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Abstract

In this work, we reveal a strong implicit bias of stochastic gradient descent (SGD)
that drives overly expressive networks to much simpler subnetworks, thereby
dramatically reducing the number of independent parameters, and improving gen-
eralization. To reveal this bias, we identify invariant sets, or subsets of parameter
space that remain unmodified by SGD. We focus on two classes of invariant sets
that correspond to simpler (sparse or low-rank) subnetworks and commonly appear
in modern architectures. Our analysis uncovers that SGD exhibits a property of
stochastic attractivity towards these simpler invariant sets. We establish a suf-
ficient condition for stochastic attractivity based on a competition between the
loss landscape’s curvature around the invariant set and the noise introduced by
stochastic gradients. Remarkably, we find that an increased level of noise strength-
ens attractivity, leading to the emergence of attractive invariant sets associated
with saddle-points or local maxima of the train loss. We observe empirically the
existence of attractive invariant sets in trained deep neural networks, implying
that SGD dynamics often collapses to simple subnetworks with either vanishing
or redundant neurons. We further demonstrate how this simplifying process of
stochastic collapse benefits generalization in a linear teacher-student framework.
Finally, through this analysis, we mechanistically explain why early training with
large learning rates for extended periods benefits subsequent generalization.

1 Introduction

The remarkable performance of modern deep learning systems relies on a complex interplay between
a training dataset, a network’s architecture, and an optimization strategy. Contrary to traditional
statistical learning theory, these highly expressive models exhibit impressive generalization capabili-
ties on natural tasks, even without explicit regularization, despite having the capacity to memorize
random data [1]. This phenomenon is often attributed to implicit biases introduced in the training
process that drive the learning dynamics towards models with low-complexity, thereby improving
generalization. It is widely believed that a central source of this implicit bias is the randomness
introduced by stochastic gradient descent (SGD) [2]. In this work we discuss SGD’s role in attracting
the dynamics, throughout training, towards subsets of parameter space that correspond to simpler
subnetworks. We reveal that the architecture of modern deep neural networks as well as the nonlinear
activation function plays a crucial role in forming these subsets, thus providing a novel perspective
on the source of SGD’s implicit bias. Our contributions are as follows:

1. We introduce invariant sets as subsets of parameter space that, once entered, trap SGD. We
characterize two such sets that correspond to simpler subnetworks and appear extensively in
modern architectures: one for vanishing neurons and the other for identical neurons (Sec. 3).
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2. We formulate a sufficient condition for stochastic attractivity — a process attracting SGD
dynamics towards invariant sets — that reveals a competition between the loss landscape’s
curvature around an invariant set and the noise introduced by stochastic gradients (Sec. 4).

3. We apply the attractivity condition to determine when neurons with origin-passing activation
functions collapse their parameters to zero, effectively removing the neuron. We empirically
show that the parameters of permutable neurons within the same hidden-layer can collapse
towards invariant sets corresponding to identical neurons (Sec. 5).

4. We demonstrate how this process of stochastic collapse influences generalization in a linear
teacher-student framework. We apply these findings to shed light on the empirically observed
importance of maintaining a large learning rate for an extended period during the early
stages of training (Sec. 6).

2 Related Work

Implicit biases of SGD. Several recent works have explored the properties of SGD and its implicit
biases. Barrett and Dherin [3] showed how SGD can be interpreted as adding implicit gradient norm
regularization and Geiping et al. [4] showed that training full-batch gradient descent while explicitly
adding this regularization can achieve the same performance as SGD. Kunin et al. [5] showed how the
anisotropic structure of SGD noise effectively modifies the loss and HaoChen et al. [6] showed that
parameter-dependent noise introduces an implicit bias towards local minima with smaller variance,
while spherical Gaussian noise does not. Blanc et al. [7] and Damian et al. [8] studied the dynamics
of gradient descent with label noise near a manifold of minima and proved that SGD implicitly
regularizes the trace of the Hessian. Li et al. [9] developed a framework to study this bias of SGD
by considering the projection of the trajectory to the manifold. Kleinberg et al. [10] showed how
SGD is effectively operating on a smoother version of the original loss allowing it to escape sharp
local minima. Zhu et al. [11] further demonstrated how the anisotropic structure of SGD noise helps
SGD escape efficiently. Xie et al. [12] demonstrated that the covariance matrix of SGD approximates
the Hessian around local minima, and thus the escape rate from a minima is linked to the Hessian
eigenvalues or flatness. While numerous studies have sought to identify the origin of SGD’s implicit
bias, most have predominantly focused on how SGD introduces an implicit regularization term [3–5],
minimizes a measure of curvature among equivalent minima [7–9], or escapes from sharp local
minima [10–13]. In our work, we provide a novel perspective and discuss how stochastic gradients
introduce a strong attraction towards regions of parameter space associated with simpler subnetworks,
even when this attraction is detrimental to the full-batch train loss.

Simplicity biases. Several works have explored implicit biases that encourage some notion of sparsity
or low-rankness in neural network learning dynamics. Kunin et al. [14] showed how gradient flow
training with an exponential loss can lead to sparse solutions via an implicit max-margin process.
Woodworth et al. [15] demonstrated how an implicit L1 penalty occurs for diagonal linear networks
trained with gradient flow in the limit of small initialization. Nacson et al. [16] and Pesme et al. [17]
showed how large step sizes and stochastic gradients further bias these networks towards the sparse
regime. Andriushchenko et al. [18] observed that longer training with large learning rates keeps
SGD high in the loss landscape where an implicit bias towards sparsity is stronger and theoretically
analyzed diagonal linear networks, showing that an associated SDE has implicit bias towards sparser
representations. Vivien et al. [19] studied the role of label noise in inducing an implicit Lasso
regularization for quadratically parameterized models. Kunin et al. [20] and Ziyin et al. [21] showed
how weight decay induce a bias towards rank minimization for linear networks. Galanti et al. [22]
and Wang and Jacot [23] extended this observation to deep settings trained with SGD. Jacot [24]
theoretically, and Huh et al. [25] empirically, showed an implicit bias towards learning low-rank
functions with increasing depth. Gur-Ari et al. [26] showed that gradients of SGD converge to a
small subspace spanned by a few top eigenvectors of the Hessian. Ziyin et al. [27] demonstrated how
data augmentation can promote dimensional collapse of representations in self-supervised learning.
While many works have explored the emergence of sparsity or low-rankness during training, much
of the analysis is confined to a particular architecture or consists of general empirical observations
lacking a clear underlying mechanism. In our work, we focus on a fundamental characteristic of
neural networks trained with SGD that leads to novel empirical observations.

Our analysis is closely related to a recent work studying failure modes of SGD [28] and a concurrent
follow up work studying the stability of SGD near a fixed point [29]. In App. A we further discuss
these works and other relevant works.
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3 Invariant Sets of SGD Generated by Reflection Symmetries
Throughout this work, we consider a feed-forward network2,

fθ(x) = w(m)σ
(
w(m−1) · · ·σ

(
w(1)x+ b(1)

)
· · ·+ b(m−1)

)
+ b(m), (1)

parameterized by θ = (w(1), b(1), . . . , w(m−1), b(m−1), w(m), b(m)) ∈ Rd, where w and b denote
weights and biases respectively, the superscript indexes the m layers, and σ(·) is an activation
function. The network is trained by stochastic gradient descent (SGD) over a training dataset
{(x1, y1), . . . , (xn, yn)} of size n, where xi ∈ Rp and yi ∈ Rc. The network parameters are
randomly initialized at θ(0) and iteratively updated according to

θ(t+1) = θ(t) − η

β

∑
i∈B(t)

∇θℓ
(
θ(t);xi, yi

)
, (2)

where η > 0 is the learning rate, B(t) ⊆ [n] is a random3 index set (mini-batch) of size β at
step t, and ℓ(θ;xi, yi) is a loss function. We let L(θ) = 1

n

∑
i∈[n] ℓ(θ;xi, yi) denote the train loss

averaged over the entire training dataset. Despite the simplicity of SGD’s optimization procedure,
understanding how it can navigate through complex, high-dimensional, non-convex loss landscapes
to find generalizing solutions is still a mystery. Here, we take a dynamical systems perspective and
identify subspaces of the parameters that are preserved under the SGD update equation (Eq. 2).
Definition 3.1 (Invariant Set of SGD). A Borel-measurable set A ⊆ Rd is an invariant set of SGD if
given any initialization θ(0) ∈ A, all future iterates of SGD θ(t) for t ≥ 0 are contained within A
almost surely, for any batch size β ∈ N, learning rate η > 0, and mini-batches {B(t) ⊆ [n] : t ∈ N}.

From this definition, it is immediately clear that all of parameter space A = Rd and any interpolating
point A = {θ∗} such that L(θ∗) = 0 are invariant sets of dimension d and 0 respectively. However,
the highly over-parameterized and layer-wise structure of neural network architectures lead to many
additional, non-trivial invariant sets. We will focus on two fundamental invariant sets that appear
ubiquitously in neural networks and correspond to simpler (sparse or low-rank) subnetworks.
Proposition 3.1 (Sign Invariant Sets). Consider a hidden neuron p within layer l of a feed-forward
neural network. Let (w(l)

in,p, b
(l)
p ) and w

(l+1)
out,p denote the parameters directly incoming and outgoing

from the neuron respectively4. If the non-linearity σ is origin-passing (σ(0) = 0), then the axial
subspace A = {θ ∈ Rd|w(l)

in,p = 0, b
(l)
p = 0, w

(l+1)
out,p = 0} is an invariant set.

The subspace corresponding to a sign invariant set represents the parameter space of a sparse
subnetwork obtained by removing a hidden neuron. Most modern neural network architectures
employ origin-passing activation functions, which includes linear, hyperbolic tangent, Rectified
Linear Unit (ReLU) [30], Leaky ReLU [31], Exponential Linear Unit (ELU) [32], Swish [33],
Sigmoid Linear Unit (SiLU), and Gaussian Error Linear Unit (GELU) [34]. Networks with any of
these functions will exhibit invariant sets of this nature for each hidden neuron. A fully-connected
network of depth m and width k possesses (m− 1)k distinct sign invariant sets.
Proposition 3.2 (Permutation Invariant Sets). Consider two hidden neurons p, q within the same
layer l of a feed-forward neural network. Let (w(l)

in,p, b
(l)
p ), (w

(l)
in,q, b

(l)
q ) denote the parameters directly

incoming to the neurons, and w
(l+1)
out,p , w

(l+1)
out,q the parameters directly outgoing from the neurons. The

affine subspace A = {θ ∈ Rd|w(l)
in,p = w

(l)
in,q, b

(l)
p = b

(l)
q , w

(l+1)
out,p = w

(l+1)
out,q } is an invariant set.

The subspace corresponding to a permutation invariant set represents the parameter space of a low-
rank subnetwork obtained by constraining two neurons to be identical. All feed-forward networks
possess this permutation invariance among the neurons in each hidden-layer. For a fully-connected
network of depth m and width k there are (m− 1)

(
k
2

)
distinct permutation invariant sets.

Invariant sets generated by symmetry. The presence of sign and permutation invariant sets within
neural networks is a direct result of reflection symmetries inherent in their architectural design. In this

2This notation encompasses fully-connected and convolutional networks, excluding more complex architec-
tures such as transformers for simplicity, although much of our theory would directly apply.

3For simplicity we assume sampling with replacement such that there is no dependency between batches.
4The incoming and outgoing weights are related by: (w(l)

in,p)q = (w
(l−1)
out,q )p.
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context, a symmetry is defined as any transformation of the parameter that preserves the network’s
input-output mapping, regardless of the input. As stated in the following theorem, any approximate
linear symmetry defined by a symmetric or orthogonal matrix generates an invariant set:
Theorem 3.1 (Symmetry Induced Invariant Sets). Let Q ∈ Rd×d be a symmetric (Q = Q⊺) or
orthogonal matrix (QQ⊺ = Id). The affine subspace A = {θ ∈ Rd|Qθ = θ} is an invariant set if
the loss function ℓ(θ;xi, yi), for any i ∈ [n], is approximately Q-symmetric around A, i.e., for any
ϵ > 0, there exists δ > 0 such that |ℓ(Qθ;xi, yi)− ℓ(θ;xi, yi)| < ϵd(θ,A) for any θ ∈ Rd satisfying
d(θ,A) < δ where d(θ,A) is the Euclidian distance between θ and A5.

Remarkably, the sign and permutation invariant sets defined earlier can be understood through this
symmetry perspective. In both cases, the symmetry is defined by a symmetric and orthogonal matrix.
This class of matrices describes the generalized notion of a reflection in d-dimensional space and the
invariant sets are the axes of reflection, which can be at most (d − 1)-dimensional. In the case of
permutation invariant sets, any two hidden neurons in the same layer of a network can be permuted
without changing the input-output function of the network, and thus the affine subspace A where
these two neurons are identical is an invariant set. On the other hand, in the case of sign invariant sets,
the symmetric transformation Q corresponds to a simultaneous sign flip of a neuron’s input/output
weights. This transformation does not change the input-output function of the network, as long as
the activation function is odd. However, even for origin-passing activation functions that are not
exactly odd, the loss function is approximately Q-symmetric around A, since the activation function
is approximately odd around its origin. Therefore, Theorem 3.1 implies that the axial subspace A,
where input and output weights are exactly zero, is an invariant set.

Additional invariant sets. In App. B, we discuss other classes of invariant sets, associated with
softmax nonlinearities, low dimensional structure in data, and provide a further discussion on the
connection between symmetry and invariant sets. We also discuss how our definition of invariant
sets relates to other works [35–38] where symmetry and invariance are used to explore geometric
properties of the loss landscape and the presence of critical points.

4 Gradient Noise Attracts SGD Dynamics towards Invariant Sets
To study the dynamics of SGD we will approximate6 its trajectory with a stochastic differential
equation (SDE), a common analysis technique applied in many works [5, 39–43]. SGD can be
interpreted as full-batch gradient descent plus a per-step gradient noise term introduced by the random
minibatch. Let ξi(θ) represent the per-sample gradient noise at θ. It is easy to check that E[ξi(θ)] = 0
for all θ. This motivates studying the SDE, which we refer to as stochastic gradient flow (SGF),

dθt = −∇L(θt)dt+
√

η

β
Σ(θt)dBt, θ0 = θ(0). (3)

Here Bt denotes a standard d−dimensional Wiener process and Σ(θt) =
√
E[ξi(θ)ξi(θ)⊺]. The drift

term of this SDE is the negative full-batch gradient −∇L(θt), while the diffusion is determined
by a spatially-dependent diffusion matrix D(θt) =

η
2βΣ(θt)Σ(θt)

⊺. Although this SDE cannot be
interpreted as the continuous-time limit of SGD, it matches the first and second moments of the
SGD process. See Appendix D for further discussions on the relationship between SGD and SGF.
Additionally, SGF preserves all affine invariant sets of SGD:
Proposition 4.1 (Informal). All affine invariant sets of SGD are also affine invariant sets of SGF. 7

Like deterministic dynamical processes, the stochastic processes of SGF can be attracted toward the
invariant sets. To describe this attraction, we adopt the concept from stochastic control theory [44].
Definition 4.1 (Stochastic Attractivity). An invariant set A ⊂ Rd of a stochastic process {θt ∈ Rd :
t ≥ 0} is stochastically attractive8 if for any ρ > 0 and ϵ > 0, there exists δ > 0 such that for any
θ ∈ Rd with the Euclidian distance d(θ,A) < δ,

P
[
sup
t≥0

d(θt, A) ≥ ϵ

∣∣∣∣θ0 = θ

]
≤ ρ. (4)

5The Euclidian distance between θ and A is defined as d(θ,A) := mina∈A ∥θ − a∥.
6As discussed in Li et al. [39], Eq. 3 is an order 1 weak approximation of Eq. 2.
7See App. C for the definition of invariant sets for continuous processes and the formal statement.
8This property is called stochastic stability in [44].
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Intuitively, a set is stochastically attractive if there always exists a close initial condition that guaran-
tees all future iterates remain close to the set with high probability. Understanding when the dynamics
are attracted by a particular invariant set becomes fundamental for understanding the implicit bias of
SGD. To gain insight into this process lets consider a canonical example in one-dimension.

Geometric Brownian motion. Geometric Brownian Motion (GBM) is a linear stochastic process
given by the SDE, dθt = µθtdt+ ζθtdBt, where µ ∈ R represents the drift rate, ζ ∈ R the volatility
rate. Denote θ0 ∈ R as the initialization. The set A = {0} is an invariant set of GBM, which,
depending on the relationship between µ and ζ, can be stochastically attractive. As the trajectory of
GBM approaches the invariant set, its movement diminishes. To account for this effect, we take the
logarithmic transformation zt = log(θt), where we assume without loss of generality that θ0 > 0.
The stochastic process zt obeys the transformed SDE, dzt =

(
µ− ζ2/2

)
dt+ ζdBt, which has an

additional drift term −ζ2/2 from Itô’s lemma that attracts the process towards the invariant set. The
total drift is now determined by a competition between the original drift rate µ and the additional
attractive force driven by the diffusion. This competition controls whether the invariant set A = {0}
of GBM is stochastically attractive (i.e. when µ < ζ2/2 the invariant set is attractive).

Stochastic attraction in one-dimension. Stochastic attractivity is a local property and thus we might
expect SGF to act like GBM around an invariant set, enabling us to derive broader conclusions about
stochastic attraction. If we consider SGF with a smooth loss and diffusion in one-dimension, where
without loss of generality we assume A = {0} is an invariant set, we can Taylor expand the gradient
and the diffusion around the set, yielding geometric Brownian motion near the set:

dθt ≈ −L′′(0)θtdt+
√
D′′(0)θtdBt. (5)

Here we use L′(0) = D(0) = D′(0) = 0, which is a consequence of {0} being an invariant set. From
Eq. 5 we can formulate a necessary/sufficient condition for stochastic attractivity in one-dimension:

Theorem 4.1 (Necessary/Sufficient Condition for Stochastic Attraction in One-Dimension). Let
A = {0} ∈ R be an invariant set of {θt ∈ R : t ≥ 0} obeying Eq. 3. Suppose L′(θ) : R → R, D(θ) :
R → R are C2 functions such that D′′(0) > 0. Define rate of attractivity α = L′′(0) + 1

2D
′′(0). A

is stochastically attractive if α > 0, while it is not stochastically attractive if α < 0. 9

One of the most surprising implications of Theorem 4.1 is that SGF can potentially converge to a
saddle-point or local maxima of a loss landscape, an observation previously made by Ziyin et al. [28].
To see this, recall that D(θ) ≥ 0 by definition, and D(0) = 0 as {0} is an invariant set. As a result,
D′(0) = 0 and D′′(0) ≥ 0 by the continuity assumption of D. The collapsing condition, therefore
crucially depends on the curvature of the loss function L at θ = 0. When D′′(0) is strictly positive, the
collapsing condition can still be satisfied with negative curvature provided that L′′(0) > − 1

2D
′′(0).

Given that D is proportional to η/β, the learning rate to batch size ratio determines the maximum
attainable steepness for an invariant set to be attractive.

An illustrative example. Consider SGF in a double-well potential L(θ) = 1
4 (θ

2 − µ)2 with
multiplicative diffusion10, such that the dynamics are dθt = −(θ3t −µθt)dt+ ζθtdBt where µ, ζ > 0.
The minima of the potential are located at θ = ±√

µ, while θ = 0 is a local maximum and forms
an invariant set. This example is special as the dynamics have an analytical steady-state distribution
pss(θ), given any initialization. Thus, determining the stochastic attractivity of {0} can be achieved
by examining the steady-state distribution. As in GBM, we assume, without loss of generality,
that θ0 > 0 and consider the logarithm process zt = log(θt). In this new coordinate, the noise
term is constant, which allows us to determine the steady-state distribution. Transforming back to
the original coordinate, we find that pss(θ) is given by a Gibbs distribution pss(θ) ∝ e−κΨ(θ) for
a modified potential11 Ψ(θ) = θ2/2 − (2µ/ζ2 − 2) log(θ) with constant κ = 2/ζ2 and partition
function Z =

∫∞
−∞ e−κΨ(θ)dθ. When µ ≤ ζ2/2, the partition function diverges and pss(θ) collapses

to a Dirac delta distribution at θ = 0. This transition agrees with the collapsing condition from
Theorem 4.1.

9When α = 0, higher-order derivatives of the loss and diffusion determine the attractivity of A.
10Here we build on a substantial literature, originating from the seminal work by Kramers [45], that investigates

the escape rate between minima of a particle in a double-well potential with constant diffusion [46].
11The interpretation of a modified potential determined by the gradient noise that drives the learning dynamics

was explored in [42] and [5]. Stochastic collapse is when the partition function for this modified loss diverges.
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Figure 1: Stochastic collapse in a quartic loss. The left three plots show sample trajectories with
the same, random initializations driven by the SDE dθt = −(θ3t − µθt)dt + ζθtdBt for different
values of ζ. The analytic stationary solution is plotted on the side plot. Leftmost: for small ζ the
steady-state distribution is two bumps around the minima θ = ±√

µ. Middle left: with increasing
ζ the distribution spreads out and is biased towards θ = 0. Middle right: when ζ surpasses the
collapsing condition

√
2µ the steady-state distribution collapses to a dirac delta distribution at θ = 0.

Rightmost: the empirical probability of the sample trajectories at different steps being within ϵ of
the origin as a function of increasing gradient noise. As we see empirically, there is a sudden phase
transition which aligns with the collapsing condition from Theorem 4.1.

Stochastic attraction in high-dimensions. To extend the collapsing condition derived in Theorem 4.1
to high-dimensional cases, a natural idea would be to consider all one-dimensional slices of parameter
space orthogonal to the invariant set. However, one challenge is that some of these slices might satisfy
the collapsing condition while others do not. This can result in complex dynamics near the boundary
of the invariant set making it difficult to derive a necessary and sufficient condition for attractivity in
high-dimensions. Nonetheless, we can derive a sufficient condition:
Theorem 4.2 (A Sufficient Condition for Stochastic Attraction in High-Dimensions). Let A ⊂ Rd

be a dA-dimensional affine subset, and a stochastic process {θt ∈ Rd : t ≥ 0} obey Eq. 3 in Ac,
open c-neighborhood of A with some c > 0. Suppose L : Ac → R is a C3-function whose first and
second-order derivatives are L-Lipschitz continuous. D : Ac → Rd×d is the diffusion matrix such
that the second-order derivatives of its elements are L-Lipschitz continuous. Furthermore, we assume
that all the elements of

√
D : Ac → Rd×d are L-Lipschitz continous. Let D⊥ = P⊥DP⊥ where

P⊥ : Rd → Rd projects to the normal space of A. If there exists δ > 0 such that ∇2
n̂n̂

⊺Dn̂⊺ > δ and

∇2
n̂

(
L − 1

2
TrD⊥ + (1− δ)n̂⊺Dn̂

)
> 0, (6)

for any unit normal vector n̂ ∈ Rd perpendicular to A and θ ∈ A, then A is stochastically attractive.

To prove Theorem 4.2 (see App. E), we consider a family of distance measures between θt and the
invariant set A. Eq. 6 ensures that one of the distance measures is super-martingale in a neighborhood
of the invariant set, allowing us to apply a version of Doob’s maximal inequality (Lemma 1 in [44]).

5 Attractivity of Invariant Sets in Deep Neural Networks

Steps

Figure 2: Stochastic collapse of a single neuron. The SDE
dynamics of a single-neuron model are simulated with var-
ious noise levels ζ. Left: A scatter map of trained weights
(w1, w2). The colors of the dots represent the noise level,
corresponding to the vertical lines in the right panel. For each
noise level, we plot 15 trained models with different noise re-
alizations. The background heatmap shows the loss landscape.
Right: The colored lines represent the empirical probability
that

√
w2

1 + w2
2 < ϵ = 10−2 (from 103 samples) after a given

number of update steps. We observe a sudden transition that
aligns with the collapsing condition from Theorem 5.1.

In this section we explore theoreti-
cally and empirically the stochastic
attractivity of invariant sets in deep
neural networks.

Sign invariant sets. Sign invari-
ant sets correspond to the parame-
ter space of a sparse subnetwork ob-
tained by removing a hidden neu-
ron. Here, we demonstrate the
stochastic collapse to a sign invari-
ant set in a minimal model of neu-
ral networks—a scalar single neuron
model: f(x;w1, w2) = w2σ(w1x)
with w1, w2, x ∈ R. Suppose
this model is trained via label-noise
gradient descent and using the L2-
loss L(w1, w2) = 1

n

∑
i∈[n](yi −

f(xi;w1, w2))
2 on a non-empty data
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Figure 3: Evidence of stochastic collapse towards permutation invariant sets in deep neural
networks. Each pair of plots shows the normalized distance matrix between incoming parameters
(win) and outgoing parameters (wout) of neurons within the same hidden layer. We show two pairs
of plots with little stochastic collapsing and four pairs of plots with strong stochastic collapsing:
three pairs for three different layers in VGG-16 trained for 105 steps on CIFAR-10 (top row), and
three pairs for three different layers in a ResNet-18 trained for 106 steps on CIFAR-100 (bottom
row). For each pair of plots, we sort the neurons by hierarchical clustering according to normalized
distances between incoming parameters only (left plot in each pair), and then show the distance
matrix between outgoing parameters using the same sorting of neurons (right plot in each pair).
The similarity between each plot in a pair indicates that clusters of neurons with similar incoming
parameters also have similar outgoing parameters. See App. J for experimental details.

set {(x1, y1), · · · , (xn, yn)} such that
∑

i∈[n] x
2
i ̸= 0. Exploiting Theorem 4.1, we can determine

the attractivity of the sign invariant set A = {(0, 0)} for this network.

Theorem 5.1 (Informal). Let {(w1,t, w2,t) ∈ R2 : t ≥ 0} be a process obeying label-noise gradient
flow with L2-loss of a single scalar neuron in a neighborhood U of A = {(0, 0)}, with learning rate
η > 0 and noise amplitude ζ > 0. Suppose the activation function σ : R → R is smooth satisfying

σ(0) = 0, σ′(0) > 0. The invariant set A is stochastically attractive if σ′(0)ηζ2

2 >
|∑i∈[n] xiyi|∑

i∈[n] x
2
i

.

The term |∑i∈[n] xiyi|∑
i∈[n] x

2
i

can be thought of as the signal of the dataset. Thus, Theorem 5.1 states that
stochastic attractivity is determined by balancing the signal and noise – an idea we will see later in
Sec. 6 as the origin of generalization benefits from stochastic collapse. We leave the poof in App. F.

Permutation invariant sets. Permutation invariant sets correspond to subnetworks with fewer unique
hidden neurons. An important question is to what extent are permutation invariant sets attractive
– as this would indicate an implicit bias towards a low-rank model. We provide intuitive insights
into the attractivity of permutation invariant sets through a toy example of a two-neuron neural
network in App. G. More importantly, we empirically test whether permutation invariant sets can be
attractive in deep neural networks via experiments using VGG-16 [47] and ResNet-18 [48] trained on
CIFAR-10 and CIFAR-100 respectively [49]. Since the ReLU activation has additional symmetry
resulting in a potentially larger invariant set [35], we replace ReLU with GELU activation in all
our experiments below. To detect stochastic collapse to a permutation invariant set, we compute
the normalized pairwise distance between parameters for neurons from the same layer, defined by

dist(w(l)
i , w

(l)
j ) ≡ 2∥w(l)

i −w
(l)
j ∥2

2

∥w(l)
i ∥2

2+∥w(l)
j ∥2

2

. Strikingly, hierarchical clustering based on this distance reveals

multiple large clusters of many neurons with near identical incoming and outgoing parameters after
training (Fig. 3). Such clustering implies SGD implicitly drives weight matrices towards low-rank
structures in many layers via attraction towards permutation invariant sets.

To explore the influence of the learning rate and batch size on the attraction towards sign and
permutation invariant sets, we trained VGG-16 and ResNet-18 on CIFAR-10 and CIFAR-100,
respectively, while varying these hyperparameters. We defined vanishing neurons as those with
incoming and outgoing weights under 10% of the maximum norm for that layer, and identified the
number of independent non-vanishing neurons by clustering the concatenated vector of incoming
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Figure 4: Larger learning rates intensify stochastic collapse. This figure illustrates how the
fraction of independent neurons per layer in VGG-16 trained on CIFAR-10 (left column) and ResNet-
18 trained on CIFAR-100 (right column) varies with changes in learning rates. The networks are
evaluated at training steps of 105. A reduced percentage of independent neurons indicates stronger
stochastic collapse. See App. J for further details.

and outgoing parameters based on normalized distance. Two neurons were considered identical
if their distance in parameter space was 10% of their norms, a stringent criterion given the high-
dimensionality of the weight vectors.

We found that increased learning rates typically intensify the stochastic attraction to invariant sets by
reducing the number of independent neurons (Fig. 4). A large reduction in the fraction of independent
neurons was observed in VGG-16 between conv7 and conv8, where the number of channels increase
from 256 to 512, indicating this excess model capacity is counteracted by stochastic collapse. Also,
we note that Proposition 3.2 and 3.1 do not apply to neurons with residual connections. More strict
definitions are required, as described in Proposition H.2 and H.1. We believe, this stricter constraint is
the source of layer-to-layer oscillations in the fraction of independent neurons for ResNet18 in Fig. 4.
Surprisingly, we noticed that unlike learning rate effects, changes in batch size produce complex
shifts in the number of independent neurons. See Fig. 10 for a further discussion.

6 How Stochastic Collapse Can Improve Generalization
To understand how stochastic collapse can benefit generalization, we will theoretically analyze
learning dynamics in a teacher-student model for linear networks, a well established framework
for studying generalization [50–52]. This analysis not only provably connects the phenomenon of
stochastic collapse to generalization benefits, but also suggests a stochastic collapse based mechanism
for why successful learning rate schedules improve generalization. We then provide direct evidence
for this theoretically suggested mechanism in deep neural networks.

Insights from a two-layer linear neural network. We build on the analysis of full-batch gradient
learning dynamics of training error [53] and test error [51] in the limit of infinitesimal learning
rates for two-layer linear neural networks in a student-teacher setting. In our new analysis here
we incorporate the important new ingredient of stochastic gradients, which dramatically alters the
learning dynamics. The details of our analysis are presented fully in App. I.

A teacher neural network with a low-rank weight matrix W̄ generates a training dataset by providing
noise corrupted outputs to a set of random Gaussian inputs. The input-output data covariance
matrix Σyx then drives the learning dynamics of a two-layer student with composite weight matrix
Ŵ = W2W1. We analyze the learning dynamics of the student under a set of four assumptions
precisely stated in App. I. These assumptions are similar to the ones made in [51, 53], and are
roughly stated as: (A1) whitened inputs to the teacher; (A2) structured gradient noise related to
input-output covariance; (A3) spectral initialization with student singular vectors aligned to input-
output covariance singular vectors; (A4) balanced initialization with equal power in the two weight
layers of the student. Under these assumptions, the learning dynamics of the student weight matrix
Ŵ = W2W1 can be decomposed into independent learning dynamics for each singular value ŝi of
Ŵ . An associated singular value s̃i of Σyx drives the dynamics of ŝi via the SDE,

dŝi = 2ŝi
((
s̃i + ηζ2/2

)
− ŝi

)
dt+ 2

√
ηζ2ŝidBt, (7)

where ζ > 0 is the amplitude of the gradient noise. In the small noise limit of ζ → 0, this SDE
aligns with the nonlinear ODE corresponding to the student network’s dynamics under gradient flow,
where exact solutions exist [51, 53]. Important insights gained from this previous analysis are that
larger data singular modes are learned earlier [53] and larger data singular modes, when learned,
help the student generalize, while smaller singular modes, when learned, impede generalization by
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Figure 5: Demonstrating generalization benefits of stochastic collapse in a teacher-student
setting. We show the train loss (leftmost) and test loss (middle left) during the training of the student
with different gradient noises. Dashed lines in the leftmost and middle left panels indicate the step
where learning rate is dropped. Training with larger gradient noises ζ generalizes better. Middle
right: we show the noisy teacher signals against the learned student signals before dropping the
learning rate. Larger noises have a stronger implicit bias towards zero. Rightmost: same as the
middle right panel but we show the learned signals (for the brightest green in the middle right panel)
at different training steps after the learning rate drop. All the results are averaged over 256 replicates.

overfitting to noise in the training data [51]. Both these insights will apply in our analysis of SGF.
However, we will also uncover a third behavior unique to SGF: stochastic collapse effectively governs
the minimum learnable singular mode, serving as a natural mechanism to prevent overfitting. Our
analysis in App. I reveals that the student singular values ŝi evolve according to the process:
Theorem 6.1 (Stochastic Student Dynamics). Under assumptions A1 - A4, the dynamics of ŝi(t)
given by Eq. 7 are governed by the stochastic process,

ŝi(t) = e(2s̃i−ηζ2)t+2
√

ηζ2Bt

(
2

∫ t

0

e(2s̃i−ηζ2)τ+2
√

ηζ2Bτ dτ + ŝi(0)
−1

)−1

. (8)

In terms of the per layer balanced student weight wi =
√
ŝi, the above process can be thought of

as originating from the quartic loss landscape ℓi(wi) = 1
4 (w

2
i − s̃i)

2, equivalent to the example
presented in Sec. 4. Thus, there exists an invariant set for each student singular value corresponding
to the affine space ŝi = wi = 0 where both drift and diffusion terms vanish. Stochastic collapse to
this invariant set would thus induce a low-rank regularization on the student in which some number
of singular modes in the data are never learned despite having nonzero data singular values s̃i. To
confirm stochastic collapse to this invariant set, we derive:

Corollary 6.1. In the limit ŝi(0) → 0, for any t > 0, then ŝi(t)/ŝi(0) →
a.s.

e(2s̃i−ηζ2)t+2
√

ηζ2Bt .

Corollary 6.1 has important implications. First, if s̃i < ηζ2

2 , the distribution will exhibit stochastic
collapse, converging to a delta distribution at the origin, consistent with Theorem 4.1 (Fig. 5: middle
right panel). This in turn implies that early training with large learning rates promotes stochastic
collapse of more student singular modes. Indeed, even after the training loss plateaus, further
extended training with a large learning rate η will continue to drive stochastic collapse of small
singular modes. After a subsequent learning rate drop, some of these modes will cease to obey the
collapsing condition and as a consequence, the associated invariant set will repulse rather than attract
the dynamics. Nonetheless, the repulsive escape will take longer the closer it starts from the invariant
set (Fig. 5: rightmost panel). This results in dynamics in which generalization error is reduced by the
student not learning many data singular modes with large η, because s̃i <

ηζ2

2 , and then learning
only the subset with large s̃ that have time to escape the vicinity of the invariant set after a learning
rate drop. The overall effect is that the student selectively learns modes with higher signal-to-noise
ratios, resulting in improved generalization after the learning rate drop as shown in Fig. 5: middle left
panel. In summary, the linear teacher-student model highlights that with an appropriate learning rate
schedule, a noisy student can effectively avoid overfitting through stochastic collapse and achieve
superior generalization compared to a noiseless student.

Stochastic collapse explains why early large learning rates helps generalization. The analyses
in the linear teacher student network provide valuable insights into how stochastic collapsing can
enhance generalization. Importantly, it sheds light on the mystery of why training at large learning
rates for a long period of time (even after training and test loss have plateaued) helps generalization
after a subsequent learning rate drop. The key prediction is that a large learning rate induces stronger
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Figure 6: Large learning rates aid generalization via stochastic collapse to simpler subnetworks.
Left: The training loss (grey) and test accuracy (blue) during an initial training phase using high
learning rate (lr=0.1). Vertical dashed lines highlight the training steps at which we will drop the
learning rate. Middle: Test accuracy preceding and following a learning rate drop to lr=0.01. Colors
indicate when the learning rate drop shown in the left plot occured. Despite plateauing of the training
loss and test accuracy, a later learning rate drop yields higher final test accuracy. Right: The fraction
of independent neurons per layer evaluated at different learning rate drop times (indicated by the
color) during the initial high learning rate training phase. Prolonged training with a large learning rate
induces implicit regularization by reducing the number of independent neurons. All curves represent
the average across eight replicates. See App. J for experimental details.

stochastic collapse, thereby regularizing the model complexity. Furthermore, remaining in a phase
of larger learning rates for a prolonged period drives SGD closer to the invariant set. Consequently,
when the learning rate is eventually dropped, overfitting in these specific directions is mitigated.

To test this predicted mechanism, we trained VGG-16 and ResNet-16 on CIFAR-10 and CIFAR-100,
respectively. The training loss and test accuracy had already plateaued at 104 steps (Fig. 6: left
column). We dropped the learning rate after different lengths of the initial high learning rate training
phase and confirmed that training with large learning rates for longer periods helps subsequent
generalization (Fig. 6: middle column). We then tested our prediction that stochastic collapse is
occurring during the early high learning rate training, thereby enhancing an implicit bias towards
simpler subnetworks. In particular, we computed the fraction of independent neurons at each step
where we drop the learning rate. We found, as predicted, that models with a longer initial training
phase collapse towards invariant sets with fewer independent neurons (Fig. 6: right column).

7 Conclusion
In this study, we demonstrated how stochasticity in SGD biases overly expressive neural networks
towards invariant sets that correspond to simpler subnetworks, resulting in improved generalization.
We established a sufficient condition for stochastic attractivity in terms of the Hessian of the loss
landscape and the noise introduced by stochastic gradients. We combined theory and empirics to
study the invariant sets corresponding to vanishing neurons with origin-passing activation functions
and identical neurons generated by permutation symmetry. Furthermore, we elucidated how this
process of stochastic collapse can be beneficial for generalization using a linear teacher-student
framework and explain the importance of large learning rates early in the training process.

Limitations and future directions. Activation function with additional continuous symmetries,
such as ReLU, might have a larger class of invariant sets than those studied in our work, which
remains to be explored. As all the invariant sets in our study are affine, exploring the possibility
of curved invariant sets and how curvature affects the analysis is an interesting direction for future
work. Furthermore, the interplay between symmetries in data and invariant sets warrants investigation.
Identifying the necessary conditions for stochastic attractivity of general affine invariant sets is an
important goal for future work. Extending our analytic results from the continuous SGF to the discrete
SGD updates is an interesting theoretical direction. Lastly, designing new optimization algorithms
based on our insights into stochastic collapse is a major goal for our future work.
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A Extended Related Work

SGD’s noise covariance shape matters. Our work is closely related to HaoChen et al. [6] work that
showed how parameter-dependent noise introduces an implicit bias towards local minima with smaller
variance, while spherical Gaussian noise does not. In particular, their work conjectured that the
parameter dependent noise introduced by SGD has an implicit bias effect“toward parameters where
the noise covariance is smaller”. They studied this effect in two-layer quadratically-parameterized
model introduced by [15]. Our work generalizes this effect to a broad range of models by introduc-
ing invariant sets and demonstrates that this implicit bias towards these regions is regulated by a
competition between the curvature of the full-batch loss and the magnitude of the noise.

SGD can converge to a local maximum. Our work is closely related to a recent work studying
failure modes of SGD [28] and a concurrent follow up work studying the stability of SGD near a
fixed point [29]. Ziyin et al. [28] studied the behavior of SGD in one-dimensional quadratic and
quartic losses and showed that SGD can converge to local maxima, escape from saddle-points slowly,
and prefer sharp minima due to the gradient noise. A strength of their analysis is that they directly
derive their results from discrete SGD updates, while we use a continuous formulation. However,
their analysis is limited to one-dimensional scenarios and is used to illustrate behaviors of SGD
they implicitly deemed unfavorable. In our work, we describe the mechanism of stochastic collapse
generally and connect it to a simplicity bias that can benefit generalization. Concurrent to our work,
Ziyin et al. [29] proposes a new notion of stability for SGD near a fixed point called probabilistic
stability, which overlaps with our work in discussing stochastic collapse for single neurons but not
for permutation invariance. They spotlight SGD learning phases using this stability concept, while
we explore how stochastic gradients incline networks toward simpler subnetwork invariants.

SGD learns sparse features. Our work is closely related to Andriushchenko et al. [18] recent
work studying a sparsity bias of SGD with large learning rates. The novelty of their work can be
summarized as: 1. They revealed that large-step SGD dynamics have effective slow dynamics with
multiplicative noise during loss stabilization. 2. They theoretically analyzed diagonal linear networks,
showing that the SDE has implicit bias toward sparser representations. 3. They conjectured that deep
nonlinear networks also show this phenomenon, which is supported by the empirical results. 4. They
argued that SGD first learns sparse features and then fits the data after the step size is decreased. With
this foundation laid, we would like to emphasize two fundamental aspects that set our work apart:

First, our analysis goes far beyond the basic understanding of diagonal linear networks, offering a
broader perspective by introducing the invariant sets with a more general theorem (Theorem 4.2). In
their work, the authors conjectured an implicit bias towards sparser features beyond their diagonal
linear model, leaving this exploration open as an “exciting avenue for future work”. We believe
that our paper makes substantial progress along this avenue by understanding the implicit bias
towards sparse representations as stochastic collapse to the invariant sets. Furthermore, our theory
is applicable to general deep neural nets. We also provide a theoretical framework that predicts the
quantitative conditions for this attractiveness in a general setting. While applying this theorem to
arbitrary neural nets is a challenging future work, our work utilized this theorem to quantitatively
analyze the collapsing threshold of simple models. Second, our results shed light on the collapsing
phenomena of weight vectors, a perspective that contrasts with their emphasis on neuron similarity
based on activation patterns. Given that weight vector similarities often lead to similarity in activation
patterns, our findings suggest that neural networks adhere to a stronger condition.
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B Further Discussion on Invariant Sets of SGD

In our work, we start by describing subsets of parameter space that are unmodified by SGD, which we
term invariant sets. Several works have explored geometric properties of the loss landscape through
the lens of symmetry and invariance. [35] demonstrated how the continuous symmetries of the loss
function create level sets of the loss and impose geometric constraints on the gradients. [36] and [37]
showed how permutation symmetries in the hidden neurons can lead to many potentially isolated
minima with saddle points between them. [38] studied the learning dynamics of gradient flow near
singular regions of parameter space, which for a multilayer perceptron, include permutation and sign
invariance. A series of works [54–57] have leveraged the hierarchical structures of neural networks
along with properties of their activation functions to identify critical points of the loss landscape.

B.1 Proof of Proposition 3.1 and Proposition 3.2

Proof. A is affine and 0 ∈ A, thus it suffices to show that ∂ℓ
∂θ ∈ A and is independent of the training

data. Denote the activation at layer l as h(l) = σ
(
w(l)Th(l−1) + b(l)

)
. The gradients associated

with the outgoing weights are,

∂ℓ

∂w
(l+1)
out,i

=
∂ℓ

∂h(l+1)
⊙ ∂h(l+1)

∂w
(l+1)
out,i

=
∂ℓ

∂h(l+1)
⊙ σ′

(
w

(l+1)
out,i h

(l)
i + b

(l+1)
i

)
σ

(
w

(l)
in,i

T
h(l−1) + b

(l)
i

)
. (9)

If θ ∈ A, ∂ℓ

∂w
(l+1)
out,p

= 0. The gradients associated with the incoming weights are,

∂ℓ

∂w
(l)
in,i

=

〈
∂ℓ

∂h(l+1)
,
∂h(l+1)

∂h
(l)
i

〉
∂h

(l)
i

∂w
(l)
out,i

=

〈
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∂h(l+1)
,
(
σ′
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(l)
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)
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)〉
σ′
(
w

(l)
in,i

T
h(l−1) + b

(l)
i

)
⊙ h(l−1).

(10)

If θ ∈ A, ∂ℓ

∂w
(l)
in,p

= 0. The gradients associated with the biases are,

∂ℓ

∂b
(l)
i

=

〈
∂ℓ

∂h(l+1)
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If θ ∈ A, ∂ℓ

∂b
(l)
p

= 0. Therefore, ∂ℓ
∂θ ∈ A.

Proof. We can directly see from Eq. 9-11 that if θ ∈ A, ∂ℓ

∂w
(l+1)
out,p

= ∂ℓ

∂w
(l+1)
out,q

, ∂ℓ

∂w
(l)
in,p

= ∂ℓ

∂w
(l)
in,q

and
∂ℓ

∂b
(l)
p

= ∂ℓ

∂b
(l)
q

. Therefore, ∂ℓ
∂θ ∈ A.

B.2 Proof of Theorem 3.1

Proof. It suffices to show that ∇ℓ(θ;x, y) ∈ A for all θ ∈ A and training data. In the following, we
use the notation of ℓ(θ) as a shorthand for ℓ(θ;x, y). First, we show ∇ℓQ(θ) = ∇ℓ(θ) for θ ∈ A,
where ℓQ(θ) = ℓ(Qθ). The derivative of ℓQ along an arbitrary unit vector n is given by

∇nℓQ(θ) = lim
h→0

ℓ(Q(θ + hn))− ℓ(Qθ)

h
= lim

h→0

ℓ(θ + hn)− ℓ(θ)

h
+

ℓ(Q(θ + hn))− ℓ(θ + hn)

h
.

If n is a tangent vector of A, the second term is zero. If n is a normal vector of A, then by the
approximate Q-symmetry assumption, the second term converges to zero. These two facts imply that
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∇ℓQ(θ) = ∇ℓ(θ). Then, for any θ ∈ A, ∇ℓ(θ) = ∇ℓQ(θ) = Q⊺∇ℓ(Qθ). Since Q is symmetric
(Q = Q⊺) or orthogonal (QQ⊺ = Id), we obtain

Q∇ℓ(θ;x, y) = ∇ℓ(θ;x, y),

which implies ∇ℓ(θ;x, y) ∈ A. Hence, regardless of the sequence of mini-batches, starting from
θ(0) ∈ A, the SGD trajectory remains within A, demonstrating A is an invariant set.

Theorem 3.1 provides an alternative proof of Proposition 3.1 and Proposition 3.2, simply identify
a symmetric or orthogonal matrix Q that generates these sets. For the sign invariant sets, Q is the
identity matrix with negative diagonals restricted to the index of the parameters associated with the
invariant set. For the permutation invariant set, Q is the identity matrix with the diagonal blocks for
the parameters associated with the two permutatable neurons swapped to being off diagonal.

B.3 Additional Invariant Sets

Beyond the classes of invariant sets already presented, there can exist other invariant sets depending
on the structure of the architecture. For example, for a network using a softmax layer, the columns
of the weight matrix and the vector of biases immediately preceding this layer can be shifted by a
constant without changing the outputs. As a result, the dynamics for these parameters are constrained
to an affine space with a constant sum determined by their initialization. This subspace is an invariant
set. Similarly, if the training data has a non-trivial kernel space, as in the case of overparameterized
linear regression, then the rows of the first-layer’s weight matrix can be translated by any vector in
the kernel space without changing the output of the network. Again, this constrains the learning
dynamics to an affine space, which is an invariant set. In general, any translational symmetry should
generate invariant sets.
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C Invariant sets of SGF

C.1 Definition of invariant sets for continuous processes

Here, we provide the formal definition of invariant sets for a continuous process and a formal
statement of Proposition 4.1.
Definition C.1 (Invariant sets of continuous processes). For a given stochastic process {θt ∈ Rd :
t ≥ 0}, a Borel-measurable set A ⊂ Rd is defined as invariant if for every initial point θ0 in A, the
probability that the process stays in A for all t ≥ 0 is 1, i. e.,

P[θt ∈ A for any t ≥ 0|θ0 ∈ A] = 1. (12)

C.2 Proof of Proposition 4.1

Proposition 4.1 (Formal). Consider an SGD process {θ(t) ∈ Rd : t ∈ N} given by Eq. 2, where the
gradients ∇ℓ(·;xi, yi) : Rd → Rd in Eq. 2 are Lipschitz continuous and bounded for any i ∈ [n]. If
A ⊆ Rd is an affine invariant set of SGD {θ(t) : t ∈ N}, then A is also an invariant set of an SGF
process {θt : t ≥ 0} given by Eq. 3.

proof. By assumption, ∇ℓ(θ;xi, yi) is L-Lipschitz in θ and ∥∇ℓ(θ;xi, yi)∥ ≤ L with some constant
L > 0. Then we can see that ∇L is also Lipschitz continuous and bounded as follows:

∥∇L(θ1)−∇L(θ2)∥ =
1

n

∥∥∥∥∥∥
∑
i∈[n]

(∇ℓ(θ1;xi, yi)−∇ℓ(θ2;xi, yi))

∥∥∥∥∥∥ ≤ L∥θ1 − θ2∥

∥∇L(θ)∥ ≤ 1

n

∑
i

∥ℓ(θ;xi, yi)∥ ≤ L.

Let ℓ̄(θ, xi, yi) = ℓ(θ, xi, yi)− L(θ, xi, yi). ∇ℓ̄(·, xi, yi) is clearly 2L-Lipschitz continuous and is
bounded by 2L for any i ∈ [n]. Then,

∥Dlm(θ1)−Dlm(θ2)∥

=
1

n

∥∥∥∥∥∥
∑
i∈[n]

(
∂lℓ̄(θ1;xi, yi)∂mℓ̄(θ1;xi, yi)− ∂lℓ̄(θ2;xi, yi)∂mℓ̄(θ2;xi, yi)

)∥∥∥∥∥∥
≤ 1

n

∑
i∈[n]

[
2L(|∂lℓ̄(θ1;xi, yi)|+ |∂mℓ̄(θ2;xi, yi)|)∥θ1 − θ2∥2

]
≤ 4L2∥θ1 − θ2∥2.

This implies that ∥D(θ1)−D(θ2)∥∞ ≤ 4L2∥θ1 − θ2∥2, where ∥ · ∥∞ denotes the operator norm.
On the other hand, the Powers-Stormer inequality gives,

∥
√
D(θ1)−

√
D(θ2)∥F ≤

√
d
√
∥D(θ1)−D(θ2)∥1 ≤ d

√
∥D(θ1)−D(θ2)∥∞,

where ∥ · ∥F and ∥ · ∥1 denote the Frobenius norm and Schatten 1-norm, respectively. Thus,
√

D(θ)
is Lipschitz continuous with respect to the Frobenius norm. This establishes the existence of a unique
strong solution to the SDE in Eq. 3. It now suffices to show that the SDE has a solution {θt : t ≥ 0}
satisfying Eq. 12. Let P : Rd → Rd be the projection operator to the affine subset A, and we
construct a projected SDE:

dθ̃t = −P∇L(θ̃t)dt+
√

η

β
PΣ(θ̃t)dBt.

By construction, this projected SDE also has a unique solution θ̃t, which clearly satisfies the con-
dition Eq. 12. Moreover, given that A is an invariant set of the original SGD process, we have
P∇ℓ(θ;xi, yi) = ∇ℓ(θ;xi, yi) for all i ∈ B and x ∈ A. This means that {θ̃t : t ≥ 0} satisfies Eq.12
almost surely. Hence, we conclude that A is also an invariant set of the solution to Eq.3.
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D SDE formulations of learning dynamics with gradient noise

D.1 The relationship between SGD and SGF

Recall the SGD update rule from Eq. 2.

θ(t+1) = θ(t) − η

β

∑
i∈B(t)

∇θℓ
(
θ(t);xi, yi

)
. (13)

We factorize the right-hand side into the negative full-batch gradient and the deviation from the
full-batch gradient,

θ(t+1) = θ(t) − η∇L(θ(t))︸ ︷︷ ︸
gradient descent

−√
η

(√
η

β

∑
i∈B

∇θℓ
(
θ(t);xi, yi

)
−√

η∇L(θ(t))

)
︸ ︷︷ ︸

gradient noise

. (14)

Let ξB(θ) represent the gradient noise at θ. Assuming we sample with replacement, the gradient
noise can be disentangled into a sum of i.i.d. per-sample gradient noises: ξB(θ) =

√
η

β

∑
i∈B ξi

where ξi = ∇ℓ(θ;xi, yi)−∇L(θ). It is easy to check that E[ξi(θ)] = 0 for all θ. Assuming that the
gradient noises are gaussian random variables, Eq. 14 turns into

∆θ(t) = −η∇L(θ(t)) +
√

2D(θ(t))∆W, (15)

where ∆W ∼ N (0, ηI) and the diffusion matrix D(θ(t)) = 1
2Var(ξB) = η

2β Var(ξi). Eq. 15 is a
Euler-Maruyama discretization of the following continuous-time stochastic differential equation,
which we denote as stochastic gradient flow (SGF),

dθt = −∇L(θt)dt+
√
2D(θt)dBt, θ0 = θ(0). (16)

The diffusion matrix can be expressed as:

D(θt) =
η

2β

 1

N

∑
i∈[N ]

[
∇θℓ (θt;xi, yi)∇θℓ (θt;xi, yi)

T
]
−∇L(θt)∇L(θt)T

 . (17)

The diffusion matrix can be decomposed into a product of a parameter-independent magnitude term
Dm and a parameter-dependent shape term Ds(θ) such that D(θ) = DmDs(θ), where

Dm =
η

2β
(18)

Ds(θ) =
1

N

∑
i∈[N ]

[
∇θℓ (θt;xi, yi)∇θℓ (θt;xi, yi)

T
]
−∇L(θt)∇L(θt)T (19)

The optimization hyperparameters learning rate and batch size affect the magnitude term Dm, while
the network architecture, the training data, and the loss function affect the shape term Ds(θ). For
generic network architectures, determining the exact form of the shape term is quite complicated.
For the purpose of analytical assessments, we sometimes pivot to considering label-noise gradient
descent (LNGD) as an alternative to stochastic gradient descent (SGD).

D.2 A simpler SDE formulation via Label-Noise Gradient Descent

In the following, we will restrict our discussion to the loss function with the mean square error. Our
aim is to achieve analytical results by simplifying the diffusion matrix. In its most basic form, using
the deterministic gradient descent, the diffusion matrix is simply 0. Expanding on this, what happens
when we deliberately introduce noise into the gradients? One common method to achieve this is by
adding noise to the dataset labels. If we introduce i.i.d. mean-zero, variance ζ2 Gaussian label noise
per training label, denoted as ξi, it results in an update rule we refer to as label-noise gradient descent
(LNGD),

θ(t+1) = θ(t) − η∇L(θ(t))−√
η

√
η

N

∑
i∈[N ]

∇fθ(t)(xi)ξi. (20)
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This is a discretization of the following continuous-time stochastic differential equation, which we
denote as label-noise gradient flow (LNGF),

dθt = −η∇L(θt) +
√

2DLN (θt)dBt, θ0 = θ(0). (21)
where the diffusion matrix of LNGF can be expressed as,

DLN (θt) =
ηζ2

2

1

N

∑
i∈[N ]

∇fθt(xi)∇fθt(xi)
T , (22)

which can also be decomposed into a magnitude term and a shape term,

Dm =
ηζ2

2
(23)

Ds =
1

N

∑
i∈[N ]

∇fθt(xi)∇fθt(xi)
T (24)

Compared with SGF, the magnitude term here depends on the learning rate and the variance of
the label noise. Compared with SGF, the shape term here is much simpler, which allows us to get
analytical results in Sec. 5 and 6. To compare with the theory, we also conducted experiments with
LNGD. We study label-noise in theory because it can replicate the implicit regularization effects of
the mini-batch noise. Essentially, label noise serves as a foundational model that paves the way for a
more comprehensive grasp of the more complex dynamics inherent to mini-batch noise.
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E Conditions for stochastic attractivity

E.1 Proof of Theorem 4.2

Theorem 4.2 holds as a corollary of the following slightly more general statement where the drift
term of the SDE is not necessarily a gradient of a function.
Theorem E.1. Let A ⊂ Rd be a dA-dimensional affine subset, and a stochastic process {θt ∈ Rd :
t ≥ 0} obey the following SDE in Ac, open c-neighborhood of A with some c > 0:

dθt = µ(θt)dt+
√
2D(θt)dWt, (25)

where {Wt : t ≥ 0} is the d-dimensional standard Wiener process. Here µ : Ac → R is a L-
Lipschitz C2-function with its first-order derivatives being L-Lipschitz as well. D : Ac → Rm×m is
the diffusion matrix such that the second-order derivatives of its elements are L-Lipschitz continuous.
We further assume that all the elements of

√
D(θ) are L-Lipschitz continuous. Let D⊥ = P⊥DP⊥

where P⊥ : Rd → Rd projects to the normal space of A. Suppose A is an invariant set of θt.
A is stochastically attractive if there exists δ > 0 such that for any unit normal vector n̂ ∈ Rd

perpendicular to A and any θ ∈ A,

∇2
n̂n̂

⊺Dn̂ > δ (26)

∇n̂n̂
⊺µ+∇2

n̂

(
−1

2
TrD⊥ + (1− δ)n̂⊺Dn̂

)
> 0. (27)

Proof. We exploit a local version of Doob’s maximal inequality (Lemma. 1 in [44]). By the Lipschitz
property of µ and

√
D, the SDE Eq. 25 has a unique strong solution up to the exit time τc = inf{t ≥

0 : θt /∈ Ac}. The stopped process {θ̃t = θt∧τc : t ≥ 0} is a continuous strong Markov process.
It suffices to show that A is stochastically attractive for θ̃t. We first show that Ãlλ(x) ≤ 0 for any
x ∈ Aϵ\A with some 0 < ϵ < c, and λ > 0, where Ã is the infinitesimal operator of the stochastic
process θ̃t and Aϵ denotes the open neighborhood of A within distance ϵ > 0. We consider the
Euclidian distance l(θ̃t) between the process θ̃t and the affine invariant set A.

The SDE for lλ(θ̃t) is given by,

dlλ(θ̃t) =
(
−λlλ−2(θ̃t)θ

⊺
t P⊥µ+ λlλ−2(θ̃t) TrD⊥ + λ(λ− 2)lλ−4(θ̃t)

(
θ⊺t D⊥θ̃t

))
dt

+λlλ−2(θ̃t)θ̃
⊺
t

√
2D⊥dWt.

This means that for any x ∈ Ac,

Ãlλ(x) = −λlλ−2(x)x⊺P⊥µ+ λlλ−2(x) TrD⊥ + λ(λ− 2)lλ−4(x) (x⊺D⊥x) . (28)

By the fact that A is an invariant set, Ãl2(x) = 0 holds for any x ∈ A. Therefore, we obtain
TrD⊥(x) = 0. Since D⊥ is positive semi-definite, D⊥(x) = 0 for any x ∈ A. Furthermore, since
Ãf(x) = 0 with f(θt) = P⊥θt for any x ∈ A, P⊥µ(x) = 0 for any x ∈ A.

Going back to Eq.28, we obtain

Ãlλ(x) = 2λlλ−2(x)G(x)

(
F (x)

2G(x)
− 1 + λ/2

)
,

where

F (x) := (−x⊺P⊥µ(x) + TrD⊥(x)) , G(x) :=

(
P⊥x

∥P⊥x∥

)⊺

D(x)
P⊥x

∥P⊥x∥
.

Notice that G(x) > 0 for any x ∈ Aϵ\A with small enough ϵ > 0 because Eq. 26 holds and the
second derivatives of D(x) are L-Lipschitz. We want to show that there exists λ > 0 such that for
any x ∈ Aϵ\A, F (x)

2G(x) − 1 + λ/2 < 0 with some λ > 0. Parameterize x by x(ξ) = x∥ + ξn̂, where
x∥ ∈ A and n̂ is the unit normal vector perpendicular to A. From L’Hôpital’s rule, we have,

lim
ξ→0

F (x∥ + ξn̂)

G(x∥ + ξn̂)
=

∇2
n̂F (x∥)

n̂⊺∇2
n̂D(x∥)n̂

.
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The second derivatives of F can be calculated as follows:

∇2
n̂F (x∥) = −x⊺

∥P⊥∇2
n̂µ− 2∇n̂n̂

⊺µ+∇2
n̂ TrD⊥ = −2∇n̂n̂

⊺µ+∇2
n̂ TrD⊥. (29)

Substituting this, we obtain

lim
ξ→0

F (x∥ + ξn̂)

2G(x∥ + ξn̂)
=

−2∇n̂n̂
⊺µ(x∥) +∇2

n̂ TrD⊥(x∥)

2n̂⊺∇2
n̂D(x∥)n̂

< 1− δ. (30)

By the assumed Lipschitz property of the derivatives of µ and D, ∇2
n̂F (x) and ∇2

n̂G(x) are L-
Lipschitz in Aϵ\A with small enough ϵ > 0. Therefore, for any 0 < ξ < ϵ,∣∣∣∣∇n̂

F (x∥ + ξn̂)

G(x∥ + ξn̂)

∣∣∣∣
=

∣∣∣∣G∇n̂F − F∇n̂G

G2

∣∣∣∣
≤

|(∇2
n̂G(x) + Lϵ)ϵ2(∇2

n̂F (x∥) + Lϵ)ϵ− (∇2
n̂F (x∥)− Lϵ)ϵ2(∇2

n̂G(x∥)− Lϵ)ϵ|
((∇2

n̂G(x∥)− Lϵ)ϵ2)2

≤
|(∇2

n̂G(x∥) + Lϵ)(∇2
n̂F (x∥) + Lϵ)− (∇2

n̂F (x∥)− Lϵ)(∇2
n̂G(x∥)− Lϵ)|

ϵ(∇2
n̂G(x∥))2

×
( ∇2

n̂G(x∥)

∇2
n̂G(x∥)− Lϵ

)2

≤ ϵ−1|(1 + δ−1Lϵ)(1− δ + δ−1Lϵ)− (1− δ − δ−1Lϵ)(1− δ−1Lϵ)|
(
1 + (δ − Lϵ)−1Lϵ

)2
≤ L(3δ−1 − 1)

(
1 + (δ − Lϵ)−1Lϵ

)2
≤ 2L(3δ−1 − 1).

Therefore F (x∥ + ξn̂)/G(x∥ + ξn̂) is 2L(3δ−1 − 1)-Lipschitz as a function of ξ in Aϵ\A. This
implies that there exists ϵ > 0 such that for any x ∈ Aϵ\A, F (x)/2G(x) < 1 − δ/2 and hence
Ã(lδ(x)) ≤ 0. Therefore lδ(x) is in the domain of ÃAϵ and ÃAϵ(l

δ(x)) = Ã(lδ(x)) ≤ 0, where
ÃAϵ

is the infinitesimal operator of the stopped process θ̃t∧τ with τ = inft≥0{l(θt) ≥ ϵ}. By the
local version of Doob’s maximal inequality, for any ϵ′ < ϵ,

P[sup
t≥0

lδ(θ̃t) ≥ ϵ′|θ̃0 = x] = P[sup
t≥0

lδ(θ̃t∧τ ) ≥ ϵ′|θ̃0 = x] ≤ lδ(x)

ϵ′
.

Equivalently, for any ϵ′ < ϵ1/δ ,

P[sup
t≥0

l(θ̃t) ≥ ϵ′|θ0 = x] ≤ lδ(x)

ϵ′1/δ
.

By taking l(x) to be arbitrarily small, we can bound the left-hand side with any positive value ρ > 0.
This means that A is stochastically attractive for θ̃t and so is for θt.

E.2 Proof of Theorem 4.1

The sufficient condition is a direct corollary of Theorem 4.2, and thus we show the necessary condition
here. By assumption, L′′(x) + 1

2D
′′(x) < −δ at x = 0 with some δ > 0. It suffices to show that

there exists ϵ > 0 such that the hitting time

τ := inf{t ∈ R : θt ≥ ϵ}
is finite almost surely for any x ∈ R with initialization θ0 = x.

We choose ϵ > 0 small enough so that D(x) > 0 for any x ∈ (−ϵ, ϵ)\{0}. Then we can consider
another stochastic process Yt = 2−1/2

∫ θt∧τ

ϵ/2
D−1/2(x)dx, which follows the SDE below

dYt = D−1/2

(
−L′(θt∧τ )−

1

2
D′(θt∧τ )

)
dt+ dWt.
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for any 0 ≤ t < τ . By further taking ϵ small,

D−1/2

(
−L′(θt∧τ )−

1

2
D′(θt∧τ )

)
>

δϵ

2
D−1/2 ≥ δϵ

2
/
√

sup
0<x<ϵ

D(x) > δ.

Thus, Yt > δt+ Y0 +Wt. Therefore,

τ = inf{t ∈ R : Yt ≥
1√
2

∫ ϵ

ϵ/2

D−1/2(x)dx} ≤ inf{t ∈ R : δt+Wt ≥
1√
2

∫ ϵ

ϵ/2

D−1/2(x)dx−Y0}.

Since δ > 0, the right-hand side is almost surely finite with any value of Y0. This immediately
implies that A is not stochastically attractive.
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F The attractivity of the sign invariant set of single scalar neuron

We here investigate when a neuron may collapse towards the sign invariant set. Consider a neural
network consisting of only one neuron with scalar input and output: f(x;w1, w2) = w2σ(w1x),
where x,w1, w2 ∈ R and σ represents the activation function. We assume that σ(x) is a smooth
Lipschitz continuous function with σ(0) = 0. Let D = {(x1, y1), · · · , (xn, yn)} denote the training
data set where xi, yi ∈ R, i ∈ [n]. We consider the loss function L given by

L(w1, w2, t) =
1

n

∑
i∈[n]

(f(xi;w1, w2)− yi − ζi,t)
2,

where ζi,t is the label noise which we assume to be increments of the n-dimensional Wiener process.
The gradient flow of the loss is given by

dw1

dt
= − ∂L

∂w1
= − 1

n

∑
i∈[n]

(f(xi;w1, w2)− yi)w2xσ
′(w1xi)− w2xσ

′(w1xi)ζi,t

dw2

dt
= − ∂L

∂w2
= − 1

n

∑
i∈[n]

(f(xi;w1, w2)− yi)σ(w1xi)− σ(w1xi)ζi,t.

This can be rewritten as a pair of SDEs.

dw1,t = − 1

n

∑
i∈[n]

(f(xi;w1, w2)− yi)w2xiσ
′(w1xi)dt+

√
ηζ

√
n

∑
i∈[n]

w2xiσ
′(w1xi)dBi,t

dw2,t = − 1

n

∑
i∈[n]

(f(xi;w1, w2)− yi)σ(w1xi)dt+

√
ηζ

√
n

∑
i∈[n]

σ(w1xi)dBi,t, (31)

where ζ > 0 is a constant representing the amplitude of the gradient noise, η > 0 is the learning rate,
and Bi,t denotes the n-dimensional standard Wiener process. Note that the rescaling factor 1/

√
n in

the diffusion term is introduced to avoid the data size n influencing the SDE’s behavior.

F.1 Proof of Theorem 5.1

As a preparation, we first show a modified version of Theorem E.1 to incorporate stopped processes.
Lemma F.1. Let A ⊂ Rd denote an affine subset and Ac be an open neighborhood around A
defined as Ac = {θ ∈ Rd : infx∈A ∥θ − x∥ < c}, where c > 0 is a constant. Consider a
stochastic process {θt ∈ Rd : t ≥ 0} that follows the SDE Eq. 25 within Ac with all the regularity
conditions mentioned in Theorem E.1. Futhermore, let τ = inf{t ≥ 0 : θt /∈ Ac ∩ intB}, where
B = {θ ∈ Rd : ∥θi∥ ≤ cB} with i ∈ [d] and cB > 0. If A ∩B is an invariant set of θt, then A ∩B
is a stochastically attractive invariant set of the stopped process {θt∧τ : t ≥ 0}, provided Eq. 26 and
and 27 hold for any x ∈ A ∩B.

Proof. Since the drift and diffusion terms in Eq.25 are Lipschitz continuous within Ac, there exists
a unique solution for the SDE up to the exit time τ . This allows us to consider the unique stopped
process θt∧τ , a continuous strongly Markov process. Let l(θ) : Rd → R≥0 be the Euclidian distance
between θ ∈ Rd and the invariant set A ∩ B , and Ã be the infinitesimal operator of θt∧τ where
τϵ = inf{t ≥ 0 : θt /∈ Aϵ}. The same argument in Theorem E.1 leads to Ã(lλ(x)) ≤ 0 for any
x ∈ Aϵ ∩B with small enough ϵ > 0 and λ > 0. By applying a local version of maximial inequality
(Lemma 1 in Kushner [44]), we obtain, for any x ∈ Aϵ and 0 < ϵ′ < ϵ,

P
[
sup
t≥0

l(θt∧τ ) ≥ ϵ′
∣∣∣∣ θ0 = x

]
= P

[
sup
t≥0

l(θt∧τ∧τϵ) ≥ ϵ′
∣∣∣∣ θ0 = x

]
≤ lλ(x)

ϵ′
.

This implies that A ∩B is a stochastically attractive invariant set of the stopped process θt∧τ .

Theorem 5.1 (formal). Suppose {(w1,t, w2,t) ∈ R2 : t ≥ 0} is a stochastic process obeying Eq. 31 in
a neighborhood U of A = {(0, 0)} ⊂ R2, and the activation function σ : R → R is a smooth function

such that σ(0) = 0. The invariant set A is stochastically attractive if ηζ2|σ′(0)|
2 >

|∑i∈[n] xiyi|∑
i∈[n] x

2
i

.
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Proof. If σ′(0) = 0, the condition can never be met. Therefore, we only consider the case σ′(0) ̸= 0.
Without loss of generality, assume that U is an open ball centered at (0, 0). Since the drift and
diffusion terms of Eq.31 are locally Lipschitz continuous, it has a unique solution up to the exit time
of U . We define stochastic processes pt = wt,1 + wt,2, s = wt,1 − wt,2. These two processes obey
the following SDEs:{

dpt = µp(pt, st)dt+
1√
n

∑
i∈[n] σp,i(pt, st)dBi,t

dst = µs(pt, st)dt+
1√
n

∑
i∈[n] σs,i(pt, st)dBi,t

where
µp(p, s) = − 1

n

∑
i∈[n] [(f(xi;w1,t, w2,t)− yi)w2,tσ

′(w1,txi)xi + (f(xi;w1,t, w2,t)− yi)σ(w1,txi)]

µs(p, s) = − 1
n

∑
i∈[n] [(f(xi;w1,t, w2,t)− yi)w2,tσ

′(w1,txi)xi − (f(xi;w1,t, w2,t)− yi)σ(w1,txi)]

σp,i(p, s) =
√
ηζw2,tσ

′(w1,txi)xi +
√
ηζσ(w1,txi)

σs,i(p, s) =
√
ηζw2,tσ

′(w1,txi)xi −
√
ηζσ(w1,txi)

Define stopping times τp = inft≥0{pt ≥ ϵ}, τs = inft≥0{st ≥ ϵ} where ϵ > 0 satisfies {(p, s) :
max(|p|, |s|) < ϵ} ⊂ U , and consider the stopped processes (pt∧τp , st∧τp) and (pt∧τs , st∧τs). We
have,

∂

∂p
µp(0, 0)−

1

4n

∂2

∂p2

∑
i∈[n]

σ2
p,i(0, 0) = −σ′(0)

n

∑
i∈[n]

yixi −
1

2n
ηζ2σ′(0)2

∑
i∈[n]

x2
i < 0

1

n

∂2

∂p2

∑
i∈[n]

σ2
p,i(0, 0) =

1

2n
ηζ2σ′(0)2

∑
i∈[n]

x2
i > 0,

By the assumption on smoothness, ∂
∂pµp(0, s) − 1

4
∂2

∂p2

∑
i∈[n] σ

2
p,i(0, s) < 0 and

∂2

∂p2

∑
i∈[n] σ

2
p,i(0, s) > 0 for any s ∈ [−ϵ, ϵ] with small enough ϵ > 0. Therefore by Lemma F.1,

Ap := {(0, s) : s ∈ [−ϵ, ϵ]} is stochastically attractive for the process {(pt∧τp , st∧τp) : t ≥ 0}.
Similarly,

∂

∂s
µs(0, 0)−

1

4n

∂2

∂s2

∑
i∈[n]

σ2
s,i(0, 0) =

σ′(0)

n

∑
i∈[n]

yixi −
1

2n
ηζ2σ′(0)2

∑
i∈[n]

x2
i < 0

1

n

∂2

∂s2

∑
i∈[n]

σ2
s,i(0, 0) =

1

2n
ηζ2σ′(0)2

∑
i∈[n]

x2
i > 0.

By Lemma F.1, As := {(p, 0) : p ∈ [−ϵ, ϵ]} is stochastically attractive for the process
{(pt∧τs , st∧τs) : t ≥ 0}.

By combining these two facts, we see that Ap ∩ As = {(0, 0)} is stochastically attractive for the
process {(w1,t, w2,t) : t ≥ 0}.
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G The permutation invariant set in one hidden layer nonlinear neural
network

Consider training a two neuron neural network fθ on a dataset {(xk, yk)}Nk=1, where fθ(x) =∑2
i=1 w

(2)
i σ(w

(1)
i x). We assume the data are drawn randomly from standard Gaussian distribution.

Consider running gradient descent with learning rate η on the mean square error loss with label noise
drawn freshly from N (0, σ2). In this set up, the invariant set from the permutation symmetry is the
affine space {θ|w(i)

1 = w
(i)
2 for i = 1, 2}. Empirically, we observe the stochastic collapse towards

this invariant set as shown in 7. We found that the speed of collapsing depends on both the learning
rate and the noise scale. Interestingly, the attractivity strengthens with increased learning rate and
noise scale up to a certain threshold.

Figure 7: Gradient noises in SGD induces stochastic collapsing to the invariant set associated
with identical neurons. Left: The collapsing process of the weights of hidden neurons 1 and 2 be-
coming identical over the course of training, demonstrating SGD’s bias towards simpler subnetworks.
Middle: A visualization of the impact of learning rates on the stochastic attractivity. An increase in
the learning rate accelerates the collapsing process until reaching a critical threshold, beyond which
the collapsing ceases. Right: The influence of noise scale on the collapsing process. The attractivity
strengthens with increased noise up to a certain threshold.
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H Conditions of sign and permutation invariant sets in the presence of
residual connection

Definition H.1 (Residual connection). A hidden layer l2 in a neural network is defined as residually
connected from a previous layer l1 if its forward pass follows:

h(l2)(x) = σ
(
w(l2−1)h(l2−1)(x) + b(l2)

)
+ h(l1)(x),

where h(l) denotes the hidden activations of layer l, w(l) is the weight matrix at layer l, and b(l) is
the bias vector at layer l.

Proposition H.1 (Sign invariant set for residual neural network). Consider a hidden neuron p of
layer l2 with a residual connection from layer l1. Let (w(l)

in,p, b
(l)
p ) denote the parameters (weights

and bias) directly incoming to this neuron, and w
(l+1)
out,p represent the parameters (weights) directly

outgoing from the neuron. If the non-linearity σ is origin-passing (i.e. σ(0) = 0), then the coordinate
plane A = {θ|w(l)

in,p = 0, b
(l)
p = 0, w

(l+1)
out,p = 0 for l = l1, l2} forms an invariant set.

Proposition H.2 (Permutation invariant set for residual neural network). Consider two hidden neurons
p, q in the same layer l1 with a residual connection from layer l1. Let (w(l)

in,p, b
(l)
p ), (w

(l)
in,q, b

(l)
q ) denote

the parameters directly incoming to the neurons, and w
(l+1)
out,p , w

(l+1)
out,q the parameters directly outgoing

from the neurons. The affine space A = {θ|w(l)
in,p = w

(l)
in,q, b

(l)
p = b

(l)
q , w

(l+1)
out,p = w

(l+1)
out,q for l = l1, l2}

is an invariant set.

We omit the proofs as they closely resemble the proofs in App. B.1 and B.1. In the presence of
residual connections, the conditions for the sign and permutation invariant sets become stronger. Not
only do the weights and biases of the neuron(s) at layer l2 need to follow the condition, the neuron(s)
which are residually connected from must also must also meet these conditions.
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I Understanding Stochastic Collapse within a Teacher-Student Framework

To investigate the impact of the stochastic collapse on generalization, we will extend the gradient flow
analysis of training error [53] and test error [51] for two-layer linear neural networks to stochastic
gradient flow.

I.1 The Linear Teacher-Student Framework

We follow the teacher-student framework proposed by Lampinen and Ganguli [51].

Low-rank teacher network. We consider a low-rank teacher that computes the linear map W̄ :
Rn → Rm. W̄ ∈ Rm×n is a low-rank matrix where k ≪ min{m,n} denotes the rank.

Two-layer student network. We consider a two-layer student network, parameterized by W1 ∈ Rd×n

and W2 ∈ Rm×d, that computes the linear map Ŵ = W2W1 : Rn → Rm. Here d is the hidden-layer
dimension and we let d = min{m,n} such that the student has the capacity to represent all linear
maps from Rn to Rm.

Noisy training data. The student network is trained on data generated by the teacher network through
the noisy map,

y = ȳ + ϵ where ȳ = W̄x, (32)
and ϵ ∼ N (0, σ2

ϵ Im). We will consider a fixed training dataset of p noisy input-output pairs
{(x1, y1), . . . , (xp, yp)} generated by the teacher network from input xi ∼ N (0, σ2

xIn). Let X ∈
Rn×p and Y ∈ Rm×p be the matrices with columns xi and yi respectively. This setup yields the
second-order training statistics that guide the student network’s learning dynamics,

Σxx = XX⊺ =

p∑
i=1

xix
⊺
i , Σyx = Y X⊺ =

p∑
i=1

yix
⊺
i . (33)

Later in our analysis of the learning dynamics we will assume the input data matrix X is whitened
such that Σxx = In implying that only the input-output covariance structure Σyx will govern the
learning dynamics of the student.

Train and test error. The student network is trained to minimize the mean squared error loss between
the prediction Ŷ = ŴX and the output Y , and evaluated on the expected prediction error for a new
test point sampled from the input distribution. We denote the train and test error as

Etrain =
∥ŴX − Y ∥2F

∥Y ∥2F
, Etest =

E
[
∥Ŵx− W̄x∥2F

]
E
[
∥W̄x∥2F

] , (34)

where x ∼ N (0, σ2
xIn) is a new test point sampled from the input distribution, ∥ · ∥F denotes the

Frobenius norm, and E [·] represents the expectation over the training data and the input distribution
of the test point.

Singular value structure. The train and test performance of a student is determined by the relation-
ship between three matrices in Rm×n: the low rank teacher W̄ , the overparameterized student Ŵ ,
and the noisy training data Σyx. Due to the linear nature of this problem, we will use the Singular
Value Decomposition (SVD) for all three matrices to describe their relationship,

W̄ =

k∑
i=1

s̄iūiv̄
⊺
i , Ŵ =

d∑
i=1

ŝiûiv̂
⊺
i , Σyx =

d∑
i=1

s̃iũiṽ
⊺
i . (35)

Here, the si denote non-zero singular values, and ui and vi denote the left and right singular vectors
for their respective matrices. We will sometimes also find it useful to concatenate this information
into a matrix representation where we will use U , S, and V with the appropriate accents ·̄, ·̂, or ·̃ to
denote which matrix they are associated with.

I.2 Exact Solutions to the Student Learning Dynamics

The student network is trained by gradient descent with learning rate η to minimize Etrain. However,
we assume that each gradient evaluation is corrupted with Gaussian label-noise such that the training
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dynamics are given by the coupled update equations,

W
(t+1)
1 = W

(t)
1 − η

(
W

(t)
2

)⊺ (
W

(t)
2 W

(t)
1 Σxx − Σyx + Z(t)X⊺

)
, (36)

W
(t+1)
2 = W

(t)
2 − η

(
W

(t)
2 W

(t)
1 Σxx − Σyx + Z(t)X⊺

)(
W

(t)
1

)⊺
, (37)

where W
(t)
1 and W

(t)
2 are the parameters after t steps of training and Z(t) ∈ Rm×p is a matrix of

label-noise associated with step t. Directly studying these dynamics is difficult because the gradients
equations are coupled between the weights W1 and W2. However, by introducing some assumptions
on the covariance of the inputs and the label-noise, selecting a special initialization of the parameters,
and taking the limit as η → 0, we can decouple the dynamics into a system of scalar non-linear SDEs
with exact solutions.

Decoupling the dynamics. We introduce the following assumptions:

A1. Whitened-Input. We assume that Σxx = In such that the input data matrix X is whitened
(this implicitly assumes p ≥ n such that we have at least as many observations as features).

A2. Structured Label-Noise. We assume the the gradient noise can be decomposed as Z(t) =
Ũdiag

(
z(t)
)
Ṽ ⊺X where z(t) ∼ N (0, ζ2).

A3. Spectral Initialization. We assume that the student network is initialized such that W (0)
1 =

OA(0)Ṽ ⊺ and W
(0)
2 = ŨB(0)O⊺ where A(0) and B(0) are diagonal matrices such that

Ŝ(0) = B(0)A(0) and O ∈ Rd×d is a random orthonormal matrix such that O⊺O = Id.

A4. Balanced Initialization. We assume a balanced initialization such that W (0)
1 W

(0)
1

⊺
=

W
(0)
2

⊺
W

(0)
2 .

Given the first three assumptions, the dynamics decouple in the eigenbasis of Σyx. Under the change
of variables A(t) = O⊺W

(t)
1 Ṽ and B(t) = Ũ⊺W

(t)
2 O, the dynamics transform to

A(t+1) = A(t) − η
(
B(t)

)⊺ (
B(t)A(t) − S̃ + diag

(
z(t)
))

, (38)

B(t+1) = B(t) − η
(
B(t)A(t) − S̃ + diag

(
z(t)
))(

A(t)
)⊺

, (39)

which because A(0) and B(0) are diagonal matrices by assumption, decouples into a system of scalar
equations. Taking the limit as η → 0 we can approximate each of these scalar equations with a
two-dimensional non-linear SDE,

d

[
ai
bi

]
= −

[
bi (aibi − s̃i)
ai (aibi − s̃i)

]
dt+

√
ηζ2

[
bi
ai

]
dBt, (40)

where ai and bi are the ith diagonal element of A and B respectively. Under these much simpler
dynamics, it is not difficult to prove by Itô’s Lemma that the fourth assumption will be obtained no
matter the initialization,
Lemma I.1 (Autobalancing). Under the dynamics in equation (40), the limt→∞ ai(t)

2 − bi(t)
2 = 0.

Proof. Let ri(t) denote the difference ri(t) = ai(t)
2 − bi(t)

2. By Itô’s Lemma, ri(t) is driven by
the ODE dri = −ηζ2ridt, which has the temporal solution ri(t) = ri(0)e

−ηζ2t. Because ηζ2 > 0,
then the limt→∞ ri(t) = 0.

The result of all four assumptions A1 - A4 is a decoupling the learning dynamics into a set of
independent quartic slices of the loss landscape, ℓi(wi) = (w2

i − s̃i)
2 with wi = ai = bi, where

within each slice the dynamics evolve according to the non-linear SDE,

dwi = −wi(w
2
i − s̃i)dt+

√
ηζ2widBt. (41)

The geometry of these slices is controlled by the strength of the singular mode for the training data
s̃i and the dynamics are determined by the relationship with the student’s singular mode strength
ŝi = w2

i . By Itô’s Lemma we find that the dynamics of ŝi are governed by the non-linear SDE,

dŝi = 2ŝi

((
s̃i +

ηζ2

2

)
− ŝi

)
dt+ 2

√
ηζ2ŝidBt, (42)
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which is an equation often used to model population growth in a stochastic, crowded environment.
See Oksendal [58], Chapter 5 problem 5.15 for more details.

Theorem 6.1. Under assumptions A1 - A4, the dynamics of ŝi(t) for t ≥ 0 are governed by the
stochastic process,

ŝi(t) =
e(2s̃i−ηζ2)t+2

√
ηζ2Bt

2
∫ t

0
e(2s̃i−ηζ2)τ+2

√
ηζ2Bτ dτ + ŝi(0)−1

. (43)

Proof. Let ui = ŝ−1
i . Then by Itô’s Lemma, the dynamics of ui are given by the SDE,

dui =
(
2− (2s̃i − 3ηζ2)ui

)
dt− 2

√
ηζ2uidBt (44)

Rearranging this SDE we can express it in the standard form of a geometric Ornstein–Uhlenbeck
process (sometimes referred to as a modified Ornstein-Uhlenbeck process)

dui = θ(µ− ui)dt+ σuidBt (45)

where θ = 2s̃i − 3ηζ2, µ = (s̃i − 3
2ηζ

2)−1, and σ = −2
√

ηζ2. To derive a solution to this linear
SDE we make the ansatz that the solution takes the form ui(t) = F (t)G(t) where F (t) and G(t)
solve the respective SDEs,

dF = −θFdt+ σFdBt, dG = α(t)dt+ β(t)dBt. (46)

To determine the unknown coefficients α(t) and β(t) defining the SDE for G(t), we can apply Itô’s
product rule

dui = dFG+ FdG+ dFdG

= (−θFG+ α(t)F + β(t)σF )dt+ (σFG+ β(t)F )dBt

= (α(t)F + β(t)σF − θui)dt+ (σui + β(t)F )dBt

Aligning this expression with the original SDE for ui we see that

α(t) = θµF−1, β(t) = 0. (47)

We can now solve for F (t) and G(t). The SDE defining F (t) is standard geometric Brownian motion
and thus has the solution,

F (t) = e−(θ+
1
2σ

2)t+σBt (48)

where we assumed F (0) = 1 and thus G(0) = ui(0). Using this solution for F (t), then G(t) is
given by

G(t) = u0 + θµ

∫ t

0

e(θ+
1
2σ

2)τ−σBsdτ. (49)

Combining our solutions for F (t) and G(t) we get that the solution for ui(t) is

ui(t) = ui(0)e
−(θ+ 1

2σ
2)t+σBt + θµ

∫ t

0

e−(θ+ 1
2σ

2)(t−τ)+σ(Bt−Bτ )dτ. (50)

Inverting this expression and rearranging terms, gives the expression for ŝi(t),

ŝi(t) = ui(t)
−1 =

e(θ+
1
2σ

2)t−σBt

θµ
∫ t

0
e(θ+

1
2σ

2)τ−σBτ dτ + ŝi(0)−1
(51)

Plugging in the simplifications θµ = 2, θ + 1
2σ

2 = 2s̃i − ηζ2, and σ = −2
√

ηζ2 gives the final
expression.

Corollary 6.1. In the limit of ŝi(0) → 0, for any t > 0, ŝi(t) is given by

ŝi(t)/ŝi(0) →
a.s.

e(2s̃i−ηζ2)t+2
√

ηζ2Bt . (52)
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Proof. Since Bt is almost surely continuous, (2s̃i − ηζ2)τ +2
√

ηζ2Bτ has a maximum in τ ∈ [0, t]

and therefore 2
∫ t

0
e(2s̃i−ηζ2)τ+2

√
ηζ2Bτ dτ is finite almost surely. Therefore, by Theorem 6.1,

ŝi(t)/ŝi(0) =
e(2s̃i−ηζ2)t+2

√
ηζ2Bt

2ŝi(0)
∫ t

0
e(2s̃i−ηζ2)τ+2

√
ηζ2Bτ dτ + 1

→
a.s.

e(2s̃i−ηζ2)t+2
√

ηζ2Bt . (53)

Corollary 6.1 has important implications for the dynamics of ŝi(t). It demonstrates that the dynamics
observe a phase transition determined by the ratio 2s̃i/ηζ

2, consistent with Theorem 4.1. When
this ratio is less than one, the distribution will exhibit stochastic collapse, converging to a delta
distribution at the origin. When this ratio is greater than one, the distribution will converge to a
stationary distribution with a positive expectation. Corollary 6.1 demonstrates that stochastic collapse
is determined by a signal-to-noise ratio where the signal derives from the noisy teacher and the noise
originates from stochastic gradients. While Corollary 6.1 describes the dynamics with vanishing
initialization for any t > 0, it does not describe what happens with finite initialization nor infinite
time. To understand these scenarios we consider the stationary solution for the dynamics of ŝi.
Corollary I.1 (Stationary solution). In the limit of t → ∞, ŝi(t) is distributed according to the
density,

pss(ŝi) = Z−1e
− ŝi

ηζ2 ŝ
−
(

3
2−

s̃i
ηζ2

)
i (54)

where Z =
∫ +∞
0

e
− ŝi

ηζ2 ŝ
−
(

3
2−

s̃i
ηζ2

)
i dŝi is the partition function.

Proof. To check if pss(ŝi) is the stationary solution we use the Fokker-Planck equation for the
dynamics of ŝi, which is

∂tp = ∇ ·
(
2ŝi

(
ŝi −

(
s̃i +

ηζ2

2

))
p+ 2ηζ2∇ ·

(
ŝ2i p
))

︸ ︷︷ ︸
−J

, p(ŝi, 0) = δŝi(0), (55)

where J is commonly referred to as the probability current. The stationary solution pss satisfies
∂tpss = 0, which because we are considering a one-dimensional SDE, is equivalent to Jss = 0.
Plugging in the expression for pss(ŝi) and using the simplification

2ηζ2∇ ·
(
ŝ2i p
)
= 4ζ2ŝipss + 2ηζ2ŝ2i∇pss(ŝi) (56)

= 4ζ2ŝipss − 2ηζ2ŝ2i

((
ηζ2
)−1

+ ŝ−1
i

(
3

2
− s̃i

ηζ2

))
pss(ŝi) (57)

= −2ŝi

(
ŝi −

(
s̃i +

ηζ2

2

))
pss (58)

we can verify that Jss = 0.

The stationary solution can be interpreted as a Gibb’s distribution (i.e. pss ∝ e−κΨ(x)) with the
potential

Ψ(ŝi) = ŝi +

(
3ηζ2

2
− s̃i

)
log(ŝi) (59)

and temperature constant κ =
(
ηζ2
)−1

. From this interpretation we see two phase transitions,

argmax pss(ŝi) =

{
s̃i − 3

2ηζ
2 if s̃i > 3

2ηζ
2

0 if s̃i ≤ 3
2ηζ

2 pss(ŝi) =

{
Z−1e−κΨ(w) if s̃i > ηζ2

2

δ0 if s̃i ≤ ηζ2

2

(60)

When 3
2ηζ

2 ≤ s̃i, the most probable state is s̃i − 3
2ηζ

2, where we already see a bias from the
stochasticity towards the origin. When 3

2ηζ
2 > s̃i, the most probable state is at the origin. When

ηζ2

2 ≥ s̃i, the partition function Z diverges and the stationary distribution collapses to a delta
distribution at the origin, which is an invariant set.

We now conjecture an exact expression for the temporal dynamics of the expectation E[ŝi(t)]:
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Conjecture I.1. Under assumptions A1 - A4, the expectation E[ŝi(t)] for t ≥ 0 is given by the
equation,

E[ŝi(t)] =
(s̃i − ηζ2

2 )e(2s̃i−ηζ2)t

e(2s̃i−ηζ2)t − 1 +
s̃i− ηζ2

2

ŝi(0)

. (61)

Conjecture I.1 captures both the phase transition for stochastic collapse from Corollary 6.1 and
the student’s singular value shrinkage from Corollary I.1. Furthermore, in the limit of ζ → 0, it
aligns with the dynamics from Theorem 6.1, as would be expected. Additionally, one can show that
the dynamics predicted by Conjecture I.1 are equivalent to the deterministic dynamics given by L2

regularized gradient flow with a regularization coefficient of λ = ηζ2

2 .

I.3 An Analytic Theory of Error Dynamics in the High-dimensional Limit

So far we have setup a teacher-student setting and demonstrated that the learning dynamics of
the student can be decomposed into...nonlinear... Now will show how this implicit shrinking and
collapsing process is an effective form of regularization that improves the performance of the student

Decomposition of the error. Using the the SVD structure of the low-rank teacher {ūi, s̄i, v̄i},
overparameterized student {ûi, ŝi, v̂i}, and noisy training data {ũi, s̃i, ṽi} we can decompose these
error terms as

Etrain =

(
m∑
i=1

s̃2i

)−1
 m∑

i=1

s̃2i +

d∑
j=1

ŝ2j − 2

m∑
i=1

d∑
j=1

s̃iŝj⟨ũi, ûj⟩⟨ṽi, v̂j⟩

 , (62)

Etest =

(
k∑

i=1

s̄2i

)−1
 k∑

i=1

s̄2i +

d∑
j=1

ŝ2j − 2

k∑
i=1

d∑
j=1

s̄iŝj⟨ūi, ûj⟩⟨v̄i, v̂j⟩

 . (63)

From these expressions we see that understanding the dynamics of the train and test error depends on
(1) the alignment of the singular values and vectors of the student network with the SVD structure of
the training data and (2) the relationship between the SVD structure of the training data and that of
the teacher network. Our analysis of the student network training dynamics covers (1) and as done in
Lampinen and Ganguli [51] we can understand (2) in the high-dimensional limit through a random
matrix theory analysis.

Random matrix theory analysis. We will work in the limit n,m → ∞ with a finite rank k ∼ O(1)
and finite aspect ratio A = m

n ∈ (0,∞). Without loss of generality, we assume σ2
ϵ = n−1 such

that the singular values of the noise are O(1) and thus the singular values of the teacher network
can be understood as signal to noise ratios (SNRs). The relationship between the SVD structures
of a low-rank matrix (the teacher network {ūi, s̄i, v̄i}) and a noisy perturbation (the training data
{ũi, s̃i, ṽi}) is well studied in [59], which we summarize here.

In the limit, the top k singular values of Σyx converge to values given by the transfer function,

s̃(s̄) =

{
(s̄)−1

√
(1 + s̄2)(A+ s̄2) if s̄ > A1/4

1 +A otherwise
(64)

while the bottom m − k singular values are distributed according to the Marchenko-Pastur (MP)
distribution,

pMP (s̃) =

{√
4A−(s̃2−(1+A))2

πAs̃ if s̃ ∈ [1−
√
A, 1 +

√
A]

0 otherwise
(65)

Additionally, in the limit, the top k singular vectors of Σyx acquire an alignment with the k singular
vectors the teacher network given by the relationship |⟨ũi, ūi⟩| |⟨ṽi, v̄i⟩| = O(s̄i) where the the
overlap function is defined as,

O(s̄i) =


(
1− A(1+s̄2)

s̄(A+s̄2)

)1/2 (
1− (A+s̄2)

s̄(1+s̄2)

)1/2
if s̄ > A1/4

0 otherwise
(66)
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J Experiment details

The codes to reproduce the experiments in the main paper can be found at https://github.
com/ccffccffcc/stochastic_collapse. Our the experiments were run on the Google Cloud
Platform (with 4× or 8× NVIDIA A100 (40GB) GPU). The initial code development occurred on
a local cluster equipped with 10× NVIDIA TITAN X GPUs. We carried out all the deep learning
experiments with VGG-16 [47] and ResNet-18 [48], training on the CIFAR-10 and CIFAR-100
datasets respectively [49]. For VGG-16, we did not use Batch Normalization or Dropout. Both
VGG-16 and ResNet-18 had their nonlinearity activation functions replaced with GELU, as the
potentially larger invariant set associated with ReLU could complicate identification and illustration
of the two main invariant sets discussed in the paper. We leave it as future work to study in details the
structure of the invariant sets associated with ReLU. For all our training, we applied standard data
augmentation and used SGD (with momentum β = 0.9 and weight decay of 0.0005) as the optimizer.

Stochastic collapse in a quartic loss. (Fig.1) The left three plot are generated by sampling 50
trajectories of the SDE dθt = −(θ3t − µθt)dt + ζθtdBt with µ = 1.5 and ζ = 0.1, 1, 2.5. The
samples are computed using an Euler-Maruyama discretization scheme with step size η = 0.0025 for
104 steps. All three plots use the same random Gaussian initializations with mean zero and variance
four. The side plot for these three subplots shows the theoretical steady-state distribution described in
Sec. 4. The rightmost plot is generated by sweeping 50 linearly spaced values of ζ from ζ = 0 to
ζ = 3. For each value of ζ we sample 10000 trajectories with the same scheme described previously
but for a varying number of steps: 0, 5000, 10000, 20000, 40000, 80000. We compute the empirical
probability of the final position being within ϵ = 1e−15 euclidean distance of the origin.

Stochastic collapse towards a sign invariant set. (Fig.2) We trained 103 different single-neuron
models via simulating SDEs (31) up to time T = 100, using the Euler-Marumaya discretization
scheme of step size dt = 10−2. All the models are trained with the same data set, composed with 32
points {(xi, yi)}i=1,··· ,32 where xi is an i.i.d. standard Gaussian random variable, and yi is given by
yi = xi + ϵi where ϵi is i.i.d. centered Gaussian random variable with standard deviation of 0.1. All
the models are initialized with random weights sampled from i.i.d. centered Gaussian distribution
with standard deviation 10−3.

Evidence of stochastic collapse towards permutation invariant sets. (Fig. 3) We trained VGG-16
for 105 steps on CIFAR-10 with a learning rate of 0.1 and ResNet-18 for 106 steps on CIFAR-100
with a learning rate of 0.02. We computed the normalized distance between neurons within the same
layer by concatenating corresponding vectors of incoming and outgoing weights, and used this to
cluster neurons. Neurons within 0.1 normalized distance from each other were grouped together,
which then determines the number of clusters or the independent of neurons denoted as nind. In
Fig. 3, we plotted the pairwise distance of the incoming weights and outgoing weights separately. We
carried out Agglomerative Clustering based on the normalized distance of the incoming weights with
nind clusters and the corresponding pairwise distance between outgoing weights was visualized with
the same ordering.

Larger learning rates and increased label noise intensify stochastic collapse. (Fig. 4 and 9) These
experiments varied learning rates and the extent of label noise. For the learning rate experiments,
we trained models without label noise for 105 steps. For the label noise experiments, we maintained
learning rates of 0.01 and 0.02 for VGG-16 and ResNet-18 respectively over 106 steps. Here, fresh
label noise was introduced with each batch sample. A label noise level of ϵ% meant that ϵ% of the
labels were randomly assigned an incorrect label. We averaged the results across four replications
with different seeds.

After training, we calculated and displayed the proportion of independent neurons in each layer of
the networks. We first removed ’vanishing neurons’, defined as those with incoming and outgoing
weights less than 10% of the maximum norm for that layer. We then clustered the remaining neurons
based on the pairwise normalized distance of the concatenated incoming and outgoing weights. Two
neurons were defined as identical if their distance in weight space was less than 10% of their norms.
This allowed us to determine the number of independent neurons in each layer.

Effect of batch size on stochastic collapse. (Fig. 10) We trained models with different batch sizes
for 105 (CIFAR-10) and 106 (CIFAR-100) steps, while keeping the learning rate constant at 0.02.
We averaged the results across four replications with different seeds. The method of calculating the
proportion of independent neurons remains the same.
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Demonstrating generalization benefits of stochastic collapse in a teacher-student setting. (Fig. 5)
The experiments were conducted in accordance with assumptions A1 - A4. In these experiments, we
set both the input and output dimensions to be 64, and the dataset size was set at 1024. We used a
sparse teacher model with a rank of 8 and signals ranging evenly from 0.5 to 1. The input samples
were drawn to satisfy the condition XTX = I . We then constructed the signal y by introducing a
random Gaussian noise with a standard deviation of 0.5 to the true output values. The network was
trained with an initial learning rate warm-up of 1000 steps, followed by 50000 steps at a learning rate
of 3.0. After 50000 steps, we reduced the learning rate to 0.3 and continued the training for another
10000 steps. The experimental results are averaged over 256 runs with the same dataset.

In Fig. 11, we present the results obtained when replacing label noise with different batch sizes. In
this experiment, we used SGD without label noise and maintained a similar experimental setup as
before. Additionally, we introduced a learning rate drop at step 53000.

Large learning rates aid generalization via stochastic collapse to simpler subnetworks. (Fig. 6)
We carried out initial training of VGG-16 and ResNet-18 using a larger learning rate of 0.1. We
created checkpoints in the training process at steps of 104, 2×104, and 4×104. We resumed training
from the checkpoints post but at a reduced learning rate of 0.01. To track the impact of this large
learning rate phase on the emergence of simpler subnetworks, we calculated the layer-wise fraction
of independent neurons at each of these checkpoints, before the learning rate drop. We averaged the
results across eight replications with different seeds.
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K Extended Experiments

Figure 8: Evidence of stochastic collapse towards permutation invariant sets in deep neural
networks. We show the distribution of normalized distance across all pairs of neurons for the same
hidden layer of neurons as shown in Fig. 3. We show plots for three different layers in VGG-16
trained on CIFAR-10 (top row), and for three different layers in a ResNet-18 trained on CIFAR-100
(bottom row). Each plot assesses the distribution at various training stages. In layers with little
stochastic collapsing (left column), the distributions rapidly thermalize and concentrate around 2.
In layers with strong stochastic collapsing (middle and right columns), the distributions evolve to
form a peak around 0, indicating stochastic collapsing towards the permutation invariant set.

Figure 9: Increased label noise intensify stochastic collapse. This figure illustrates how the fraction
of independent neurons per layer in VGG-16 trained on CIFAR-10 (left column) and ResNet-18
trained on CIFAR-100 (right column) varies with label noise. The networks are evaluated at training
steps of 106. A reduced percentage of independent neurons indicates stronger stochastic collapse.

Layer 1 Layer 2 Layer 3 Layer 4

Figure 10: Effect of batch size on stochastic collapse. This figure illustrates how the fraction of
independent neurons per layer in VGG-16 trained on CIFAR-10 (left column) and ResNet-18 trained
on CIFAR-100 (right column) varies with batch size. A lower percentage of independent neurons
signifies a heightened degree of stochastic collapse. As elaborated in Appendix D, modifying batch
size is expected to parallel changes in the learning rate since both influence the amplitude term in the
diffusion matrix. Yet, unlike learning rate effects, alterations in batch size produce complex shifts in
stochastic collapse. We conjecture that this subtlety may arise from non-replacement sampling and
the randomness introduced by transformations applied to input images.
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Figure 11: Demonstrating generalization benefits of stochastic collapse in a teacher-student
setting with batch noises. Same as Fig. 5 but we show effects of different batch sizes. No label noise
was used in this setup. We show the train loss (left) and test loss (middle) during the training of the
student with different batch sizes. Dashed lines in the leftmost and middle left panels indicate the
steps where learning rate is dropped. Training with smaller batch sizes generalizes better. Right: we
show the noisy teacher signals against the learned student signals before dropping the learning rate.
We only show the smallest 32 singular values.

Figure 12: Large learning rates aid generalization via stochastic collapse to simpler subnetworks.
Left, Middle: Same as Fig. 6. Right: The effective rank [60] of the weight matrices of independent
neurons per layer evaluated at different learning rate drop times (indicated by the color) during the
initial high learning rate training phase. To compute the effective rank, we first gather the singular
values, denoted by s, of the concatenated weight matrices of the incoming and outgoing weights for a
specified layer. The effective rank is then computed as ρ = −

∑
i ŝi log ŝi, where ŝi represents the

normalized singular value defined by ŝi =
si∑
j sj

.
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