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Abstract

High anisotropy in volumetric medical images can lead to the inconsistent quantifi-
cation of anatomical and pathological structures. Particularly in optical coherence
tomography (OCT), slice spacing can substantially vary across and within datasets,
studies, and clinical practices. We propose to standardize OCT volumes to less
anisotropic volumes by conditioning 3D diffusion models with en face scanning
laser ophthalmoscopy (SLO) imaging data, a 2D modality already commonly avail-
able in clinical practice. We trained and evaluated on data from the multicenter
and multimodal MACUSTAR study. While upsampling the number of slices by a
factor of 8, our method outperforms tricubic interpolation and diffusion models
without en face conditioning in terms of perceptual similarity metrics. Qualitative
results demonstrate improved coherence and structural similarity. Our approach
allows for better informed generative decisions, potentially reducing hallucinations.
We hope this work will provide the next step towards standardized high-quality
volumetric imaging, enabling more consistent quantifications.

1 Introduction

Volumetric medical images can be highly anisotropic, i.e., having high-resolution slices in one
anatomical plane but poor through-plane resolution. This has been shown to lead to imprecise volume
and shape measurements of structures of interest [17], potentially resulting in wrong diagnoses and
severe negative clinical implications.

A prominent example of a modality often affected by this is optical coherence tomography (OCT).
OCT is commonly acquired as a raster, where multiple line scans generate B-scans (slices), and
multiple slices generate a volume (see Fig. 1a). The spacing between slices can vary substantially

∗The list of MACUSTAR consortium members is in Appendix Section A.7.
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Figure 1: Overview of our proposed approach and background. (a) The medical terminology related to
OCT volumes. (b) Low slice densities in volumetric images can lead to inaccurate quantifications. (c)
We propose to upsample the number of slices by conditioning a diffusion model with en face images.
In our experiments, we use SLO as conditioning en face data but our method could be extended to
other types. In the shown example, our model is the only approach that correctly generates the druse
(the bright bump in the retina).

between OCT devices and imaging protocols [32, 3, 6, 8]. This can hamper consistent biomarker
quantification [30, 2, 27, 19, 18]. Fig. 1b illustrates this issue by demonstrating fluid volume
estimations in a single retinal OCT volume for various slice spacings. We can observe a 23.2% drop
in estimated fluid volume when the slice spacing increases by a factor of 8.

A possible solution to these imprecise measurements is to standardize volumes with low slice
density to high-resolution data through reliable super-resolution methods. Several super-resolution
approaches have been proposed for OCT [12, 33, 4, 21] but they all aim to improve the resolution
within individual B-scans. Approaches to reduce anisotropy have been proposed for other volumetric
medical images, such as computed tomography (CT) [15] and magnetic resonance imaging (MRI)
[26]. These methods use deep learning models to upsample the number of slices based solely on
low-resolution input data during inference.

A major drawback of these works is their lack of knowledge about anatomical and pathological
structures that fall between two adjacent slices. This can lead to hallucinating models that generate
incorrect biological features, potentially resulting in misdiagnoses or otherwise harmful clinical
outcomes. We hypothesize that including information about regions between slices as input to a
super-resolution model helps make better-informed generative decisions that correctly reflect the
biological truth.

Therefore, we propose a method based on 3D diffusion models to increase slice density by utilizing
additional imaging modalities as conditioning information (see Fig. 1c). We use diffusion models, as
they have been shown to outperform other popular generative models such as generative adversarial
networks at generating high-quality images [5], super-resolution [24], and leveraging multimodal
data as conditioning information [22]. These capabilities align well with the objectives of our study.

We evaluate our developed method on OCT data while conditioning on scanning laser ophthalmoscopy
(SLO) fundus images. SLO is a 2D en face (i.e., parallel to the coronal plane) imaging modality that
is commonly acquired alongside OCT scans. OCT devices internally use SLO images as a reference
to position the OCT acquisition at the desired anatomical location [1]. Our method can be extended
to include other modalities, such as color fundus photography (CFP) and fundus autofluorescence
(FAF), potentially resulting in even better-informed models.

We hope this approach is a valuable step towards more isotropic, high-quality, and standardized
volumetric imaging, allowing for more consistent biological measurements and diagnoses in the
future.
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Figure 2: En face-conditioned diffusion model overview.

2 Methods

Our model is a 3D diffusion model trained to generate high-resolution volumes by upsampling the
number of slices (i.e., increasing the B-scan density in OCT). It is conditioned on both en face
imaging data and the low-resolution counterpart of the high-resolution target (see Fig. 2). We provide
a brief introduction to diffusion models and their associated symbols in Section 2.1. In Section 2.2,
we describe how we adapt diffusion models for en face conditioned super-resolution. In short, the
low-resolution image is concatenated with a reshaped en face image along the channel dimension,
which we subsequently input as conditional information to the denoising model. The sampling
process, including the use of Denoising Diffusion Implicit Model (DDIM) [28] sampling, overlapping
patches enabled by RePaint [16], and classifier-free guidance (CFG) [11], is detailed in Section 2.3.
Finally, we present the network architecture and implementation details in Section 2.4.

2.1 Diffusion models

Diffusion models are generative models consisting of a forward diffusion process and a backward
diffusion process [10]. In the forward diffusion process, over many timesteps T , more and more
noise is gradually added to an input image x0, resulting in noisy images x1, . . . ,xT . This process q
can be formulated with a variance schedule β1, . . . , βT as follows:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI). (1)

As shown by Ho et al. [10], we can directly obtain xt given x0 using the following equation:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

with ϵ ∼ N (0, I), αt := 1− βt, and ᾱt :=
∏t

s=1 αs.

In the backward diffusion process pθ, xt−1 is predicted for any t ∈ {1, . . . , T} by denoising xt

using a trained denoising model, optimized by model parameters θ. This model generally uses some
variant of the U-Net [23] architecture (see Section 2.4 for the implementation we use). Following
Salimans et al. [25], our trained denoising model does not predict the noise ϵ or image x0 directly,
but uses v-prediction parameterization as this prevents intensity shifting artifacts in super-resolution
models [9], where vt :=

√
ᾱtϵ−

√
1− ᾱtx0. We use the mean squared error (MSE) loss to train

our denoising model vθ:

L := ||vθ(xt, t)− vt||22. (3)
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2.2 En face conditioned super-resolution

To enable the use of diffusion models for en face conditioned super-resolution, we combine the
approach for generating high-resolution from low-resolution images from SR3 [24] with our proposed
method of conditioning the denoising model with en face information. In this paper, we use SLO
images but our approach could be extended to other en face data.

Specifically, we adapt the input to the conditional denoising model as follows:

v̂t = vθ(xt, t,xLR,xenface), (4)

where v̂t is the output of the denoising model, xt is the noisy image at timestep t, xLR is the corre-
sponding low-resolution image upsampled to match the dimensions of xt using linear interpolation,
and xenface is the en face image.

xLR and xenface are fed similarly into the denoising model. Following SR3 [24], we concatenate the
noisy input xt with the low-resolution image xLR along the channel dimension. Since en face images
generally do not align with their corresponding OCT scans in the en face plane, registration of these
two images is required (see Section A.1). This registration step results in spatial correspondence
and ensures the en face image has the same shape in the en face plane as the OCT volume. To reach
an image with the same 3D shape as xt and xLR, we repeat the registered 2D xenface image in the
y-direction H times, where H is the height of xt. This 3D tensor is concatenated together with xt

and xLR along the channel dimension. We subsequently input the resulting tensor into the model.

Due to computational limitations, we work with image patches for xt, xLR, and xenface. These
patches all correspond in terms of their location and size. No noise is added to xLR and xenface for
any timestep t.

2.3 Sampling process

During sampling, there are a few key distinctions in the processing pipeline compared to the backward
diffusion process during training. Firstly, we use DDIM [28] sampling, which allows for accelerated
sampling by reducing the number of timesteps while sampling.

Secondly, we train our denoising model with patches, but we are interested in generating full
high-resolution volumes during sampling. To prevent artifacts near the borders of patches, we use
overlapping patches. We use RePaint [16] to facilitate this overlapping strategy, an image inpainting
approach for diffusion models (see Section A.2 for more details).

Thirdly, to minimize image artifacts showing an overall intensity in the generated slices that is
different from the overall intensity in the slices already existing in the low-resolution volume, we
implemented a post-processing normalization step. In this step, we normalized the mean and standard
deviation of the intensities in the generated slices to match those in the slices that already existed in
the low-resolution volume. This normalization step was performed separately for each OCT volume.

Lastly, to influence how much the denoising model uses the en face information for its generative
decisions, we employ CFG [11]. In CFG, during training, the conditional information is dropped
for a random number of samples in each batch with some probability puncond. In practice, when the
conditional information is dropped, we feed an image with all pixels set to zero. This results in a jointly
trained conditional denoising model vθ(xt, t,xLR,xenface) and unconditional denoising model
vθ(xt, t,xLR). During sampling, we can then linearly combine the conditional and unconditional
model predictions using a guidance scale hyperparameter w:

ṽθ(xt, t,xLR,xenface) = (1− w)vθ(xt, t,xLR) + wvθ(xt, t,xLR,xenface). (5)

2.4 Network architecture and implementation details

For our denoising network, we use the U-Net architecture described by Pinaya et al. [20], in which
the timestep embedding is integrated into the model via residual connections. The U-Net uses 3D
convolutions and has a depth of four U-Net levels with 32, 64, 128, and 256 channels, respectively, in
each level with two residual blocks per level. We use self-attention at the deepest U-Net level with a
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single attention head. We train using the Adam optimizer with a learning rate of 5× 10−5, a batch
size of 16, for 20 000 epochs. All images were normalized between -1 and 1 before cropping.

In our experiments, the number of timesteps for the diffusion process was T = 1000 during training
with a SCALED LINEAR [20] schedule and a βt range of 0.0005 to 0.0195. We employed DDIM
sampling with 100 timesteps, resulting in a 10× time efficiency improvement. We do not perform
any resampling steps when inpainting using RePaint [16] to allow for faster sampling. We use the
MONAI generative AI framework [20] for implementing our diffusion model.

During training, we use 3D patches of size 128 × 128 × 16 for xt and xLR, and a 2D patch of size
128× 1× 16 for xenface. During sampling, we use a patch size of 496 × 496 × 16 for xt and xLR,
and a 2D patch of size 496 × 1 × 16 for xenface. When sampling full high-resolution volumes, we
used an overlap of 25%, 25%, and 50% for the x-, y-, and z-direction, respectively. During training,
we prepared our patches such that each 5th and each 13th slice in xLR were identical to the 5th and
13th slice in x0, respectively. The other slices were interpreted using linear interpolation.

2.5 Data

For training and evaluating our diffusion models, we used OCT volumes and corresponding SLO
images from the MACUSTAR study [7]. MACUSTAR is a clinical study on age-related macular
degeneration (AMD) that is carried out across 20 sites in 7 European countries. The dataset from
this study contains data from patients with varying disease severities (no, early, intermediate, and
advanced AMD).

We used the patient data from the cross-sectional part of the MACUSTAR study and only included
Heidelberg Spectralis OCTs with at least 237 B-scans. This resulted in a total set of 302 patients.
We randomly split this set of patients in 181 (60%), 60 (20%), and 61 (20%) patients for training,
validation, and testing, respectively. As multiple OCT volumes were available for each patient (from
both eyes and either one, two, or three visits in the cross-sectional study) this resulted in 721 and 236
OCT volumes for the training and validation set, respectively. For the test set, we only used the OCT
volume from the study eye, defined for the MACUSTAR study, from the first visit, resulting in 61
OCT volumes. More details regarding the dataset and pre-processing can be found in Appendix A.1.

3 Experiments

We evaluate our approach for the task of upsampling the number of slices in the image volume with a
factor of 8. For the sake of simplicity, when generating full volumes as described in Section 2.3, we
drop the last slice in the OCT volume in the test set, resulting in OCT volumes with 240 instead of
241 slices. Hence, we upsample low-resolution volumes with 30 slices to high-resolution volumes
with 240 slices. The resolution of individual slices was not changed.

We refer to our proposed diffusion model with en face conditioning and CFG with guidance scale
w = 2 as DDIMef. To measure the effect of en face conditioning and CFG, we compare DDIMef with
the two models: DDIMef (no CFG), and DDIM. DDIM is the proposed approach with en face
conditioning turned off during sampling. En face conditioning is turned off by feeding an image with
all pixels set to zero as the conditional image, which is also done during training with a probability of
puncond to enable CFG (see Section 2.3). The proposed model with en face conditioning, but without
CFG, will be referred to as DDIMef (no CFG). Furthermore, we compare these methods with the
more traditional upsampling method of tricubic interpolation.

3.1 Evaluation

We report the classical image similarity metrics MSE, SSIM [31], and PSNR, computed between the
8× upsampled low-resolution images using DDIMs and tricubic interpolation, and the high-resolution
reference images. As noted by Saharia et al. [24], these classical metrics may not be optimal for
evaluating super-resolution methods, as they were shown to correlate poorly with human perception
and heavily penalize synthetic high-frequency details that deviate from the reference, favoring blurry
images instead.

Therefore, we also evaluate with Learned Perceptual Image Patch Similarity (LPIPS) [34]. We
used the LPIPS metric implementation provided by the authors of the original LPIPS paper [34]
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Table 1: Classical image similarity metrics (MSE, SSIM, and PSNR) and perceptual metrics (all
LPIPS variants) calculated on the test set between the original high-resolution OCT volumes and
low-resolution images that were 8× upsampled in the slice-direction using tricubic interpolation and
our proposed DDIM methods. Results are presented as the mean ± standard deviation over all OCT
volumes. Bolded values indicate the best values in terms of the mean performance.

Tricubic DDIM DDIMef (no CFG) DDIMef

MSE ↓ 0.006 ± 0.002 0.006 ± 0.003 0.006 ± 0.003 0.006 ± 0.003
SSIM ↑ 0.451 ± 0.116 0.444 ± 0.107 0.447 ± 0.107 0.447 ± 0.107
PSNR (dB) ↑ 22.472 ± 1.418 22.401 ± 1.644 22.495 ± 1.673 22.450 ± 1.683

LPIPSaxi ↓ 0.120 ± 0.027 0.138 ± 0.030 0.138 ± 0.030 0.141 ± 0.031
LPIPScor ↓ 0.548 ± 0.103 0.158 ± 0.047 0.158 ± 0.048 0.162 ± 0.050
LPIPSsag ↓ 0.540 ± 0.088 0.144 ± 0.049 0.144 ± 0.049 0.147 ± 0.050
LPIPS2.5D ↓ 0.403 ± 0.072 0.147 ± 0.041 0.147 ± 0.042 0.150 ± 0.043
LPIPSefproj ↓ 0.231 ± 0.055 0.063 ± 0.039 0.060 ± 0.039 0.064 ± 0.039

for their metric based on an ImageNet pre-trained AlexNet [14]. Since this evaluation method was
developed for 2D images, we modified it for 3D data by calculating the LPIPS metric on all 2D slices
in the axial, coronal and sagittal planes in the volume, resulting in the metrics LPIPSaxi, LPIPScor,
and LPIPSsag, respectively. We also report LPIPS2.5D, which is the average of these three metrics.
This approach for 3D data is available in the publicly available implementation from the MONAI
generative AI framework [20]. Additionally, we calculated LPIPSefproj, which compares two OCT
en face projections generated by averaging all columns in each slice of the volume, resulting in a 2D
en face image.

Even though LPIPS may be considered a more suitable evaluation approach than the classical
evaluation metrics, it is not guaranteed to consider the structures of interest enough, since the
underlying model was only trained on natural images. Therefore, we also present qualitative examples.

4 Results

The first three rows of Table 1 shows the classical image similarity metrics MSE, SSIM [31], and
PSNR, computed between the 8× upsampled low-resolution images using DDIMs and tricubic
interpolation, and the high-resolution reference images. The perceptual metrics based on LPIPS are
shown in the last five rows of Table 1.

For the proposed method, ablated methods and the tricubic interpolation method, we present several
figures to illustrate the difference in structural similarity to the high-resolution reference images,
sharpness, and coherence within the generated volumes. In Fig. 3 and A.2, we aim to point out
these aspects using the en face projections, allowing one to observe the overall structure of the full
generated volumes. Fig. 4 and Fig. A.3 show additional examples of these en face projections while
highlighting relevant regions, alongside the corresponding image patches from the underlying OCT
volume. Further examples are presented in Fig. A.4, which shows 3D renders of generated and
reference volumes, and in Fig. A.5, which shows patches of consecutive B-scans with difference
maps between generated and reference images. Fig. A.6 shows generation examples and difference
maps for several randomly picked image patches. The effect of increasing the guidance scale w from
CFG is illustrated in Fig. 5. Specifically, a case of an example OCT patch is shown with several
drusen that are also visible in the SLO image.

Model training took approximately 9 days on an NVIDIA A100 GPU. Sampling a full volume with
240 B-scans of 768 × 496 pixels, the most common size in the test set, resulted in 58 patches. On the
aforementioned GPU type, for DDIMef, sampling a whole volume took approximately 46 minutes.
For DDIM and DDIMef (no CFG), this sampling time was about half (approximately 23 minutes), as
CFG doubles the number of required forward passes of the denoising model.
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Tricubic

Figure 3: Examples of en face projections of the OCT volumes generated using tricubic interpolation,
the unconditional diffusion model DDIM, and our proposed en face conditioned diffusion model
DDIMef. These three projections are shown in the last three columns and were all generated from
the 8 × downsampled (in the B-scan direction) volume as input, which is shown in the third column.
The first and second rows show the corresponding high-resolution (high-res) reference and scanning
laser ophthalmoscopy (SLO) image, respectively. A separate example from a different test set patient
is shown in each row. The top images in each row show the full image. Zoomed-in versions of the
image patches (red boxes) are shown at the bottom of each row.

5 Discussion

We addressed the large variability in anisotropy across OCT scans, which can lead to inconsistent
quantifications. We propose a super-resolution approach that uses SLO images to condition 3D
super-resolution diffusion models, aiming for better informed image generations that are closer to the
biological truth. SLO is commonly already acquired alongside OCT scans, ensuring our method often
will not require any additional data beyond what is already available in clinical practice. Furthermore,
SLO acquisition is relatively fast, while OCT acquisition time increases with every additional line to
be acquired, potentially speeding up the overall acquisition process.

Our qualitative results indicate that our approach can upsample the number of B-scans in OCT
volumes by a factor of 8 while improving similarity to high-resolution reference images and overall
coherence, compared to a diffusion-based approach without en face information as conditional input.
Our method specifically improves the reconstruction of superficial blood vessels and geographic
atrophy (see Fig. 3 and A.2). Furthermore, our diffusion models demonstrate visually sharper images
than tricubic interpolation.

In terms of the classical image similarity metrics MSE, SSIM, and PSNR, which are suboptimal for
evaluating super-resolution methods [24], tricubic interpolation performed roughly the same as our
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Figure 4: Examples showing the effect of using DDIMef, compared to leaving out the en face
information (DDIM), and tricubic interpolation. In the top rows, the SLO image is shown on the
left, followed by the en face projections of each OCT volume. The bottom rows show zoomed-in
patches. The patch locations are indicated in the top row with a lime circle. The lime horizontal
line corresponds to the B-scan location from the shown patches. (a) DDIMef reconstructs a druse
that is present in the high-resolution reference, while it is missing in the OCT patches from tricubic
interpolation and DDIM. The druse also seems to be subtly visible in the SLO image. (b) The large
lesion in the center of the OCT patches are more similar to the reference for DDIMef than for tricubic
interpolation and DDIM. It is also visible in the SLO images as a hyper-intense lesion.

diffusion models. In terms of LPIPScor, LPIPSsag, and LPIPSefproj, our diffusion models outperformed
tricubic interpolation but slightly underperformed in terms of LPIPSaxi. This finding is in line with
our visual observations in Appendix Section A.4.

In terms of all reported quantitative metrics, using CFG to guide the diffusion model more towards
the information in the en face image either slightly decreased performance, or showed no effect (see
Table 1). Paradoxically, we found using CFG could lead to structural features that more closely
resembled those in the high-resolution reference than when CFG was not employed. An example of
this effect is shown in Fig. 5. Besides, this example shows that setting the guidance scale w too high
can lead to exaggerated structural features (e.g., too large drusen) and artifacts.

This study has limitations. (1) Our DDIM models can sometimes introduce imaging artifacts (see
Appendix Section A.5). (2) When visually inspecting the dataset, we found that the registration
information between OCT B-scans and the SLO image was not always perfect, possibly not allowing
the model to utilize the SLO/OCT mapping well sometimes. An improved registration strategy will
likely improve generation results and learning speed. (3) Although we present various qualitative
results, we only evaluated our approach quantitatively using image similarity metrics. Therefore,
we cannot draw conclusions about whether our super-resolution approach improves biomarker
quantification. This requires a vast amount of manual annotation labour or a reliable segmentation
model for the type of OCT data used in this work. As we did not have access to these resources,
we leave this evaluation to future work. (4) Hallucination is a large risk of most generative models,
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SLO

Figure 5: The effect of CFG and increasing the guidance scale w. In the top left, the high-resolution
reference is shown. In the bottom left, the en face SLO image is shown, in which the patch location is
indicated with a red box. The vertical lime lines correspond to the same physical locations throughout
the figure. The horizontal lime line in the bottom left indicates the B-scan location of the shown OCT
patches. The two rows on the right show the results from our en face conditioned diffusion model
with CFG for various guidance scales. w = 0 is equivalent to the unconditional DDIM, w = 1 to
DDIMef (no CFG), w = 2 to DDIMef, and w > 2 is similar to DDIMef, but with a larger guidance
scale. The two drusen between the lime vertical lines seem to grow with a larger guidance scale.

including diffusion models [13]. In the context of medical imaging, generative models like ours
risk the generation of non-existent lesions (leading to false positives), inflating them (leading to
over-quantification), removing them (leading to false negatives), or shrinking them (leading to
under-quantification). Although our en face conditioning mechanism may reduce hallucinations by
providing more context to make well-informed generative decisions, sufficient empirical evidence of
our method completely preventing this is lacking. (5) The sampling time for our diffusion model is
relatively long. However, approaches exist to reduce this sampling time [25, 22].

We only explored the effect of conditioning OCT super-resolution diffusion models with near-infrared
SLO images. Future work could include more en face modalities as conditional information, such as
CFP and FAF. As images from those modalities would likely provide additional information than
SLO images, we expect this could lead to more accurate super-resolution models. Other metadata,
such as functional vision exam data and OCT scans from other devices or protocols, may contain
even more useful information.

In our current implementation, we resize and vertically repeat the SLO image patch, enabling
concatenation in the channel dimension with the OCT volume. This turns the 2D SLO image into
a volume that is processed by 3D convolutions. This is computationally inefficient and the initial
resizing can lead to information loss. Future work could focus on designing an architecture that more
effectively leverages this multimodal data, possibly using a separate encoder for en face images and a
cross-attention mechanism to combine the features from the different encoders.

The approach of using relatively high-resolution 2D images from a certain modality to condition
diffusion models for super-resolving 3D data from another modality could potentially be applied
in other medical domains. For example, using high-resolution 2D X-ray imaging as conditional
information for super-resolution CT or MRI scans may be an interesting future direction.

In conclusion, we have shown the feasibility of conditioning super-resolution diffusion models to
reduce anisotropy in volumetric images with additional and readily available image data, enabling
well-informed generative decisions. Specifically, we showed this in the context of OCT super-
resolution conditioning on en face images. We think this can be an important next step towards
standardized high-quality OCT and other volumetric imaging, leading to more consistent measure-
ments – obtained from either downstream manual quantifications or machine learning models –
within and across datasets, studies, and clinical practices. Furthermore, our approach could facilitate
the trustworthiness of generative models and their regulatory approval by mitigating the risk of
hallucinations compared to uninformed super-resolution models.
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A Appendix

A.1 Additional dataset and pre-processing details

For the training and validation set combined, the number of B-scans per OCT volume varied, with 1
volume containing 237 B-scans, 927 volumes containing 241 B-scans, and 29 volumes containing
512 B-scans. The B-scan sizes ranged from 512 × 496 pixels to 1536 × 496 pixels, and the physical
OCT volume size ranged from 2.9 × 1.9 × 2.9 mm3 to 9.2 × 1.9 × 7.7 mm3. For the test set, all
OCT volumes contained 241 B-scans. The B-scan sizes ranged from 512 × 496 pixels to 1536 ×
496 pixels, and all OCT volumes had a physical size of approximately 8.8 × 1.9 × 7.3 mm3.

Next to the previously described set of OCT volumes, we used the near-infrared confocal SLO
images, which Heidelberg Spectralis devices acquire alongside the OCT, as en face modality for our
conditional diffusion models. The SLO image was registered to the OCT volume according to the
physical linkage information between these two images that was provided by the camera software.
We subsequently cropped and resized these SLO images to the same width and height as, respectively,
the width and depth from their corresponding OCT volumes.

For some OCT volumes in the dataset, we observed that incidentally adjacent B-scans were not
correctly aligned vertically. Therefore, during sampling, B-scans were registered vertically using
a grid search for the vertical translation amount and MSE as a cost function, based on a flattened
representation of the B-scans (collapsed into columns by averaging over the x-axis).

A.2 Overlapping patches and inpainting

During sampling of full volumes, we use overlapping patches, facilitated through inpainting with
RePaint [16]. Inpainting is the task of filling in new content in a specific part of an image, which
can be defined by a binary mask. We refer to the image part that needs to be filled in as “unknown”
and the other part as “known”. During each timestep t in the sampling process, RePaint combines
the “known” image part from the input image, which has been noised to the appropriate noise level
of timestep t− 1, with the “unknown” part from the denoised image xt−1 (see the bottom part of
Fig. A.1). When we generate a complete volume using this patch overlapping strategy, the “known"
region is defined as the area previously generated from an adjacent patch, combined with slices from
the original low-resolution image volume (see the top part of Fig. A.1). Besides, the patch size during
sampling is larger than the one used during training, as we empirically found this to improve the
coherence and fidelity of the generated volumes.
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Figure A.1: Overview of our overlapping strategy facilitated through RePaint [16].
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A.3 Additional results

Tricubic

Figure A.2: Additional examples of en face projections of the OCT volumes generated using tricubic
interpolation, the unconditional diffusion model DDIM, and our proposed en face conditioned
diffusion model DDIMef (presentation similar to Fig. 3). These three projections are shown in the last
three columns and were all generated from the 8 × downsampled (in the B-scan direction) volume
as input, which is shown in the third column. The first and second rows show the corresponding
high-resolution (high-res) reference and scanning laser ophthalmoscopy (SLO) image, respectively.
A separate example from a different test set patient is shown in each row. The top images in each row
show the full image. Zoomed-in versions of the image patches (red boxes) are shown at the bottom of
each row.
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Tricubic

(a)

Tricubic

(b)

Figure A.3: Additional examples showing the effect of using DDIMef, compared to leaving out the
en face information (DDIM), and tricubic interpolation (presentation similar to Fig. 4). In the top
rows, the scanning laser ophthalmoscopy (SLO) image is shown on the left, followed by the en face
projections of each OCT volume. In the bottom row, zoomed-in patches are shown. The patch
locations are indicated in the top row with a lime circle. The lime horizontal line corresponds to
the B-scan location from the shown patches. (a) A blood vessel is only reconstructed by DDIMef.
This vessel is also visible in the SLO image. (b) The hypertransmission pattern seems to be best
reconstructed by DDIMef. The en face location of the hypertransmission area is also visible in the
SLO image.
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High-res
reference

8× downsampled
in B-scan direction Tricubic

Figure A.4: 3D renders of full OCT volumes, depicted for the high-resolution (high-res) reference,
downsampled volume, tricubic interpolated volume, and our proposed method DDIMef. The bottom
row shows zoomed-in versions of the renders in the top row. The lime squares in the top row indicate
the zoomed-in area. The red arrows point to a vessel on the inner retina.
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Absolute
error

Tricubic Tricubic error

Figure A.5: An example showing a sequence of B-scans, illustrating that the volume generated with
tricubic interpolation is more smoothed than the volume generated by our diffusion model DDIMef,
which is much sharper. This is most evident around slice 128. The first and last shown slices were
already present in the low-resolution OCT volume. The third and fifth columns indicate the absolute
error.
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error

Tricubic Tricubic error

Figure A.6: Randomly picked 256×256 B-scan patches from “unknown” slices in the test set,
depicting the origins of absolute errors for tricubic interpolation and DDIMef. The third and fifth
columns indicate the absolute error.
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A.4 LPIPS for different anatomical planes

We found that our diffusion models outperformed interpolation in terms of LPIPScor, LPIPSsag, and
LPIPSefproj, but not in terms of LPIPSaxi. This finding is in line with the visual observations we
make when manually inspecting slices from these anatomical planes. This is illustrated in Fig. A.7,
in which DDIMef shows higher visual similarity with the high-resolution reference than the image
upsampled with tricubic interpolation for the coronal plane, sagittal plane, and the en face projection.
For the axial plane, however, we think this is less evident. The LPIPS values, which are also shown
in Fig. A.7 for the shown slices, correlate well with these visual observations.
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LPIPS = 0.094
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DDIMef

LPIPS = 0.141

LPIPS = 0.197

LPIPS = 0.051

Figure A.7: Examples of slices from the three orthogonal anatomical planes and the en face projection
image. All shown images originate from the same OCT volume. For tricubic interpolation and
DDIMef, Learned Perceptual Image Patch Similarity (LPIPS) values, computed only using the
depicted slices, are shown in the top left corner of each image. For the anatomical planes, the middle
slices are shown. For the axial (B-scan) slice, this corresponds to a slice exactly in the middle of two
slices that were also present in the low-resolution volume (i.e., , the slice was as far away from a
“known” slice as possible, which is generally a slice that is more difficult to generate accurately than
a slice that is closer to a “known” slice).
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A.5 Generated imaging artifacts

We found that a number of imaging artifacts can occur when generating volumes using our DDIM
approach (see A.8). The occurrence frequency depends on the artifact type. For example, small
groups of white pixels are sometimes generated near the top of B-scans (see an example in Fig.
A.8a). If they are present, they always seem to be located in the top left of the sampling patches.
Furthermore, sometimes very large, bright areas are generated in the vitreous body (see an example
in Fig. A.8b). This mainly seems to occur when two adjacent B-scans in the low-resolution volume
were not registered well.

(a) (b)

Figure A.8: Artifact types that sometimes occur in volumes generated by our diffusion models. These
artifacts were neither present in the low-resolution input nor the high-resolution reference. (a) Small
groups of white pixels in the top left of sampling patches. (b) White areas in the vitreous body. This
artifact type mainly seems to occur when two adjacent B-scans in the low-resolution volume were
not registered well.
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