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Abstract
Neural models learn data representations which lie on low dimensional manifolds, yet modelling
the relation between these representational spaces is an ongoing challenge. By integrating spectral
geometry principles into neural modeling, we show that this problem can be better addressed in
the functional domain, mitigating complexity, while enhancing interpretability and performances
on downstream tasks. To this end, we introduce a multi-purpose framework to the representation
learning community which allows to: (i) compare different spaces in an interpretable way and
measure their intrinsic similarity; (ii) find correspondences between them, both in unsupervised
and weakly supervised settings, and (iii) to effectively transfer representations between distinct
spaces. We validate our framework on various applications, ranging from stitching to retrieval
tasks, demonstrating that latent functional maps can serve as a swiss-army knife for representation
alignment.

1. Introduction

Recent studies have shown that neural models often develop similar representations when exposed
to similar stimuli, both in biological [10, 17] and artificial settings [15, 28, 29]. Notably, internal
representations of distinct models can often be aligned through a linear transformation [38, 47]
(e.g. when subject to different initializations). This indicates a level of consistency in how NNs
process information, showing the importance of characterizing these internal representations and
their geometric relation. In this paper, we shift our focus from characterizing relationships between
samples in distinct latent spaces to modelling a map between function spaces defined on these latent
manifolds. We leverage the framework of functional maps [33], applying it for the first time to the
field of representation learning. Functional maps represent correspondences between function spaces
on different manifolds: in this setting, many difficult constraints can be easily manipulated and
expressed compactly [35]. For instance, as shown in Figure 1, the mapping in the functional space
(C) becomes a linear map with a sparse structure. Our contributions can be listed as follows: (i) We
introduce the framework of Latent Functional Maps as a way to model the relation between distinct
representational spaces of neural models. (ii) We show that LFM allows us to find correspondences
between representational spaces, both in weakly supervised and unsupervised settings, and to transfer
representations across distinct models. (iii) We showcase LFM capabilities as a meaningful and
interpretable similarity measure between representational spaces. (iv) We validate our findings in
retrieval and stitching tasks across different models, modalities and datasets, demonstrating that
LFMs can lead to better performance and sample efficiency than other methods.
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Figure 1: Framework overview: given two representational spaces X , Y their samples lie on two
manifold X , Y , which can be approximated with the KNN graphs GX ,GY ; We can optimize for a
latent functional map C between the eigenbases of the graphs. This map serves as a map between
functions defined on the two manifolds and can be leveraged for comparing representational spaces,
solving correspondence problems, and transferring information between the spaces.

2. Method

We provide the basic notions to understand the framework of functional maps applied to manifolds
in the Appendix A.

Setting We consider deep neural networks f := f1 ◦ f2 ◦ ...fn where each layer fi is associated
to a representational space X corresponding to the image of fi. We assume that elements x ∈ X
are sampled from a latent manifold M. Considering pairs of spaces (X ,Y), and corresponding
manifolds M,N our objective is to characterize the relation between them by mapping the space of
functions F(M) to F(N ). Our framework is depicted in Figure 1. In the following, we will start by
approximating X from a sample estimate, building a graph in the latent space.

Latent Functional Maps We model each space using a subset of training samples X = {x1, . . . , xn}
and Y = {y1, . . . , yn} and build a k-NN graphs GX and GY from these samples, respectively with
a given distance metric (for deatils about the graph construction see Appendix C.1.1). For each
graph, we compute the graph Laplacian LG and derive the first k eigenvalues ΛG and eigenvectors
ΦG = [ϕ1, . . . , ϕk], which serve as the basis for the function space defined on the latent spaces.

Given the set of corresponding functions FGX
= [fGX

1 , . . . , fGX
nf

] and FGY
= [fGY

1 , . . . , fGY
nf

],
we consider the optimization problem defined in Equation 2 and incorporate regularizers for Laplacian
and descriptor operator commutativity, as defined in [31]:

argmin
C

||CF̂GX
− F̂GY

||2 + αρL(C) + βρf (C) (1)

where F̂G = ΦT
GFG are the spectral coefficients of the functions FG, ρL and ρf are the Laplacian

and descriptor operator commutativity regularizers respectively. We specify how we compute the
regularizers in Appendix C. As a set of corresponding functions, we use the geodesic distance
functions computed from a point x ∈ X to all other points in X , where x is a point for which we
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know the corresponding point y ∈ Y in the other latent space. Once we have solved the optimization
problem defined in Equation 1, we refine the resulting functional map C using the algorithm proposed
by [24].

LFMs as a similarity measure Once computed, the functional map C can serve as a measure of
similarity between spaces. The reason is that for isometric transformations between manifolds, the
functional map is volume preserving (see Thm 5.1 in [33]), and this is manifested in orthogonal C. By
defining the inner product between functions h1, h2 ∈ F(M) as ⟨h1, h2⟩ =

∫
M h1(x)h2(x)µ(x), it

holds that ⟨h1, h2⟩ = ⟨ĥ1, ĥ2⟩ when the map preserves the local area, where ĥ denotes the functional
representation of h. In other words, when the transformation between the two manifolds is an
isometry, the matrix CTC will be diagonal. By measuring the ratio between the norm of the off-
diagonal elements of CTC and the norm of its diagonal elements, we can define a measure of
similarity sim(X,Y ) = 1 − ||off((CTC)||F

||diag(CTC)||F
. Furthermore, this quantity is interpretable; the first

eigenvector of CTC can act as a signal to localize the area of the target manifold where the map has
higher distortion [34].

Transfering information with LFM The functional map computed between two latent spaces
can be utilized in various ways to transfer information from one space to the other. In this paper, we
focus on two methods: (i) Expressing arbitrary points in the latent space as distance function on the
graph and transferring them through the functional domain (see C.1.2 for details); (ii) Obtaining a
point-to-point correspondence between the representational spaces from the LFM, starting from none
to few known pairs, and leverage off-the-shelf methods to learn a transformation between the spaces
(see C.1.3 for details). Additional strategies could be explored in future work.

3. Experiments

Analysis We demonstrate the benefits of using latent functional maps for comparing distinct
representational spaces, using the similarity metric defined in Section 2. In Appendix E.1, we
compare the LFM similarity with CKA and show that our LFM-based similarity measure behaves
correctly as CKA does. While CKA (Centered Kernel Alignment) is a widely used similarity metric
in deep learning, recent research by [8] has shown that it can produce unexpected or counter-intuitive
results in certain situations. Specifically, CKA is sensitive to transformations that preserve the linear
separability of two spaces, such as local translations. Our proposed similarity measure is robust to
these changes and demonstrates greater stability compared to CKA.
Experimental setting. We compute the latent representations from the pooling layer just before
the classification head for the CIFAR10 train and test sets. Following the setup in [8], we train a
Support Vector Machine (SVM) classifier on the latent representations of the training samples to
find the optimal separating hyperplane between samples of one class and others. We then perturb the
samples by translating them in a direction orthogonal to the hyperplane, ensuring the space remains
linearly separable. We measure the CKA and LFM similarities as functions of the perturbation vector
norm, as shown in Figure 2(b)subfigure. In the accompanying plot on the right, we visualize the area
distortion of the map by projecting the first singular component of the LFM C into the perturbed
space and plotting it on a 2d TSNE [43] projection of the space.
Result Analysis. We start by observing that, when the latent space is perturbed in a way that still
preserves its linear separability, it should be considered identical from a classification perspective, as
this does not semantically affect the classification task. Figure 2(b)subfigure shows that while CKA
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Figure 2: Robustness of LFM similarity Left: Similarity scores as a function of perturbation
strength: while the CKA baseline degrades, our LFM similarity scores are robust to perturbations
that preserve linear separability of the space. Right: Visualization of area distortion of the map by
projecting the first singular component of the LFM in the perturbed space: the distortion localizes on
the samples of the perturbed class, making LFM similarity interpretable.
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Figure 3: Stitching on CIFAR100.Accuracy performance in stitching between image encoders
trained on CIFAR100, comparing orthogonal transformation (Ortho) and LFM+Ortho at varying
anchor counts. Also shown is LFM+Ortho (Labels), which uses the dataset labels instead of anchors.
Results are presented for (a) coarse and (b) fine-grained labeling, with mean accuracy values reported
on each box.

degrades as a function of perturbation intensity, the LFM similarity remains stable to high scores.
To understand this difference, we can visualize the area distortion as a function of the samples by
projecting the first singular component of C onto the perturbed space. In Figure 2(a)subfigure, we
use t-SNE [43] to project the perturbed samples and the distortion function into 2D. The visualization
reveals that distortion is localized to the samples corresponding to the perturbed class.

Zero-shot stitching We test the use of the latent functional map in the task of zero-shot stitching,
as defined in [29], to combine independent encoders and decoders (e.g., classifiers, generators)
without subsequent training or fine-tuning.
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Experimental Setting. We consider four pre-trained image encoders (see Appendix D.2 for details)
and stitch their latent spaces to perform classification using a Support Vector Machine (SVM) on
two different labelings of CIFAR100 [16]: coarse and fine-grained. To evaluate the effectiveness
of integrating the functional map, we extend the correspondences to determine an orthogonal
transformation [22] between the latent spaces. For each encoder, we compute a graph of 3,000 points
with 300 neighbors per node. We optimize the problem in Equation 1 using the first 50 eigenvectors
of the graph Laplacian and consider two different descriptors: the distance functions defined from
the anchors (LFM+Ortho) and the labels (LFM+Ortho (Labels)). For each dataset class, the latter
provides an indicator function with 1 if the point belongs to the class and 0 otherwise. This descriptor
type does not require any anchor as input, representing a pioneering example of stitching requiring
no additional information beyond the dataset.
Result Analysis. Figure 3 presents the accuracy results for all possible combinations of encoder
stitching. The addition of the latent functional map (LFM+Ortho) shows higher performance with
a low number of anchors in both labelings of CIFAR100. Even without any anchors, the label
descriptors (LFM+Ortho (Labels)) provide the best performance for the latent functional map
framework in both labelings. Computing the orthogonal transformation directly from the anchors
(Ortho) proves to have comparable performance only with 500 anchors, where the performance of
LFM is limited by the number of eigenvectors used. This experiment shows that the latent functional
map is highly effective when few anchors are available (≤ 50). It significantly enhances performance
in zero-shot stitching tasks, outperforming direct orthogonal transformations at low or no anchor
counts. This suggests that the latent functional map method provides a robust means of aligning
latent spaces with minimal correspondence data, making it a valuable tool for tasks requiring the
integration of independently trained models.

In Appendix E.2, we extend our analysis to the retrieval task, where we look for the most similar
embedding in the aligned latent space. The results confirm that the latent functional map significantly
enhances retrieval performance with a minimal number of anchors, making it an efficient approach
for aligning latent spaces.

4. Conclusions

In this paper, we introduced latent functional maps (LFM) to enhance the understanding and utiliza-
tion of neural network representations by leveraging spectral geometry for comparing and aligning
different latent spaces. While LFM shows promise in unsupervised and weakly supervised settings,
it faces challenges with the optimal number of eigenvectors and handling complex transformations.
Future research will focus on improving scalability, effectiveness in fully unsupervised settings, and
managing more complex transformations.
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Appendix A. Background

This section provides the basic notions to understand the framework of functional maps applied to
manifolds. We refer to [35] for a comprehensive overview.

Consider two manifolds M and N equipped with a basis such that any function f : M → R
can be represented as a linear combination of basis functions ΦM: f =

∑
i aiΦ

M
i = aΦM. Given

the correspondence T : M → N between points on these manifolds, for any real-valued function
f : M → R, one can construct a corresponding function g : N → R such that g = f ◦T−1. In other
words, the correspondence T defines a mapping between two function spaces TF : F(M,R) →
F(N ,R). [33] showed how such a mapping is linear and can be represented as a (possibly infinite)
matrix C such that for any function f represented as a vector of coefficients a, we have TF (a) = Ca.
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The functional representation is particularly well-suited for map inference (i.e., constrained
optimization). When the underlying map T (and by extension the matrix C) is unknown, many
natural constraints on the map become linear constraints in its functional representation. In practice,
the simplest method for recovering an unknown functional map is to solve the following optimization
problem:

argmin
C

||CA−B||2 + ρ(C) (2)

where A and B are sets of corresponding functions expressed in the bases on M and N , respectively,
and ρ(C) represents additional constraints deriving from the properties of the matrix C [35]. When
the shapes are approximately isometric and the descriptors are well-preserved by the (unknown)
map, this procedure provides a good approximation of the underlying map. In the case where the
correspondence T is encoded in a matrix S, the functional map can be retrieved as C = Φ†

NSΦM
where ΦM and ΦN are the bases of the functional spaces F(M,R) and F(N ,R), respectively, and
† denotes the pseudo-inverse.

Appendix B. Related Work

Similarity between latent spaces Comparing representations learned by neural models is of
fundamental importance for a diversity of tasks, ranging from representation analysis to latent space
alignment and neural dynamics. In order to do so, a similarity measure between different spaces
must be defined [14]. This can range from functional similarity (matching the performance of two
models) to similarity defined in representational space [15], which is where our framework falls
in. A classical statistical method is Canonical Correlation Analysis (CCA) [12], known for its
invariance to linear transformations. Various adaptations of CCA aim to enhance robustness, such as
through Singular Value Decomposition (SVD) and Singular Vector Canonical Correlation Analysis
(SVCCA) [37], or to decrease sensitivity to perturbations using methods like Projection-Weighted
Canonical Correlation Analysis (PWCCA) [28]. Closely related to these approaches, Centered Kernel
Alignment (CKA) [15] measures the similarity between latent spaces while ignoring orthogonal
transformations. However, recent research [8] reveals that CKA is sensitive to shifts in the latent
space.

We propose to leverage LFMs as a tool to measure the similarity, or how much two spaces differ
from an isometry w.r.t. to the metric that has been used to construct the graph.

Latent communication This relatively new concept, introduced by [29], builds on the hypothesis
that latent spaces across neural networks (pre-)trained with many variation factors, from random
seed initialization to architecture or even data modality, are intrinsically compatible. This notion is
supported by numerous empirical studies [2, 3, 5, 7, 15, 19–21, 28, 30, 42, 45], with the phenomenon
being particularly evident in large and wide models [23, 39]. The core idea is that relations between
data points (i.e., distances according to some metric) are preserved across different spaces because
the high-level semantics of the data are the same and neural networks learn to encode them similarly
[13] . With this "relative representation", the authors show that it is possible to stitch [20] together
model components coming from different models, with little to no additional training as long as a
partial correspondence of the spaces involved is known.

Indeed, [18, 22, 25, 27] show that a simple linear transformation is usually enough to map one
latent space into another measured by performance on desired downstream tasks.
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With LFMs, we change the perspective from merely relating samples of distinct latent spaces
to relating function spaces defined on the manifold that the samples approximate, showing that
processing information in this dual space is convenient as it boosts performance while also being
interpretable.

Functional Maps. The representation we propose is directly derived from the functional maps
framework for smooth manifolds introduced in the seminal work by [33]. This pioneering study
proposed a compact and easily manipulable mapping between 3D shapes. Subsequent research
has aimed at enhancing this framework. For instance, [31] introduced regularization techniques to
improve the informativeness of the maps, while [24] developed refinement methods to achieve more
accurate mappings. The functional map framework has been extended as well outside the 3d domain,
for example, in [46] and [11], who applied the functional framework to model correspondences
between graphs, and in [36], who demonstrated its utility in graph learning tasks. In particular, they
have shown that the functional map representation retains its advantageous properties even when the
Laplace basis is computed on a graph.

Inspired by these advancements, our work leverages the functional representation of latent spaces.
We demonstrate how this representation can be easily manipulated to highlight similarities and
facilitate the transfer of information between different spaces, thereby extending the applicability of
the functional maps framework to the domain of neural latent spaces.

Appendix C. Latent Functional Map

C.1. Details

C.1.1. BUILDING THE GRAPH

To leverage the geometry of the underlying manifold, we model the latent space of a neural network
building a symmetric k-nearest neighbor (k-NN) graph [1]. Given a set of samples X = {x1, . . . , xn},
we construct an undirected weighted graph G = (X,E,W) with nodes X , edges E, and weight
matrix W. The weight matrix is totally characterized by the choice of distance function d(x,xj) with
x,xj ∈ X . Suitable choices include the L2 metric or the angular distance. Edges E are defined as
E = {(xi, xj) ∈ X ×X | xi ∼k xj or xj ∼k xi}, where xi ∼k xj indicates that xj is among the
k nearest neighbors of xi. The weight matrix W ∈ Rn×n

≥0 assigns a weight ω(xi, xj) to each edge
(xi, xj) ∈ E, and W(i, j) = 0 otherwise.

Next, we define the associated weighted graph Laplacian LG = I−D−1/2WD−1/2, where D
is the diagonal degree matrix with entries D(i, i) =

∑n
j=1W(i, j). LG is a positive semi-definite,

self-adjoint operator [44]), therefore, it admits an eigendecomposition LG = ΦGΛGΦ
T
G, where

ΛG is a diagonal matrix containing the eigenvalues, and ΦG is a matrix whose columns are the
corresponding eigenvectors. The eigenvectors form an orthonormal basis for the space of functions
defined on the graph nodes (i.e., ΦT

GΦG = I).
Throughout this paper, we assume the eigenvalues (and corresponding eigenvectors) are sorted

in non-descending order 0 = Λ1 ≤ Λ2 ≤ · · · ≤ Λn. One may consider a subset of eigenvectors,
namely those associated with the k smallest eigenvalues, to compactly approximate a graph signal,
employing techniques akin to Fourier analysis.

As demonstrated in many recent works [6, 41], the eigenvalues and eigenvectors of the graph
Laplacian associated with a k-NN graph approximate the weighted Laplace-Beltrami operator,
placing us in a setting similar to the original one of [33].
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C.1.2. SPACE OF FUNCTIONAL COEFFICIENTS

The space of functional coefficients offers an alternative representation for points in the latent space
X . Using the equation f̂G = ΦT

GfG, any function fG ∈ F(G,R) can be uniquely represented by
its functional coefficients f̂G. We leverage this property to represent any point x ∈ X as a distance
function fd ∈ F(G,R) from the set of points XG, which correspond to the nodes of the graph G.
The functional map C between two latent spaces X and Y aligns their functional representations,
enabling the transfer of any function from the first space to the second. This functional alignment
can be used similarly to the method proposed by [29] to establish a "relative" space where the
representational spaces X and Y are aligned.

C.1.3. EXTENDING SPACES CORRESPONDENCES

As explained in Section A, the functional map C represents the bijection T in a functional form.
[33] demonstrated that this bijection can be retrieved as a point-to-point map by finding the nearest
neighbor for each row of ΦGY

C in ΦGX
. This process can be efficiently implemented using

algorithms such as kd-tree. Given a few correspondences (anchors) between the two spaces X and
Y , we can extend these correspondences to the entire set of nodes X and Y . This extended set of
anchors can then be used to determine a transformation between the latent spaces, as described by
[22]. In the following section, we demonstrate that by using a small number of anchors (≤ 50), we
can retrieve optimal transformations that facilitate near-perfect stitching and retrieval.

C.2. Additional Regularizers

In Equation 1, we improve the computation of the functional map by incorporating two additional
regularizers: Laplacian commutativity and descriptor operator commutativity. Both regularizers
exploit the preservation of linear functional operators SG : F(G,R) → F(G,R), enforcing that the
functional map C commutes with these operators: ||SG

i C−CSGX
i || = 0.

The Laplacian commutativity regularizer, first introduced by [33], is formulated as:

ρL(C) = ||ΛGY
C−CΛGX

||2 (3)

where ΛG represents the diagonal matrices of eigenvalues. This regularizer ensures that the
functional map C preserves the spectral properties of the Laplacian.

The descriptor operator commutativity regularizer, introduced by [31], extracts more detailed
information from a given descriptor, resulting in a more accurate functional map even with fewer
descriptors. The formulation of this regularizer is as follows:

ρf (C) =
∑
i

||SGY
i C−CSGX

i ||2 (4)

where SG
i = ΦT

GDiag(fG
i )ΦG are the descriptor operators.

Appendix D. Experimental details

D.1. Architecture Details

All non-ResNet architectures are based on All-CNN-C [40]

12



LATENT FUNCTIONAL MAPS

Tiny-10

3× 3 conv. 16-BN-ReLu ×2
3× 3 conv. 32 stride 2-BN-ReLu
3× 3 conv. 32-BN-ReLu ×2
3× 3 conv. 64 stride 2-BN-ReLu
3 × 3 conv. 64 valid padding-BN-
ReLu
1× 1 conv. 64-BN-ReLu
Global average pooling
Logits

Table 1

D.2. Pre-trained models

In Section 3 we used four pretrained models: 3 variations of [9] (’google-vit-base-patch16-224’,
’google-vit-large-patch16-224’, ’WinKawaks-vit-small-patch16-224’) and the model proposed by
[32] ( ’facebook-dinov2-base’).

D.3. Parameters and resources

In all our experiments we used gpu rtx 3080ti and 3090. In order to compute the eigenvector and
functional map on a graph of 3k nodes we employ not more than 2 minutes.

D.4. Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) is a commonly used metric to evaluate the performance of retrieval
systems [29]. It measures the effectiveness of a system by calculating the rank of the first relevant
item in the search results for each query.

To compute MRR, we consider the following steps:

1. For each query, rank the list of retrieved items based on their relevance to the query.

2. Determine the rank position of the first relevant item in the list. If the first relevant item for
query i is found at rank position ri, then the reciprocal rank for that query is 1

ri
.

3. Calculate the mean of the reciprocal ranks over all queries. If there are Q queries, the MRR is
given by:

MRR =
1

Q

Q∑
i=1

1

ri
(5)

Here, ri is the rank position of the first relevant item for the i-th query. If a query has no
relevant items in the retrieved list, its reciprocal rank is considered to be zero.

MRR provides a single metric that reflects the average performance of the retrieval system, with
higher MRR values indicating better performance.
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Figure 4: Similarity across layers Similarity matrices between internal layer representations of
CIFAR10 comparing our LFM-based similarity with the CCA and CKA baselines, averaged across
10 models. For each method, we report the accuracy scores for matching the corresponding layer by
maximal similarity.

Appendix E. Additional Results

E.1. Analysis

Experimental setting: In order to validate experimentally if LFMs can serve as a good measure of
similarity between distinct representational spaces, we run the same sanity check as in [15]. We
train 10 CNN models (the architecture is depicted in Appendix D.1) on the CIFAR-10 dataset [16],
changing the initialization seed. We compare their inner representations at each layer, excluding
the logits and plot them as a similarity matrix, comparing with Central Kernel Alignment (CKA)
measure [15] and Canonical Correlation Analysis (CCA) [12, 37]. We then measure the accuracy of
identifying corresponding layers across models and report the results comparing with CKA and CCA
as baselines. For CCA, we apply average pooling on the spatial dimensions to the embeddings of the
internal layers, making it more stable numerically and boosting the results for this baseline compared
to what was observed in [15].

Result analysis Figure 4 shows that our LFM-based similarity measure behaves correctly as CKA
does. Furthermore, the similarities are less spread around the diagonal, favoring a slightly higher
accuracy score in identifying the corresponding layers across models.

E.2. Retrieval

We extend our analysis to the retrieval task, where we look for the most similar embedding in the
aligned latent space.

Experimental Setting We consider two different English word embeddings, FastText [4] and
Word2Vec [26]. Following the approach of [29], we extract embeddings of 20K words from their
shared vocabulary using pre-trained models. We use 2K random corresponding samples to construct
the k-NN graphs and evaluate the retrieval performance on the remaining 18K word embeddings.
We test two settings in our experiments: (i) Aligning functional coefficients (LFM Space). (ii)
Computing an orthogonal transformation using the correspondences obtained by the functional map
(LFM+Ortho). For this experiment, we construct k-NN graphs with a neighborhood size of 300 and
compute the functional map using the first 50 eigenvectors. We evaluate the methods’ performance
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Figure 5: Ablation on Retrieval of word embeddings. We compare the retrieval performance of the
functional map framework with state-of-the-art models as the number of anchors increases. The left
panel shows the Mean Reciprocal Rank (MRR) across different numbers of anchors. The right panels
depict the first two components of PCA for a subsample of the latent space (b) and the functional
space (c), both before and after alignment using the functional map.
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Figure 6: Retrieval of word embeddings. The panels depict the first two components of PCA for a
subsample of the latent space (b) and the functional space (c), both before and after alignment using
the functional map.
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Table 2: MRR Score for the retrieval of word embeddings. We report the value of the results
depicted in Figure 6 adding more kind transformation between spaces (Orthogonal, Linear and
Affine).

Number of anchors
Method 2 5 10 25 50 75 100 150 200 300

LFM+Ortho 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
LFM+Linear 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
LFM+Affine 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Ortho 0.01 0.01 0.01 0.03 0.15 0.34 0.60 0.82 0.93 0.97
Linear 0.01 0.01 0.01 0.05 0.26 0.49 0.66 0.77 0.74 0.01
Affine 0.01 0.01 0.01 0.04 0.19 0.45 0.64 0.81 0.89 0.95

LFM Space 0.01 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Relatives 0.01 0.01 0.05 0.28 0.55 0.72 0.79 0.84 0.87 0.90

using the Mean Reciprocal Rank (MRR), as detailed in Appendix D.4. Our functional map methods
are compared with the method proposed by [29] (Relatives) and the orthogonal transformation
method proposed by [22] (Ortho).

Result Analysis Figure 6 shows the performance of these methods as the number of anchors
increases. The numerical results are detailed in Table 2. The functional map significantly improves
performance with just 5 anchors, achieving an MRR of over 0.8. As the number of anchors increases,
the performance of competing methods improves but still falls short of FMAP+Transform at 300
anchors, which reaches an MRR of 0.99. Interestingly, the performance of the functional map
methods does not improve beyond 5 anchors, suggesting that this number of anchors is sufficient to
achieve an optimal functional map between the spaces. In Table 2, we report the numerical results for
the experiment in Figure 6 adding more transformations from the method of [22]: orthogonal (Ortho),
linear (Linear) and affine (Affine). From the value in the table, we can see that all the methods
that involve the latent functional map (LFM) saturate at 5 anchors, reaching top performance. We
further analyze how the results improve as the number of eigenvectors used to compute the functional
map increases. In Figure 5(b)subfigure, we show how the performance of the latent functional
map methods depends on the number of eigenvectors used to compute the map. In particular, we
notice that the performance drastically increases at 25 eigenvectors, reaching the same score when
using the functional map computed from the ground truth correspondences (LFMGT). These results
confirm that the latent functional map is a valuable tool in settings with little knowledge about
correspondences. It significantly enhances retrieval performance with a minimal number of anchors,
making it an efficient approach for aligning latent spaces. Moreover, its performance can be improved
using a higher number of eigenvectors.
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