
Prototype-Based Methods in Explainable AI and Emerging Opportunities in the
Geosciences

Anushka Narayanan 1 2 Karianne J. Bergen 1 2 3

Abstract
Prototype-based methods are intrinsically inter-
pretable XAI methods that produce predictions
and explanations by comparing input data with
a set of learned prototypical examples that are
representative of the training data. In this work,
we discuss a series of developments in the field
of prototype-based XAI that show potential for
scientific learning tasks, with a focus on the geo-
sciences. We organize the prototype-based XAI
literature into three themes: the development and
visualization of prototypes, types of prototypes,
and the use of prototypes in various learning tasks.
We discuss how the authors use prototype-based
methods, their novel contributions, and any limita-
tions or challenges that may arise when adapting
these methods for geoscientific learning tasks. We
highlight differences between geoscientific data
sets and the standard benchmarks used to develop
XAI methods, and discuss how specific geoscien-
tific applications may benefit from using or modi-
fying existing prototype-based XAI techniques.

1. Introduction
Machine learning (ML) and deep learning (DL) are pow-
erful tools for modeling, classification, and prediction. In
recent years, ML/DL has been widely adopted by scientists
because these tools outperform the best domain-specific,
non-ML methods with low computational costs and
improved scalability for many tasks in scientific data
analysis (Wang et al., 2023b). Weather and climate science
is an example of a scientific domain that has recently
seen a rapid adoption of ML and DL methods (Rolnick
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et al., 2022; Reichstein et al., 2019). ML/DL has driven
impressive advances in weather forecasting models (Pathak
et al., 2022; Lam et al., 2023; Bi et al., 2023), climate
emulators (Beucler et al., 2021), extreme event prediction
(Griffin et al., 2022), spatio-temporal forecasting (Nguyen
et al., 2023), and remote sensing image analysis (Jakubik
et al., 2023). However, a common argument against the
unrestrained use of ML in scientific applications is that
most ML/DL methods operate as “black-box” models
that lack “interpretability” (Rudin, 2019; de Burgh-Day &
Leeuwenburg, 2023). In scientific research, specifically in
geoscientific disciplines, interpretable ML/DL models and
explainable AI (XAI) techniques are critical to verifying the
model has learned the correct underlying physical principles
and patterns governing the data (Yang et al., 2024). This
is especially important to build trust in models deployed
in operational settings, such as early warning systems for
extreme weather (Kuglitsch et al., 2022). Interpretability
is also key when ML is used with the aim of discovering
novel scientific insights or patterns in data to advance
scientific research (McGovern et al., 2019). Accounting for
interpretability allows researchers to go beyond predictive
accuracy and showcase the equally important insight of
how or why the model makes specific predictions.

In scientific research, including in the fields of climate and
weather, the most commonly used interpretability meth-
ods are post hoc techniques (Toms et al., 2020; Ham et al.,
2019). Post hoc XAI techniques such as SHAP (Lundberg
& Lee, 2017), LIME (Ribeiro et al., 2016), or LRP (Bach
et al., 2015) allow scientists to investigate feature patterns,
quantify predictor importance, or generate saliency maps.
However post hoc techniques have certain known limitations
and drawbacks (Zhou et al., 2021; Neely et al., 2021; Ade-
bayo et al., 2018). Lipton (2018) highlights the difficulty
of interpreting predicitions when different XAI methods
yield conflicting explanations. In an example from the geo-
sciences, Mamalakis et al. (2022) compare a series of post
hoc XAI methods to explain the decisions of a convolutional
neural network (CNN) for a climate-related prediction task.
The authors show that each post hoc method included in
the analysis resulted in inconsistent and complex model ex-
planations. McGovern et al. (2019) caution against using
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post hoc XAI methods to derive scientific conclusions as
rigorous hypothesis testing is required to ensure the viability
of the insights.

In contrast, inherently interpretable models can alleviate
some of the concerns associated with post hoc methods. An
inherently interpretable model aims to explain its reasoning
as it makes its prediction and does not require additional
techniques to interpret the prediction after-the-fact (Rudin,
2019). Linear regression (interpretable feature weights) and
decision trees (binary decision rules) (Gilpin et al., 2018)
are two examples of ML methods that can be classified
as inherently interpretable. However, more complex
models involving DL architectures, such as CNNs, ANNs
and LSTMs, generally do not share a similar inherent
interpretability.

Case-based reasoning can be used as a way to integrate
interpretability into complex model architectures. Case-
based reasoning uses the comparison between an input
and a particular instance to explain a prediction (Keane
& Kenny, 2019), such as instances from the training
data or counterfactual examples. A popular example of
case-based reasoning is the use of learned prototypes
embedded in the model architecture to reason out the
model’s predictions. Generally, the model identifies
prototypical representations of the data during training and
uses features representing the similarity between an input
and the learned prototypes to make a prediction (Li et al.,
2018). In this approach, the user can interpret the model’s
prediction by inspecting the most similar prototype(s),
which represent typical features or patterns in the data. This
approach to generating explanations aims to mimic the
human reasoning process; for example, one might identify
a bird’s species by comparing key traits: its beak, wing, and
feet, to an example of a ‘prototypical’ beak, wing or feet for
a sparrow (and other candidate species) (Chen et al., 2019).
Prototype-based explanation techniques offer an alternative
to common post hoc XAI techniques, with the added benefit
that the reasoning provided by prototype-based explanations
is inherently built into the model decision making process.

Prototype-based XAI techniques are an underutilized ap-
proach that can provide inherently interpretable ML alter-
natives for the scientific research community already using
ML. This review paper is organized as follows. In Section
2 we present a brief overview of prototypes. In Section 3,
we review methods for prototype-based XAI methods and
categorize the literature into (1) studies that focus on the
development and visualization of prototypes, (2) studies
that derive different types of prototypes, and (3) studies
that use prototypes for different types of learning tasks. In
Section 4, we present a perspective on how scientists can

leverage and extend these methods in their research. Specif-
ically, we highlight research tasks in the domain of climate
and weather that may benefit from leveraging case-based
XAI techniques where explanations are derived from com-
puting a similarity metric to a case or previous instance.
Many climate and weather research studies currently use
post hoc XAI techniques to interrogate ML models (Yang
et al., 2024). We argue that the application and development
for prototype-based inherently interpretable XAI approaches
for geoscientific data is a promising avenue for future re-
search toward advancing scientific discovery in weather and
climate science.

2. Prototype-based XAI Models
Before examining specific prototype XAI methods, we
describe the general architecture of prototype-based neural
networks. A prototype-based model architecture consists of
standard neural network layers (e.g., convolution, recurrent,
dense) that learn representative features of the dataset, a
prototype layer that generates latent prototypes associated
with each class in training and computes a similarity
metric between the input and the prototypes, and a fully
connected component that converts the similarity scores
to the prototypes to a final output specific to the learning
task (e.g., classification, regression, prediction) (Li et al.,
2018). The model also needs a component that allows
visualization of the latent prototypes; this latent space
visualization component is necessary because prototypes
are representations in the latent space, which can be difficult
to interpret directly, so we project these representations to
visualize them in the same space as the data.

In addition to the standard trainable parameters a neural net-
work learns, the prototypes themselves are represented by
learnable parameters that are iteratively updated according
to a specified optimization procedure (Chen et al., 2019),
which typically includes additional terms in the loss func-
tion. Generally, the loss function is designed to ensure ex-
planations are meaningful: the prototypes should be human-
interpretable, represent diverse representations of a target
class (Chen et al., 2019), and be similar to instances in the
training dataset (Li et al., 2018). This is essential to the
case-based reasoning process, where a sample’s prediction
derives its explanations from its similarity to previously seen
instances (i.e., in the case of ML, from the training dataset).
When a prototype network is deployed on test samples, the
model’s final prediction is derived from the prototype with
the highest similarity (i.e., predicting the target label of that
specific prototype with the highest similarity), thus provid-
ing an explanation for its prediction.
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3. Case Studies
The studies discussed below are organized into three cat-
egories. Section 3.1 traces the development of prototype-
based XAI networks and how we visualize the prototypes
to make them human-readable. Section 3.2 focuses on case
studies that develop novel additions to the prototype network
to generate different prototype-based explanations. Section
3.3 presents studies focused on developing novel ways to
use the similarity metrics and discusses how they can inform
the learning task and the relevant explanation. In each of the
case studies, we will discuss the study’s novel contribution
to the field, their specific methodology and application, and
any potential limitations or challenges that can arise when
applying these tools for geoscience-related research.

3.1. Development and Visualization of Prototypes

3.1.1. IMAGE-SIZED PROTOTYPES

Li et al. (2018) develop a prototype-based image classifier,
as defined in Section 2, for XAI with case-based reasoning
as a primary objective. The authors train their model to
classify handwritten digits in the benchmark MNIST im-
age dataset using an encoder-decoder architecture with an
additional classifier network (see Figure 1). The encoder
learns useful and relevant features in the image for both the
classification task and image reconstruction. The prototype
layer learns prototypical vectors in the latent space from
the encoder. These prototypes are updated via the loss con-
straints described in Section 2. The prototype layer outputs
a similarity metric between the input image and the set of
learned prototypes. The similarity scores are used in final
softmax classifier. The prototypes are visualized with the
decoder network, which maps the latent prototype vectors
back to the original input dimension such that the decoded
prototypes are of the original input image size. The authors
successfully demonstrate their prototype-classifer network
achieve competitive accuracy on benchmark datasets such
as MNIST in comparison with a standard CNN without the
use of prototypes. The authors demonstrate a limitation
of this work: the decoded prototypes are not guaranteed
to correspond to realistic or plausible instances. As a re-
sult, this approach may produce indecipherable or incom-
prehensible prototypes images, which may not provide a
human-understandable explanation.

3.1.2. PROTOPNET: PATCH-BASED PROTOTYPES

Chen et al. (2019) follow up on the previous study and in-
troduce ProtoPNet, a prototypical-part-based network that
is presently widely cited as the standard prototype-based
network in case-based reasoning XAI. The key innovation
of Chen et al. (2019) is an architecture that allows the proto-
types to represent “parts” (or patches) of the input images,

Figure 1. Diagram of the prototype-based XAI model (Li et al.,
2018) with encoder-decoder architecture and classifier for an
MNIST example.

rather than the whole image as in (Li et al., 2018). The latent
space consists of the output of the convolution layers broken
up into a grid of patches. The loss function ensures the
training images contain latent patches similar to prototypes
of the correct class and ensures the prototype patches are
dissimilar to prototypes of other classes. In ProtoPNet, the
authors constrain the prototype patches to be 1 × 1 × D
where D is the number of channels from the convolution out-
put. This allows for prototypes to represent typical attributes
of local features rather than the entire image itself. Another
contribution of the work is the use of a projection technique
that requires the latent prototype patch to be identical to a
training sample rather than just maximizing the similarity
to the training sample. In doing so, the authors remove
the necessity of the decoder network and rather project the
latent prototypical patch onto a training sample. Since each
prototype is constrained to correspond to part of the feature
map from a training sample, we can trace the latent proto-
type back to an actual patch in the training images, which
is easily visualizable and human-interpretable. The authors
demonstrate their prototype network model on a bird image
classification task, as the example in the introduction, where
prototypes of each class (i.e., sparrow) may represent a red
beak, a black eye, or other distinct, localized visual charac-
teristics. However, the authors state in the cases where test
images contain similarities to prototypical parts of multiple
classes, those prototypical parts tend to correspond to pat-
terns in the background of the image. This mandates users
to employ pruning approaches to ensure prototypes consist
of patterns from the object of interest and not necessarily
the background.

3



Attention Track: Prototype-based XAI and Opportunities in Geosciences

3.1.3. SPATIALLY DEFORMABLE PROTOTYPES

Donnelly et al. (2022) extend ProtoPNet to produce a de-
formable prototype-based architecture that consists of simi-
larly derived patch-based prototypes from the latent space as
mentioned above in Chen et al. (2019) that can be organized
in a spatially flexible manner. The authors demonstrate the
method on the benchmark bird classification dataset used in
Chen et al. (2019). In this work, the authors allow a proto-
type to consist of smaller rectangular prototypical patches
that can change their relative spatial positioning for an input
image (see Figure 2). The smaller rectangular prototypical
patches are additionally constrained to be orthogonal to each
other along with the orthogonal constraints among the larger
prototypes themselves. The spatially flexible prototypes al-
low for similarities between features in the input image and
the prototypical patches to vary in their orientation, allowing
for flexibility and learning of distorted or obscured images.
However, the additional constraints may increase training
complexity, and the resulting explanations have added com-
plexity making them potentially less human-interpretable.

Figure 2. Notional diagram of deformable prototypes (Donnelly
et al., 2022) where the prototypical patches (bounding boxes)
(Chen et al., 2019) vary in their spatial organization for one input
image (see Fig. 5 in original paper (Donnelly et al., 2022)).

3.2. Types of Prototypes

3.2.1. ST-PROTOPNET: TRIVIAL AND SUPPORT
PROTOTYPES

Wang et al. (2023a) present a technique where in addition to
finding prototypes that are most representative of the classes
in a dataset, termed trivial prototypes, they allow prototypes
to represent instances close to the classification boundary
between the target classes. These prototypes are analogous
to the support vectors in SVMs and thus termed support
prototypes. The trivial and support prototypes are notion-

ally represented in Figure 3 for binary classification, but
this approach can be extended for multi-classification. The
support prototypes of different classes are constrained to be
close to the decision boundary between classes, in contrast
with maximizing the distance between trivial prototypes of
different classes. This removes the assumption that expects
a test image to contain standard trivial prototypical parts
of a class. Rather, samples that contain parts resembling
support prototypes may contain subtle salient, distinguish-
ing characteristics of the sample’s target class. In an object
classification example shown by the authors, trivial proto-
types tend to focus on obvious distinct characteristics (i.e
if the background is different between classes) compared
to support prototypes that focused on salient characteristics
of the foreground (i.e specific distinguishing features of the
object). The support and trivial prototypes are alternatively
optimized within each training epoch, and a weighted combi-
nation of similarity to the trivial prototypes and the support
prototypes is used in the final classification. In the author’s
approach, the model is limited to learn an equal number
of support and trivial prototypes and the same number of
total prototypes for each class. This method may need to be
modified for class-imbalanced data where a flexible number
of support and trivial prototypes may be more useful.

Figure 3. Notional diagram of support prototypes found closer to
the classification boundary and trivial prototypes found far from
each other (see Fig. 1 in original paper (Wang et al., 2023a)).

3.2.2. PROTOSENET: SEQUENTIAL PROTOTYPES

Ming et al. (2019) develop a network designed for analyzing
sequential data in which prototypes represent a prototypical
series of sequential events or ordered events in the training
data. The similarities between sub-sequences in the input
sample and the prototypical sub-sequences from previous
cases are the explanations for the classification task. To
develop prototypical sequences, the authors use a recurrent
DL architecture that can capture important temporal and
sequential information in the data. They ensure only critical
sequences are generated as the final prototypes, avoiding
duplicate prototypical sequences. The authors include a
projection step that assigns the prototypical sub-sequence
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to the closest observed sub-sequence in the training data.
In order to search through all possible sub-sequences of
all lengths in each training sample, the authors employ a
greedy search algorithm. However, the training complexity
grows quadratically with increases in the observed sample’s
sequence length, which indicates this method may only be
feasible for classifying sequences of shorter lengths. The
authors apply their technique to text classification and pro-
tein sequence classification. The authors also include a
human-in-the-loop approach in which prototypes can be
manually updated using user knowledge. In an experiment,
they recruit non-ML experts to select prototypes that are
most similar to a given target sequence (e.g., a sequence of
text). The prototype options include both the highest simi-
larity prototype from the model and other randomly chosen
prototypes. If enough participants choose a prototype that
the model did not choose, the prototype for that target class
is manually updated.

3.2.3. MULTI-VARIABLE PROTOTYPES

Ghosal & Abbasi-Asl (2021) present a network that aims
to learn representative prototypes from multi-variable time
series data. They develop single-variable prototypes by ex-
tracting prototypical features from each variable separately,
similar to ProtoPNet in Chen et al. (2019). They also investi-
gate the interactions between the single-variable prototypes
to develop a multi-variable prototypical representation of the
data. They first generate individual single-variable prototyp-
ical patterns, then they concatenate and extract relationships
between the individual single-variable patterns to generate a
comprehensive multi-variable prototype-based explanation.
The authors test their approach on synthetically generated
multi-variable time series data and on a benchmark Epilepsy
time series dataset. They reveal that the prototypes capture
patterns within each feature and relationships between mul-
tiple features. However a major limitation of this method is
that the number of prototypes generated increases exponen-
tially with the number of features in a dataset. For example,
the authors use a synthetic dataset of 4 single-variable fea-
tures (3 relevant to the target class, 1 random noise feature)
in which the number of multi-variable prototypes is 43, or
64, to account for all the combinations of the 3 relevant
single-variables in the multi-variable prototype. This may
be computationally infeasible to use for higher-dimensional
data and can result in increasingly numerous explanations
to navigate through for the user.

3.2.4. PROTOAD: ANOMALY DETECTION IN TIME
SERIES PROTOTYPES

Li et al. (2023) use a prototype-based approach to explain
anomalies in time series data. The authors initially com-
pute prototypical sequential data from training data con-
sisting of “normal” (non-anomalous) time series data us-

ing an LSTM-autoencoder in an unsupervised manner, us-
ing a reconstruction-based loss function. The authors de-
tect anomalies in the time-series via anomaly scores. The
anomaly score is computed by the model by comparing
sequences in the time series to the prototypical sequences
learned from the normal data. The authors do not prescribe
a threshold for when an anomaly is detected; rather they
evaluate performance metrics on the quality of the model-
generated anomaly scores with real-valued anomaly scores.
The authors apply their method to find anomalous behaviour
in a synthetic test case of a sine wave function with random
noise injections as well as various real-world benchmark
datasets with competitive accuracies to non-prototype based
anomaly detection methods. However, the authors’ method
requires the training data to be free of anomalies, which may
prove difficult to guarantee for non-benchmark observed
datasets without extensive domain-specific knowledge.

3.3. Prototype Reasoning Across Learning Tasks

3.3.1. PROTOTREE: DECISION TREES FOR LEARNING
TASKS

Nauta et al. (2021) present a combination of a prototype-
based network and a decision-tree-based classification
method, termed ProtoTree. The similarity scores to pro-
totypes are passed as features into a decision tree that makes
the final class prediction. For example, a simplified tree-
based reasoning may look like a series of binary questions
asking whether a bird image has high similarity to particular
prototypes, which may be associated with different classes.
In this example, the model first checks whether the input
image contains the red beak prototype. If true, then it looks
for a blue wing prototype. Through this reasoning process,
the decision tree will output the classification. This allows
for target classes to share similar prototypes (i.e both spar-
row and robin have black eye color prototypes) and does not
require the test image to contain all prototypes associated
with a particular class. The tree-structure also allows for
pruning of prototypes by removing leaves that have little
discriminative power in the learning task. Pruning reduces
the chance that multiple similar prototypes are included in
the model. Compared to ProtoPNet, ProtoTree achieves
similar accuracies with a significantly reduced number of
prototypes, around 90% of the prototypes needed for Pro-
toPNet. However, training must be performed in two stages:
first to learn the optimal prototypes and then to learn the
optimal splits in the decision tree. The authors point out
that learning these parameters simultaneously resulted in
an overly complex and inaccurate model. ProtoTree is able
to generate local explanations by tracing a specific test in-
stance’s path through the decision tree. Global explanations
of the model’s reasoning for each target class can also be
generated from the full decision tree.
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3.3.2. NP-PROTOPNET: LEARNING TASKS WITH
NEGATIVE REASONING

Singh & Yow (2021) present NP-ProtoPNet, a method that
closely resembles ProtoPNet (Chen et al., 2019) with the
additional of a novel reasoning technique. ProtoPNet relies
heavily on positive reasoning, where a network makes a
classification based on how similar the patches in the input
image are with a prototypical patch. In addition to positive
reasoning, NP-ProtoPNet network uses negative reasoning:
it can reject classes based on the absence of matching proto-
typical patterns between other classes and the input image.
Similarity scores will be positive if the input contains to
prototypical patterns of certain classes or negative if the
input does not contain prototypical patterns of other classes.
An equal combination of the positive and negative similar-
ity scores is used to make final prediction. However, in
this equal combination approach, models can tend to make
predictions with using more negative reasoning, if the abso-
lute value of the negative similarity scores are higher than
the absolute value of the positive similarity scores (i.e the
model is very confident the input does not look like Class
A,B, or C but only mildly confident the input sample looks
like Class D.) The authors demonstrate this method on the
classification on X-ray images for the presence of Covid-19.

3.3.3. PROTOLNET: LEARNING TASKS WITH LOCATION
SCALING

Barnes et al. (2022) extend ProtoPNet (Chen et al., 2019)
to generate prototypes along with learned location scaling
components for the classification of the phases of the Mad-
den Julian Oscillation (MJO), an important atmospheric
phenomenon impacting tropical weather at monthly scales,
using environmental features, such as wind speed and long-
wave radiation. In many geoscience applications, the lo-
cation of features or phenomena is important. This may
not hold true for standard image classification applications
using a standard ProtoPNet model. For example, in bird clas-
sification, the input image can share similarities to a learned
prototypical part such as a red beak. However the location
of the red beak in the input image does not matter, it is only
necessary the input image contain parts similar to a red beak.
By contrast, in climate applications in which the inputs are
gridded climate data rather than natural images, the absolute
location (e.g., near the poles vs. near the equator) may be
critical for classification. The authors develop ProtoLNet,
a method that learns prototype patches along with the lo-
cation in the image where the prototype is important. For
each phase of the MJO, the authors generate prototypical
patterns of the environmental features and the associated
location where these patterns are important. Figure 4 rep-
resents a notional diagram of ProtoLNet’s reasoning for a
simple location-relevant learning task. The location scaling
grid shows where these prototypes are important, however,

an important consideration is that, one location scaling grid
is identically applied for all features in the data; in the MJO
use-case, prototypical patterns of both wind speed and radi-
ation are required to be present in the same location rather
than in unique locations for each feature.

Figure 4. Notional representation of ProtoLNet’s (Barnes et al.,
2022) prototype-based reasoning for an example location-relevant
learning task classifying which quadrant the object is located. We
find those prototypes with the highest similarity to the test image.
The location scaling grid shows where each prototype is important
for this classification.)

4. Discussion
In this section, we first discuss the unique properties
of geoscientific data and explore how potential geo-
science learning tasks may benefit from the use of the
prototype-based XAI methods highlighted above. We also
discuss literature that addresses the general limitations
of prototype-based explanations and XAI in general,
considerations for evaluating their level of interpretability,
and different cautions to be aware of when using these
methods in the scientific domain.

Geoscientific data has unique characteristics that differ
from the standard natural image or language data typically
used in prototype-based XAI research and thus requires
particular attention when using prototype-based techniques.
For example, geoscientific data often include both a
temporal component, gridded spatial data contain spatial
autocorrelations, datasets are often high-dimensional or
contain data from multiple spectral channels. Data sets may
be multimodal, with information combined from multiple
sources or sensing modalities, and both observational and
simulation-generated data sets can be massive in volume
(Karpatne et al., 2019). Unlike natural images that usually
contain objects of sharp edges, colors or features over a
distinct background, geoscientific phenomena tend to be
multi-spatial scale and have ambiguous boundaries such as
weather fronts at the meso-scale level (≈ 10−1 to 102 km)
and tropical cyclones at the synoptic-scale level (≈ 103 to
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104 km). Typically, when we treat gridded climate data (for
example, a latitude-longitude grid of temperature, wind
speed, and other meteorological variables) like natural
images in computer vision, each channel (temperature,
wind speed, etc.) is often a separate, independent feature in
a particular sample (Barnes et al., 2022). In contrast, natural
RGB images use three channels to represent one color. Thus
it may not be appropriate to process or interpret gridded
climate data in the same manner as RGB natural images.
In addition, many geoscientific events of scientific interest
lack adequate training data (Ham et al., 2005); for example
in the case natural disasters such as tropical cyclones and
flash floods, observational datasets will typically contain
very few instances of extreme events (Kuglitsch et al., 2022;
Karpatne et al., 2019).

The applications of image-sized prototypes (Li et al., 2018)
can be appropriate for climate and weather learning tasks
that require understanding global modes of a target class.
Modes derived using Principal Component Analysis (PCA;
also referred to as Empirical Orthogonal Function, or EOF,
analysis), are commonly used in climate science to analyze
climate patterns (Hannachi et al., 2007; Kao & Yu, 2009)
such as El Niño (Wang et al., 2017). Image-sized prototypes
offer an alternative method for deriving climate modes,
without the constraint of orthogonality imposed in PCA. In
contrast, patch prototypes (Li et al., 2018) can be used to
investigate localized features or patterns within a larger
input grid. For example in climate prediction tasks, an
image-sized prototype can represent a global climate mode
(e.g., El Niño phase), while a patch prototype may point
to localized features in a specific region (e.g., sea surface
temperature patterns in the eastern Pacific) (Rivera Tello
et al., 2023). Deformable prototypes (Donnelly et al.,
2022) enable a flexible configuration of prototype patch
clusters within the images. Deformable prototypes would
be appropriate for modeling multi-scale interactions such
as precipitation events (Tan et al., 2024; Prein et al., 2023)
where differently sized and organized prototype patches
can inform prototypical patterns for a range of spatial scales.

Geoscientific tasks often involve using DL for spatio-
temporal forecasting such as short-term weather variables
(Suleman & Shridevi, 2022), turbulent flow (Wang et al.,
2020) and climate oscillations (Geng & Wang, 2021; Wang
et al., 2023c) where generating sequential or temporal expla-
nations can help identify critical events for different forecast
lead-times. Originally tested on sequence classification, the
sequential prototype approach of Ming et al. (2019) could
be adapted for time-series forecasting. In this approach,
a DL model would be able to generate explanations for a
forecast depending on the presence of key events, identified
by their similarity to salient prototypical sub-sequences.

Extending the work in Barnes et al. (2022) to explore
prototypes with individual feature (channel)-specific
location scaling grids may help gain more insight into
the role specific individual meteorological variables play
in climate phenomena. While prototype-based methods
have been developed for spatial and temporal data, there
has been limited work on combining these approaches for
interpretable spatio-temporal data analysis.

Prototype-anomaly scores (Li et al., 2023) can be useful
in detecting anomalous changes in the testing data or
whether it is out-of-distribution in an unsupervised manner.
Anomaly scores may be useful in the case of climate
research, where data is usually non-stationary given natural
and anthropogenic climate change (i.e true distribution of
the data is always evolving). Learning support prototypes
(Wang et al., 2023a) can help distinguish harder to discern
patterns, which may be useful in detecting climate and
weather phenomena that contain more subtle distinguishing
characteristics and are harder to predict, such as atmospheric
rivers (Chapman et al., 2019) and tropical cyclones (Galea
et al., 2023). Data points with characteristics that are more
similar to support prototypes compared to trivial prototypes
can point to data points with salient characteristics. For
extreme event prediction such as cyclone intensification
(Xu et al., 2021) or extreme precipitation events (Franch
et al., 2020), one can also consider using the techniques
developed in Singh & Yow (2021) and Nauta et al. (2021)
to further understand the decision making process when
learning tasks may rely on negative feature contributions or
benefit from binary tree-like decision making. In standard
prototype approaches, models make decisions that are
solely based on positive similarity of the input image
to a prototype. However in applications where an input
image does not contain a crucial prototypical pattern,
using negative reasoning or binary tree-like reasoning
may benefit the model’s prediction accuracy. This can be
especially important in extreme event detection and related
high-impact decision-making (McGovern et al., 2017).

In the case of hyperspectral satellite imagery, a common
data-type in geoscientific research (Rolf et al., 2024), tech-
niques are developed to reduce their large dimensionality
(Santara et al., 2017). The motivation behind this is to
gain insight into distinguishing features that may not be
visible in all spectral bands of a satellite image and find
specific salient bands that contain relevant information
for a task, in contrast with standard RGB image channels.
Generating multi-variable prototype-based explanations
as described in Ghosal & Abbasi-Asl (2021) may be a
promising alternative method to investigate prototypical
patterns within individual spectral channels and the relevant
multi-spectral prototypical patterns that are salient for a
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model’s decision process. In general, standard feature
importance techniques point to how single-variable features
contribute to a model prediction, a common research
motivation in geosciences (O’Gorman & Dwyer, 2018; Qiu
et al., 2018; Wei et al., 2023). Generating multi-variable
explanations can provide additional information on how
features both individually and in combination contribute to
a model prediction, which can be especially important for
geoscientific phenomena that tend to be driven by complex
multiple environmental features or forcings.

While we discuss the potential opportunities for adapting
prototype-based XAI techniques in the geosciences, we
must also consider evaluating the utility of prototype-based
explanations when using them in any scientific domain. For
prototype-based explanations, in particular, it is important
to avoid generating a large number of prototypes to prevent
over-complicating explanations. Though we need the
prototypes to be generally representative of the data,
prototypes should also be sparse in nature and provide a
simple ‘explanation’. One can consider including pruning
approaches noted in Nauta et al. (2021) and Chen et al.
(2019) that can generate simpler and non-duplicative pro-
totype based explanations. Domain scientists should play
integral roles in evaluating the robustness and reliability of
the generated prototype-based explanations for a learning
task. For example, including a domain specialist in the
human-in-the-loop approach described in Ming et al. (2019)
may help reduce the redundancy of the model-generated
prototypes to making the explanation easier to comprehend.
The case studies discussed above vary in the types of
prototypes generated, model and training complexity and
the generated final explanation. Depending on the specific
learning task and the level of complexity of the explanation
that is needed, domain scientists can aid in choosing
the appropriate method such that prototypes provide an
informative yet concise explanation during the model
decision-making process.

Hoffmann et al. (2021) demonstrate the potential pitfalls of
using prototype-based networks for generating explanations.
The authors find that introducing artifacts into the input data
that are imperceptible to humans, can drastically alter the ex-
planations despite the image and the altered image looking
virtually identical to each other. This is an essential critique
of prototype-based methods because they rely on comparing
the similarity of the latent representation of a training sample
with the test sample to establish an ‘explanation’. Artifacts
can alter the latent representation significantly which can al-
ter the ‘explanation’ even if a human would mark the altered
training sample as similar to the testing sample. To com-
bat these issues, the authors recommend implementing data
augmentation techniques and adversarial training to prevent

the introduction of artifacts and train the model to recognize
the samples augmented with artifacts. Similar pitfalls arise
in using traditional post hoc XAI techniques. Ghorbani et al.
(2019) and Alvarez-Melis & Jaakkola (2018) show that per-
turbations to input data produce varied ‘explanations’ when
using post hoc XAI techniques indicating a similar risk in
their robustness and stability. Kim et al. (2022) establish
a framework, HIVE: Human Interpretability of Visual Ex-
planations that assesses how explanations derived from AI
models can help or hinder human decision making. Huang
et al. (2023) establish a quantitative interpretability bench-
mark metric to follow when interrogating the consistency
and stability of the prototype-based explanations. Rigorous
testing and robustness evaluation of the prototype-based
XAI methods should be included in best practices when
employing these methods in geosciences, especially when
these methods are involved with generating scientific insight
and/or involved with high-stakes decision-making.

5. Conclusion
In this review, we present case studies from the emerging
field of prototype-based XAI, a set of methods that aim to
develop built-in interpretability for complex deep learning
architectures. These case studies show promising avenues
for further development for use-cases in geoscientific
research, where there has been significant recent progress
through the use of AI. We include case studies that
focus on the the development of the prototypes and their
visualizations, studies that explore the different form of
prototypes, and studies that focus on using prototypes in
different types of learning tasks. By adapting these methods
and tailoring them for geoscience specific domain tasks,
we can generate accurate, reliable, and insightful models.
When considering the methods showcased for geosciences
applications, one should always consider what the end-goal
task is and what form of explanation would be most useful
for the specific task. We include potential avenues to
use prototype-based methods for geoscientists to explore
in their respective research domains. We also include a
discussion on studies that have developed rigorous testing
and evaluation frameworks to evaluate the robustness and
test the integrity of prototype-based explanations when
employing these techniques.

Though this review focuses on learning tasks with geosci-
entific data, the points raised in this review also apply more
generally to other scientific disciplines that share similar
research tasks. Most prototype-based XAI approaches have
been developed for standard natural image, text and natural
language benchmark datasets. With the increasing adoption
of ML in the sciences, there is greater need for XAI tools
designed with the unique properties of scientific data and
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needs of scientific researchers in mind. Such tools, espe-
cially when developed in collaboration between scientists
and XAI researchers, have the potential to advance both
fields.
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A. Appendix

Table 1. Column 1 depicts characteristics and properties of geoscientific data. Column 2 states the specific ML tasks in which they’re
commonly used. Column 3 states the challenges in using them in standard ML and XAI methods. Column 4 includes an example from
the literature for the geoscientific task. For a more in-depth review on the development and usage of machine learning and post-hoc
XAI analysis in the geosciences, one can refer to Molina et al. (2023), Yang et al. (2024), de Burgh-Day & Leeuwenburg (2023) and
Mamalakis et al. (2020).

Geoscientific Data
Characteristics

Geoscientific ML
Task

Challenges with Standard
ML and XAI techniques

Literature Example

Phenomena of interest
have ambiguous bound-
aries and can blend with
image background

geoscientific fea-
ture detection

Image recognition models rely
on features like defined bound-
aries or sharp edges over a dis-
tinct background

tropical cyclone and atmo-
spheric river segmentation
(Prabhat et al., 2020)

Gridded data contains
separate, independent en-
vironmental features

climate prediction Often treated as RGB channels
in an image representing a sin-
gular color

prediction of strong El Niño
events (Rivera Tello et al.,
2023)

Hyper- or multi-spectral
satellite data

geoscientific fea-
ture/channel
selection,
dimensionality-
reduction

High dimensionality with rele-
vant information spread across
multiple channels in contrast
with RGB natural images

estimating radar reflectivity us-
ing remote-sensing (Hilburn
et al., 2020)

Spatio-temporal,
location-specific pat-
terns, temporal patterns

climate mode
variability, spatio-
temporal forecast-
ing

Sequential methods are devel-
oped to work with text or nat-
ural language data (tokens vs.
continuous signals)

sub-seasonal tropical-
extratropical circulation
forecasting (Mayer & Barnes,
2021)

Domain-shift, anoma-
lous data

climate prediction Poor performance on out of dis-
tribution data

climate projections under dif-
ferent climate regimes or distri-
butions (Iglesias-Suarez et al.,
2024)

Limited observed sam-
ples of a rare or extreme
event of interest

extreme weather,
climate prediction

Class imbalanced data, poor
prediction performance

prediction of extreme rapid-
intensification cyclone events
(Kim et al., 2024)
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Table 2. For each case study in Column 1, Column 2 states the explanation each study provides using prototypes and Column 3 states
potential geoscientific learning tasks for this method.

Case Study Summary Explanation Geoscientific Learning Tasks

Li et al. (2018) This input image is overall resembles a learned
prototypical image of the target class.

climate phase prediction, dimension-
ality reduction

Chen et al. (2019) This specific patch in input image resembles a
learned prototypical local patch or pattern directly
from a patch in a training image.

generating local feature patterns

Donnelly et al. (2022) This organized cluster of prototypical patches re-
sembles a set of prototypical patches within an
image of the target class.

organization of feature patterns, de-
tecting multi-scale feature patterns

Wang et al. (2023a) This input may resemble prototypes representative
of a target class or the target class boundary.

hard-to-learn feature detection, ex-
treme event detection

Ming et al. (2019) A window of this input sequence resembles a pro-
totypical window sequence in the target class.

temporal forecasting, climate oscilla-
tions prediction

Ghosal & Abbasi-Asl
(2021)

This multi-variable input shares similarities with
single variables prototypes and their relationships
with each other.

multi-forcing classification, multi-
variable feature attribution, multi-
spectral imagery classification

Li et al. (2023) This input sequence of data significantly differs
from prototypical window sequences in the train-
ing data.

anomaly detection, extreme event de-
tection

Nauta et al. (2021) The prediction is derived from a tree-like reason-
ing process on whether the input contains similar-
ities to certain prototypes.

multi-variable prediction tasks

Singh & Yow (2021) This input image contains similar prototypical
parts of the target class and does not contain pro-
totypical parts from another class.

climate prediction and classification,
extreme event prediction

Barnes et al. (2022) This input image contains similar prototypical
parts of the target class only in specific regions of
the image.

generating spatially relevant feature
patterns
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