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ABSTRACT

Reinforcement learning (RL) algorithms aim to balance exploiting the current best
strategy with exploring new options that could lead to higher rewards. Most com-
mon RL algorithms use undirected exploration, i.e., select random sequences of
actions. Exploration can also be directed using intrinsic rewards, such as cu-
riosity or model epistemic uncertainty. However, effectively balancing task and
intrinsic rewards is challenging and often task-dependent. In this work, we in-
troduce a framework, MAXINFORL, for balancing intrinsic and extrinsic explo-
ration. MAXINFORL steers exploration towards informative transitions, by max-
imizing intrinsic rewards such as the information gain about the underlying task.
When combined with Boltzmann exploration, this approach naturally trades off
maximization of the value function with that of the entropy over states, rewards,
and actions. We show that our approach achieves sublinear regret in the simplified
setting of multi-armed bandits. We then apply this general formulation to a variety
of off-policy model-free RL methods for continuous state-action spaces, yielding
novel algorithms that achieve superior performance across hard exploration prob-
lems and complex scenarios such as visual control tasks.
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(a) Normalized average performance of
MAXINFORL across several deep RL bench-
marks on state-based tasks.
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Figure 1: We summarize the normalized performance of different variants of MAXINFORL;
MAXINFOSAC for state-based control and MAXINFODRQV2 for visual control (cf., Section 4 for
more details). We report the mean performance across five seeds with one standard error.

1 INTRODUCTION

Reinforcement learning (RL) has found numerous applications in sequential decision-making
problems, from games (Silver et al., 2017), robotics (Hwangbo et al., 2019; Brohan et al., 2023),
to fine-tuning of large language models (Ouyang et al., 2022). However, most widely applied
RL algorithms such as PPO (Schulman et al., 2017) are inherently sample-inefficient, requiring
hundreds of hours of environment interactions for learning. Off-policy methods like SAC (Haarnoja
et al., 2018), REDQ (Chen et al., 2021), and DroQ (Hiraoka et al., 2022) offer a more sample and
compute efficient alternative and have demonstrated success in real-world learning (Smith et al.,
2022). Despite this, they often require dense reward signals and suffer in the presence of sparse
rewards or local optima. This is primarily due to their use of naive exploration schemes such as
ϵ-greedy or Boltzmann exploration and effectively take random sequences of actions for exploration.
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These strategies are known to be suboptimal even for basic tasks (Cesa-Bianchi et al., 2017; Burda
et al., 2018; Sukhija et al., 2024b), yet remain popular due to their simplicity and scalability.

Several works (Burda et al., 2018; Pathak et al., 2017; 2019; Sekar et al., 2020; Sukhija et al., 2024b)
use intrinsic reward signals, e.g., curiosity or information gain, to improve the exploration of RL
agents. Moreover, information gain (Lindley, 1956) is also widely applied in Bayesian experiment
design (Chaloner & Verdinelli, 1995) and is the basis of many active learning methods (Krause
et al., 2008; Balcan et al., 2010; Hanneke et al., 2014; Hübotter et al., 2024). In RL, exploration via
maximizing information gain offers strong theoretical guarantees (Mania et al., 2020; Sukhija et al.,
2024b) and achieves state-of-the-art empirical performance (Sekar et al., 2020; Mendonca et al.,
2021). However, a significant gap persists in both the theoretical and practical understanding of how
to effectively balance intrinsic exploration objectives with naive extrinsic exploration algorithms.
The goal of this work is to bridge this gap. To this end, we revisit the traditional, widely-used
Boltzmann exploration, and enhance it by incorporating exploration bonuses derived from intrinsic
rewards, like information gain. Our approach is grounded in both theoretical insights and practical
motivations, and we empirically validate it across several deep RL benchmarks.

The key contributions of this work are summarized as follows:

Contributions

1. We propose MAXINFORL, a novel class of off-policy model-free algorithms for continuous
state-action spaces that augments existing RL methods with directed exploration. In essence,
MAXINFORL builds on standard Boltzmann exploration and guides it via an intrinsic reward.
We propose a practical auto-tuning procedure that largely simplifies trading off extrinsic and
intrinsic objectives. This yields algorithms that explore by visiting trajectories that achieve the
maximum information gain about the underlying MDP, while efficiently solving the task. As
a result, MAXINFORL retains the simplicity of traditional RL methods while adding directed
exploration through intrinsic rewards. Additionally, we show how the same idea can be combined
with other naive exploration techniques, such as ϵ–greedy.

2. In the simplified setting of stochastic multi-armed bandits in continuous spaces, we show that
MAXINFORL has sublinear regret. In addition, we show that MAXINFORL benefits from all
theoretical properties of contraction and convergence that hold for max-entropy RL algorithms
such as SAC (Haarnoja et al., 2018).

3. In our experiments, we use an ensemble of dynamics models to estimate information gain
and combine MAXINFORL with SAC (Haarnoja et al., 2018), REDQ (Chen et al., 2021),
DrQ (Yarats et al., 2021), and DrQv2 (Yarats et al., 2022). We evaluate it on standard deep
RL benchmarks for state and visual control tasks and show that MAXINFORL performs the
best across all tasks and baselines, obtaining the highest performance also in challenging ex-
ploration problems (see., Fig. 1 for the average performance of MAXINFORL across several
environments).

2 BACKGROUND

A core challenge in RL is deciding whether the agent should leverage its current knowledge to
maximize rewards or try new actions in pursuit of better solutions. Striking this balance between
exploration–exploitation is critical. Here, we first introduce the problem setting, then we discuss
two of the most commonly used exploration strategies in RL: ϵ-greedy and Boltzmann exploration.

2.1 PROBLEM SETTING

We study an infinite-horizon Markov decision process (MDP, Puterman, 2014), defined by the tuple
(S,A, p, γ, r, ρ), where the state and action spaces are continuous, i.e., S ⊂ Rds ,A ⊂ Rda , and the
unknown transition kernel p : S×S×A → [0,∞) represents the probability density of the next state
st+1 ∈ S given the current state st ∈ S and action at ∈ A. At each step t in the environment, the
agent observes the state st, samples an action at from the policy π : A×S → [0,∞), at ∼ π(a|st),
and receives a reward r : S × S × A → [− 1

2rmax,
1
2rmax]. The agent’s goal is to learn a policy π∗

that maximizes the γ discounted reward w.r.t. the initial state distribution s0 ∼ ρ.

π∗ = argmax
π∈Π

J(π) = argmax
π∈Π

Es0,a0,...

[ ∞∑

t=0

γtrt

]
. (1)
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In the following, we provide the definitions of the state-action value function Qπ and the value
function V π:

Qπ(st,at) = Est+1,at+1∼π,...

[ ∞∑

l=0

γlrt+l

]
, V π(st) = Eat∼π,st+1,at+1∼π,...

[ ∞∑

l=0

γlrt+l

]
.

2.2 ϵ–GREEDY AND EXPLORATION WITH GAUSSIAN NOISE

The ϵ-greedy strategy (Kearns & Singh, 2002; Mnih, 2013; Van Hasselt et al., 2016) is widely ap-
plied in RL to balance exploration and exploitation, where the RL agent follows this simple decision
rule below to select actions

at =

{
a ∼ Unif(A) with probability ϵt
argmax

a∈A
Q∗(st,a) else, (2)

Here Q∗ is the estimate of the optimal state-action value function. Therefore, at each step t,
with probability ϵt, a random action at ∼ Unif(A) is sampled, else the greedy action at =
maxa∈AQ∗(st,a) is picked. Lillicrap (2015); Fujimoto et al. (2018) extend this strategy to contin-
uous state-action spaces, where a deterministic policy πθ is learned to maximize the value function
and combined with random Gaussian noise for exploration.

2.3 BOLTZMANN EXPLORATION

Boltzmann exploration is the basis of many RL algorithms (Sutton, 2018; Szepesvári, 2022). The
policy distribution π for Boltzmann is represented through

π(a|s) ∝ exp
(
α−1Qπ(s,a)

)
, (3)

where α is the temperature parameter that regulates exploration and Qπ is the soft-Q function. We
neglect the normalization termZ−1(s) in the definition for simplicity. As α→ 0, the policy greedily
maximizes Qπ(s,a), i.e. it exploits, and as α →∞ the policy adds equal mass to all actions in A,
effectively performing uniform exploration. Intuitively, Boltzmann exploration can be interpreted
as a smoother alternative to ϵ–greedy, with α serving a similar role to ϵ in controlling the degree of
exploration. Cesa-Bianchi et al. (2017) show that the standard Boltzmann exploration is suboptimal
even in the simplest settings. They highlight that a key shortcoming of Boltzmann exploration is
that it does not reason about the uncertainty of its estimates.

Overall, both ϵ–greedy and Boltzmann exploration strategies are undirected. They fail to account
for the agent’s “lack of knowledge” and do not encourage risk- or knowledge-seeking behavior.
The agent explores by sampling random action sequences, which leads to suboptimal performance,
particularly in challenging exploration tasks with continuous state-action spaces.

2.4 INTRINSIC EXPLORATION WITH INFORMATION GAIN

Intrinsic rewards or motivation are used to direct agents toward underexplored regions of the MDP.
Hence they enable RL agents to acquire information in a more principled manner as opposed to
the aforementioned naive exploration methods. Effectively, the agent explores by selecting policies
that maximize the γ-discounted intrinsic rewards. A common choice for the intrinsic reward is
the information gain (Cover & Thomas, 2006; Sekar et al., 2020; Mendonca et al., 2021; Sukhija
et al., 2024b). Accordingly, for the remainder of the paper, we center our derivations around using
information gain as the intrinsic reward. However, our approach is flexible and can also be combined
with other intrinsic exploration objectives, such as RND (Burda et al. (2018), see Appendix D).

We study a non-linear dynamical system of the form

s̃t+1 = f∗(st,at) +wt. (4)

Here s̃t+1 = [s⊤t+1, rt]
⊤ represents the next state and reward, f∗ represents the unknown dynamics

and reward function of the MDP and wt is the process noise, which we assume to be zero-mean
i.i.d., σ2-Gaussian. Note this is a very common representation of nonlinear systems with continuous
state-action spaces (Khalil, 2015) and the basis of many RL algorithms (Pathak et al., 2019; Kakade
et al., 2020; Curi et al., 2020; Mania et al., 2020; Wagenmaker et al., 2023; Sukhija et al., 2024a).
Furthermore, it models all essential and unknown components of the underlying MDP; the transition
kernel and the reward function.
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Approximating information gain Given a dataset of transitions Dn = {(si,ai, s̃′i)}ni=0, e.g., a
replay buffer, we learn a Bayesian model of the unknown function f∗, to obtain a posterior distri-
bution p(f∗|Dn) for f∗. This distribution can be Gaussian, e.g., Gaussian process models (Ras-
mussen & Williams, 2005) or represented through Bayesian neural networks like probabilistic en-
sembles (Lakshminarayanan et al., 2017). As opposed to the typical model-based RL setting, similar
to Burda et al. (2018); Pathak et al. (2017; 2019), our learned model is only used to determine the in-
trinsic reward. The information gain I(s̃′;f∗|s,a,Dn), reflects the uncertainty about the unknown
dynamics f∗ from observing the transition (s,a, s̃′). Moreover, let σ(s,a|Dn) = [σj(s,a)]j≤ds+1

denote the model epistemic uncertainty or disagreement of f∗. Sukhija et al. (2024b, Lemma 1.)
show that

I(s̃′;f∗|s,a,Dn) = H(s̃′|s,a,Dn)−H(s̃|s,a,f∗,Dn) ≤
ds+1∑

j=1

log

(
1 +

σ2
n−1,j(st,at)

σ2

)

︸ ︷︷ ︸
Iu(s,a)

(5)

whereH denotes the (differential) entropy (Cover & Thomas, 2006) and in Eq. (5) the equality holds
when p(f∗|Dn) is Gaussian. Note that while the above is an upper bound, Sukhija et al. (2024b)
motivate this choice from a theoretical perspective proving convergence of the active learning algo-
rithm for the model-based setting. In this work, similar to Pathak et al. (2019); Sekar et al. (2020);
Mendonca et al. (2021); Sukhija et al. (2024b), we use the upper bound of the information gain for
our practical algorithm. The upper bound has a natural interpretation, since by picking actions at
that maximize it, we effectively visit areas where we have high uncertainty about the unknown func-
tion f∗, therefore performing exploration in both state and action space. Empirically, this approach
has shown to perform well, e.g., Sekar et al. (2020); Mendonca et al. (2021).

Data dependence of intrinsic rewards Information gain and other intrinsic rewards depend on
the data Dn, making them inherently nonstationary and non-Markovian. Intuitively, underexplored
areas of the MDP become less informative once visited (c.f., Prajapat et al. (2024) for more details).
However, in RL, intrinsic rewards are often treated similarly to extrinsic rewards, a simplification
that works very well in practice (Burda et al., 2018; Sekar et al., 2020). We take a similar approach
in this paper and omit the dependence of I onDn and use I(s̃′;f∗|s,a) from hereon for simplicity.

3 MAXINFORL
In this section, we present our method for combining intrinsic exploration with classical exploration
strategies. While MAXINFORL builds directly on Boltzmann exploration, we begin by illustrating
its key ideas in the context of an ϵ–greedy strategy, due to its mathematical simplicity and natural
distinction between exploration and exploitation steps. The insights gained from this serve as mo-
tivation for developing our main method: MAXINFORL with Boltzmann exploration algorithms,
which we evaluate in Section 4.

3.1 MODIFYING ϵ–GREEDY FOR DIRECTED EXPLORATION

We modify the ϵ–greedy strategy from Section 2.2 and learn two critics, Q∗
extrinsic and Q∗

intrinsic,
where Q∗

extrinsic is the state-action value function of the extrinsic reward r and Q∗
intrinsic the critic

of an intrinsic reward function rintrinsic, for instance, the information gain (c.f., Eq. (5)). Unlike
traditional ϵ–greedy exploration, we leverage intrinsic rewards to guide exploration more effec-
tively by selecting actions that maximize Q∗

intrinsic, leading to more informed exploration rather than
random sampling. At each step t, we pick a greedy action that maximizes Q∗

extrinsic with proba-
bility 1 − ϵt, while for exploration, the action that maximizes the intrinsic critic is selected, i.e.,
at = maxa∈AQ∗

intrinsic(st,a).

at =




argmax

a∈A
Q∗

intrinsic(st,a) with probability ϵt

argmax
a∈A

Q∗
extrinsic(st,a) else,

(6)

We call the resulting exploration strategy ϵ–MAXINFORL. This approach is motivated by the insight
that in continuous spaces, intrinsic rewards cover the state-action spaces much more efficiently than
undirected random exploration, making them more effective for exploration in general (Aubret et al.,
2023; Sekar et al., 2020; Sukhija et al., 2024b). In Appendix A, to give a theoretical intuition of
our approach, we study ϵ–MAXINFORL in the simplified setting of multi-armed bandit (MAB). We
show that as more episodes are played, it gets closer to the optimal solution, i.e. has sublinear-regret.
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The key takeaway from ϵ–MAXINFORL is that instead of exploring with actions that maximize
entropy in the action spaces, e.g., uniform sampling, we select policies that also yield high infor-
mation about the MDP during learning. In the following, we leverage this idea and modify the
target distribution of Boltzmann exploration to incorporate intrinsic exploration bonuses. Moreover,
ϵ–MAXINFORL has two practical drawbacks; (i) it requires training two actor-critics and (ii) prac-
tically, the probability ϵt is specified by the problem designer. We address both these limitations in
the section below and present our main method.

3.2 MAXINFORL WITH BOLTZMANN EXPLORATION

In Section 3.1, we modify ϵ–greedy to sample actions with high intrinsic rewards during exploration
instead of randomly picking actions. Motivated from the same principle, we augment the distribution
of Boltzmann exploration with the intrinsic reward I(s̃′;f∗|s,a) to get the following

π(a|s) ∝ exp
(
α−1Qπ(s,a) + I(s̃′;f∗|s,a)

)
. (7)

The resulting distribution encourages exploration w.r.t. information gain, with α playing a similar
role to ϵ in Eq. (6). Therefore, Eq. (7) can be viewed as a soft formulation of Eq. (6). Effectively,
instead of randomly sampling actions, for large values of the temperature, we pick actions that
yield high information while maintaining the exploitative behavior for smaller temperatures. This
distribution is closely related to the epistemic risk-seeking exponential utility function from K-
learning (O’Donoghue, 2021) and probabilistic inference in RL (Tarbouriech et al., 2024). As we
show in the following, this choice of parameterization results in a very intuitive objective for the
policy. Given the previous policy πold and Qπold

, akin to Haarnoja et al. (2018), we select the next
policy πnew through the following optimization

πnew = argmin
π∈Π

DKL

(
π(·|s)

∥∥∥∥∥Z
−1(s) exp

(
1

α
Qπold

(s, ·) + I(s̃′;f∗|s,a)
))

= argmax
π∈Π

Ea∼π(·|s)
[
Qπold

(s,a)− α log(π(a|s)) + αI(s̃′;f∗|s,a)
]

= argmax
π∈Π

Ea∼π(·|s)
[
Qπold

(s,a)
]
+ αH(s̃′,a|s). (8)

Hence, the policy πnew trades off maximizing the value function with the entropy of the states,
rewards, and actions. This trade-off is regulated through the temperature parameter α. We provide
a different perspective to Eq. (8) from the lens of control as inference (Levine, 2018; Hafner et al.,
2020) in Appendix C.

Separating exploration bonuses MAXINFORL has two exploration bonuses; (i) the policy en-
tropy, and (ii) the information gain (Eq. (5)). The two terms are generally of different magnitude
and tuning the temperature for the policy entropy is fairly well-studied in RL (Haarnoja et al., 2018).
To this end, we modify Eq. (8) and introduce two individual temperature parameters α1 and α2 to
separate the bonuses. Furthermore, since information gain does not have a closed-form solution
in general, akin to prior work (Sekar et al., 2020; Sukhija et al., 2024b), we use its upper bound
Iu(s,a) (Eq. (5)) instead.

Jπold
(π|s) = Ea∼π(·|s)

[
Qπold

(s,a)− α1 log(π(a|s)) + α2Iu(s,a)
]

πnew(·|s) = argmax
π∈Π

Jπold
(π|s) (9)

For α1, we can either use a deterministic policy with α1 = 0 like Lillicrap (2015) or auto-tune α1

as suggested by Haarnoja et al. (2018). Notably, for α2 = 0 we get the standard max entropy RL
methods (Haarnoja et al., 2018). Therefore, by introducing two separate temperatures, we can treat
information gain as another exploration bonus in addition to the policy entropy and combine it with
any RL algorithm.

Auto-tuning the temperature for the information gain bonus Haarnoja et al. (2018) formulate
the problem of auto-tuning the entropy coefficient as a constrained optimization.

π∗(·|s) := argmax
π∈Π

Ea∼π [Qπ(s,a)] s.t., H(a|s) ≥ H̄

:= argmax
π∈Π

min
α1≥0

Ea∼π

[
Qπ(s,a)− α1(log(π(a|s)) + H̄)

]
.

5
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In a similar spirit, we propose the following constraints to auto-tune the temperatures for the entropy
and the information gain

π∗(·|s) := argmax
π∈Π

Ea∼π [Qπ(s,a)] s.t., H(a|s) ≥ H̄,Ea∼π [Iu(s,a)] ≥ Īu(s) (10)

:= argmax
π∈Π

min
α1,α2≥0

E
[
Qπ(s,a)− α1(log(π(a|s)) + H̄) + α2(Iu(s,a)− Īu(s))

]

Haarnoja et al. (2018) use a simple heuristic H̄ = −dim(A) for the target entropy. However, we
cannot achieve a desired information gains since they depend on the learned Bayesian model p(f∗).
This makes choosing Īu task dependent. For our experiments, we maintain a target policy π̄, updated
similarly to a target critic in off-policy RL, and define Īu as

Īu(s) :=

ds+1∑

j=1

Ea∼π̄(·|s)
[
log
(
1 + σ−2σ2

n−1,j(s,a)
)]

(11)

Intuitively, the constraint enforces that the current policy π explores w.r.t. the information gain, at
least as much as the target policy π̄. In principle, any other constraint can be used to optimize for
α2. We consider our constraint since (i) it is easy to evaluate, (ii) it can be combined with other
intrinsic rewards1, and (iii) it is modular, i.e., it can be added to any RL algorithm. Moreover, as
MAXINFORL can be combined with any base off-policy RL algorithm such as SAC (Haarnoja et al.,
2018) or DDPG (Lillicrap, 2015), it benefits from the simplicity and scalability of these methods.
In addition, it introduces the information gain as a directed exploration bonus and automatically
tunes its temperature similar to the policy entropy in Haarnoja et al. (2018). Therefore, it benefits
from both the strengths of the naive extrinsic exploration methods and the directedness of intrin-
sic exploration. We demonstrate this in our experiments, where we combine MAXINFORL with
SAC (Haarnoja et al., 2018), REDQ (Chen et al., 2021), DrQ (Yarats et al., 2021), and DrQv2 (Yarats
et al., 2022).

Convergence of MAXINFORL In the following, we study our modified Boltzmann exploration
strategy and show that as in Haarnoja et al. (2018), the update rules for Q function and the policy
converge to an optimal policy π∗ ∈ Π. We make a very general assumption that the entropy of the
policy and the model epistemic uncertainty are all bounded for all (s,a) ∈ S ×A. The proof of the
theorem and the related lemmas are provided in Appendix B.

We define the Bellman operator T π

T πQ(s,a) = r(s,a) + γEs′|s,a[V (s′)], (12)

where
V (s) = Ea∼π(·|s)[Q(s,a)− α1 log(π(a|s)) + α2Iu(s,a)] (13)

is the soft-value function.

Theorem 3.1 (MAXINFORL soft Q learning). Assume that the reward, the entropy for all π ∈ Π,
and the model epistemic uncertainty σn are all bounded for all n ≥ 0, (s,a) ∈ S × A. The
repeated application of soft policy evaluation (Eq. (12)) and soft policy update (Eq. (9)) to any
π ∈ Π converges to π∗ ∈ Π such that Qπ(s,a) ≤ Qπ∗

(s,a) for all π ∈ Π, (s,a) ∈ S ×A.

Theorem 3.1 shows that our reformulated expression for Boltzmann exploration exhibits the same
convergence properties from Haarnoja et al. (2018).

4 EXPERIMENTS

We evaluate MAXINFORL with Boltzmann exploration from Section 3.2 across several deep RL
benchmarks (Brockman, 2016; Tassa et al., 2018; Sferrazza et al., 2024) on state-based and visual
control tasks. In all our experiments, we report the mean performance with standard error evaluated
over five seeds. For the state-based tasks we combine MAXINFORL with SAC (Haarnoja et al.,
2018) and for the visual control tasks with DrQ (Yarats et al., 2021) and DrQv2 (Yarats et al.,
2022). In the following, we refer to these algorithms as MAXINFOSAC, MAXINFODRQ, and
MAXINFODRQV2, respectively. To further demonstrate the generality of MAXINFORL, in Ap-
pendix D, we provide additional experiments, where we combine MAXINFORL with REDQ (Chen
et al., 2021), use RND (Burda et al., 2018) as an intrinsic reward instead of the information gain,

1I could represent a different intrinsic reward function, e.g., RND Burda et al. (2018).
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and also evaluate the ϵ–MAXINFORL from Section 3.1 with curiosity (Pathak et al., 2017) and
disagreement (Pathak et al., 2019; Sekar et al., 2020; Mendonca et al., 2021) as intrinsic rewards.

Baselines: For the state-based tasks, in addition to SAC, we consider four baselines, all of which
use SAC as the base RL algorithm:

1. DISAGREEMENT: Employs an explore then exploit strategy, where it maximizes only the in-
trinsic reward for the first 25% of environment interaction and then switches to the exploitation
phase where the extrinsic reward is maximized. We use disagreement in the forward dynamics
model for the intrinsic reward.

2. CURIOSITY: The same as DISAGREEMENT but with curiosity as the intrinsic reward.

3. SACINTRINSIC: Based on Burda et al. (2018), where a normalized intrinsic reward is added to
the extrinsic reward.

4. SACEIPO: Uses a weighted sum of intrinsic and extrinsic rewards, where the weight is tuned
with the extrinsic optimality constraint from Chen et al. (2022).

For the visual control tasks, we use DrQ and DrQv2 as our baselines. More details on our baselines
and experiment details are provided in Appendix E.

Does MAXINFOSAC achieve better performance on state-based control problems? In Figure 2
we compare MAXINFOSAC with the baselines across several tasks of varying dimensionality2 from
the DeepMind control (DMC, Tassa et al., 2018) and OpenAI gym benchmark suite (Brockman,
2016). Across all tasks we observe that MAXINFOSAC consistently performs the best. While the
other baselines perform on par with MAXINFOSAC on some tasks, they fail to solve others. On
the contrary, MAXINFOSAC consistently achieves the highest performance in all environments
(cf., Fig. 1). To further demonstrate the scalability of MAXINFOSAC, we evaluate it on a practical
robotics benchmark, namely HumanoidBench (Sferrazza et al., 2024) that features a simulated Uni-
tree H1 robot on a variety of tasks. We use the no-hand version of the benchmark, and evaluate our
algorithm on the stand, walk, and run tasks. We compare MAXINFOSAC to SAC in Fig. 3 and again
observe that MAXINFOSAC achieves overall higher performance, except for a minor convergence
delay on the stand task, which is a trivial exploration problem concerning pure stabilization.
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Figure 2: Learning curves of all methods on several environments from the OpenAI gym and DMC
suite benchmarks.

Does MAXINFOSAC solve hard exploration problems? Naive exploration techniques often
struggle with challeging exploration tasks (Burda et al., 2018; Curi et al., 2020; Sukhija et al.,
2024b). To test MAXINFOSAC in this context, similar to Curi et al. (2020), we modify the reward in
Pendulum, CartPole, and Walker by adding an action cost, raction(a) = −K ∥a∥2, whereK controls
the penalty for large actions. Curi et al. (2020) empirically show that even for small K values, naive
exploration methods fail, converging to the sub-optimal solution of applying no actions.

2including the humanoid from DMC: ds = 67, da = 21
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Figure 3: Performance of MAXINFOSAC and SAC on the HumanoidBench benchmark.

In Figure 5 we compare MAXINFOSAC with the baselines. We observe that SAC struggles with
action costs, especially in CartPole and Walker. Both SACEIPO and SACINTRINSIC underperform,
likely due to poor handling of extrinsic and intrinsic rewards. Specifically, SACEIPO quickly
reduces its intrinsic reward weight to zero (cf., Fig. 8 in Appendix D), making it overly greedy.
Disagreement and curiosity-based methods perform better since we manually tune their number
of intrinsic exploration interactions. However, MAXINFOSAC achieves the best performance by
automatically balancing intrinsic and extrinsic rewards. For MAXINFOSAC and SAC, we also de-
pict the phase plot from the exploration on the pendulum environment in Figure 4. MAXINFOSAC
covers the state space much faster than SAC, effectively solving the Pendulum swing-up task
(Target = (0, 0)) within 10K environment steps.
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Figure 4: Phase plots during learning of MAXINFORL and SAC on the Pendulum environment.
MAXINFOSAC covers the state space much faster and effectively solves the swing-up task within
10K environment interactions.

Does MAXINFORL scale to visual control tasks? In this section, we combine MAXINFORL with
DrQ and evaluate it on visual control problems from the DeepMind control suite (DMC, Tassa et al.,
2018). DrQ is a visual control algorithm based on the max entropy framework from SAC, therefore,
it can easily be combined with MAXINFORL. We call the resulting algorithm MAXINFODRQ.
We compare MAXINFODRQ with DrQ and DrQv2 in Figure 6. From the figure, we conclude that
MAXINFODRQ consistently reaches higher rewards and better sample efficiency than the baselines
across all tasks. This illustrates the scalability and generality of MAXINFORL.

Solving challenging visual control tasks with MAXINFORL For challenging visual control prob-
lems, in particular, the humanoid tasks from DMC, Yarats et al. (2022) propose DrQv2, a modi-
fied version of DrQ, which uses n–step returns and DDPG with noise scheduling instead of SAC
for the base algorithm. They claim that switching to DDPG with noise scheduling is particu-
larly useful for solving the humanoid tasks. To this end, we combine MAXINFORL with DrQv2
(MAXINFODRQV2) and evaluate it on the stand, walk, and run humanoid tasks from DMC. This
demonstrates the flexibility of MAXINFORL, as it can seamlessly be combined with DrQv2, cf., Ap-
pendix E for more details and Appendix D for the performance of MAXINFODRQV2 on other DMC
tasks. We compare MAXINFODRQV2 with DrQv2 in Figure 7. MAXINFODRQV2 results in sub-
stantial gains in performance and sample efficiency compared to DrQv2. To our knowledge, those
shown in Figure 7 are the highest returns reached in these challenging visual control tasks by model-
free RL algorithms in the literature. This further illustrates the advantage of directed exploration via
information gain/intrinsic rewards.

5 RELATED WORKS

Naive Exploration Naive exploration approaches such as ϵ–greedy or Boltzmann are widely
applied in RL due to their simplicity (Mnih, 2013; Schulman et al., 2017; Lillicrap, 2015; Haarnoja
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Figure 5: Learning curves for state-based tasks for different values of the action cost parameter K.

0.00 0.25 0.50 0.75 1.00 1.25 1.50

×106

0

100

200

∑
r t

Acrobot[Swingup]

0 1 2 3 4 5

×105

250

500

750

1000

Ball In Cup[Catch]

0 1 2 3 4 5

×105

0

200

400

600

800

Cartpole[Swingup Sparse]

0.0 0.5 1.0 1.5 2.0

Environment steps ×106

0

200

400

600

800

∑
r t

Finger[Turn Hard]

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Environment steps ×106

200

400

600

800

Quadruped[Walk]

0.0 0.2 0.4 0.6 0.8 1.0

Environment steps ×106

0

250

500

750

1000

Reacher[Hard]

DrQ MaxInfoDrQ (ours) DrQv2

Figure 6: Learning curves from visual control tasks of the DMC suite.

et al., 2018; Hafner et al., 2023). In particular, the maximum entropy framework (Ziebart et al.,
2008) is the basis of many sample-efficient model-free deep RL algorithms (Haarnoja et al., 2018;
Chen et al., 2021; Hiraoka et al., 2022; Yarats et al., 2021). However, these methods often perform
suboptimally, especially in challenging exploration problems such as those with sparse rewards
or local optima (cf., Section 4). Effectively, the agent explores the underlying MDP by taking
random sequences of actions. In continuous spaces, this makes sufficiently covering the state
and action space exceptionally challenging. Moreover, even in the simplest setting of MAB in
continuous spaces, the most common and theoretically sound exploration strategies are Thompson
sampling (TS), upper-confidence bound (UCB) (Srinivas et al., 2012; Chowdhury & Gopalan,
2017) and information-directed sampling (Russo & Van Roy, 2018; Kirschner, 2021). While there
are several RL algorithms based on these strategies (Brafman & Tennenholtz, 2002; Jaksch et al.,
2010; Ouyang et al., 2017; Nikolov et al., 2019; Ciosek et al., 2019; Kakade et al., 2020; Curi et al.,
2020; Sukhija et al., 2024a), the naive exploration approaches remain ubiquitous in deep RL due to
their simplicity and scalability. Instead, intrinsic rewards are often used to facilitate more directed
exploration. However, how to combine extrinsic and intrinsic exploration is much less understood
both theoretically and practically.
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Figure 7: Learning curves from the visual control humanoid tasks of the DMC suite.

Intrinsic exploration Several works use intrinsic rewards as a surrogate objective to facilitate
exploration in challenging tasks (cf., Aubret et al., 2023, for a comprehensive survey). Common
choices of intrinsic rewards are model prediction error or “Curiosity” (Schmidhuber, 1991; Pathak
et al., 2017; Burda et al., 2018), novelty of transitions/state-visitation counts (Stadie et al., 2015;
Bellemare et al., 2016), diversity of skills/goals (Eysenbach et al., 2018; Sharma et al., 2019; Nair
et al., 2018; Pong et al., 2019), empowerment (Klyubin et al., 2005; Salge et al., 2014), state-
entropy (Mutti et al., 2021; Seo et al., 2021; Kim et al., 2024), and information gain over the forward
dynamics (Sekar et al., 2020; Mendonca et al., 2021; Sukhija et al., 2024b). In this work, we focus
on the information gain since it is the basis of many theoretically sound and empirically strong ac-
tive learning methods (Krause et al., 2008; Balcan et al., 2010; Hanneke et al., 2014; Mania et al.,
2020; Sekar et al., 2020; Sukhija et al., 2024b; Hübotter et al., 2024). Furthermore, we also motivate
the choice of information gain/model epistemic uncertainty theoretically (cf., Theorem A.1 and Ap-
pendix C). Nonetheless, MAXINFORL can also be used with other intrinsic exploration objectives.
In this work, we study how to combine the intrinsic rewards with the extrinsic ones for exploration
in RL. Moreover, approaches such as Pathak et al. (2017; 2019); Sukhija et al. (2024b); Sekar et al.
(2020) execute an explore then exploit strategy, where initially the extrinsic reward is ignored and a
policy is trained to maximize the intrinsic objective. After this initial exploration phase, the agent is
trained to maximize the extrinsic reward. This strategy is common in active learning methods and
does not result in sublinear cumulative regret even for the simple MAB setting. This is because the
agent executes a finite number of exploration steps instead of continuously trading off exploration
and exploitation. To this end, Burda et al. (2018); Chen et al. (2022) combine the extrinsic and
intrinsic exploration rewards by taking a weighted sum rtot = λrextrinsic +rintrinsic. While Burda et al.
(2018) use fixed weight λ, Chen et al. (2022) propose the extrinsic optimality constraint to auto-tune
the intrinsic reward weight. The extrinsic optimality constraint enforces that the policy maximizing
the sum of intrinsic and extrinsic rewards performs at least as well as the policy which only maxi-
mizes the extrinsic ones. Keeping a fixed weight λ across all tasks and environment steps might be
suboptimal and the constraint from Chen et al. (2022) may quickly lead to the trivial greedy solution
λ−1 = 0 (cf., Fig. 8 in Appendix D). We compare MAXINFORL with these two methods, as well as
with explore then exploit strategies. We show that MAXINFORL outperforms them across several
deep RL benchmarks (cf., Section 4).

6 CONCLUSION

In this work, we introduced MAXINFORL, a class of model-free off-policy RL algorithms that train
an agent to trade-off reward maximization with an exploration objective that targets high entropy
in the state, action, and reward spaces. The proposed approach is theoretically sound, simple to
implement, and can be combined with most common RL algorithms. MAXINFORL consistently
outperforms its baselines in a multitude of benchmarks and achieves state-of-the-art performance
on challenging visual control tasks.

A limitation of MAXINFORL is that it requires to train an additional forward dynamics network
ensemble to compute the information gain, which increases computation overhead. In addition,
while effective, the constraint in Equation (10) also requires maintaining a target policy.

The generality of the MAXINFORL exploration bonus and the trade-off we propose with reward
maximization are not limited to the off-policy model-free setting, which we focus on here due to
their sample and computational efficiency. Future work will investigate its applicability to other
classes of RL algorithms, such as model-based RL, where the forward dynamics model is generally
part of the training framework. In fact, in this work we only use the forward dynamics model for
the intrinsic rewards. Another interesting direction is to include samples from the learned model in
the policy training, which may yield additional gains in sample efficiency.
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A ANAYLZIGNG ϵ–GREEDY FOR MULTI-ARMED BANDITS

In this section, we enunciate a theorem that shows that our modified ϵ–greedy approach from Sec-
tion 3.1 has sublinear regret in the simplified setting of multi-arm bandits.

A.1 SUBLINEAR REGRET FOR ϵ–MAXINFORL
This exploration–exploitation trade-off is also fundamental in multi-armed bandits (MAB) (Lat-
timore & Szepesvári, 2020), where the task is to optimize an unknown objective function
J : Θ → [− 1

2Jmax,
1
2Jmax], with Θ ⊂ Rd being a compact set over which we seek the optimal

arm θ∗ = argmaxθ∈Θ J(θ). In each round t, we choose a point θt ∈ Θ and obtain a noisy
measurement yt of the function value, that is, yt = J(θt) + wt. Our goal is to maximize the sum
of rewards

∑T
t=1 J(θt) over T learning iterations/episodes, thus to perform essentially as well as

θ∗ (as quickly as possible). For example, θ can be parameters of the policy distribution πθ and
our objective maximizing the discounted rewards as defined in Eq. (1), i.e., maxθ∈Θ J(πθ). This
formulation is the basis of several sample-efficient RL algorithms (Calandra et al., 2016; Marco
et al., 2016; Antonova et al., 2017; Berkenkamp et al., 2021; Sukhija et al., 2023).

The natural performance metric in this context is the cumulative regret defined as
RT =

∑T
t=1 J(θ

∗) − J(θt). A desirable asymptotic property of any learning algorithm is
that it is no-regret: limT→∞RT /T = 0. In the following theorem, we show that under standard
continuity assumptions on J , i.e., we can model it through Gaussian process regression (Rasmussen
& Williams, 2005) with a given kernel k(·, ·) : Θ×Θ→ R+, our exploration strategy from Eq. (7)
with the model epistemic uncertainty as the intrinsic objective has sublinear regret.

Theorem A.1. Assume that the objective function J lies in the RKHS Hk corresponding to the
kernel k(θ,θ), ∥J∥k ≤ B, and that the noise wt is zero-mean σ-sub Gaussian. Let ϵt = t2α−1 for
α ∈ (1/4, 1/2), δ ∈ (0, 1] and consider the following ϵ–greedy exploration strategy

θt =




argmax

θ∈Θ
σt(θ) with probabilityϵt

argmax
θ∈Θ

µt(θ) else,

where µt is our mean estimate of J and σt the epistemic uncertainty (c.f., (Rasmussen & Williams,
2005) for the exact formula). Then we have with probability at least 1− δ

RT ≤ O
(
JmaxT

2α + 2ΓT (k)T
1−α) ,

where ΓT (k) is the maximum information gain (Srinivas et al., 2012).

The maximum information gain ΓT (k) measures the complexity of learning the function J w.r.t. the
number of data points T and depends on the choice of the kernel k, for common kernels such as
the RBF and linear kernel, it grows polylogarithmically with T (Srinivas et al., 2012; Vakili et al.,
2021), resulting in a sublinear regret bound. Intuitively, by sampling informative actions sufficiently
often, we will improve our estimate of J and thus gradually suffer less regret.

A.2 PROOF OF THEOREM A.1
From hereon, let Zt ∼ Bernoulli(ϵt) be a Bernoulli random variable. The acquisition function for
ϵ-greedy GP bandit from Theorem A.1 is defined as:

θt =




argmax

θ∈Θ
σt(θ) if Zt = 1

argmax
θ∈Θ

µt(θ) else
(14)

Let Qt =
∑t
s=1 Zs − ϵs. In the following, we analyze the sequence Q1:t. Note that Qt ∈ [0, t] for

all t and

E[Qt|Q1:t−1] = E[Zt − ϵt] + E[Qt−1|Q1:t−1]

= Qt−1.

Therefore, Q1:t is a martingale sequence, or equivalently, {Zs − ϵs}s∈1:t is a martingale difference
sequence.

In the following, we use the time-uniform Azuma Hoeffding inequality from Kassraie et al. (2024)
to give a bound on

∑T
s=1 Zs.
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Lemma A.2. Let ϵ1 = 1, then we have with probability at least 1− δ, for all t ≥ 1

t∑

s=1

Zs ≥ max

{
t∑

s=1

ϵs −
5

2

√
t(log log(et) + log(2δ)), 1

}

Proof. Note that |Qt −Qt−1| = |Zt − ϵt| ∈ [0, 1] for all t. Therefore, we can use the time-uniform
Azzuma-Hoeffding inequality (Kassraie et al., 2024, Lemma 26.) to get

Pr

(
∃t :

t∑

s=1

ϵs − Zs ≥
5

2

√
t(log log(et) + log(2δ))

)
≤ δ

Therefore, we have with probability at least 1− δ
t∑

s=1

Zs ≥
t∑

s=1

ϵs −
5

2

√
t(log log(et) + log(2δ))

for all t ≥ 1. Furthermore, since ϵ1 = 1, we have Z1 = 1. Therefore,
t∑

s=1

Zs ≥ max

{
t∑

s=1

ϵs −
5

2

√
t(log log(et) + log(2δ)), 1

}

Let Et denote the number of exploration steps after t iterations of the algorithm, that is,
Et =

∑t
s=1 Zs. In the next lemma, we derive a bound on Et.

Lemma A.3. Let ϵt = t2α−1 with α ∈ (1/4, 1/2), then for any δ ∈ (0, 1] exists a C > 0, t0 > 0 such
that Et ≥ C2t2α for all t ≥ t0 with probability at least 1− δ.

Proof. Note that ϵt is monotonously decreasing with t. Therefore,
∫ s+1

s
x2α−1dx ≤ ϵs and hence

t∑

s=1

ϵs ≥
∫ t

1

x2α−1dx =
t2α − 1

2α

Therefore, we get
t∑

s=1

ϵs −
5

2

√
t(log log(et) + log(2δ)) ≥ t2α

2α
−
(
5

2

√
t(log log(et) + log(2δ)) +

1

2α

)

Therefore,

Et =

t∑

s=1

Zs

≥ max

{
t∑

s=1

ϵs −
5

2

√
t(log log(et) + log(2δ)), 1

}

≥ max

{
t2α

2α
−
(
5

2

√
t(log log(et) + log(2δ)) +

1

2α

)
, 1

}

Note that since α > 1
4 , for any δ ∈ (0, 1]

5

2

√
t(log log(et) + log(2δ)) +

1

2α
∈ o(t2α).

Moreover max
{
t2α

2α −
(

5
2

√
t(log log(et) + log(2δ)) + 1

2α

)
, 1
}
∈ Θ(t2α), therefore for any δ ∈

(0, 1] exists a C > 0, t0 > 0 such that Et ≥ C2t2α for all t ≥ t0 with probability at least 1− δ.
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Next, we use the results from Chowdhury & Gopalan (2017) on the well-calibration of J w.r.t. our
mean and epistemic uncertainty estimates.

Lemma A.4 (Theorem 2, Chowdhury & Gopalan (2017)). Let the assumptions from Theorem A.1
hold. Then, with probability at least 1− δ, the following holds for all θ ∈ Θ and t ≥ 1:

|µt−1(θ)− J(θ)| ≤ βt−1σt−1(θ),

with βt−1 = B+σ
√

2(Γt−1 + 1 + ln(1/δ)), where Γt−1 is the maximum information gain (Srinivas
et al., 2012) after t− 1 rounds.

Proof of Theorem A.1. The ϵ–greedy algorithm alternates between uncertainty sampling and max-
imizing the mean. In the worst case, it may suffer maximal regret Jmax during the uncertainty
sampling stage. Furthermore, assume at time t, we execute the exploitation stage, then we have

J(θ∗)− J(θt) = J(θ∗)− µt(θ∗) + µt(θ
∗)− J(θt)

≤ J(θ∗)− µt(θ∗) + µt(θt)− J(θt) (µt(θt) ≥ µt(θ∗))
≤ βt(σt(θ∗) + σt(θt)) (Lemma A.4)

Therefore, we can break down the cumulative regret RT into these two stages.

RT = EZ1:T ,w1:T

[
T∑

t=1

J(θ∗)− J(θt)
]

=

T∑

t=1

[EZ1:t−1,w1:t−1
Ewt,Zt [J(θ∗)− J(θt)]]

=

T∑

t=1

EZ1:t−1,w1:t−1
[Ewt [J(θ∗)− J(θt)|Zt = 0](1− ϵt) + Ewt [J(θ∗)− J(θt)|Zt = 1]ϵt

≤ Jmax

T∑

t=1

ϵt +

T∑

t=1

βtEZ1:t−1,w1:t−1 [σt(θ
∗) + σt(θt)]

Assume Et is given, then we have for all t

max
θ∈Θ

σ2
t (θ)Et = max

θ∈Θ
σ2
t (θ)

t∑

s=1

Zs

≤
t∑

s=1

Zsmax
θ∈Θ

σ2
s(θ)

≤
t∑

s=1

Zsσ
2
s(θs)

≤
t∑

s=1

σ2
s(θs)

≤ CΓt
Therefore, σ2

t (θ) ≤ CΓt
Et

for all θ ∈ X . Since, Et ≥ C2t2α for α ∈
(
1
4 ,

1
2

)
, we have with

probability at least 1− δ for all t ≥ t0, θ ∈ Θ, there exists a constant K such that

σt(θ) ≤ K
√
Γt
tα

Going back to the regret, we get

Rt ≤ Jmax

T∑

t=1

ϵt +

T∑

t=1

2βtK

√
Γt
tα

≤ O
(
JmaxT

2α + 2KβT
√
ΓTT

1−α
)
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Here we used the fact that, α ∈
(
1
4 ,

1
2

)
, therefore,

T∑

t=1

2βtK

√
Γt
tα
≤ 2KβT

√
ΓT

T∑

t=1

1

tα
≤ Θ(2KβT

√
ΓTT

1−α).

Similarly since ϵt = t2α−1, we have
∑T
t=1 ϵt = Θ(T 2α) The regret is sublinear for ubiquitous

choices of kernels such as the RBF. Indicating, consistency of the ϵ-greedy exploration strategy with
the model-epistemic uncertainty as the exploration signal.

B PROOF OF THEOREM 3.1
Lemma B.1. Consider the Bellman operator T π from Eq. (12), and a mapping Q0 : S × A → R
and define Qk+1 = T πQk. Furthermore, let the assumptions from Theorem 3.1 hold. Then, the
sequence Qk will converge to the soft-Q function of π as k →∞.

Proof. Consider the following augmented reward

rπ(s,a) = r(s,a) + Es′|s,a
[
Ea′∼π(·|s′)[−α1 log(π(a

′|s′)) + α2I(s̃
′′;f∗|s′,a′)]

]
,

where s̃′′ is the next state and reward given (s′,a′). Then from Eq. (12), we have

T πQ(s,a) = rπ(s,a) + γEs′,a′|s,a[Q(s′,a′)].

Furthermore, rπ is bounded since r is bounded and the policy entropy and the information gain are
bounded for all π ∈ Π by assumption. Therefore, we can apply standard convergence results on
policy evaluation to show convergence (Sutton, 2018).

Lemma B.1 shows that the Q updates satisfy the contraction property and thus converge to the soft-Q
function of π. Next, we show that the policy update from Eq. (8) leads to monotonous improvement
of the policy.

Lemma B.2. Let the assumptions from Theorem 3.1 hold. Consider any πold ∈ Π, and let πnew

denote the solution to Eq. (8). Then we have for all (s,a) ∈ S ×A that Qπold
(s,a) ≤ Qπnew

(s,a).

Proof. Consider any s ∈ S

Ea∼πnew(·|s)
[
Qπold

(s,a)− α1 logπ
new(a|s) + α2I(s

′;f∗|s,a)
]

≥ Ea∼πold(·|s)
[
Qπold

(s,a)− α1 logπ
old(a|s) + α2I(s

′;f∗|s,a)
]

= V πold
(s) (15)

Next consider any pair (s,a) ∈ S ×A
Qπold

(s,a) = r(s,a) + γEs′|s,a[V
πold

(s′)]

≤ r(s,a) + γEs′|s,a[Ea′∼πnew(·|s′)[Q
πold

(s′,a′)− α1 logπ
new(a′|s′) + α2I(s

′′;f∗|s′,a′)]]

...

≤ Qπnew
(s,a)

where we have repeatedly expanded Qπold
on the RHS by applying the soft Bellman equation and

the bound in Eq. (15).

Finally, combining Lemma B.1 and Lemma B.2, we can prove Theorem 3.1.

Proof of Theorem 3.1. Note that since the reward, information gain, and entropy are bounded,
Qπ(s,a) is also bounded for all π ∈ Π, (s,a) ∈ S ×A. Furthermore, in Lemma B.2 we show that
the policy is monotonously improving. Therefore, the sequence of policy updates converges to a pol-
icy π∗ ∈ Π such that Jπ∗

(π∗) ≥ Jπ∗
(π) for all π ∈ Π. Applying the same argument as Haarnoja

et al. (2018, Theorem 1), we get Qπ∗
(s,a) ≥ Qπ(s,a) for all π ∈ Π, (s,a) ∈ S ×A.
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C MAXINFORL FROM THE PERSPECTIVE OF KL-MINIMIZATION

We take inspiration from Hafner et al. (2020) and study the Boltzmann exploration formulation
from Section 3.2 from the action perception and divergence minimization (APD) perspective. We
denote with τ = {st,at, rt}t≥0 the trajectory in state, reward, and action space. The goal of the
RL agent is to maximize the cumulative reward w.r.t. the true system f∗. Therefore, a common and
natural choice for a target/desired distribution for the trajectory τ is (Levine, 2018; Hafner et al.,
2020)

p∗(τ ) =


∏

t≥0

p(st+1, rt|st,at,f∗)


 exp


 1

α

∑

t≥0

rt


 .

However, f∗ is unknown in our case and we only have an estimate of the underlying distribution
p(f) from which it is sampled. Given a state-pair (st,at), we get the following distribution for
(st+1, rt).

p(st+1, rt|st,at) =
∫
p(st+1, rt|st,at,f)dp(f) = Ef [p(st+1, rt|st,at,f)] . (16)

For a given policy π, we can write the distribution of its trajectory via τπ as

p̂π(τ ) =


∏

t≥0

p(st+1, rt|st,at)π(at|st)




= p(s1)


∏

t≥0

Ef [p(st+1, rt|st,at,f)]π(at|st)


 . (17)

A natural objective for deciding which policy to pick is to select π such that its resulting trajectory
τπ is close (in-distribution) to τ ∗. That is,

π∗ = argmin
π

DKL(p̂
π(τ )|p∗(τ )). (18)

In the following, we break down the term from Eq. (18) and show that it results in the MAXINFORL
objective.

DKL(p̂
π(τ )|p∗(τ )) = Eτ∼p̂π(τ )

[
− log

(
p∗(τ )
p̂π(τ )

)]

= −Eτ∼p̂π(τ )


∑

t≥0

log(p(st+1, rt|st,at,f∗)) +
1

α

∑

t≥0

rt




+ Eτ∼p̂π(τ )


∑

t≥0

log (Ef [p(st+1, rt|st,at,f)]) + log(π(at|st))




= Eτ∼p̂π(τ )


∑

t≥0

log(π(at|st))−
1

α
rt


 (1)

+ Eτ∼p̂π(τ )


∑

t≥0

log (Ef [p(st+1, rt|st,at,f)])− log(p(st+1|st,at,f∗))




(2)
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The term (1) is commonly minimized in max entropy RL methods such as Haarnoja et al. (2018).
The term (2) has a very natural interpretation, which we discuss below

Eτ∼p̂π(τ )


∑

t≥0

log (Ef [p(st+1, rt|st,at,f)])− log(p(st+1, rt|st,at,f∗))




= Eτ∼p̂π(τ )


∑

t≥0

log (p(st+1, rt|st,at))− log(p(st+1, rt|st,at,f∗))




= Eτ∼p̂π(τ )


∑

t≥0

log (p(st+1, rt|st,at))− log(p(wt))




= Eτ∼p̂π(τ )


∑

t≥0

H(wt)−H(st+1, rt|st,at).




= Eτ∼p̂π(τ )


∑

t≥0

H(st+1, rt|st,at,f)−H(st+1, rt|st,at).




Here in the last step, we applied the equality that the entropy of st+1, rt given the previous state,
input, and dynamics is the same as the entropy of wt. In summary, we get

Eτ∼p̂π(τ )


∑

t≥0

log (Ef [p(st+1, rt|st,at,f)])− log(p(st+1, rt|st,at,f∗))




= Eτ∼p̂π(τ )


∑

t≥0

−I(st+1, rt;f |st,at)


 .

Therefore Eq. (18) can be rewritten as

π∗ = argmax
π

Eτ∼p̂π(τ )


∑

t≥0

rt − α log(π(ut|zt)) + αI(st+1, rt;f |st,at)


 .

Intuitively, to bring our estimated distribution of the policy p̂π(τ ) closer to the desired distribution
p∗(τ ), we need to pick policies that maximize the underlying rewards while also gathering more
information about the unknown elements of the MDP; the reward and dynamics model. While the
former objective drives us in areas of high rewards under our estimated model, the latter objective
ensures that our model gets more accurate over time.

D ADDITIONAL EXPERIMENTS

We present additional experiments and ablations in this section.

Covergence of intrinsic reward coefficient λ for MAXINFOSAC: In Fig. 8 we report the tuned
intrinsic reward coefficient λ for SACEIPO and MAXINFOSAC (α2 for MAXINFOSAC). As shown
in Fig. 5 in Section 4, SACEIPO obtains suboptimal performance compared to MAXINFOSAC on
the Pendulum, CartPole, and Walker tasks. We ascribe this to its tendency to underexplore, i.e.
λ → 0 much faster and converges to the local optima. Figure 8 validates our intuition since the
intrinsic reward coefficient quickly decays to zero for SACEIPO whereas for MAXINFOSAC it
does not.

MAXINFORL with REDQ: In Fig. 9 we combine MAXINFORL with REDQ. In all our tasks,
REDQ does not obtain high rewards, we believe this is due to the high update to data ratio,
which leads to the Q function converging to a sub-optimal solution. However, when combined
with MAXINFORL, the resulting algorithm obtains considerably better performance and sample-
efficiency.
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Figure 8: Evolution of the intrinsic reward coefficient λ of SACEIPO and MAXINFOSAC over
environment interaction.

0.0 0.5 1.0 1.5 2.0

Environment steps ×106

0

100

200

∑
r t

Hopper[Hop]

0.0 0.2 0.4 0.6 0.8 1.0

Environment steps ×106

0

200

400

600

800

Walker[Run]

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Environment steps ×106

0

200

400

600

Humanoid[Walk]

MaxInfoSAC (ours) SAC MaxInfoREDQ (ours) REDQ

Figure 9: We combine MAXINFORL with REDQ (MAXINFOREDQ) and report the learning curves
of SAC, REDQ, MAXINFOSAC, and MAXINFOREDQ.

MAXINFORL with DrQv2 on additional DMC tasks: In Fig. 10 we compare MAXINFODRQV2
with DrQv2 and MAXINFODRQ. For MAXINFODRQV2, we use a fixed noise variance with
σ = 0.2 and σ = 0.0. We observe that on all tasks, MAXINFODRQV2 performs better than DrQv2,
even when no noise is added for exploration. This empirically demonstrates that already by just
maximizing the information gain, we get good exploration.
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Figure 10: Learning curves of MAXINFODRQV2 with different noise levels σ ∈ {0.0, 0.2} com-
pared to DrQv2 and MAXINFODRQ.

In Fig. 11, we evaluate the exploration behavior of MAXINFODRQV2 without action noise on the
DMC Humanoid Walk task. The figure shows that even without noise, MAXINFODRQV2 outper-
forms DrQv2, while the noise-free DrQv2 struggles to achieve high rewards.

MAXINFOSAC with different intrinsic reward: We evaluate MAXINFOSAC with RND as in-
trinsic reward. Moreover, we initialize a random NN model and train another model to predict the
output of the random model as proposed in Burda et al. (2018). We train an ensemble of NNs to
learn the random model and use their disagreement as the intrinsic reward3. Effectively, we replace
the information gain term in Eq. (9) with the intrinsic reward derived from RND. In Fig. 12 we re-
port the learning curves. From the figure, we conclude that MAXINFORL also works with RND as
the exploration bonus. Moreover, while the standard MAXINFOSAC performs better on these tasks,
MAXINFOSAC with RND performs significantly better than SAC. This illustrates the generality of
our approach.

3Burda et al. (2018) use curiosity as the intrinsic reward but we observed that disagreement performed much
better and robustly in our experiments.
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Figure 11: MAXINFODRQV2 evaluated on the humanoid walk task with no action noise.
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Figure 12: Learning curves of MAXINFOSAC with RND as the intrinsic reward, instead of the
information gain, compared to SAC and standard MAXINFOSAC.

Experiments with ϵ–MAXINFORL We also evaluate our ϵ–greedy version from Section 3.1, ϵ–
MAXINFORL, empirically. For the intrinsic reward, we use the disagreement (Pathak et al., 2019)
in the ensemble models of f∗ and as the base algorithm, we use SAC. In Fig. 13 we compare
it to MAXINFOSAC and SAC and report the learning curves. We also evaluate ϵ–MAXINFORL
with different action costs, as in Section 4, in Fig. 14. For ϵ we specify a linear decay schedule
(c.f., Appendix E). In the figures, we observe that ϵ–MAXINFORL performs better than SAC and
often on par to MAXINFOSAC. However, ϵ–MAXINFORL requires training two different actor-
critic networks and manually specifying the schedule for ϵ, as opposed to MAXINFOSAC which
automatically trades off the extrinsic and intrinsic rewards.

Experiments with ϵ–MAXINFORL and Curiosity In Fig. 15 we compare ϵ–MAXINFORL with
disagreement and curiosity as intrinsic rewards. We observe that overall both perform better than
SAC, with disagreement obtaining slightly better performance than curiosity.

Experiments with ϵ–MAXINFORL with a switching frequency of one between policies. In all
the ϵ–MAXINFORL experiments above, we switched between the extrinsic and intrinsic policies
every 32 steps. This is because we believe that instead of switching after every time step, following
the extrinsic or intrinsic policies for several steps helps in exploration since we can collect longer
trajectories of explorative data. In Fig. 16 we test this hypothesis on the pendulum environment,
where we observe that indeed the switching frequency of 32 steps performs better.
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Figure 13: Learning curves of ϵ–MAXINFORL with disagreement as the intrinsic reward, SAC and
MAXINFOSAC.

0.0 0.2 0.4 0.6 0.8 1.0

×105

−2000

−1500

−1000

−500

∑
r t

Pendulum[K = 0.0]

0 1 2 3 4 5

×105

0

200

400

600

800

CartPole[Swingup sparse][K = 0.0]

0.0 0.2 0.4 0.6 0.8 1.0

×106

0

200

400

600

800

Walker[Run][K = 0.0]

0.0 0.2 0.4 0.6 0.8 1.0

×105

−2000

−1500

−1000

−500

∑
r t

Pendulum[K = 0.2]

0 1 2 3 4 5

×105

0

200

400

600

800

CartPole[Swingup sparse][K = 0.1]

0.0 0.2 0.4 0.6 0.8 1.0

×106

0

200

400

600

Walker[Run][K = 0.1]

0.0 0.2 0.4 0.6 0.8 1.0

Environment steps ×105

−2000

−1500

−1000

−500

∑
r t

Pendulum[K = 0.5]

0 1 2 3 4 5

Environment steps ×105

0

200

400

600

800
CartPole[Swingup sparse][K = 0.2]

0.0 0.2 0.4 0.6 0.8 1.0

Environment steps ×106

−200

0

200

400

Walker[Run][K = 0.2]

ε-MaxInfoRL[Disagreement] (ours) MaxInfoSAC (ours) SAC

Figure 14: Learning curves of ϵ–MAXINFORL with disagreement as the intrinsic reward, SAC and
MAXINFOSAC for varying levels of action costs K.

Experiments with OAC (Ciosek et al., 2019). In Fig. 17, we compare OAC (Ciosek et al.,
2019) an optimism based actor-critic algorithm with MAXINFOSAC. Furthermore, we also test
a MAXINFORL version of OAC, called MAXINFOOAC. As depicted in the figure, we observe that
while OAC performs better than SAC, the MAXINFORL perform the best.

Experiments with DrM (Xu et al., 2024). In Fig. 18, we evaluate DrM (Xu et al., 2024) another
exploration algorithm for visual control tasks. DrM uses dormant ratio-guided exploration to solve
challenging visual control problems. In our experiments, we evaluate the version of DrM without
the expectile regression and use the same exploration schedule proposed in the paper. We combine
DrM with MAXINFORL and report the performance on the humanoid and dog tasks from DMC.

E EXPERIMENT DETAILS

In this section, we present the experiment details of MAXINFORL and our baselines.

MAXINFOSAC We train an ensemble of P deterministic neural networks with mean squared
error to predict the next state4 and rewards. We evaluate the disagreement with σn(s,a) =
Var({fϕi(s,a)}i∈{1,...,P}), where {ϕi}i∈{1,...,P} are the parameters of each ensemble member. We

4Specifically we predict st+1 − st.
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Figure 15: Learning curves of ϵ–MAXINFORL with disagreement and curiosity as the intrinsic
reward compared with SAC.
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Figure 16: Learning curves of ϵ–MAXINFORL with disagreement. We compare a version of ϵ–
MAXINFORL which switches between extrinsic and intrinsic policy every step with one which
switches every 32 steps.

quantify the information gain using the upper bound in Equation (5) and for the aleatoric uncertainty,
we use σ = 10−3. In principle, we could learn the aleatoric uncertainty, however, we found that
this approach already works robustly. Lastly, as suggested by Burda et al. (2018) we normalize the
intrinsic reward/information gain term when training the critic.

A limitation of our work is that it requires training an ensemble of forward dynamics models to
quantify the epistemic uncertainty. This is highlighted in Table 1 where we compare the training
time required to train SAC with MAXINFOSAC. We report the numbers for our Stable-Baselines 3
(SB3) (Raffin et al., 2021) (torch-based) implementation and JaxRL (Kostrikov, 2021) (Jax-based)
implementation.

Table 1: Computation cost comparison for MAXINFOSAC on NVIDIA GeForce RTX 2080 Ti

Algorithm Training time for 100k environment interactions
SAC (SB3) 16.96 min +/- 1.64317 min
MAXINFOSAC (SB3) 39 min +/- 1 min
SAC (JaxRL) 5.6 min +/- 0.2min
MAXINFOSAC (JaxRL) 7.3 min +/- 0.75
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Figure 17: Learning curves of OAC compared with MAXINFOSAC and a MAXINFORL version of
OAC (MAXINFOOAC).
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Figure 18: Learning curves of DrM compared with our version of DrM (MAXINFODRM).

As the number suggests MAXINFOSAC requires more time to train due to the additional compu-
tational overhead from learning the dynamics model. However, our JaxRL-based implementation
already bridges the computational gap and is much faster. To further reduce the computational cost,
we can consider cheaper methods for uncertainty quantification such as Osband et al. (2023).

Explore then exploit We train two different actor-critics, one for the extrinsic and one for the
intrinsic reward. For the first 25% of the episodes, we only use the intrinsic actor for data collection.
For the remaining 75%, the extrinsic actor is used. As the base actor-critic algorithm we use SAC.
Both the intrinsic and extrinsic actor-critics share the same data buffer. Therefore, the data collected
during the exploration phase is also used to train the policy for the exploitation phase. For the intrin-
sic reward, we use the disagreement calculated as specified above for MAXINFOSAC. We also eval-
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uate this approach with curiosity as the intrinsic reward. Here we train a neural network model to pre-
dict the next state and reward and use the mean squared error in the prediction as the intrinsic reward.

SACINTRINSIC Here we follow the same procedure as proposed in Burda et al. (2018). We
train two critics, one for the extrinsic reward and another one for the intrinsic rewards/exploration
bonuses. We use the (normalized) information gain and policy entropy as the exploration bonuses.
As suggested in Burda et al. (2018) the non-episodic returns are used in training the intrinsic critics.
The policy is trained to maximize Es∼D[Ea∼π(·|s)[Q

πold
extrinsic(s,a) +Qπold

intrinsic(s,a)]], where D is the
data buffer.

SACEIPO We follow the same procedure as in SACINTRINSIC in training the critics. For the
policy, we maximize a weighted sum of the extrinsic and intrinsic critics, i.e., the policy π is trained
to maximize Es∼D[Ea∼π(·|s)[λQ

πold
extrinsic(s,a)+Q

πold
intrinsic(s,a)]]. We determine λ using the extrinsic

optimality constraint from Chen et al. (2021). For the policy π, the extrinsic optimality constraint is
given by

Es∼D[Ea∼π(·|s)[Q
π
extrinsic(s,a)]]− max

π′∈Π
Es∈D[Ea∼π′(·|s)[Q

π′

extrinsic(s,a)]] = 0

Effectively, we encourage the policy π that maximizes the intrinsic and extrinsic rewards performs
at least as well as the policy which only maximizes the extrinsic ones. To evaluate this constraint,
we train another actor and critic that greedily maximizes the extrinsic reward only, i.e., we use the
data buffer to learn the solution π∗

E for maxπ′∈Π Es∈D[Ea∼π′(·|s)[Qπ′

extrinsic(s,a)]].

L(λ) = λ
(
Ea∼π(·|s)[Q

π
extrinsic(s,a)]]− Es∼D[Es∈D[Ea∼π∗

E(·|s)[Q
π∗
E

extrinsic(s,a)]]
)

Intuitively, if our constraint is not satisfied, i.e., Es∼D[Es∈D[Ea∼π∗
E(·|s)[Q

π∗
E

extrinsic(s,a)]] >

Es∼D[Ea∼π(·|s)[Qπ
extrinsic(s,a)]], we increase λ, effectively focusing more on the extrinsic reward.

We update λ with gradient descent on L(λ), akin to the temperature parameters in MAXINFOSAC.

MAXINFODRQ We add our information gain on top of DrQ using the same architecture and
image augmentations from Yarats et al. (2021). The policy and critic updates are identical to
MAXINFOSAC. However, since we deal with images, we train an ensemble of P deterministic
neural networks with mean squared error to predict the next state st+1, rewards rt, and a com-
pressed image embedding et which we obtain from the encoder for the observation ot. Effectively,
we compress the output of the encoder into a de dimensional embedding using max pooling and use
that as a label for our ensemble training. Crucially, we want the ensemble to learn and explore all
unknown components of the MDP, the dynamics, rewards and observation model. For the state s,
we use the learned representation from the target critic.

MAXINFODRQV2 We use the same procedure for training the ensemble model as
MAXINFODRQ. For MAXINFODRQV2, we separate the intrinsic and extrinsic reward critic. This
is primarily because DrQv2 uses n–step returns for training the extrinsic critic. By separating the
two critics, we can train the extrinsic critic with the n–step returns and the intrinsic with the standard
1–step ones. This makes implementing the algorithm easier.

MAXINFOSAC[RND] In Fig. 12 we evaluate MAXINFOSAC with RND as intrinsic reward. We
initialize a target neural network to predict an output embedding y given (s,a). We train an ensem-
ble of neural networks to learn the target network and use the disagreement as the intrinsic reward.
The remaining training procedure is identical to MAXINFOSAC.

ϵ–MAXINFORL We also evaluate the ϵ–MAXINFORL algorithm from Equation (6). We train
two actor-critics similar to the explore and then exploit baselines. However, instead of exploring for
a fixed amount of iterations initially, we specify a probability ϵt to alternate between the exploitation
and exploration phases. Furthermore, changing the between policies after every time-step can lead
to noisy trajectories. Therefore, we choose a frequency f = 32 for the switches. That is, we change
the sampling strategy (explore or exploit) after a minimum of f steps.

E.1 ALGORITHMS

We provide more details about MAXINFOSAC, MAXINFODRQ, and MAXINFODRQV2. All three
are off-policy actor-critic algorithms and learn two criticsQθ1 andQθ2 to avoid overestimation bias.
From here on, we denote with ψ the parameters of the policy and θ̄1,2, ψ̄ the parameters of the target
critics and policy.
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Losses for MAXINFOSAC and MAXINFODRQ We sample a trajectory τ from D and use the
following for the critic and policy losses.

Critic loss:

JQ(θ) =
1

2
Eτ∼D[(Qθ(s,a)− y)2]

y = r + γ min
k∈{1,2}

Qθ̄k(s
′,a′)− α1 logπψ(·|s′) + α2Iu(s

′,a′). (19)

where a′ ∼ πψ(·|s′).
Policy loss:

Jπ(ψ) = Es∼D[Ea∼πψ [α1 logπψ(·|s)− α2Iu(s,a)− min
k∈{1,2}

Qθk(s,a)]]. (20)

Entropy coefficient loss;

J(α1) = Es∼D[−α1(logπψ(·|s) + H̄)]. (21)

Critic loss for MAXINFODRQV2 For MAXINFODRQV2 we train separate critics for the intrinsic
and extrinsic rewards. This allows us to use n–step returns for the extrinsic rewards while keeping
a simple implementation, using 1–step returns, for the intrinsic ones. Effectively, for computational
efficiency, we adapt the critic network to output two heads, one for the extrinsic and one for the
intrinsic reward.

Critic loss:

JQ(θ) =
1

2
Eτ∼D[(Q

extrinsic
θ (s,a)− yextrinsic)2 + (Qintrinsic

θ (s,a)− yintrinsic)2]

yextrinsic =

n∑

l=0

γlrl + γn min
k∈{1,2}

Qextrinsic
θ̄k

(sn,an)

yintrinsic = Iu(s,a) + γ min
k∈{1,2}

Qintrinsic
θ̄k

(s′,a′). (22)

where an ∼ πψ(·|sn) and a′ ∼ πψ(·|s′).
Policy loss:

Jπ(ψ) = Es∼D

[
Ea∼πψ

[
−
(

min
k∈{1,2}

Qextrinsic
θk

(s,a) + α2 min
k∈{1,2}

Qintrinsic
θk

(s,a)

)]]
. (23)

Loss for the information gain coefficient

J(α2) = α2

(
Es∼D[Ea∼πψ [Iu(s,a)]− Eā∼π̄ψ [Iu(s, ā)]]

)
. (24)

Loss of ensemble model for MAXINFOSAC. Let Φ = {ϕi}i∈{1,...P}

J(Φ) = Eτ∼D

[
P∑

i=1

∥fϕi(s,a)− y∥2
]

(25)

y =
[
(s′ − s)⊤, r

]
. (26)

Loss of ensemble model for MAXINFODRQ and MAXINFODRQV2.

J(Φ) = Eτ∼D

[
P∑

i=1

∥fϕi(s,a)− y∥2
]

(27)

y =
[
s′⊤, r, e⊤

]
. (28)

In Algorithm 1 we present the main structure of the algorithms. We omit algorithm-specific details
of DrQ, DrQv2 such as noise scheduling and image augmentation in Algorithm 1 and refer the
reader to the respective papers for those details (Yarats et al., 2021; 2022).

E.2 HYPERPARAMETERS
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Algorithm 1 Algorithm structure for MAXINFOSAC, MAXINFODRQ, MAXINFODRQV2

Init: θ1, θ2, ψ
θ̄1 ← θ1, θ̄2 ← θ2, ψ̄ ← ψ ➤ Initialize target
D = ∅
for iterations n = 1, . . . , n do

for each environment step do
at ∼ πψ(·|st) ➤ Sample action
st+1, rt ∼ p(st+1, rt|st,at) ➤ Observe state and reward
D ← D ∪ {st,at, st+1,at}

end for
for each gradient step do

Update critics with stochastic gradient descent (SGD) on JQ(θ1) + JQ(θ2)
Update critics with SGD on Jπ(ψ)
Update temperatures with SGD on J(α1), J(α2)

5

Update ensemble with SGD on J(Φ).
Update θ̄1,2, ψ ➤ Policy update target updates

end for
end for

Table 2: Hyperparameters for results in Section 4.

Environment Learning rate Policy/Critic
Architecture Model architcture Polyak

Coefficient
action
repeat

feature
and embedding dim

State Based Tasks

DMC and Gym 3× 10−4 (256, 256) 0.005
1 for Gym
2 for DMC -

Humanoid Bench 5× 10−5 0.005 -
Visual Control tasks

DMC 3× 10−4 for MAXINFODRQ, else 10−4

10−4 for the model and α2
(256, 256) (256, 256)

0.005 for MAXINFODRQ,
else 10−4 2 Feature: 50

Embedding: 32

Humanoid tasks 8× 10−5, 10−4 for the model and α2 (1024, 1024) (512, 512) 0.01 2
Feature: 100

Embedding: 32
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