-dimensional Hilbert spaces, QFL offers a
promising path toward scalable, secure quantum machine learning with potential super-polynomial
speedups Yamasaki et al. (2020).

A key determinant of QNN performance is the design of their parameterized quantum circuits
(PQCs) Li et al. (2022); Barthe et al. (2025). Optimizing PQC architectures is challenging due
to the vast space of gate choices, entanglement patterns, and hyperparameters, making automated
search strategies essential. In classical ML, neural architecture search (NAS) methods, such as
Bayesian optimization (BO) Cai et al. (2024); Fan et al. (2024), efficiently explore complex black-
box spaces with limited evaluations. These ideas have recently extended to the quantum domain
through quantum architecture search (QAS), enabling the discovery of effective PQC structures for
quantum learning.

In QFL, existing search mechanisms typically assume a single uniform model across all quantum
nodes. This assumption is often impractical under non-independent and identically distributed (non-
IID) client data, where a circuit well-suited for one node may perform poorly for another, leading
to inefficient resource use and degraded performance Gurung & Pokhrel (2025). This situation
highlights two primary research gaps: 1) The lack of methods for client-specific QNN architecture
search in QFL, limiting adaptivity; 2) Even with such mechanism, heterogeneous model aggregation
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remains a challenge, as conventional methods, such as FedAvg Collins et al. (2022), assume identi-
cal architectures, necessitating new aggregation schemes. This leads to our primary research ques-
tion: How can we solve the dual challenges of client-specific architecture search and heterogeneous
model aggregation within a unified QFL framework? We address this by introducing BO-QFL, a
novel unified framework that leverages BO to perform quantum node-specific architecture search
and an innovative approach for heterogeneous model aggregation within the QFL system.

Key Contributions: The key contributions of this paper are summarized as follows.

• We design a Bayesian optimization-based QNN architecture search mechanism specifi-
cally for the QFL framework, which efficiently discovers a unique PQC architecture for
each quantum node to accelerate the performance, considering a heterogeneous training
environment. To the best of our knowledge, we are the first to study BO-based adaptive
circuit search within QFL.

• We develop a novel adaptive aggregation strategy to address the resulting client model
heterogeneity, which allows effective averaging from structurally diverse QNNs. This is the
first work to develop an effective aggregation strategy for heterogeneous quantum models
within QFL.

• Finally, with extensive simulations on real-world datasets, we assess the performance of
BO-QFL, demonstrating its superiority over existing QFL systems.

2 RELATED WORKS

QFL: Research on QFL has advanced in a multitude of directions with a major focus on developing
novel algorithms to enable efficient and scalable distributed training across a network of quantum
devices Innan et al. (2024); Larasati et al. (2022). For instance, a recent study Zhang et al. (2025)
addressed efficiency and security challenges in QFL by introducing a multi-qubit broadcast protocol
and quantum state averaging. Similarly, Bhatia et al. (2024) addresses communication efficiency
in QFL by leveraging quantum natural gradient descent within variational quantum circuits. Con-
currently, a substantial number of studies have concentrated on implementing QFL in applications
including healthcare Bhatia & Neira (2024), network systemsAraujo et al. (2024), and intrusion
detection Yamany et al. (2021).

Heterogeneity in QFL: Heterogeneity in client data distributions and models has been shown to
significantly degrade the QFL model performance, imposing a major bottleneck to real-world de-
ployment Qu et al. (2022). The majority of QFL research Huang et al. (2022); Gurung et al. (2025);
Subramanian & Chinnadurai (2024) assumes homogeneous quantum circuit architectures for all
quantum nodes, which is unrealistic with varying task complexity, circuit depth, and hardware ca-
pabilities. While data heterogeneity from non-IID client distribution is widely researched in QFL,
most studies simply analyze its effects without proposing true solutions. Authors in Zhao (2023)
introduce a one-shot QFL framework using local density estimators, whereas Hisamori et al. (2024)
rely on weighted model averaging, which merely limits the influence of poorly trained clients rather
than improving performance.

Quantum circuit search in QML/QFL: Discovering an optimal circuit from a vast search space of
gate arrangements and entanglement structures has become a pivotal challenge, driving significant
research interest. For instance, authors in He et al. (2024); Sun et al. (2023) applied gradient-based
optimization, while Dai et al. (2024) explored reinforcement learning. In parallel, Du et al. (2022);
Zhang & Zhao (2023) assessed evolutionary algorithms, and stronger optimization techniques like
genetic algorithms have also been explored Wei et al. (2021). Although promising, these algorithms
cannot be directly applied to a QFL framework as a circuit optimized for one client’s data or hard-
ware is often suboptimal for others, intensifying model heterogeneity.

Despite such extensive research efforts, two critical gaps persist: i) the existing literature largely
overlooks the need for client-specific quantum neural network architecture searches within QFL and
ii) even when diverse architectures are considered, traditional aggregation methods in the literature
are unequipped to handle model heterogeneity. Motivated by these gaps, we develop a novel QFL
framework (BO-QFL) that uses BO to generate client-specific quantum circuits for improved local
performance under data heterogeneity, along with a dedicated aggregation strategy to effectively
integrate these heterogeneous models.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 SYSTEM MODEL

We consider a QFL framework where N heterogeneous quantum clients, denoted as N =
{1, 2, . . . , N}, collaboratively search for optimal quantum circuit architectures. Subsequently, the
distributed quantum devices/clients train a global quantum model, while the entire process is orches-
trated by a central aggregator, as illustrated in the Fig. 1a. Each client n ∈ N holds a statistically
diverse local dataset Dn, reflecting heterogeneous data distributions across the system. Each client
performs local quantum architecture search over a predefined space of PQCs, represented by bi-
nary matrices where rows correspond to qubits and columns encode the presence of rotation gates
Rx, Ry , and Rz across the layers. Specifically, a PQC with Q qubits and L layers is encoded as
An ∈ {0, 1}Q×3L, where each entry is defined as

An(q,g,l) =

{
1, if gate g ∈ {Rx, Ry, Rz} is applied on qubit q at layer l,
0, otherwise.
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Figure 1: Overall system architecture of the BO-QFL framework. (a) Overview of the BO-QFL
system, where quantum clients perform BO-based local QNN training on non-IID data and send
their optimized models to the server for heterogeneous aggregation into a global model. (b) Element-
wise logical union for heterogeneous model aggregation, where each parameter in the global model
is averaged exclusively over the subset of clients whose optimal architectures train that parameter.

Local architecture search at each client is carried out using BO, which leverages a Gaussian process
(GP) surrogate to model the relationship between quantum circuit architectures and their corre-
sponding accuracy. The objective for the client n is to identify the optimal architecture by solv-
ing A∗

n = argmaxA∈S fn(An), where fn(An) ∈ [0, 1] denotes the local accuracy and S rep-
resents the predefined architecture search space. BO models the objective function with a GP
prior as fn(An) ∼ GP

(
m(An), k(An,A

′
n)
)
, where m(·) and k(·, ·) denote the mean and ker-

nel functions, respectively. Here, An represents the current architecture under evaluation, and
A′

n denotes another architecture in the search space, utilized for computing correlations through
the kernel function k(·, ·). This GP prior provides a probabilistic model for the objective func-
tion, which is then used to construct an acquisition function for sequential sampling. At each BO
iteration, the next architecture is selected by maximizing the logarithm of the expected improve-
ment (EI) as An,next = argmaxA∈S logEI(An). We mention that the GP surrogate predicts the
function distribution, while the acquisition function (second equation) determines the most promis-
ing architecture for evaluation based on this prediction. This process continues until a stopping
criterion is met, such as reaching a maximum number of iterations, achieving a predefined accu-
racy threshold, or observing convergence of the acquisition function. After all clients complete
BO, the server constructs a global architecture AG by performing a union of local architectures
as AG(q, g, l) = 1 if ∃n ∈ N such that A∗

n(q, g, l) = 1, where (q, g, l) denotes the qubit, gate
type, and layer indices, respectively. Equivalently, the global architecture can be expressed as an
element-wise logical OR as AG =

∨N
n=1 A

∗
n. The global PQC is then initialized and distributed to

all clients. For weight initialization, each client adopts the global weights for gates common to its
local and global architectures, while the remaining gates are randomly initialized. Particularly,

Θn(q, g, l) =

{
ΘG(q, g, l), if (q, g, l) ∈ A∗

n ∩AG,

random init, otherwise,
(2)
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where Θn(q, g, l) is the trainable parameter of client n for the gate at qubit q, gate type g, and
layer l. Each client trains its PQC locally for E epochs, where the gradients are estimated using
the parameter-shift rule Wang et al. (2022) and optimized using the Adam optimizer Zhang et al.
(2022). Let θtn denote the client’s model parameters at iteration t, η the learning rate, and L the local
loss function. The update rule is expressed as θt+1

n = θtn − η∇L(θtn). After local training, clients
return updated parameters corresponding to gates shared with the global architecture. The server
aggregates these weights using an averaging rule ΘG(q, g, l) = 1

|N(q,g,l)|
∑

n∈N(q,g,l)
Θn(q, g, l),

where N(q,g,l) = {n : (q, g, l) ∈ A∗
n}, denotes the set of clients that include the gate at position

(q, g, l) in their local architecture. Subsequently, these aggregated parameters are unified to generate
a single global model θG and redistributed to the quantum clients for further training. This process
of aggregation and redistribution is repeated until convergence.

4 METHODOLOGY

4.1 PROPOSED BO METHOD

To efficiently navigate the vast and computationally expensive search space of PQC architectures,
we employ a sample-efficient optimization strategy. We adopt a Bayesian Optimization (BO) frame-
work where the objective function f(x) maps a circuit architecture x to its test accuracy. The
search begins with an initial dataset D0 of n0 architectures sampled from a continuous domain
[0, 1]Q×3L using a Sobol sequence and rounded to a binary format. To model this expensive-to-
evaluate function, we use a Gaussian Process (GP) surrogate, f(x) ∼ GP(m(x), k(x,x′)), with
a scaled Radial Basis Function (RBF) kernel given by k(x,x′) = σ2

f exp
(
− 1

2ℓ2 ∥x− x′∥2
)
. The

GP hyperparameters are optimized by maximizing the marginal log-likelihood: log p(f | X) =
− 1

2 f
⊤(K+ σ2

nI)
−1f − 1

2 log det(K+ σ2
nI)− n0

2 log(2π). The fitted GP provides a posterior pre-
dictive distribution f(x∗) | D0 ∼ N (µ(x∗), σ

2(x∗)), with mean µ(x∗) = k⊤
∗ (K + σ2

nI)
−1f and

variance σ2(x∗) = k(x∗,x∗) − k⊤
∗ (K + σ2

nI)
−1k∗. This posterior guides the search by select-

ing the next candidate that maximizes the Log Expected Improvement (LogEI) acquisition function,
LogEI(x) = log(EI(x)+1), to balance exploration and exploitation. This iterative process of updat-
ing the surrogate and selecting new candidates continues until a stopping criterion is met, ensuring
a thorough yet bounded search.

4.2 HETEROGENEOUS MODEL AGGREGATION

To address the challenge of aggregating parameters from structurally diverse quantum circuits, we
introduce a strategy where the global model’s architecture is defined using an element-wise log-
ical union of all client architectures. To aggregate corresponding parameters, the global model
is decomposed into components, where each component corresponds to the group of clients that
trained it (Fig. 1b). This ensures each component is updated only by those clients, stabiliz-
ing the process and preserving specialized knowledge. Let the universe of all gate positions be
P = {(q, g, l) | 1 ≤ q ≤ Q, g ∈ {Rx, Ry, Rz}, 1 ≤ l ≤ L}. The active parameter set
for client n, denoted W∗

n, is W∗
n = {p ∈ P | A∗

n(p) = 1}, and the set of all parameters
in the global model is WG =

⋃N
n=1 W∗

n. For each p ∈ WG, the set of clients containing p is
Np = {n ∈ N | p ∈ W∗

n}. The global parameter update is Θ
(k+1)
G (p) = 1

|Np|
∑

n∈Np
Θ

(k)
n (p).

Equivalently, expanding p = (q, g, l) gives

Θ
(k+1)
G (q, g, l) =

∑N
n=1 Θ

(k)
n (q, g, l) ·A∗

n(q, g, l)∑N
n=1 A

∗
n(q, g, l)

. (3)

The final global model is reconstructed by performing this operation for every p ∈ WG, forming the
unified θ(k+1)

G .

Algorithm 1 summarizes BO-QFL. Clients first perform BO with LogEI to obtain their optimal
architectures A∗

n (lines 3–5). The server then forms the global union AG and initializes parameters
as in Eq. equation 2 (lines 7–8). In each round (lines 10–15), clients train locally for T epochs, send
updates, and the server aggregates and redistributes parameters. This repeats for up to K global
rounds until convergence. A detailed version of the algorithm is given in Appendix A.11.
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Algorithm 1 BO QFL with client-specific architecture search and heterogeneous aggregation

1: Input: clients N = {1, . . . , N}, datasets {Dn}, search space S ⊂ {0, 1}Q×3L, BO budget E with seeds
n0, total global rounds K, total local epochs per round T

2: Output: global union architecture AG, global parameters Θ(K)
G

3: Client side BO search, parallel over n ∈ N
Sample n0 seeds, train and score on Dn, then iterate e = n0 + 1, . . . , E: fit GP, select next by LogEI,

train and score
Set A∗

n to the best scoring architecture
4: Build union architecture and initialize

Form AG via union rule
Initialize client parameters using the case rule, see Eq. equation 2

5: Federated training with heterogeneous aggregation
6: for k = 0 to K − 1 do
7: Local update, parallel over n: train for t = 1, . . . , T epochs on Dn starting from Θ

(k)
n , produce

Θ
(k+1)
n

8: Server aggregation: update Θ
(k+1)
G using the heterogeneous averaging rule, see Eq. equation 3

9: Broadcast: send Θ
(k+1)
G to all clients and align supports with A∗

n

10: if convergence criterion holds then break
11: end if
12: end for
13: return AG,Θ

(k+1)
G

5 CONVERGENCE ANALYSIS

We conduct a rigorous convergence analysis of BO-QFL framework under full-device participation,
accounting for non-convex loss functions, heterogeneous data distributions, and quantum shot noise.

5.1 COMPLEXITY ANALYSIS

Under the assumption of L-smoothness and µ-PL Ajalloeian & Stich (2020), for θ0 and ηk = µ ≤
1
L : E[fn(θT )]−L∗ ≤ (1− ηµ)T ([fn(θ

0)]−L∗) + 1
2 [

ηLV
µ ], where V = νNzDTr(Z2)

2H . Given some

target error level δ > 0, for learning rate η = ηshot-noise ≤ min{ 1
L ,

δµ
LV }, a number of iteration, given

as T shot-noise = O(log 1
δ + V

δµ )
L
µ , is sufficient to ensure an error E[fn(θT )− fn

∗] = O(δ).

5.2 NOTATION AND DEFINITION

We study the problem minθ f(θ) ≜
∑N

n=1 fn(θ), where f(θ), where each client n trains on dataset

Sn of size Sn sampled from Dn. The full gradient is gn =
△
= 1

|Sn|∇f(θ;Sn), and the stochastic

gradient as g̃n
△
= 1

B∇f(θ; ξn), with ξn ⊆ Sn, |ξn| = B. Let gtn,k and g̃tn,k denote the full and
stochastic gradients at round t. Each local parameter θt

n,k is reparameterized into a union architec-

ture AG, with global average θ̄t
k

△
= 1

N

∑
n∈N θt,G

n,k , where θt,G
n,k denotes the reparameterized form

of client n’s parameters projected into the global architecture AG. Moreover, g̃tk
△
= 1

N

∑
n∈N g̃tn,k,

gtk
△
= 1

N

∑
n∈N gtn,k. Thus, the local SGD update at device n is followed as θt+1

n,k = θt
n,k − ηkg̃

t
n,k,

while θ̄t+1
k = θ̄t

k − ηkg̃
t
k and Eg̃tk = gtk, where E represents function’s expectation. We assume that∑N

n=1 ||gt
n,k||

2
2

||
∑N

n=1 gt
n,k||

2
2

≤ λ. The architecture divergence is ψt
k = 1

N

∑N
n=1 ||θ

t,G
n,k − θ̄t

k||2. The BO subop-

timality gap at round t is ϵtBO ≜ E
[
γ(θ̄t

k, a
t,∗) − γ(θ̄t

k, a
t)
]
, where at is the architecture chosen by

BO, and at,∗ is the optimal architecture. The BO regret over T rounds is RT =
∑T−1

t=0 ϵtBO. We now
outline the key assumptions that form the basis of our convergence analysis.

Assumption 1 (Smoothness and Lower Boundedness). The fn(.) associated with device n is differ-
entiable for 1 ≤ n ≤ N and is L− smooth, i.e., ||∇fn(u)−∇fn(v)|| ≤ L||u− v||,∀u,v ∈ Rd.

5
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Assumption 2 (µ-Polyak-Lojasiewicz (PL)). The global objective function f(.) is differentiable and
satisfy the Polyak-Lojasiewicz (PL) condition with constant µ, i.e., 1

2 ||∇f(θ)||
2
2 ≥ µ(f(θ)−f(θ∗))

holds ∀θ ∈ Rd with θ∗ being the optimal solution of global objective.

Assumption 3 (Bounded Local Variance). For every local dataset Sn, n = 1, 2, . . . , N , we can
sample ξn ⊆ Sn with |ξn| = B and compute g̃n = 1

B∇f(θ; ξn), E[g̃n] = gn = 1
|Sn|∇f(θ;Sn)

with the variance bounded as E[||g̃n − gn||2] ≤ C1||gn||2 + σ2

B , where C1 and σ are constants.

Assumption 4 (BO Suboptimality Bias). The estimator g̃tn,k may deviate such that E[g̃tn,k] =

∇fn(θt
n,k) + etn,k, where ||etn,k|| ≤ ϵtBO bounds the deviation induced by the BO selection.

Assumption 5 (Architecture Divergence). Let the local model θt
n,k for client n differ from the global

mean θ̄t
k, then ψt

k :=
∑N

n=1 ||θt
n,k − θ̄t

k||2 and ||∇fn(θt
n,k)−∇fn(θ̄t

k)|| ≤ L||θt
n,k − θ̄t

k||.

From the update rule and assumption on the L-smoothness of the objective function, we have
f(θ̄t+1

k ) − f(θ̄t
k) ≤ −ηk⟨∇f(θ̄t

k), g̃
t
k⟩ +

η2
kL
2 ||g̃tk||2. Now, we take expectation on both sides of

the inequality results in E[f(θ̄t+1
k )− f(θ̄t

k)] ≤ −ηkE[⟨∇f(θ̄t
k), g̃

t
k⟩] +

η2
kL
2 E[||g̃tk||2] By taking the

average for all the local and global iterations, we get

1

KT

K∑
k=1

T∑
t=1

E[f(θ̄t+1
k )− f(θ̄t

k)] ≤
1

KT

K∑
k=1

T∑
t=1

(−ηkE[⟨∇f(θ̄t
k), g̃

t
k⟩]) +

1

KT

K∑
k=1

T∑
t=1

η2
kL

2
E[||g̃tk||2].

(4)

Next, we bound each term in equation 4: Lemma 1 handles the first term via gradient–stochastic
alignment, Lemma 3 bounds the second, and Lemma 2 addresses the residual term from Lemma 1.
We begin by presenting key lemmas that form the basis of our main result.
Lemma 1. Let Assumption 1 hold, in the BO-QFL framework, the expected inner product between
stochastic gradient and full gradient is bounded by −ηkE(⟨∇f(θ̄t

k), g̃
t
k⟩) ≤ −ηk

2 ||∇f(θ̄t
k)||2 −

ηk

2 ||
∑N

n=1 ∇fn(θt
n,k)||2 +

∑N
n=1 L

2||θ̄t
k − θt

n,k||22 + ηkϵ
t
BO + ηkL

2 Ψt
k.

Proof. See A.1 in the Appendix.

Lemma 2. Let Assumption 3 hold, the expected upper bound of the divergence of θt
n,k is given as

1
KT

∑K
k=1

∑T
t=1

∑N
n=1

[
E||θ̄t

k−θt
n,k||

]
≤ (2C1+T (T+1))

KT η2k
N+1
N

1
KT

∑K
k=1

∑T
t=1

∑N
n=1 ||gtn,k||2+

η2
k(N+1)(T+1)σ2

NB ≤ λη2
K(2C1+T (T+1))

KT
N+1
N

1
KT

∑K
k=1

∑T
t=1

∑N
n=1 ||gtn,k||2 +

η2
kKT (N+1)(T+1)σ2

NB .

Proof. See A.2 in the Appendix.

Lemma 3. Under Assumption 3, the expected upper bound of E[||g̃tk||2] is expressed as

E
[
||g̃tk||2

]
≤ λ

(
C1

N + 1

)[∑N
n=1 ||∇fn(θt

n,k)||2
]
+ σ2

NB + L2Ψt
k.

Proof. See A.3 in the Appendix.

Lemma 4. For variance of the gradient estimate, var(ξtk) ≤ 1
N

∑
n∈N

νNzDTr(Z2)
2H .

Proof. See A.4 in the Appendix.

Theorem 1. Let Assumptions 1, 2, 3 hold, then the upper bound of the convergence rate
of the global model training considering full device participation after K global rounds sat-

isfies 1
KT

∑K
k=1

∑T
t=1 E||∇f(θ̄t

k)||2 ≤ 2[f(θ̄0
1)−f∗]

ηkKT + Lηkσ
2

NB +
2η2

kσ
2L2(T+1)
B

(
1 + 1

N

)
+

1
N

∑
n∈N

νNzDTr(Z2)
2H + 2

KT

∑
k,t ϵ

t
BO + L

KT

∑
k,t Ψ

t
k.

Proof. See A.5 in the Appendix.
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Remark 1. The convergence bound in Theorem 1, for full device participation, shows dependence
on the number of global rounds, participating clientsN , and quantum measurement shots per client.
Remark 2. Theorem 1 indicates that increasing N improves gradient averaging, while higher shot
counts reduce variance. The bound also reflects noise accumulation across clients, so aggressive
scaling in N or shots yields diminishing returns. Balanced increases in both are more effective.
Remark 3. In BO-QFL, convergence is further affected by architecture divergence, mismatches
among heterogeneous client models, BO suboptimality, deviations between selected and ideal ar-
chitectures. These can slow convergence unless mitigated by careful global PQC design and robust
BO strategies.

6 SIMULATIONS AND RESULTS

6.1 DATASETS AND EXPERIMENTAL SETTING

Three datasets are chosen to cover different data types, two for image-based tasks and another for
time-series, to stress the framework across both spatial and sequential inputs.

MNIST: The MNIST dataset Deng (2012) consists of 70,000 grayscale images of handwritten dig-
its, 28 by 28 pixels, 60,000 training images, and 10,000 testing images. Each data point was flattened
to a vector of length 784 and subjected to a deep-layer, resulting in a real-valued vector of length
1024 for amplitude encoding with 10 qubits (210 = 1024). HAR: The Human Activity Recogni-
tion (HAR) dataset Reyes-Ortiz et al. (2013) that we used is from the UC Irvine Machine Learning
Repository. Both time and frequency domain data were collected via 30 volunteers engaging in 6
activities, making up the classes: Walking, Walking Upstairs, Walking Downstairs, Sitting, Stand-
ing, and Lying. To prepare this vector for quantum processing, we reduced the feature vector size
from a length of 561 to 256 (making 28) and employed amplitude encoding with 8 qubits to map
it onto the quantum state. Fashion MNIST:To put real stress on the designed framework, we use
the Fashion-MNIST dataset Xiao et al. (2017), a more complex replacement for MNIST. It contains
70,000 28x28 grayscale images across 10 clothing categories. The preprocessing, distribution, and
encoding procedures are analogous to those of MNIST.

Key hyperparameters: PQC architecture: Qubits: 8 for HAR, 10 for MNIST and Fashion MNIST;
Layers: 4, each layer rotational gates then CNOT; Encoding: amplitude; Measurement: Pauli-Z;
Gates searched: {RX , RY , RZ}; Entanglement: ring CNOT; Noise: shot noise from H measure-
ments, depolarizing probability 0.03 to 0.05%.
BO search per client: Iterations: 30 with early stopping; Initial points: 3 Sobol; Objective: local test
accuracy; Acquisition Log Expected Improvement.
QFL training: Global rounds: 50; Local epochs: 5; Batch size: 64.
Optimizer all stages: Optimizer: Adam; Learning rate 5× 10−3; Loss: Negative Log Likelihood.

All experiments presented in this paper were conducted on a single GPU system equipped with an
NVIDIA GeForce RTX 4090 GPU, 64 GB of RAM, and running Ubuntu 22.04. The simulation
environment was built in Python, utilizing PyTorch for deep learning structures, TorchQuantum for
quantum circuit simulation, and the BoTorch and GPyTorch libraries for implementing the Bayesian
optimization. In our simulations, we use a network of 3, 6, or 12 quantum clients, each with a
non-IID data distribution to reflect realistic decentralized learning environments.

6.2 EVALUATION ON A SINGLE CLIENT

Before evaluating our full BO-QFL system, we first validate the performance of the BO-based archi-
tecture search on a single client. To this end, we first benchmark it against a leading state-of-the-art
RL-based approach for quantum architecture search. A Deep Q-Network (DQN) agent with an
epsilon-greedy (from 1 to 0.05) exploration strategy and a 10,000-sample experience replay buffer
is utilized for a robust RL system. The key difference is that the DQN agent sequentially builds a cir-
cuit by placing individual gates, whereas our BO method holistically evaluates entire architectures
at once using a global probabilistic model of the search space. We also compare these frameworks
with a baseline QNN where each layer consists of an Ry gate and a CNOT gate per qubit wire.

Fig. 2 shows the test accuracies for architectures trained on a single client, comparing results for
MNIST (a), HAR (b), and Fashion-MNIST (c). Both the BO and RL-optimized models surpass
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(b) Performance on HAR.

0 10 20 30 40 50
Epoch

20
30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y 
(%

)

RL Based QNN
BO Based QNN
Baseline QNN

(c) Performance on Fashion MNIST.

Figure 2: Performance comparison for QNNs optimized using RL, BO, and baseline architectures.
Results show the test accuracy evolution across epochs for (a) MNIST, (b) HAR, and (c) Fashion
MNIST.

the baseline QNN by a significant 2-8%. The performance of these optimized models is largely on
par, with BO slightly outperforming RL by a small margin of ∼2% on the more complex HAR and
Fashion-MNIST datasets. This demonstrates that both methods successfully find high-performing
quantum circuits tailored to client-specific data dynamics.
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(a) MNIST dataset.
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(b) HAR dataset.
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(c) Fashion MNIST dataset.

Figure 3: Comparison of running-best test accuracy for RL-based and BO-based quantum architec-
ture search on (a) MNIST, (b) HAR, and (c) Fashion MNIST. The plots show the cumulative best
test accuracy achieved as a function of the number of optimization episodes, demonstrating the con-
vergence speed and final performance of each optimization method.

However, the superiority of BO is evident in its search efficiency, as demonstrated in Fig. 3. Al-
though their final architectures are comparable in model performance, the RL-based search requires
dramatically more evaluations to converge. Across all datasets, the peak-performing RL architec-
tures were found after at least 120 episodes, whereas BO was able to identify its optimal circuits
within just 30 rounds. While each evaluation in both methods involved training a candidate circuit
for 30 local epochs, the fundamentals of the BO search remain computationally lightweight. In con-
trast, each RL episode requires more complex agent-environment interactions, making the efficiency
of BO a key advantage.

6.3 BO-QFL PERFORMANCE EVALUATION

We now evaluate the full BO-QFL framework within a 3-client system against two baselines under
the non-IID data distributions. As seen in the Fig. 4, the first is QFL (No Aggregation), where
FedAvg fails under model heterogeneity by excluding clients with mismatched PQC structures, re-
sulting in unstable training and poor convergence. The second is the Baseline QFL, a homogeneous
setup with identical non-optimized Ry gate-based circuits across all clients. BO-QFL method con-
sistently surpasses the standard baseline, improving global accuracy by 5–6% on MNIST (Fig. 3a),
11–12% on HAR (Fig. 3b), and 5% on Fashion-MNIST (Fig. 3c), while avoiding the learning fail-
ure seen in the ”no-aggregation” case. This confirms that the BO-based method successfully finds
tailored client circuits and our novel aggregation effectively unifies them.

Table 1 empirically validates our theoretical remarks. As in Remark 2, final accuracy depends on
both the number of clients (N ) and measurement shots. In the ideal case, increasing N improves
accuracy (e.g., MNIST BO-QFL: 91.78% to 94.61%) due to better gradient averaging, but in noisy
settings this trend reverses (86.50% to 81.92%), confirming the impact of accumulated quantum
noise. Higher shot counts consistently help, as 150-shot results surpass 100-shot results. Consistent
with Remark 3, BO-QFL significantly outperforms Baseline QFL, showing the superiority of opti-
mized architectures despite the BO’s suboptimality in some cases. The noisy accuracy drop with
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Figure 4: Performance comparison of BO-QFL approaches, where each subplot group shows the test
accuracy (top) and loss (bottom) evolution of Baseline QFL, QFL (no agg), and BO-QFL methods
on (a) MNIST, (b) HAR, and (c) Fashion-MNIST datasets, demonstrating the effectiveness of BO
in quantum federated settings.

Table 1: Performance and scalability analysis of BO-QFL and Baseline QFL with different datasets
and shot counts in ideal and noisy quantum simulation environments.

Dataset # Clients BO-QFL Accuracy (%) QFL (Baseline) Accuracy (%)
Ideal Noisy (Shots=150) Noisy (Shots=100) Ideal Noisy (Shots=150) Noisy (Shots=100)

MNIST
3 91.78 86.50 82.17 86.32 80.75 75.93
6 92.61 84.39 80.45 84.18 79.11 76.21
12 94.61 81.92 77.58 88.07 76.84 72.50

HAR
3 95.19 88.23 84.61 83.83 77.48 73.15
6 93.80 86.91 83.05 89.42 75.99 71.82
12 95.21 85.05 81.19 81.90 74.13 72.76

Fashion-MNIST
3 84.44 77.16 74.88 79.33 73.51 69.95
6 83.28 77.72 73.50 84.50 73.88 68.74
12 85.42 75.69 71.93 80.71 70.94 66.52

larger N further underscores the architectural divergence, where aggregating more diverse, noisy
models degrades the overall global performance.

7 CONCLUSION

In this work, we introduced the BO-QFL framework to overcome the limitations of homogeneous
models in non-IID QFL by integrating a Bayesian Optimization search for client-specific quantum
circuits with a novel strategy for heterogeneous aggregation. Simulations show our framework sig-
nificantly outperforms standard baselines in both ideal and noisy settings and is significantly more
sample-efficient than a state-of-the-art reinforcement learning approach. This work demonstrates
a practical path toward adaptive and efficient QFL systems capable of handling the architectural
and data heterogeneity of real-world decentralized quantum networks. Future work could focus
on extending this framework to include hardware-aware optimizations, further bridging the gap to
deployment on real-world quantum hardware.

REPRODUCIBILITY CHECKLIST

We have made significant efforts to ensure the reproducibility of our work. All theoretical results
are supported by clearly stated assumptions and complete proofs in the Appendix. The experimental
setup, including dataset descriptions, preprocessing steps, and model hyperparameters, are detailed
in Section X and Appendix Y. To facilitate replication, we provide an anonymized link to the source
code and configuration files in the supplementary materials. Moreover, training logs, performance
curves, and ablation studies are included to validate the reported results. Together, these resources
allow independent researchers to reproduce both the theoretical and empirical findings of this paper.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Let N = {1, 2, . . . , N} denote the set of devices, and g̃tk = 1
N

∑
n∈N g̃tn,k the average of their local

stochastic gradients at local iteration t at global round k. We have

− E{ξt1,k,...,ξ
t
n,k|θ

t
1,k,...,θ

t
N,k}E{1,2,... N}∈N

[
⟨∇f(θ̄t

k), g̃
t
k⟩
]
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t
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t
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ηkL

2
Ψt

k

]
, (5)

where 1⃝ is due to the fact that random variables ξtn,k and N are independent, 1⃝ is because 2⃝
2⟨a, b⟩ = ||a||2 + ||b||2 − ||a − b||2, 3⃝ holds due to the convexity of ||.||2, and 4⃝ follows from
Assumption 1, Assumption 4, and Assumption 5.

A.2 PROOF OF LEMMA 2

We denote k = ic as the most recent global communication round, hence θ̄ic+1 = 1
N

∑
n∈N θ

ic+1
n .

The local solution at device n at any particular iteration i > ic, where i is assumed to represent the
most recent iteration, can be written as:

θt
n,k = θi

n = θi−1
n − ηic g̃

i−1
n

1⃝
= θi−2

n − [ηic g̃
i−2
n + ηic g̃

i−1
n ]

= θ̄ic+1 −
i−1∑

z=ic+1

ηic g̃
z
n, (6)
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where 2⃝ follows from the update rule of local solutions. Now, the average virtual model at iteration
i from equation 6 is computed as follows:

θ̄i = θ̄ic+1 − 1

N

∑
n∈N

i−1∑
z=ic+1

ηic g̃
z
n. (7)

Firstly, without loss of generality, suppose i = stT + r, with st and r denoting the indices of global
communication round and local updates, respectively. Next, we consider that for ic+1 < i ≤ ic+T ,
Ei||θ̄i−θi

n|| does not depend on time i ≤ ic for 1 ≤ n ≤ N . Therefore, for all iterations 1 ≤ i ≤ I ,
where I = KT , we can write,

1

KT

K∑
k=1

T∑
t=1

N∑
n=1

E||θ̄t
k − θt

n,k||2 =
1

I

I∑
i=1

N∑
n=1

E||θ̄i − θi
n||2

=
1

I

I
T −1∑
st=1

T∑
r=1

N∑
n=1

E||θ̄stE+r − θstE+r
n ||2. (8)

We bound the term E||θ̄i−θi
l ||2 for ic+1 ≤ i = stT + r ≤ ic+T in threes steps: (1) We begin by

linking this quantity to the variance between the stochastic and full gradients, (2) Next, we invoke
Assumption 1, which ensures unbiased estimation under i.i.d. mini-batch sampling. (3) Finally, we
apply Assumption 3 to bound the final terms. We mention that l is associated with individual client
while n is used for summing over devices.

Relating to variance:

E||θ̄stE+r − θstE+r
l ||2

= E||θ̄ic+1 −
[ i−1∑
z=ic+1

ηic g̃
z
l

]
− θ̄ic+1

+

[
1

N

∑
n∈N

i−1∑
z=ic+1

ηic g̃
z
n

]
||2

1⃝
= E||

r∑
z=1

ηic g̃
st+z
l − 1

N

∑
n∈N

r∑
z=1

ηic g̃
st+z
n ||2

2⃝
≤ 2

[
E||

r∑
z=1

ηic g̃
st+z
l ||2 − E|| 1

N

∑
n∈N

r∑
z=1

ηic g̃
st+z
n ||2

]
3⃝
= 2

[
E||

r∑
z=1

ηic g̃
st+z
l − E

[ r∑
z=1

ηic g̃
st+z
l

]
||2

− E||
r∑

z=1

ηic g̃
st+z
l ||2 + E|| 1

N

∑
n∈N

r∑
z=1

ηic g̃
st+z
n

− E
[
1

N

∑
n∈N

r∑
z=1

ηic g̃
st+z
n

]
||2
]
+ ||E

[
1

N

∑
n∈N

r∑
z=1

ηic g̃
st+z
n

]
||2

4⃝
= 2E

([
||

r∑
z=1

ηic

[
g̃stT+z
l − gstT+z

l

]
||2

+ ||
r∑

z=1

ηicg
stT+z
l ||2

]

+ || 1
N

∑
n∈N

r∑
z=1

ηic

[
g̃stT+z
n − gstT+z

n

]
||2

+ || 1
N

∑
n∈N

r∑
z=1

ηicg
stT+z
n ||2

)
,

14
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where 1⃝ holds because i = stT + r ≤ ic + T , 2⃝ is due to ||a− b||2 ≤ 2(||a||2 + ||b||2), 3⃝ arises
because of E[θ2] = E[[θ − E[θ]]2] + E[θ]2, 4⃝ comes from Assumption 1.

Unbiased estimation and i.i.d. sampling

5⃝
= 2E

([ r∑
z=1

η2ic ||g̃
stT+z
l − gstT+z

l ||2 + ||
r∑

z=1

ηicg
stT+z
l ||2

]

+
1

N2

∑
n∈N

r∑
z=1

η2ic ||g̃
stT+z
n − gstT+z

n ||2

+ || 1
N

∑
n∈N

r∑
z=1

ηicg
stT+z
n ||2

)
6⃝
≤ 2E

([ r∑
z=1

η2ic ||g̃
stT+z
l − gstT+z

l ||2 + r

r∑
z=1

η2ic ||g
stT+z
l ||2

]

+
1

N2

∑
n∈N

r∑
z=1

||g̃stT+z
n − gstT+z

n ||2

+
r

N2

∑
n∈N

r∑
z=1

η2stT+z||gstT+z
n ||2

= 2

([ r∑
z=1

η2icE||g̃
stT+z
l − gstT+z

l ||2 + r

r∑
z=1

η2icE||g
stT+z
l ||2

]

+
1

N2

∑
n∈N

r∑
z=1

η2icE||g̃
stT+z
n − gstT+z

n ||2

+
r

N2

∑
n∈N

r∑
z=1

η2icE||g
stT+z
n ||2

)
, (9)

where 5⃝ is due to independent mini-batch sampling as well as unbiased estimation assumption, and
6⃝ follows from the inequality ||

∑m
i=1 ai||2 ≤ m

∑m
i=1 ||ai||2.

Using Assumption 3: Our next step is to bound the terms in equation 9 using Assumption 3 as
follows:

E||θ̄t
k − θt

l,k||2 ≤ 2

([ r∑
z=1

η2ic

[
C1||gstT+z

l ||2 + σ2

B

]

+ r

r∑
z=1

η2ic ||g
stT+z
l ||2 + 1

N2

∑
n∈N

r∑
z=1

η2ic

[
C1||gstT+z

n ||2 + σ2

B

]

+
r

N2

∑
n∈N

r∑
z=1

η2ic ||g
stT+z
n ||2

)

= 2

([ r∑
z=1

η2icC1||gstT+z
l ||2 +

r∑
z=1

η2ic
σ2

B

+ r

r∑
z=1

η2ic ||g
stT+z
l ||2

]
+

1

N2

∑
n∈N

r∑
z=1

η2icC1||gstT+z
n ||2

+

r∑
z=1

η2ic
σ2

NB
+

r

N2

∑
n∈N

r∑
z=1

η2ic ||g
stT+z
n ||2

)
.

(10)
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Now we determine the upper bound for
∑T

r=1

∑N
n=1[E||θ̄t

k − θt
n,k||] using equation 10 as follows:

T∑
r=1

N∑
n=1

[
E||θ̄stT+z − θstT+z

n ||
]

≤ 2

T∑
r=1

N∑
l=1

([ r∑
z=1

η2icC1||gstT+z
l ||2 +

r∑
z=1

η2ic
σ2

B

+ r

r∑
z=1

η2ic ||g
stT+z
l ||2

]
+

1

N2

∑
n∈N

r∑
z=1

η2icC1||gstT+z
n ||2

+

r∑
z=1

η2ic
σ2

NB
+

r

N2

∑
n∈N

r∑
z=1

η2ic ||g
stT+z
n ||2

)
1⃝
≤ 2η2ic

([ T∑
z=1

C1

N∑
l=1

||gstT+z
l ||2 + T (T + 1)σ2

2B

+
T (T + 1)

2

T∑
z=1

N∑
l=1

||gstT+z
l ||2

+
1

N2

∑
n∈N

T∑
z=1

C1||gstT+z
n ||2

+
T (T + 1)σ2

2NB
+
T (T + 1)

2N2

∑
n∈N

T∑
z=1

||gstT+z
n ||2

=
η2ic(N + 1)

N

([
(2C1 + T (T + 1))

T∑
z=1

N∑
n=1

||gstT+z
n ||2

]
+
T (T + 1)σ2

B

)
, (11)

where 1⃝ follows from the fact that the terms ||gl||2 are positive. Now, taking summation over global
communication rounds in equation 11 gives:

I/T−1∑
st=1

T∑
r=1

N∑
n=1

[
E||θ̄stT+z − θstT+z

n ||
]

≤
η2ic(N + 1)

N

([
(2C1

+ T (T + 1))

I/T−1∑
st=1

T∑
z=1

N∑
n=1

||gstT+z
n ||2

]

+
I(T + 1)σ2

B

)
=
η2ic(N + 1)

N

([
(2C1 + T (T + 1))

I∑
i=1

N∑
n=1

||gin||2
]

+
I(T + 1)σ2

B

)
, (12)
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which leads to

1

I

I∑
i=1

N∑
n=1

[
E||θ̄i − θi

n||
]

≤ (2C1 + T (T + 1))

I

η2ic(N + 1)

N

I−1∑
i=0

N∑
n=1

||gin||2

+
η2icI(N + 1)(T + 1)σ2

NB

1⃝
≤ (2C1 + T (T + 1))

I

λη2ic(N + 1)

N

I−1∑
i=0

||
N∑

n=1

gin||2

+
η2icI(N + 1)(T + 1)σ2

NB
, (13)

where 1⃝ follows from the definition of weighted gradient diversity and upper bound assumption in
(30) of the main paper. Finally, equation 13 can be written as:

1

KT

K∑
k=1

T∑
t=1

N∑
n=1

[
E||θ̄t

k − θt
n,k||

]

≤ (2C1 + T (T + 1))

KT

λη2ic(N + 1)

N

K∑
k=1

T∑
t=1

||
N∑

n=1

gtn,k||2

+
η2icKT (N + 1)(T + 1)σ2

NB
. (14)

A.3 PROOF OF LEMMA 3

We have

E
[
||g̃tk − gtk||2

]
1⃝
= E

[
|| 1
N

N∑
n=0

g̃tn,k − gtn,k||2
]

=
1

N2
E
[ N∑
n=0

||(g̃tn,k − gtn,k)||2
]

+
∑
i̸=n

⟨g̃ti,k − gti,k, g̃
t
n,k − gtn,k⟩

=
1

N2

N∑
n=0

E||(g̃tn,k − gtn,k)||2

+
∑
i̸=n

1

N2
E
[
⟨g̃ti,k − gti,k, g̃

t
n,k − gtn,k⟩

]
2⃝
=

1

N2

N∑
n=0

E||(g̃tn,k − gtn,k)||2

+
1

N2

∑
i̸=n

⟨E
[
g̃ti,k − gti,k

]
,E
[
g̃tn,k − gtn,k

]
⟩

3⃝
≤ 1

N2

N∑
n=0

[
C1||gtn,k||2 + C2

2

]
=
C1

N2

N∑
n=0

||gtn,k||2 +
C2

2

N
, (15)

where we use the definition of g̃tk and gtk in 1⃝, in 2⃝ we use the fact that mini-batches are chosen in
i.i.d. manner at each device, and 3⃝ follows directly from Assumption 3. We note that Assumption
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3 implies E[g̃tn,k] = gtn,k. Therefore. we have

E
[
||g̃tk||2

]
= E

[
||g̃tk − E[g̃tk]||2

]
+ ||E[g̃tk]||2

= E
[
||g̃tk − gtk||2

]
+ ||gtk||2

1⃝
≤ C1

N2

N∑
n=0

||gtn,k||2 +
C2

2

N
+ || 1

N

N∑
n=0

gtn,k||2

2⃝
≤ C1

N2

N∑
n=0

||gtn,k||2 +
C2

2

N
+

1

N

N∑
n=0

||gtn,k||2 + L2ψt
k

=

(
C1 +N

N2

) N∑
n=0

||gtn,k||2 +
C2

2

N
+ L2ψt

k, (16)

where 1⃝ and 2⃝ follows from the fact that ||
∑m

i=1 ai||2 ≤ m
∑m

i=1 ||ai||2, with ai ∈ Rn, and
Assumption 4 and Assumption 5. Using the upper bound over the weighted gradient diversity, λ,

E
[
||g̃tk||2

]
≤ λ

(
C1 +N

N2

)
||

N∑
n=0

gtn,k||2 +
C2

2

N
+ L2ψt

k, (17)

results in the stated bound.

A.4 PROOF OF LEMMA 4

To prove Lemma 4, we fix the indices related to global and local iteration k and t, consequently drop-
ping them from notations temporarily. Let Xn,d,± = ⟨Ẑ⟩|Ψn(θn±π

2 ed)⟩ − ⟨Z⟩|Ψn(θn±π
2 ed)⟩ denote

the difference between the estimated and true expectation of the observable Z under the quantum
state |Ψn(θn ± π

2 ed)⟩ whose dth parameter is phase shifted by ±π
2 . In the following analysis, we

use the notation |Ψn,d,±⟩ = |Ψn(θn ± π
2 ed)⟩ for brevity. The variance of the gradient estimate in

equation 30 is written as

var(ξn) = E
[ D∑

d=1

(
1

2
(⟨Ẑ⟩|Ψn,d,+⟩ − ⟨Ẑ⟩|Ψn,d,−⟩)

− 1

2
(⟨Z⟩|Ψn,d,+⟩ − ⟨Z⟩|Ψn,d,−⟩)

)2]
=

D∑
d=1

1

4
E
[(
Xn,d,+ −Xn,d,−

)2]

=

D∑
d=1

1

4

(
E[X2

n,d,+]− E[X2
n,d,−]

)
, (18)

where the expectation is taken with respect to the H measurements of the quantum states
|Ψn(θn + π

2 ed)⟩ and |Ψn(θn − π
2 ed)⟩ for d = 1, 2, . . . , D. Hence, the random variables Xn,d,+

and Xn,d,− are independent for d = 1, 2, . . . , D, which results in the equality in equation 18. It
is to note that the expectation E[X2

n,d,+] is equal to the variance var(⟨Ẑ⟩|Ψn,d,+⟩) of the random

variable ⟨Ẑ⟩|Ψn,d,+⟩. Let Y be the random variable that defines the index of the measurement of the
observable Z. Therefore, Z = hY represents the corresponding measurement output. We denote
the Bernoulli random variable as Wy = I{Y = y} determining whether Y = y(Wy = 1) or not
(Wy = 0). We also mention that the quantum measurements are i.i.d., and thus it follows from the

18
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definition of expectation of ⟨Ẑ⟩|Ψn,d,+⟩ that

E[X2
n,d,+] =

1

H
var
( Nz∑

y=1

hyWy

)

=
1

H
E
[( Nz∑

y=1

hy(Wy − p(y|θn + ed
π

2
))

)2]
1⃝
≤ 1

H

( Nz∑
y=1

h2y

) Nz∑
y=1

var(Wy)

2⃝
=

1

H

( Nz∑
y=1

h2y

) Nz∑
y=1

v

(
p(y|θn + ed

π

2
)

)

≤ Nz

Ny

( Nz∑
y=1

h2y

)
v =

Nz Tr(Z
2)

H
v, (19)

where 1⃝ follows from the Cauchy-Schwarz inequality, 2⃝ is due to the fact that the variance of the
Bernoulli random variable Wy is computed as

var
(
Wy

)
= E

[
W 2

y

]
−
(
E
[
Wy

])2

= v

(
p(y|θn + ed

π

2
)

)
, (20)

where v(x) = x(1 − x) for x ∈ (0, 1). The last yields from the definition of the quantity v. In a
similar way, it can be shown that the following inequality holds

E[X2
n,d,−] ≤

Nz Tr(Z
2)

H
v. (21)

From equation 19 and equation 21, we can write while bringing the omitted indices back

var(ξtn,k) ≤
νNzDTr(Z

2)

2H
. (22)

For N number of QFL clients, we get

var(ξtk) ≤
1

N

∑
n∈N

νNzDTr(Z
2)

2H
, (23)

concluding the proof.
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A.5 PROOF OF THEOREM 1

Using Lemma 1 and Lemma 2, we continue to further upper bound (34) of main paper as follows:

1

KT

K∑
k=1

T∑
t=1

E[f(θ̄t+1
k )− f(θ̄t

k)]

≤ 1

KT

K∑
k=1

T∑
t=1

(
− ηkE

[
⟨∇f(θ̄t

k), g̃
t
k⟩
])

+
1

KT

K∑
k=1

T∑
t=1

η2kL

2
E
[
||g̃tk||2

]

≤ 1

KT

K∑
k=1

T∑
t=1

(
− ηk

2
||∇f(θ̄t

k)||2 −
ηk
2
||

N∑
n=1

∇fn(θt
n,k)||2

)

+
ληkL

2

2KT

N + 1

N

([
2C1 + T (T + 1)

]
η2k

1

KT

K∑
k=1

T∑
t=1

||2

− ηk
2
||

N∑
n=1

∇fn(θt
n,k)||2

)

+
ηkL

2

2KT

(
N + 1

N

)(
KT (T + 1)η2kσ

2

B

)
+

1

KT

K∑
k=1

T∑
t=1

Lη2k
2

(
λ

(
C1

N
+ 1

)[
||

N∑
n=1

∇fn(θt
n,k)||2

]

+
σ2

NB

)
+ Lψt

k

=
1

KT

K∑
k=1

T∑
t=1

(
− ηk

2
||∇f(θ̄t

k)||2 −
ηk
2
||

N∑
n=1

∇fn(θt
n,k)||2

)

+
ληkL

2

2KT

N + 1

N

(
λ

[
2C1 + T (T + 1)

]
η2k

1

KT

K∑
k=1

T∑
t=1

||2

− ηk
2
||

N∑
n=1

∇fn(θt
n,k)||2

)

+
KT (L+ 1)η2kσ

2

B
+

1

KT

K∑
k=1

T∑
t=1

λLη2k
2

λ

(
C1

N
+ 1

)
[
||

N∑
n=1

∇fn(θt
n,k)||2

]
+
Lη2k
2

σ2

NB
+ Lψt

k. (24)

From equation 24, we have

1

KT

K∑
k=1

T∑
t=1

E[f(θ̄t+1
k )− f(θ̄t

k)]

≤ − 1

KT

K∑
k=1

T∑
t=1

ηk
2
||∇f(θ̄t

k)||2

(25)
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+
1

KT

K∑
k=1

T∑
t=1

[
− ηk

2
+
λ(N + 1)L2η3k[2C1 + T (T + 1)]

2N

+
λLη2k
2

(
C1

N
+ 1

)][
||

N∑
n=1

∇fn(θt
n,k)||2

]

+
η3kL

2(T + 1)σ2

B

(
N + 1

N

)
+
Lη2k
2

σ2

NB
+
L2η2k
2KT

K∑
k=1

T∑
t=1

ψt
k

1⃝
≤ − 1

KT

K∑
k=1

T∑
t=1

ηk
2
||∇f(θ̄t

k)||2

+
η3kL

2(T + 1)σ2

B

(
N + 1

N

)
+
Lη2k
2

σ2

NB
+
L2η2k
2KT

K∑
k=1

T∑
t=1

ψt
k, (26)

where 1⃝ follows if the following condition holds:

− ηk
2

+
λ(N + 1)L2η3k[2C1 + T (T + 1)]

2N

+
λLη2k
2

(
C1

N
+ 1

)
≤ 0. (27)

In any kind of FL framework, setting the coefficient of the local gradients’ sum to zero helps control
variance from diverse client updates, ensuring stable convergence. This condition limits the influ-
ence of individual clients on the global model, preventing oscillations or divergence. It keeps updates
bounded, promoting reliable convergence toward an optimal solution. By rearranging equation 26,
we get

1

KT

K∑
k=1

T∑
t=1

E||∇f(θ̄t
k)||2 ≤ 2[f(θ̄0

1)− f∗]

ηkKT
+
Lησ2

NB

+
2η2kσ

2L2(T + 1)

B
+

2

KT

∑
k,t

ϵtBO +
L

KT

∑
k,t

Ψt
k. (28)

Upto this point, we did not consider noise term in the local gradient of the quantum client. However,
we have to consider that because the noise term in the local gradient of each quantum device will
affect the convergence of the overall global gradient. Since the global gradient in QFL is an aggre-
gation of the local gradients from all the devices, any noise or error in the local gradient estimates
will also accumulate at the global level. Hence, we find the upper bound of the variance of the error
introduced in the local gradient of each client due to quantum shot noise and add it to the upper
bound of the global gradient in equation 28.

In QFL, the gradient is estimated rather than explicitly computed. This approach leverages quantum
computations to approximate the gradient, allowing for efficient optimization processes without
relying on exact gradient calculations. Our assumption E[g̃n] = gn means that the estimate is
unbiased. Therefore, we can write

g̃tn,k = gtn,k + ξtn,k, (29)

where g̃tn,k is the stochastic estimate of the gradient, gtn,k is the true gradient, and ξtn,k is the error or
noise introduced in the estimation process, with the noise term satifying the conditions E[ξtn,k] = 0

and var(ξtn,k) = E[||g̃tn,k − gtn,k||] Taking average across all the devices, we get

g̃tk = gtk + ξtk, (30)

where ξtk =
∑N

n=0 ξ
t
n,k. Since the global gradient in QFL is an aggregation of the local gradients

from all the devices, any noise or error in the local gradient estimates will also accumulate at the
global level. If the errors are significant, they may cause the aggregated global gradient to deviate
from the true direction of descent, slowing down convergence or leading to suboptimal solutions.
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Hence, we use Lemma 4 to find the upper bound of the variance of the gradient estimate. Therefore,
The expected value of the squared norm of the global gradient in equation 28 will be additionally
bounded by the left hand side of Lemma 4 in the following way:

1

KT

K∑
k=1

T∑
t=1

E||∇f(θ̄t
k)||2 ≤ 2[f(θ̄0

1)− f∗]

ηkKT
+
Lησ2

NB

+
2η2kσ

2L2(T + 1)

B

(
N + 1

N

)
+

1

N

∑
n∈N

νNzDTr(Z
2)

2H

+
2

KT

∑
k,t

ϵtBO +
L

KT

∑
k,t

Ψt
k. (31)

In non-convex optimization, achieving a global minimum is often infeasible due to the landscape’s
complexity, filled with local minima and saddle points. Instead of focusing on bounding the distance
between consecutive points, an alternative approach is to bound the squared norm of the gradient
estimate. This approach helps gauge how close we are to a stationary point, where the gradient’s
magnitude is minimal, indicating minimal change. By upper bounding the squared gradient, we can
evaluate convergence towards a solution that may not be globally optimal, however is practically
effective in reducing the loss.

A.6 PERFORMANCE OF QFL FRAMEWORK
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Figure 5: Training performance comparison of QFL for MNIST dataset (IID) for full device participation with
varying number of quantum measurement shots.

Fig. 5 illustrates the training performance in QFL on MNIST dataset (IID), showcasing improved
accuracy with increasing number of quantum measurement shots under full device participation
scenario. Figures 5a and 5b show that increasing the number of quantum measurement shots (H=1,
H=40, H=100) significantly improves QFL performance. Higher shot counts reduce quantum shot
noise by averaging more measurement outcomes, leading to greater accuracy and lower loss. Mov-
ing from H=1 to H=40 and then H=100 consistently enhances stability and reliability, highlighting
the importance of scaling up measurement shots for robust training in QFL systems. Fig. 6 shows
that under the non-IID MNIST setting, increasing quantum measurement shots yields the same trend
as in the IID case (Fig. 5), consistently improving accuracy and reducing loss regardless of data dis-
tribution.

A.7 DETAILS ON DATA HETEROGENEITY

As an example, Figure 7 illustrates the extreme non-IID label distribution for the MNIST dataset
across three quantum clients. The 3D plot encodes class index (digits 0–9) on the x-axis, client ID
on the y-axis, and the per-class sample count on the z-axis. Each client curve with shaded underlay
represents the number of samples available for each digit in that client’s local dataset. In this setup,
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Figure 6: Training performance comparison of QFL on Cifar10 and MNIST datasets (non-IID) for full device
participation with varying number of quantum measurement shots.
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Figure 7: Heterogeneous distribution of MNIST data among quantum clients. Each client has an
imbalanced class distribution and a varying number of data instances compared to other clients.

Client 1 is restricted to digits 1, 2, 3 with close to 18 thousand samples, Client 2 to 1, 2, 3, 4, 5, 6 with
close to 14 thousand samples, and Client 3 to all digits 0–9 with close to 13 thousand samples. This
configuration introduces both label-support mismatch and sample imbalance, ultimately creating a
challenging heterogeneous scenario for QFL with clients to see varying subsets and quantities of
labels.

Figure 8 shows the analogous setup for the HAR dataset. Here, Client 1 is restricted to activities
Laying, Standing with close to 3500 samples, Client 2 to Laying, Standing, Sitting, Walking with
close to 2500 samples, and Client 3 to all six activities with close to 4500 samples. The visualization
highlights how client-specific activity restrictions and uneven class counts produce strong non-IID
conditions. This increases the difficulty of achieving a well-generalized global model in QFL.
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Figure 8: Heterogeneous distribution of HAR data among quantum clients. Each client has an
imbalanced class distribution and a varying number of data instances compared to other clients.

A.8 FUNDAMENTALS OF THE CLIENT-SIDE QUANTUM MODEL

A.8.1 DATA ENCODING

To be processed by the PQC, a classical data input x from the client’s dataset must be encoded into
the state of the circuit’s Q qubits. This is achieved using amplitude encoding. First, the Q qubits are
initialized in the ground state |0⟩, resulting in the total initial state as

|ψinitial⟩ = |0⟩⊗Q (32)

Let x = (x0, x1, . . . , x2Q−1)
⊤ be the real-valued feature vector, normalized such that∑2Q−1

i=0 |xi|2 = 1. The normalized vector is mapped directly to the amplitudes of the computa-
tional basis states given by

|ψencoded⟩ =
2Q−1∑
i=0

xi |i⟩ (33)

The state equation 33 now contains the full classical feature vector in its amplitudes and serves as
the input to the PQC.

A.8.2 PARAMETERIZED QUANTUM CIRCUIT (PQC)

The PQC processes the encoded state through a sequence of L layers. The specific structure of
the PQC for client n is defined by its unique architecture matrix An ∈ {0, 1}Q×3L. Each layer l
is composed of parameterized single-qubit rotation gates followed by a fixed block of entangling
gates.

The transformation for a single layer l is represented by a unitary operator Ul, which acts on the
state from the previous layer |ψl−1⟩ as

|ψl⟩ = Ul|ψl−1⟩, where |ψ0⟩ = |ψencoded⟩ (34)

The unitary Ul is a composition of a rotation block U (l)
rot and an entanglement block U (l)

ent , expressed
as

Ul = U
(l)
entU

(l)
rot (35)
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The rotation block U (l)
rot applies single-qubit gates to the Q qubits. A gate g ∈ {Rx, Ry, Rz} is

applied to qubit q at layer l only if the corresponding entry An(q,g,l) in the architecture matrix is 1.
Each applied gate is parameterized by a trainable angle Θn(q, g, l). The rotation gates are defined
by the Pauli matrices (X,Y, Z) as

Rg(θ) = exp

(
−iθ

2
g

)
, g ∈ {X,Y, Z} (36)

The entanglement block U (l)
ent consists of fixed, non-parameterized two-qubit gates (e.g., CNOTs)

that create correlations between the qubits.

The total unitary transformation performed by the client’s PQC is given by

Un(θn) =

L∏
l=1

Ul (37)

where θn represents the complete set of trainable parameters {Θn(q, g, l)}. The final quantum state
is then written as

|ψfinal⟩ = Un(θn)|ψencoded⟩ (38)

A.8.3 MEASUREMENT AND PREDICTION

To retrieve a classical result, the final state equation 38 is measured. This involves calculating the
expectation value of the Pauli-Z operator for each qubit q, expressed as

oq = ⟨ψfinal|Zq|ψfinal⟩ (39)

where Zq is the Pauli-Z operator acting on qubit q. This process yields the classical output vector
o = [o1, o2, . . . , oQ]

⊤.

A.8.4 LOCAL TRAINING

Client n trains its PQC by minimizing a local loss function L(θn) that measures the discrepancy
between the predictions and the true labels y. The gradient with respect to each parameter Θn(q, g, l)
is computed using the parameter-shift rule:

∂L
∂Θn(q, g, l)

(40)

=
1

2

[
L
(
θn +

π

2
e(q,g,l)

)
− L

(
θn − π

2
e(q,g,l)

)]
(41)

where e(q,g,l) is a standard basis vector with one at the position corresponding to Θn(q, g, l) and
zero elsewhere.

After computing the full gradient vector ∇L(θtn), parameters are updated using the Adam optimizer.
The update rule at iteration t is:

θt+1
n = θtn − η∇L(θtn) (42)

where η is the learning rate. Local training proceeds forE epochs before sending updated parameters
to the central aggregator.

A.8.5 QUANTUM NOISE

In BO-QFL, quantum noise arises primarily from two sources: (i) stochastic shot noise due to finite
measurement sampling, and (ii) device-level depolarizing noise accumulated across clients. Both
contribute additional error terms in the convergence analysis.

Shot Noise: Each client n ∈ N performs Pauli-Z measurements with H shots per expectation
value. The variance of the unbiased estimator Ẑ follows

Var[Ẑ] =
1− ⟨Z⟩2

H
≤ 1

H
.
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(b) PQC for Client 2 (MNIST)
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Figure 9: BO-optimized parameterized quantum circuit of Client 1 for MNIST dataset, where 4
layers with different gate orientations are seen across 10 qubit wires. This figure contains only the
PQC section of the QNN, excluding the encoder part.
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Thus, increasing H reduces the gradient variance linearly. In the convergence bound, this appears
as

1

N

∑
n∈N

νNzDTr(Z2)

2H
,

where D denotes the observable dimension, Nz is the number of Pauli-Z operators, and ν quantifies
the variance constant.

Depolarizing Noise: Depolarizing noise Dür et al. (2005) is modeled by a quantum channel acting
on a single-qubit state ρ as

Edep(ρ) = (1− p)ρ+
p

2
I,

where p ∈ [0.03, 0.05] is the depolarizing probability and I is the identity operator. For Q-qubit
PQCs, this channel extends as

E⊗Q
dep (ρ) = (1− p)Qρ+

(
1− (1− p)Q

) I
2Q
.

Under repeated circuit executions, the expectation value of an observable O is biased toward the
maximally mixed state:

E[⟨O⟩noisy] = (1− p)d ⟨O⟩ideal,

where d is the circuit depth. For N participating clients, this multiplicative attenuation accumulates
across updates, and the aggregated gradient is effectively scaled by (1− p)dN :

∇f(θ̄t
k)noisy ≈ (1− p)dN ∇f(θ̄t

k)ideal.

In the convergence bound, this manifests as the fourth term, capturing the accumulated bias intro-
duced by depolarizing noise.

Interaction with BO and Aggregation: Shot noise perturbs BO evaluations fn(An), while depo-
larizing noise inflates the divergence term Ψt

k in heterogeneous aggregation. Together, these effects
validate Remark 2: although increasing N and H improves variance reduction and gradient aver-
aging, excessive scaling amplifies accumulated depolarizing bias, resulting in diminishing or even
negative returns in global performance.

A.9 MODEL HETEROGENEITY

As an example, Figure 9 shows the BO-optimized PQCs for the three MNIST clients. These circuits
were designed specifically to match the client-specific data distributions described earlier. Each
model operates on 10 qubits, has four layers, and uses a fixed ring entanglement pattern in every
layer. Although the overall structure is consistent, the placement and type of single-qubit rotation
gates (RX , RY , RZ) differ between clients. These differences are the result of the BO search
selecting gate arrangements that maximize performance for each client’s data.

Figure 10 shows the BO-optimized PQCs for the three HAR clients, also tuned to the client-specific
data distributions discussed earlier. Like the MNIST models, each PQC has 10 qubits, four layers,
and a ring entanglement structure. The number and placement of rotation gates vary between clients,
with some qubits having multiple rotations and others having fewer or none. These variations reflect
BO’s adaptation of each model to achieve the highest possible accuracy on its assigned HAR data.

A.10 EXTENDED SIMULATION RESULTS

We study the client-level behavior during the BO-QFL process in this section, considering the frame-
work with 3 quantum clients.

Local BO optimization was shown to improve clients’ quantum neural networks’ test accuracies
substantially. Figure 11 demonstrates the progression of the optimal circuit design for each MNIST
client over BO rounds, with large jumps representing BO rounds that yielded new optimal circuits,
and flat periods representing rounds which did not yield new optimal circuits, but those rounds still
played an important role in updating the surrogate model’s (GP) representation of the relationship
between circuit architecture and accuracy, guiding the search process. Client 1 steadily improved its
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(c) PQC for Client 3 (HAR)

Figure 10: BO-optimized parameterized quantum circuit of Client 1 for HAR dataset, where 4 layers
with different gate orientations are seen across 10 qubit wires. This figure contains only the PQC
section of the QNN, excluding the encoder part.
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optimal circuit from around 94.6% accuracy until converging at 100%, terminating BO earlier than
50 rounds. Client 1 realized a little over 5% test accuracy gain. Client 2 was the least optimized
client across experiments, only managing to make an improvement once across 50 BO rounds, al-
though he still found a decent improvement of about 2% test accuracy after less than 20 BO rounds.
Client 3 made two steep jumps in test accuracy, improving up to 8% from the initial rounds, and
finding an optimal accuracy after about 30 BO rounds, demonstrating the effectiveness of deep BO
optimization as the largest improvement was realized late into the process.
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Figure 11: Accuracy progression and architecture updates over BO rounds for each client on the
MNIST dataset. Each accuracy jump represents a new architecture that improved validation accu-
racy, while flat segments indicate rounds where no better configuration was found, highlighting the
selective and adaptive behavior of the BO process in heterogeneous settings.
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Figure 12: Accuracy search during BO rounds for each client on the MNIST dataset. Each accuracy
jump represents a new architecture evaluated on validation accuracy.

Figure 12 visualizes the raw search process for each MNIST client, with each y-axis value being
the accuracy of a circuit. As BO rounds progress, accuracy jumps all over as BO searches various
circuits and updates the GP’s belief of the search space. Large spikes represent BO rounds where a
very good architecture was found and added to the dataset of observed circuit-accuracy pairs. For
each client, accuracy fluctuates quite a large amount, implying BO effectively explores many areas
of the search space and also implying that accuracy of the model on the clients test set is heavily
dependent on the circuit architecture.

Figure 13 demonstrates the progression of the optimal circuit design for each HAR client, analogous
to Figure 7 for MNIST. Client 1 made steep improvements in early rounds and then remained stag-
nant for most of the process, but found a substantial increase near the end, again validating the need
for deep BO rounds. Client 1 eventually realized an overall gain of about 32% test accuracy. Client
2 similarly started out with steep improvements, but differs from Client 1 in the sense that further
BO rounds did not help. Client 2 ends with an improvement of about 5% in test accuracy. Client 3
improves very sharply immediately and then improves steadily up until about 30 rounds, where it
finds an optimum, overall realizing about a 10% test accuracy gain.

Figure 14 visualizes the raw BO search process for each HAR client, analogous to Figure 8 for
MNIST. Fluctuations are not as large as in MNIST, implying either the search space was less ef-
fectively explored or the accuracy itself is less dependent on the circuit architecture. Nevertheless,
quality optimization results were realized across clients, even if the process seemed to be slightly
more stable.

Figures 15 and 16 show the loss comparisons between optimal architecture and standard architecture
(RY ) for all clients for MNIST and HAR, respectively. For MNIST (Figure 15), Client 1’s loss
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Figure 13: Accuracy progression and architecture updates over BO rounds for each client on the
HAR dataset. Each accuracy jump represents a new architecture that improved validation accuracy,
while flat segments indicate rounds where no better configuration was found, highlighting the selec-
tive and adaptive behavior of the BO process in heterogeneous settings.

BO Epoch

A
cc

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50

(a) Quantum client 1

BO Epoch

A
cc

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

(b) Quantum client 2

BO Epoch

A
cc

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50

(c) Quantum client 3

Figure 14: Accuracy search during BO rounds for each client on the HAR dataset. Each accuracy
jump represents a new architecture evaluated on validation accuracy.

curves are about the same, Client 2 the optimal architecture converge to a slightly lower loss, and
Client 3’s there is an even greater difference in the converged losses. For HAR (Figure 16), Client
1 shows an improvement in minimizing loss with the optimized circuit, Client 2 shows a slight
improvement, and Client 3 shows a decent improvement.

A.11 DETAILED ALGORITHMS

Algorithm 2 outlines the working procedure for the proposed BO-QFL framework. Each client runs
a local architecture search using Algorithm 3 (lines 3–4), after which the server unifies architectures
and initializes weights (lines 6-7). Across rounds, clients train locally and send updates (lines 8–10),
while the server aggregates parameters using Algorithm 4 and redistributes them (lines 12-13). This
repeats until convergence or the round limit is reached (lines 14-17).

Algorithm 3 summarizes the BO process for QNN architecture optimization. It first samples and
evaluates initial architectures to build the dataset (lines 3–4). In each round, it fits the GP surrogate
model (lines 5-7), computes LogEI (line 8), selects and evaluates a new candidate (lines 9-10),
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Figure 15: Training loss comparison between BO-optimized (QNN-BO) and traditional QNN archi-
tectures across individual clients on the MNIST dataset.
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Figure 16: Training loss comparison between BO-optimized (QNN-BO) and traditional QNN archi-
tectures across individual clients on the HAR dataset.

Algorithm 2 BO-QFL System

1: Input: N clients with local datasets {Dn}, PQC search space S, communication rounds K
2: Output: Global model θG and architecture AG

3: for each client n ∈ N in parallel do
4: Local architecture search via Algorithm 3→A∗

n

5: end for
6: Server constructs global architecture AG via union rule.
7: Initialize global PQC weights to all clients as in equation 2
8: for each round k = 1 to K do
9: for each client n ∈ N in parallel do

10: Train local PQC for E epochs & send updates.
11: end for
12: Server aggregates parameters using Algorithm 4→ θG
13: Each client updates its local model with θG.
14: if converged then
15: break
16: end if
17: end for

Algorithm 3 Bayesian Optimization for QNN Architecture Search
1: Input: n0 (initial samples), E (max evaluations), Q× 3L (architecture size), client data
2: Output: Optimized architecture x∗ = argmaxxi∈De f(xi), ymax = maxi f(xi)
3: Sample n0 initial architecture vectors xi from [0, 1]Q×3L via Sobol sequence
4: Round each xi to binary {0, 1}Q×3L

5: Train QNN for each xi, record accuracy f(xi), set D0 = {(xi, f(xi))}
6: for e = n0 + 1 to E do
7: Fit Gaussian Process surrogate model by maximizing marginal II.
8: Calculate Log Expected Improvement.
9: Select next candidate xe = argmaxx LogEI(x)

10: Round xe to binary, train QNN, record f(xe)
11: Update data: Dt = De−1 ∪ {(xe, f(xe))}
12: if stopping criterion met (converged or e = E) then
13: break
14: end if
15: end for

and updates the dataset (line 11). This loop continues until convergence (line 12) or reaching the
evaluation limit.

Algorithm 4 details the strategy for heterogeneous model aggregation. It begins by initializing each
client’s parameter set and an empty tensor for the new global model (lines 2-3). For every parameter
position in the global set, it identifies which clients trained that parameter (line 5), then averages
their values (line 6) to update that parameter in the global model tensor.
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Algorithm 4 Heterogeneous Model Aggregation

1: Input: N , {A∗
n}n∈N , {Θ(k+1)

n }n∈N .
2: Output: Updated global model parameters θ(k+1)

G .
3: Initialization:

Client parameter setsW∗
n using equation ??, global parameter set

WG, and empty tensor for the new global model, θ(k+1)
G .

4: for each parameter position p ∈ WG do
5: Identify the specific set of clients that trained this

parameter: Np ← {n ∈ N | p ∈ W∗
n}.

6: Calculate the new global parameter via Equation equation 3 and
unify them→ updated θ

(k+1)
G .

7: end for
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